freebsd-nq/sys/compat/ndis/subr_ntoskrnl.c
Bill Paul 6f4481422e More minor cleanups and one small bug fix:
- In ntoskrnl_var.h, I had defined compat macros for
  ntoskrnl_acquire_spinlock() and ntoskrnl_release_spinlock() but
  never used them. This is fortunate since they were stale. Fix them
  to work properly. (In Windows/x86 KeAcquireSpinLock() is a macro that
  calls KefAcquireSpinLock(), which lives in HAL.dll. To imitate this,
  ntoskrnl_acquire_spinlock() is just a macro that calls hal_lock(),
  which lives in subr_hal.o.)

- Add macros for ntoskrnl_raise_irql() and ntoskrnl_lower_irql() that
  call hal_raise_irql() and hal_lower_irql().

- Use these macros in kern_ndis.c, subr_ndis.c and subr_ntoskrnl.c.

- Along the way, I realised subr_ndis.c:ndis_lock() was not calling
  hal_lock() correctly (it was using the FASTCALL2() wrapper when
  in reality this routine is FASTCALL1()). Using the
  ntoskrnl_acquire_spinlock() fixes this. Not sure if this actually
  caused any bugs since hal_lock() would have just ignored what
  was in %edx, but it was still bogus.

This hides many of the uses of the FASTCALLx() macros which makes the
code a little cleaner. Should not have any effect on generated object
code, other than the one fix in ndis_lock().
2004-08-04 18:22:50 +00:00

1936 lines
47 KiB
C

/*
* Copyright (c) 2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/ctype.h>
#include <sys/unistd.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/callout.h>
#if __FreeBSD_version > 502113
#include <sys/kdb.h>
#endif
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <machine/atomic.h>
#include <machine/clock.h>
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/stdarg.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <compat/ndis/pe_var.h>
#include <compat/ndis/ntoskrnl_var.h>
#include <compat/ndis/hal_var.h>
#include <compat/ndis/resource_var.h>
#include <compat/ndis/ndis_var.h>
#define __regparm __attribute__((regparm(3)))
#define FUNC void(*)(void)
__stdcall static uint8_t ntoskrnl_unicode_equal(ndis_unicode_string *,
ndis_unicode_string *, uint8_t);
__stdcall static void ntoskrnl_unicode_copy(ndis_unicode_string *,
ndis_unicode_string *);
__stdcall static ndis_status ntoskrnl_unicode_to_ansi(ndis_ansi_string *,
ndis_unicode_string *, uint8_t);
__stdcall static ndis_status ntoskrnl_ansi_to_unicode(ndis_unicode_string *,
ndis_ansi_string *, uint8_t);
__stdcall static void *ntoskrnl_iobuildsynchfsdreq(uint32_t, void *,
void *, uint32_t, uint32_t *, void *, void *);
__fastcall static uint32_t ntoskrnl_iofcalldriver(REGARGS2(void *dobj,
void *irp));
__fastcall static void ntoskrnl_iofcompletereq(REGARGS2(void *irp,
uint8_t prioboost));
__stdcall static uint32_t ntoskrnl_waitforobjs(uint32_t,
nt_dispatch_header **, uint32_t, uint32_t, uint32_t, uint8_t,
int64_t *, wait_block *);
static void ntoskrnl_wakeup(void *);
static void ntoskrnl_timercall(void *);
static void ntoskrnl_run_dpc(void *);
__stdcall static void ntoskrnl_writereg_ushort(uint16_t *, uint16_t);
__stdcall static uint16_t ntoskrnl_readreg_ushort(uint16_t *);
__stdcall static void ntoskrnl_writereg_ulong(uint32_t *, uint32_t);
__stdcall static uint32_t ntoskrnl_readreg_ulong(uint32_t *);
__stdcall static void ntoskrnl_writereg_uchar(uint8_t *, uint8_t);
__stdcall static uint8_t ntoskrnl_readreg_uchar(uint8_t *);
__stdcall static int64_t _allmul(int64_t, int64_t);
__stdcall static int64_t _alldiv(int64_t, int64_t);
__stdcall static int64_t _allrem(int64_t, int64_t);
__regparm static int64_t _allshr(int64_t, uint8_t);
__regparm static int64_t _allshl(int64_t, uint8_t);
__stdcall static uint64_t _aullmul(uint64_t, uint64_t);
__stdcall static uint64_t _aulldiv(uint64_t, uint64_t);
__stdcall static uint64_t _aullrem(uint64_t, uint64_t);
__regparm static uint64_t _aullshr(uint64_t, uint8_t);
__regparm static uint64_t _aullshl(uint64_t, uint8_t);
__stdcall static void *ntoskrnl_allocfunc(uint32_t, size_t, uint32_t);
__stdcall static void ntoskrnl_freefunc(void *);
static slist_entry *ntoskrnl_pushsl(slist_header *, slist_entry *);
static slist_entry *ntoskrnl_popsl(slist_header *);
__stdcall static void ntoskrnl_init_lookaside(paged_lookaside_list *,
lookaside_alloc_func *, lookaside_free_func *,
uint32_t, size_t, uint32_t, uint16_t);
__stdcall static void ntoskrnl_delete_lookaside(paged_lookaside_list *);
__stdcall static void ntoskrnl_init_nplookaside(npaged_lookaside_list *,
lookaside_alloc_func *, lookaside_free_func *,
uint32_t, size_t, uint32_t, uint16_t);
__stdcall static void ntoskrnl_delete_nplookaside(npaged_lookaside_list *);
__fastcall static slist_entry *ntoskrnl_push_slist(REGARGS2(slist_header *head,
slist_entry *entry));
__fastcall static slist_entry *ntoskrnl_pop_slist(REGARGS1(slist_header
*head));
__fastcall static slist_entry
*ntoskrnl_push_slist_ex(REGARGS2(slist_header *head,
slist_entry *entry), kspin_lock *lock);
__fastcall static slist_entry
*ntoskrnl_pop_slist_ex(REGARGS2(slist_header *head,
kspin_lock *lock));
__fastcall static uint32_t
ntoskrnl_interlock_inc(REGARGS1(volatile uint32_t *addend));
__fastcall static uint32_t
ntoskrnl_interlock_dec(REGARGS1(volatile uint32_t *addend));
__fastcall static void ntoskrnl_interlock_addstat(REGARGS2(uint64_t *addend,
uint32_t inc));
__stdcall static void ntoskrnl_freemdl(ndis_buffer *);
__stdcall static uint32_t ntoskrnl_sizeofmdl(void *, size_t);
__stdcall static void ntoskrnl_build_npaged_mdl(ndis_buffer *);
__stdcall static void *ntoskrnl_mmaplockedpages(ndis_buffer *, uint8_t);
__stdcall static void *ntoskrnl_mmaplockedpages_cache(ndis_buffer *,
uint8_t, uint32_t, void *, uint32_t, uint32_t);
__stdcall static void ntoskrnl_munmaplockedpages(void *, ndis_buffer *);
__stdcall static void ntoskrnl_init_lock(kspin_lock *);
__stdcall static size_t ntoskrnl_memcmp(const void *, const void *, size_t);
__stdcall static void ntoskrnl_init_ansi_string(ndis_ansi_string *, char *);
__stdcall static void ntoskrnl_init_unicode_string(ndis_unicode_string *,
uint16_t *);
__stdcall static void ntoskrnl_free_unicode_string(ndis_unicode_string *);
__stdcall static void ntoskrnl_free_ansi_string(ndis_ansi_string *);
__stdcall static ndis_status ntoskrnl_unicode_to_int(ndis_unicode_string *,
uint32_t, uint32_t *);
static int atoi (const char *);
static long atol (const char *);
static int rand(void);
static void ntoskrnl_time(uint64_t *);
__stdcall static uint8_t ntoskrnl_wdmver(uint8_t, uint8_t);
static void ntoskrnl_thrfunc(void *);
__stdcall static ndis_status ntoskrnl_create_thread(ndis_handle *,
uint32_t, void *, ndis_handle, void *, void *, void *);
__stdcall static ndis_status ntoskrnl_thread_exit(ndis_status);
__stdcall static ndis_status ntoskrnl_devprop(device_object *, uint32_t,
uint32_t, void *, uint32_t *);
__stdcall static void ntoskrnl_init_mutex(kmutant *, uint32_t);
__stdcall static uint32_t ntoskrnl_release_mutex(kmutant *, uint8_t);
__stdcall static uint32_t ntoskrnl_read_mutex(kmutant *);
__stdcall static ndis_status ntoskrnl_objref(ndis_handle, uint32_t, void *,
uint8_t, void **, void **);
__fastcall static void ntoskrnl_objderef(REGARGS1(void *object));
__stdcall static uint32_t ntoskrnl_zwclose(ndis_handle);
static uint32_t ntoskrnl_dbgprint(char *, ...);
__stdcall static void ntoskrnl_debugger(void);
__stdcall static void dummy(void);
static struct mtx ntoskrnl_dispatchlock;
static kspin_lock ntoskrnl_global;
static int ntoskrnl_kth = 0;
static struct nt_objref_head ntoskrnl_reflist;
int
ntoskrnl_libinit()
{
mtx_init(&ntoskrnl_dispatchlock,
"ntoskrnl dispatch lock", MTX_NDIS_LOCK, MTX_DEF);
ntoskrnl_init_lock(&ntoskrnl_global);
TAILQ_INIT(&ntoskrnl_reflist);
return(0);
}
int
ntoskrnl_libfini()
{
mtx_destroy(&ntoskrnl_dispatchlock);
return(0);
}
__stdcall static uint8_t
ntoskrnl_unicode_equal(str1, str2, caseinsensitive)
ndis_unicode_string *str1;
ndis_unicode_string *str2;
uint8_t caseinsensitive;
{
int i;
if (str1->nus_len != str2->nus_len)
return(FALSE);
for (i = 0; i < str1->nus_len; i++) {
if (caseinsensitive == TRUE) {
if (toupper((char)(str1->nus_buf[i] & 0xFF)) !=
toupper((char)(str2->nus_buf[i] & 0xFF)))
return(FALSE);
} else {
if (str1->nus_buf[i] != str2->nus_buf[i])
return(FALSE);
}
}
return(TRUE);
}
__stdcall static void
ntoskrnl_unicode_copy(dest, src)
ndis_unicode_string *dest;
ndis_unicode_string *src;
{
if (dest->nus_maxlen >= src->nus_len)
dest->nus_len = src->nus_len;
else
dest->nus_len = dest->nus_maxlen;
memcpy(dest->nus_buf, src->nus_buf, dest->nus_len);
return;
}
__stdcall static ndis_status
ntoskrnl_unicode_to_ansi(dest, src, allocate)
ndis_ansi_string *dest;
ndis_unicode_string *src;
uint8_t allocate;
{
char *astr = NULL;
if (dest == NULL || src == NULL)
return(NDIS_STATUS_FAILURE);
if (allocate == TRUE) {
if (ndis_unicode_to_ascii(src->nus_buf, src->nus_len, &astr))
return(NDIS_STATUS_FAILURE);
dest->nas_buf = astr;
dest->nas_len = dest->nas_maxlen = strlen(astr);
} else {
dest->nas_len = src->nus_len / 2; /* XXX */
if (dest->nas_maxlen < dest->nas_len)
dest->nas_len = dest->nas_maxlen;
ndis_unicode_to_ascii(src->nus_buf, dest->nas_len * 2,
&dest->nas_buf);
}
return (NDIS_STATUS_SUCCESS);
}
__stdcall static ndis_status
ntoskrnl_ansi_to_unicode(dest, src, allocate)
ndis_unicode_string *dest;
ndis_ansi_string *src;
uint8_t allocate;
{
uint16_t *ustr = NULL;
if (dest == NULL || src == NULL)
return(NDIS_STATUS_FAILURE);
if (allocate == TRUE) {
if (ndis_ascii_to_unicode(src->nas_buf, &ustr))
return(NDIS_STATUS_FAILURE);
dest->nus_buf = ustr;
dest->nus_len = dest->nus_maxlen = strlen(src->nas_buf) * 2;
} else {
dest->nus_len = src->nas_len * 2; /* XXX */
if (dest->nus_maxlen < dest->nus_len)
dest->nus_len = dest->nus_maxlen;
ndis_ascii_to_unicode(src->nas_buf, &dest->nus_buf);
}
return (NDIS_STATUS_SUCCESS);
}
__stdcall static void *
ntoskrnl_iobuildsynchfsdreq(func, dobj, buf, len, off, event, status)
uint32_t func;
void *dobj;
void *buf;
uint32_t len;
uint32_t *off;
void *event;
void *status;
{
return(NULL);
}
__fastcall static uint32_t
ntoskrnl_iofcalldriver(REGARGS2(void *dobj, void *irp))
{
return(0);
}
__fastcall static void
ntoskrnl_iofcompletereq(REGARGS2(void *irp, uint8_t prioboost))
{
return;
}
static void
ntoskrnl_wakeup(arg)
void *arg;
{
nt_dispatch_header *obj;
wait_block *w;
list_entry *e;
struct thread *td;
obj = arg;
mtx_lock(&ntoskrnl_dispatchlock);
obj->dh_sigstate = TRUE;
e = obj->dh_waitlisthead.nle_flink;
while (e != &obj->dh_waitlisthead) {
w = (wait_block *)e;
td = w->wb_kthread;
ndis_thresume(td->td_proc);
/*
* For synchronization objects, only wake up
* the first waiter.
*/
if (obj->dh_type == EVENT_TYPE_SYNC)
break;
e = e->nle_flink;
}
mtx_unlock(&ntoskrnl_dispatchlock);
return;
}
static void
ntoskrnl_time(tval)
uint64_t *tval;
{
struct timespec ts;
nanotime(&ts);
*tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 +
11644473600;
return;
}
/*
* KeWaitForSingleObject() is a tricky beast, because it can be used
* with several different object types: semaphores, timers, events,
* mutexes and threads. Semaphores don't appear very often, but the
* other object types are quite common. KeWaitForSingleObject() is
* what's normally used to acquire a mutex, and it can be used to
* wait for a thread termination.
*
* The Windows NDIS API is implemented in terms of Windows kernel
* primitives, and some of the object manipulation is duplicated in
* NDIS. For example, NDIS has timers and events, which are actually
* Windows kevents and ktimers. Now, you're supposed to only use the
* NDIS variants of these objects within the confines of the NDIS API,
* but there are some naughty developers out there who will use
* KeWaitForSingleObject() on NDIS timer and event objects, so we
* have to support that as well. Conseqently, our NDIS timer and event
* code has to be closely tied into our ntoskrnl timer and event code,
* just as it is in Windows.
*
* KeWaitForSingleObject() may do different things for different kinds
* of objects:
*
* - For events, we check if the event has been signalled. If the
* event is already in the signalled state, we just return immediately,
* otherwise we wait for it to be set to the signalled state by someone
* else calling KeSetEvent(). Events can be either synchronization or
* notification events.
*
* - For timers, if the timer has already fired and the timer is in
* the signalled state, we just return, otherwise we wait on the
* timer. Unlike an event, timers get signalled automatically when
* they expire rather than someone having to trip them manually.
* Timers initialized with KeInitializeTimer() are always notification
* events: KeInitializeTimerEx() lets you initialize a timer as
* either a notification or synchronization event.
*
* - For mutexes, we try to acquire the mutex and if we can't, we wait
* on the mutex until it's available and then grab it. When a mutex is
* released, it enters the signaled state, which wakes up one of the
* threads waiting to acquire it. Mutexes are always synchronization
* events.
*
* - For threads, the only thing we do is wait until the thread object
* enters a signalled state, which occurs when the thread terminates.
* Threads are always notification events.
*
* A notification event wakes up all threads waiting on an object. A
* synchronization event wakes up just one. Also, a synchronization event
* is auto-clearing, which means we automatically set the event back to
* the non-signalled state once the wakeup is done.
*/
__stdcall uint32_t
ntoskrnl_waitforobj(obj, reason, mode, alertable, duetime)
nt_dispatch_header *obj;
uint32_t reason;
uint32_t mode;
uint8_t alertable;
int64_t *duetime;
{
struct thread *td = curthread;
kmutant *km;
wait_block w;
struct timeval tv;
int error = 0;
uint64_t curtime;
if (obj == NULL)
return(STATUS_INVALID_PARAMETER);
mtx_lock(&ntoskrnl_dispatchlock);
/*
* See if the object is a mutex. If so, and we already own
* it, then just increment the acquisition count and return.
*
* For any other kind of object, see if it's already in the
* signalled state, and if it is, just return. If the object
* is marked as a synchronization event, reset the state to
* unsignalled.
*/
if (obj->dh_size == OTYPE_MUTEX) {
km = (kmutant *)obj;
if (km->km_ownerthread == NULL ||
km->km_ownerthread == curthread->td_proc) {
obj->dh_sigstate = FALSE;
km->km_acquirecnt++;
km->km_ownerthread = curthread->td_proc;
mtx_unlock(&ntoskrnl_dispatchlock);
return (STATUS_SUCCESS);
}
} else if (obj->dh_sigstate == TRUE) {
if (obj->dh_type == EVENT_TYPE_SYNC)
obj->dh_sigstate = FALSE;
mtx_unlock(&ntoskrnl_dispatchlock);
return (STATUS_SUCCESS);
}
w.wb_object = obj;
w.wb_kthread = td;
INSERT_LIST_TAIL((&obj->dh_waitlisthead), (&w.wb_waitlist));
/*
* The timeout value is specified in 100 nanosecond units
* and can be a positive or negative number. If it's positive,
* then the duetime is absolute, and we need to convert it
* to an absolute offset relative to now in order to use it.
* If it's negative, then the duetime is relative and we
* just have to convert the units.
*/
if (duetime != NULL) {
if (*duetime < 0) {
tv.tv_sec = - (*duetime) / 10000000;
tv.tv_usec = (- (*duetime) / 10) -
(tv.tv_sec * 1000000);
} else {
ntoskrnl_time(&curtime);
if (*duetime < curtime)
tv.tv_sec = tv.tv_usec = 0;
else {
tv.tv_sec = ((*duetime) - curtime) / 10000000;
tv.tv_usec = ((*duetime) - curtime) / 10 -
(tv.tv_sec * 1000000);
}
}
}
mtx_unlock(&ntoskrnl_dispatchlock);
error = ndis_thsuspend(td->td_proc,
duetime == NULL ? 0 : tvtohz(&tv));
mtx_lock(&ntoskrnl_dispatchlock);
/* We timed out. Leave the object alone and return status. */
if (error == EWOULDBLOCK) {
REMOVE_LIST_ENTRY((&w.wb_waitlist));
mtx_unlock(&ntoskrnl_dispatchlock);
return(STATUS_TIMEOUT);
}
/*
* Mutexes are always synchronization objects, which means
* if several threads are waiting to acquire it, only one will
* be woken up. If that one is us, and the mutex is up for grabs,
* grab it.
*/
if (obj->dh_size == OTYPE_MUTEX) {
km = (kmutant *)obj;
if (km->km_ownerthread == NULL) {
km->km_ownerthread = curthread->td_proc;
km->km_acquirecnt++;
}
}
if (obj->dh_type == EVENT_TYPE_SYNC)
obj->dh_sigstate = FALSE;
REMOVE_LIST_ENTRY((&w.wb_waitlist));
mtx_unlock(&ntoskrnl_dispatchlock);
return(STATUS_SUCCESS);
}
__stdcall static uint32_t
ntoskrnl_waitforobjs(cnt, obj, wtype, reason, mode,
alertable, duetime, wb_array)
uint32_t cnt;
nt_dispatch_header *obj[];
uint32_t wtype;
uint32_t reason;
uint32_t mode;
uint8_t alertable;
int64_t *duetime;
wait_block *wb_array;
{
struct thread *td = curthread;
kmutant *km;
wait_block _wb_array[THREAD_WAIT_OBJECTS];
wait_block *w;
struct timeval tv;
int i, wcnt = 0, widx = 0, error = 0;
uint64_t curtime;
struct timespec t1, t2;
if (cnt > MAX_WAIT_OBJECTS)
return(STATUS_INVALID_PARAMETER);
if (cnt > THREAD_WAIT_OBJECTS && wb_array == NULL)
return(STATUS_INVALID_PARAMETER);
mtx_lock(&ntoskrnl_dispatchlock);
if (wb_array == NULL)
w = &_wb_array[0];
else
w = wb_array;
/* First pass: see if we can satisfy any waits immediately. */
for (i = 0; i < cnt; i++) {
if (obj[i]->dh_size == OTYPE_MUTEX) {
km = (kmutant *)obj[i];
if (km->km_ownerthread == NULL ||
km->km_ownerthread == curthread->td_proc) {
obj[i]->dh_sigstate = FALSE;
km->km_acquirecnt++;
km->km_ownerthread = curthread->td_proc;
if (wtype == WAITTYPE_ANY) {
mtx_unlock(&ntoskrnl_dispatchlock);
return (STATUS_WAIT_0 + i);
}
}
} else if (obj[i]->dh_sigstate == TRUE) {
if (obj[i]->dh_type == EVENT_TYPE_SYNC)
obj[i]->dh_sigstate = FALSE;
if (wtype == WAITTYPE_ANY) {
mtx_unlock(&ntoskrnl_dispatchlock);
return (STATUS_WAIT_0 + i);
}
}
}
/*
* Second pass: set up wait for anything we can't
* satisfy immediately.
*/
for (i = 0; i < cnt; i++) {
if (obj[i]->dh_sigstate == TRUE)
continue;
INSERT_LIST_TAIL((&obj[i]->dh_waitlisthead),
(&w[i].wb_waitlist));
w[i].wb_kthread = td;
w[i].wb_object = obj[i];
wcnt++;
}
if (duetime != NULL) {
if (*duetime < 0) {
tv.tv_sec = - (*duetime) / 10000000;
tv.tv_usec = (- (*duetime) / 10) -
(tv.tv_sec * 1000000);
} else {
ntoskrnl_time(&curtime);
if (*duetime < curtime)
tv.tv_sec = tv.tv_usec = 0;
else {
tv.tv_sec = ((*duetime) - curtime) / 10000000;
tv.tv_usec = ((*duetime) - curtime) / 10 -
(tv.tv_sec * 1000000);
}
}
}
while (wcnt) {
nanotime(&t1);
mtx_unlock(&ntoskrnl_dispatchlock);
error = ndis_thsuspend(td->td_proc,
duetime == NULL ? 0 : tvtohz(&tv));
mtx_lock(&ntoskrnl_dispatchlock);
nanotime(&t2);
for (i = 0; i < cnt; i++) {
if (obj[i]->dh_size == OTYPE_MUTEX) {
km = (kmutant *)obj;
if (km->km_ownerthread == NULL) {
km->km_ownerthread =
curthread->td_proc;
km->km_acquirecnt++;
}
}
if (obj[i]->dh_sigstate == TRUE) {
widx = i;
if (obj[i]->dh_type == EVENT_TYPE_SYNC)
obj[i]->dh_sigstate = FALSE;
REMOVE_LIST_ENTRY((&w[i].wb_waitlist));
wcnt--;
}
}
if (error || wtype == WAITTYPE_ANY)
break;
if (duetime != NULL) {
tv.tv_sec -= (t2.tv_sec - t1.tv_sec);
tv.tv_usec -= (t2.tv_nsec - t1.tv_nsec) / 1000;
}
}
if (wcnt) {
for (i = 0; i < cnt; i++)
REMOVE_LIST_ENTRY((&w[i].wb_waitlist));
}
if (error == EWOULDBLOCK) {
mtx_unlock(&ntoskrnl_dispatchlock);
return(STATUS_TIMEOUT);
}
if (wtype == WAITTYPE_ANY && wcnt) {
mtx_unlock(&ntoskrnl_dispatchlock);
return(STATUS_WAIT_0 + widx);
}
mtx_unlock(&ntoskrnl_dispatchlock);
return(STATUS_SUCCESS);
}
__stdcall static void
ntoskrnl_writereg_ushort(reg, val)
uint16_t *reg;
uint16_t val;
{
bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
return;
}
__stdcall static uint16_t
ntoskrnl_readreg_ushort(reg)
uint16_t *reg;
{
return(bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
}
__stdcall static void
ntoskrnl_writereg_ulong(reg, val)
uint32_t *reg;
uint32_t val;
{
bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
return;
}
__stdcall static uint32_t
ntoskrnl_readreg_ulong(reg)
uint32_t *reg;
{
return(bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
}
__stdcall static uint8_t
ntoskrnl_readreg_uchar(reg)
uint8_t *reg;
{
return(bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
}
__stdcall static void
ntoskrnl_writereg_uchar(reg, val)
uint8_t *reg;
uint8_t val;
{
bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
return;
}
__stdcall static int64_t
_allmul(a, b)
int64_t a;
int64_t b;
{
return (a * b);
}
__stdcall static int64_t
_alldiv(a, b)
int64_t a;
int64_t b;
{
return (a / b);
}
__stdcall static int64_t
_allrem(a, b)
int64_t a;
int64_t b;
{
return (a % b);
}
__stdcall static uint64_t
_aullmul(a, b)
uint64_t a;
uint64_t b;
{
return (a * b);
}
__stdcall static uint64_t
_aulldiv(a, b)
uint64_t a;
uint64_t b;
{
return (a / b);
}
__stdcall static uint64_t
_aullrem(a, b)
uint64_t a;
uint64_t b;
{
return (a % b);
}
__regparm static int64_t
_allshl(a, b)
int64_t a;
uint8_t b;
{
return (a << b);
}
__regparm static uint64_t
_aullshl(a, b)
uint64_t a;
uint8_t b;
{
return (a << b);
}
__regparm static int64_t
_allshr(a, b)
int64_t a;
uint8_t b;
{
return (a >> b);
}
__regparm static uint64_t
_aullshr(a, b)
uint64_t a;
uint8_t b;
{
return (a >> b);
}
static slist_entry *
ntoskrnl_pushsl(head, entry)
slist_header *head;
slist_entry *entry;
{
slist_entry *oldhead;
oldhead = head->slh_list.slh_next;
entry->sl_next = head->slh_list.slh_next;
head->slh_list.slh_next = entry;
head->slh_list.slh_depth++;
head->slh_list.slh_seq++;
return(oldhead);
}
static slist_entry *
ntoskrnl_popsl(head)
slist_header *head;
{
slist_entry *first;
first = head->slh_list.slh_next;
if (first != NULL) {
head->slh_list.slh_next = first->sl_next;
head->slh_list.slh_depth--;
head->slh_list.slh_seq++;
}
return(first);
}
__stdcall static void *
ntoskrnl_allocfunc(pooltype, size, tag)
uint32_t pooltype;
size_t size;
uint32_t tag;
{
return(malloc(size, M_DEVBUF, M_NOWAIT));
}
__stdcall static void
ntoskrnl_freefunc(buf)
void *buf;
{
free(buf, M_DEVBUF);
return;
}
__stdcall static void
ntoskrnl_init_lookaside(lookaside, allocfunc, freefunc,
flags, size, tag, depth)
paged_lookaside_list *lookaside;
lookaside_alloc_func *allocfunc;
lookaside_free_func *freefunc;
uint32_t flags;
size_t size;
uint32_t tag;
uint16_t depth;
{
bzero((char *)lookaside, sizeof(paged_lookaside_list));
if (size < sizeof(slist_entry))
lookaside->nll_l.gl_size = sizeof(slist_entry);
else
lookaside->nll_l.gl_size = size;
lookaside->nll_l.gl_tag = tag;
if (allocfunc == NULL)
lookaside->nll_l.gl_allocfunc = ntoskrnl_allocfunc;
else
lookaside->nll_l.gl_allocfunc = allocfunc;
if (freefunc == NULL)
lookaside->nll_l.gl_freefunc = ntoskrnl_freefunc;
else
lookaside->nll_l.gl_freefunc = freefunc;
ntoskrnl_init_lock(&lookaside->nll_obsoletelock);
lookaside->nll_l.gl_depth = LOOKASIDE_DEPTH;
lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
return;
}
__stdcall static void
ntoskrnl_delete_lookaside(lookaside)
paged_lookaside_list *lookaside;
{
void *buf;
__stdcall void (*freefunc)(void *);
freefunc = lookaside->nll_l.gl_freefunc;
while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
freefunc(buf);
return;
}
__stdcall static void
ntoskrnl_init_nplookaside(lookaside, allocfunc, freefunc,
flags, size, tag, depth)
npaged_lookaside_list *lookaside;
lookaside_alloc_func *allocfunc;
lookaside_free_func *freefunc;
uint32_t flags;
size_t size;
uint32_t tag;
uint16_t depth;
{
bzero((char *)lookaside, sizeof(npaged_lookaside_list));
if (size < sizeof(slist_entry))
lookaside->nll_l.gl_size = sizeof(slist_entry);
else
lookaside->nll_l.gl_size = size;
lookaside->nll_l.gl_tag = tag;
if (allocfunc == NULL)
lookaside->nll_l.gl_allocfunc = ntoskrnl_allocfunc;
else
lookaside->nll_l.gl_allocfunc = allocfunc;
if (freefunc == NULL)
lookaside->nll_l.gl_freefunc = ntoskrnl_freefunc;
else
lookaside->nll_l.gl_freefunc = freefunc;
ntoskrnl_init_lock(&lookaside->nll_obsoletelock);
lookaside->nll_l.gl_depth = LOOKASIDE_DEPTH;
lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
return;
}
__stdcall static void
ntoskrnl_delete_nplookaside(lookaside)
npaged_lookaside_list *lookaside;
{
void *buf;
__stdcall void (*freefunc)(void *);
freefunc = lookaside->nll_l.gl_freefunc;
while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
freefunc(buf);
return;
}
/*
* Note: the interlocked slist push and pop routines are
* declared to be _fastcall in Windows. gcc 3.4 is supposed
* to have support for this calling convention, however we
* don't have that version available yet, so we kludge things
* up using __regparm__(3) and some argument shuffling.
*/
__fastcall static slist_entry *
ntoskrnl_push_slist(REGARGS2(slist_header *head, slist_entry *entry))
{
slist_entry *oldhead;
oldhead = (slist_entry *)FASTCALL3(ntoskrnl_push_slist_ex,
head, entry, &ntoskrnl_global);
return(oldhead);
}
__fastcall static slist_entry *
ntoskrnl_pop_slist(REGARGS1(slist_header *head))
{
slist_entry *first;
first = (slist_entry *)FASTCALL2(ntoskrnl_pop_slist_ex,
head, &ntoskrnl_global);
return(first);
}
__fastcall static slist_entry *
ntoskrnl_push_slist_ex(REGARGS2(slist_header *head,
slist_entry *entry), kspin_lock *lock)
{
slist_entry *oldhead;
uint8_t irql;
ntoskrnl_acquire_spinlock(lock, &irql);
oldhead = ntoskrnl_pushsl(head, entry);
ntoskrnl_release_spinlock(lock, irql);
return(oldhead);
}
__fastcall static slist_entry *
ntoskrnl_pop_slist_ex(REGARGS2(slist_header *head, kspin_lock *lock))
{
slist_entry *first;
uint8_t irql;
ntoskrnl_acquire_spinlock(lock, &irql);
first = ntoskrnl_popsl(head);
ntoskrnl_release_spinlock(lock, irql);
return(first);
}
__fastcall void
ntoskrnl_lock_dpc(REGARGS1(kspin_lock *lock))
{
while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0)
/* sit and spin */;
return;
}
__fastcall void
ntoskrnl_unlock_dpc(REGARGS1(kspin_lock *lock))
{
atomic_store_rel_int((volatile u_int *)lock, 0);
return;
}
__fastcall static uint32_t
ntoskrnl_interlock_inc(REGARGS1(volatile uint32_t *addend))
{
atomic_add_long((volatile u_long *)addend, 1);
return(*addend);
}
__fastcall static uint32_t
ntoskrnl_interlock_dec(REGARGS1(volatile uint32_t *addend))
{
atomic_subtract_long((volatile u_long *)addend, 1);
return(*addend);
}
__fastcall static void
ntoskrnl_interlock_addstat(REGARGS2(uint64_t *addend, uint32_t inc))
{
uint8_t irql;
ntoskrnl_acquire_spinlock(&ntoskrnl_global, &irql);
*addend += inc;
ntoskrnl_release_spinlock(&ntoskrnl_global, irql);
return;
};
__stdcall static void
ntoskrnl_freemdl(mdl)
ndis_buffer *mdl;
{
ndis_buffer *head;
if (mdl == NULL || mdl->nb_process == NULL)
return;
head = mdl->nb_process;
if (head->nb_flags != 0x1)
return;
mdl->nb_next = head->nb_next;
head->nb_next = mdl;
/* Decrement count of busy buffers. */
head->nb_bytecount--;
/*
* If the pool has been marked for deletion and there are
* no more buffers outstanding, nuke the pool.
*/
if (head->nb_byteoffset && head->nb_bytecount == 0)
free(head, M_DEVBUF);
return;
}
__stdcall static uint32_t
ntoskrnl_sizeofmdl(vaddr, len)
void *vaddr;
size_t len;
{
uint32_t l;
l = sizeof(struct ndis_buffer) +
(sizeof(uint32_t) * SPAN_PAGES(vaddr, len));
return(l);
}
__stdcall static void
ntoskrnl_build_npaged_mdl(mdl)
ndis_buffer *mdl;
{
mdl->nb_mappedsystemva = (char *)mdl->nb_startva + mdl->nb_byteoffset;
return;
}
__stdcall static void *
ntoskrnl_mmaplockedpages(buf, accessmode)
ndis_buffer *buf;
uint8_t accessmode;
{
return(MDL_VA(buf));
}
__stdcall static void *
ntoskrnl_mmaplockedpages_cache(buf, accessmode, cachetype, vaddr,
bugcheck, prio)
ndis_buffer *buf;
uint8_t accessmode;
uint32_t cachetype;
void *vaddr;
uint32_t bugcheck;
uint32_t prio;
{
return(MDL_VA(buf));
}
__stdcall static void
ntoskrnl_munmaplockedpages(vaddr, buf)
void *vaddr;
ndis_buffer *buf;
{
return;
}
/*
* The KeInitializeSpinLock(), KefAcquireSpinLockAtDpcLevel()
* and KefReleaseSpinLockFromDpcLevel() appear to be analagous
* to splnet()/splx() in their use. We can't create a new mutex
* lock here because there is no complimentary KeFreeSpinLock()
* function. Instead, we grab a mutex from the mutex pool.
*/
__stdcall static void
ntoskrnl_init_lock(lock)
kspin_lock *lock;
{
*lock = 0;
return;
}
__stdcall static size_t
ntoskrnl_memcmp(s1, s2, len)
const void *s1;
const void *s2;
size_t len;
{
size_t i, total = 0;
uint8_t *m1, *m2;
m1 = __DECONST(char *, s1);
m2 = __DECONST(char *, s2);
for (i = 0; i < len; i++) {
if (m1[i] == m2[i])
total++;
}
return(total);
}
__stdcall static void
ntoskrnl_init_ansi_string(dst, src)
ndis_ansi_string *dst;
char *src;
{
ndis_ansi_string *a;
a = dst;
if (a == NULL)
return;
if (src == NULL) {
a->nas_len = a->nas_maxlen = 0;
a->nas_buf = NULL;
} else {
a->nas_buf = src;
a->nas_len = a->nas_maxlen = strlen(src);
}
return;
}
__stdcall static void
ntoskrnl_init_unicode_string(dst, src)
ndis_unicode_string *dst;
uint16_t *src;
{
ndis_unicode_string *u;
int i;
u = dst;
if (u == NULL)
return;
if (src == NULL) {
u->nus_len = u->nus_maxlen = 0;
u->nus_buf = NULL;
} else {
i = 0;
while(src[i] != 0)
i++;
u->nus_buf = src;
u->nus_len = u->nus_maxlen = i * 2;
}
return;
}
__stdcall ndis_status
ntoskrnl_unicode_to_int(ustr, base, val)
ndis_unicode_string *ustr;
uint32_t base;
uint32_t *val;
{
uint16_t *uchr;
int len, neg = 0;
char abuf[64];
char *astr;
uchr = ustr->nus_buf;
len = ustr->nus_len;
bzero(abuf, sizeof(abuf));
if ((char)((*uchr) & 0xFF) == '-') {
neg = 1;
uchr++;
len -= 2;
} else if ((char)((*uchr) & 0xFF) == '+') {
neg = 0;
uchr++;
len -= 2;
}
if (base == 0) {
if ((char)((*uchr) & 0xFF) == 'b') {
base = 2;
uchr++;
len -= 2;
} else if ((char)((*uchr) & 0xFF) == 'o') {
base = 8;
uchr++;
len -= 2;
} else if ((char)((*uchr) & 0xFF) == 'x') {
base = 16;
uchr++;
len -= 2;
} else
base = 10;
}
astr = abuf;
if (neg) {
strcpy(astr, "-");
astr++;
}
ndis_unicode_to_ascii(uchr, len, &astr);
*val = strtoul(abuf, NULL, base);
return(NDIS_STATUS_SUCCESS);
}
__stdcall static void
ntoskrnl_free_unicode_string(ustr)
ndis_unicode_string *ustr;
{
if (ustr->nus_buf == NULL)
return;
free(ustr->nus_buf, M_DEVBUF);
ustr->nus_buf = NULL;
return;
}
__stdcall static void
ntoskrnl_free_ansi_string(astr)
ndis_ansi_string *astr;
{
if (astr->nas_buf == NULL)
return;
free(astr->nas_buf, M_DEVBUF);
astr->nas_buf = NULL;
return;
}
static int
atoi(str)
const char *str;
{
return (int)strtol(str, (char **)NULL, 10);
}
static long
atol(str)
const char *str;
{
return strtol(str, (char **)NULL, 10);
}
static int
rand(void)
{
struct timeval tv;
microtime(&tv);
srandom(tv.tv_usec);
return((int)random());
}
__stdcall static uint8_t
ntoskrnl_wdmver(major, minor)
uint8_t major;
uint8_t minor;
{
if (major == WDM_MAJOR && minor == WDM_MINOR_WINXP)
return(TRUE);
return(FALSE);
}
__stdcall static ndis_status
ntoskrnl_devprop(devobj, regprop, buflen, prop, reslen)
device_object *devobj;
uint32_t regprop;
uint32_t buflen;
void *prop;
uint32_t *reslen;
{
ndis_miniport_block *block;
block = devobj->do_rsvd;
switch (regprop) {
case DEVPROP_DRIVER_KEYNAME:
ndis_ascii_to_unicode(__DECONST(char *,
device_get_nameunit(block->nmb_dev)), (uint16_t **)&prop);
*reslen = strlen(device_get_nameunit(block->nmb_dev)) * 2;
break;
default:
return(STATUS_INVALID_PARAMETER_2);
break;
}
return(STATUS_SUCCESS);
}
__stdcall static void
ntoskrnl_init_mutex(kmutex, level)
kmutant *kmutex;
uint32_t level;
{
INIT_LIST_HEAD((&kmutex->km_header.dh_waitlisthead));
kmutex->km_abandoned = FALSE;
kmutex->km_apcdisable = 1;
kmutex->km_header.dh_sigstate = TRUE;
kmutex->km_header.dh_type = EVENT_TYPE_SYNC;
kmutex->km_header.dh_size = OTYPE_MUTEX;
kmutex->km_acquirecnt = 0;
kmutex->km_ownerthread = NULL;
return;
}
__stdcall static uint32_t
ntoskrnl_release_mutex(kmutex, kwait)
kmutant *kmutex;
uint8_t kwait;
{
mtx_lock(&ntoskrnl_dispatchlock);
if (kmutex->km_ownerthread != curthread->td_proc) {
mtx_unlock(&ntoskrnl_dispatchlock);
return(STATUS_MUTANT_NOT_OWNED);
}
kmutex->km_acquirecnt--;
if (kmutex->km_acquirecnt == 0) {
kmutex->km_ownerthread = NULL;
mtx_unlock(&ntoskrnl_dispatchlock);
ntoskrnl_wakeup(&kmutex->km_header);
} else
mtx_unlock(&ntoskrnl_dispatchlock);
return(kmutex->km_acquirecnt);
}
__stdcall static uint32_t
ntoskrnl_read_mutex(kmutex)
kmutant *kmutex;
{
return(kmutex->km_header.dh_sigstate);
}
__stdcall void
ntoskrnl_init_event(kevent, type, state)
nt_kevent *kevent;
uint32_t type;
uint8_t state;
{
INIT_LIST_HEAD((&kevent->k_header.dh_waitlisthead));
kevent->k_header.dh_sigstate = state;
kevent->k_header.dh_type = type;
kevent->k_header.dh_size = OTYPE_EVENT;
return;
}
__stdcall uint32_t
ntoskrnl_reset_event(kevent)
nt_kevent *kevent;
{
uint32_t prevstate;
mtx_lock(&ntoskrnl_dispatchlock);
prevstate = kevent->k_header.dh_sigstate;
kevent->k_header.dh_sigstate = FALSE;
mtx_unlock(&ntoskrnl_dispatchlock);
return(prevstate);
}
__stdcall uint32_t
ntoskrnl_set_event(kevent, increment, kwait)
nt_kevent *kevent;
uint32_t increment;
uint8_t kwait;
{
uint32_t prevstate;
prevstate = kevent->k_header.dh_sigstate;
ntoskrnl_wakeup(&kevent->k_header);
return(prevstate);
}
__stdcall void
ntoskrnl_clear_event(kevent)
nt_kevent *kevent;
{
kevent->k_header.dh_sigstate = FALSE;
return;
}
__stdcall uint32_t
ntoskrnl_read_event(kevent)
nt_kevent *kevent;
{
return(kevent->k_header.dh_sigstate);
}
__stdcall static ndis_status
ntoskrnl_objref(handle, reqaccess, otype, accessmode, object, handleinfo)
ndis_handle handle;
uint32_t reqaccess;
void *otype;
uint8_t accessmode;
void **object;
void **handleinfo;
{
nt_objref *nr;
nr = malloc(sizeof(nt_objref), M_DEVBUF, M_NOWAIT|M_ZERO);
if (nr == NULL)
return(NDIS_STATUS_FAILURE);
INIT_LIST_HEAD((&nr->no_dh.dh_waitlisthead));
nr->no_obj = handle;
nr->no_dh.dh_size = OTYPE_THREAD;
TAILQ_INSERT_TAIL(&ntoskrnl_reflist, nr, link);
*object = nr;
return(NDIS_STATUS_SUCCESS);
}
__fastcall static void
ntoskrnl_objderef(REGARGS1(void *object))
{
nt_objref *nr;
nr = object;
TAILQ_REMOVE(&ntoskrnl_reflist, nr, link);
free(nr, M_DEVBUF);
return;
}
__stdcall static uint32_t
ntoskrnl_zwclose(handle)
ndis_handle handle;
{
return(STATUS_SUCCESS);
}
/*
* This is here just in case the thread returns without calling
* PsTerminateSystemThread().
*/
static void
ntoskrnl_thrfunc(arg)
void *arg;
{
thread_context *thrctx;
__stdcall uint32_t (*tfunc)(void *);
void *tctx;
uint32_t rval;
thrctx = arg;
tfunc = thrctx->tc_thrfunc;
tctx = thrctx->tc_thrctx;
free(thrctx, M_TEMP);
rval = tfunc(tctx);
ntoskrnl_thread_exit(rval);
return; /* notreached */
}
__stdcall static ndis_status
ntoskrnl_create_thread(handle, reqaccess, objattrs, phandle,
clientid, thrfunc, thrctx)
ndis_handle *handle;
uint32_t reqaccess;
void *objattrs;
ndis_handle phandle;
void *clientid;
void *thrfunc;
void *thrctx;
{
int error;
char tname[128];
thread_context *tc;
struct proc *p;
tc = malloc(sizeof(thread_context), M_TEMP, M_NOWAIT);
if (tc == NULL)
return(NDIS_STATUS_FAILURE);
tc->tc_thrctx = thrctx;
tc->tc_thrfunc = thrfunc;
sprintf(tname, "windows kthread %d", ntoskrnl_kth);
error = kthread_create(ntoskrnl_thrfunc, tc, &p,
RFHIGHPID, NDIS_KSTACK_PAGES, tname);
*handle = p;
ntoskrnl_kth++;
return(error);
}
/*
* In Windows, the exit of a thread is an event that you're allowed
* to wait on, assuming you've obtained a reference to the thread using
* ObReferenceObjectByHandle(). Unfortunately, the only way we can
* simulate this behavior is to register each thread we create in a
* reference list, and if someone holds a reference to us, we poke
* them.
*/
__stdcall static ndis_status
ntoskrnl_thread_exit(status)
ndis_status status;
{
struct nt_objref *nr;
TAILQ_FOREACH(nr, &ntoskrnl_reflist, link) {
if (nr->no_obj != curthread->td_proc)
continue;
ntoskrnl_wakeup(&nr->no_dh);
break;
}
ntoskrnl_kth--;
#if __FreeBSD_version < 502113
mtx_lock(&Giant);
#endif
kthread_exit(0);
return(0); /* notreached */
}
static uint32_t
ntoskrnl_dbgprint(char *fmt, ...)
{
va_list ap;
if (bootverbose) {
va_start(ap, fmt);
vprintf(fmt, ap);
}
return(STATUS_SUCCESS);
}
__stdcall static void
ntoskrnl_debugger(void)
{
#if __FreeBSD_version < 502113
Debugger("ntoskrnl_debugger(): breakpoint");
#else
kdb_enter("ntoskrnl_debugger(): breakpoint");
#endif
}
static void
ntoskrnl_timercall(arg)
void *arg;
{
ktimer *timer;
struct timeval tv;
mtx_unlock(&Giant);
timer = arg;
timer->k_header.dh_inserted = FALSE;
/*
* If this is a periodic timer, re-arm it
* so it will fire again. We do this before
* calling any deferred procedure calls because
* it's possible the DPC might cancel the timer,
* in which case it would be wrong for us to
* re-arm it again afterwards.
*/
if (timer->k_period) {
tv.tv_sec = 0;
tv.tv_usec = timer->k_period * 1000;
timer->k_header.dh_inserted = TRUE;
timer->k_handle =
timeout(ntoskrnl_timercall, timer, tvtohz(&tv));
}
if (timer->k_dpc != NULL)
ntoskrnl_queue_dpc(timer->k_dpc, NULL, NULL);
ntoskrnl_wakeup(&timer->k_header);
mtx_lock(&Giant);
return;
}
__stdcall void
ntoskrnl_init_timer(timer)
ktimer *timer;
{
if (timer == NULL)
return;
ntoskrnl_init_timer_ex(timer, EVENT_TYPE_NOTIFY);
return;
}
__stdcall void
ntoskrnl_init_timer_ex(timer, type)
ktimer *timer;
uint32_t type;
{
if (timer == NULL)
return;
INIT_LIST_HEAD((&timer->k_header.dh_waitlisthead));
timer->k_header.dh_sigstate = FALSE;
timer->k_header.dh_inserted = FALSE;
timer->k_header.dh_type = type;
timer->k_header.dh_size = OTYPE_TIMER;
callout_handle_init(&timer->k_handle);
return;
}
/*
* This is a wrapper for Windows deferred procedure calls that
* have been placed on an NDIS thread work queue. We need it
* since the DPC could be a _stdcall function. Also, as far as
* I can tell, defered procedure calls must run at DISPATCH_LEVEL.
*/
static void
ntoskrnl_run_dpc(arg)
void *arg;
{
__stdcall kdpc_func dpcfunc;
kdpc *dpc;
uint8_t irql;
dpc = arg;
dpcfunc = (kdpc_func)dpc->k_deferedfunc;
irql = ntoskrnl_raise_irql(DISPATCH_LEVEL);
dpcfunc(dpc, dpc->k_deferredctx, dpc->k_sysarg1, dpc->k_sysarg2);
ntoskrnl_lower_irql(irql);
return;
}
__stdcall void
ntoskrnl_init_dpc(dpc, dpcfunc, dpcctx)
kdpc *dpc;
void *dpcfunc;
void *dpcctx;
{
if (dpc == NULL)
return;
dpc->k_deferedfunc = dpcfunc;
dpc->k_deferredctx = dpcctx;
return;
}
__stdcall uint8_t
ntoskrnl_queue_dpc(dpc, sysarg1, sysarg2)
kdpc *dpc;
void *sysarg1;
void *sysarg2;
{
dpc->k_sysarg1 = sysarg1;
dpc->k_sysarg2 = sysarg2;
if (ndis_sched(ntoskrnl_run_dpc, dpc, NDIS_SWI))
return(FALSE);
return(TRUE);
}
__stdcall uint8_t
ntoskrnl_dequeue_dpc(dpc)
kdpc *dpc;
{
if (ndis_unsched(ntoskrnl_run_dpc, dpc, NDIS_SWI))
return(FALSE);
return(TRUE);
}
__stdcall uint8_t
ntoskrnl_set_timer_ex(timer, duetime, period, dpc)
ktimer *timer;
int64_t duetime;
uint32_t period;
kdpc *dpc;
{
struct timeval tv;
uint64_t curtime;
uint8_t pending;
if (timer == NULL)
return(FALSE);
if (timer->k_header.dh_inserted == TRUE) {
untimeout(ntoskrnl_timercall, timer, timer->k_handle);
timer->k_header.dh_inserted = FALSE;
pending = TRUE;
} else
pending = FALSE;
timer->k_duetime = duetime;
timer->k_period = period;
timer->k_header.dh_sigstate = FALSE;
timer->k_dpc = dpc;
if (duetime < 0) {
tv.tv_sec = - (duetime) / 10000000;
tv.tv_usec = (- (duetime) / 10) -
(tv.tv_sec * 1000000);
} else {
ntoskrnl_time(&curtime);
if (duetime < curtime)
tv.tv_sec = tv.tv_usec = 0;
else {
tv.tv_sec = ((duetime) - curtime) / 10000000;
tv.tv_usec = ((duetime) - curtime) / 10 -
(tv.tv_sec * 1000000);
}
}
timer->k_header.dh_inserted = TRUE;
timer->k_handle = timeout(ntoskrnl_timercall, timer, tvtohz(&tv));
return(pending);
}
__stdcall uint8_t
ntoskrnl_set_timer(timer, duetime, dpc)
ktimer *timer;
int64_t duetime;
kdpc *dpc;
{
return (ntoskrnl_set_timer_ex(timer, duetime, 0, dpc));
}
__stdcall uint8_t
ntoskrnl_cancel_timer(timer)
ktimer *timer;
{
uint8_t pending;
if (timer == NULL)
return(FALSE);
if (timer->k_header.dh_inserted == TRUE) {
untimeout(ntoskrnl_timercall, timer, timer->k_handle);
if (timer->k_dpc != NULL)
ntoskrnl_dequeue_dpc(timer->k_dpc);
pending = TRUE;
} else
pending = FALSE;
return(pending);
}
__stdcall uint8_t
ntoskrnl_read_timer(timer)
ktimer *timer;
{
return(timer->k_header.dh_sigstate);
}
__stdcall static void
dummy()
{
printf ("ntoskrnl dummy called...\n");
return;
}
image_patch_table ntoskrnl_functbl[] = {
{ "RtlCompareMemory", (FUNC)ntoskrnl_memcmp },
{ "RtlEqualUnicodeString", (FUNC)ntoskrnl_unicode_equal },
{ "RtlCopyUnicodeString", (FUNC)ntoskrnl_unicode_copy },
{ "RtlUnicodeStringToAnsiString", (FUNC)ntoskrnl_unicode_to_ansi },
{ "RtlAnsiStringToUnicodeString", (FUNC)ntoskrnl_ansi_to_unicode },
{ "RtlInitAnsiString", (FUNC)ntoskrnl_init_ansi_string },
{ "RtlInitUnicodeString", (FUNC)ntoskrnl_init_unicode_string },
{ "RtlFreeAnsiString", (FUNC)ntoskrnl_free_ansi_string },
{ "RtlFreeUnicodeString", (FUNC)ntoskrnl_free_unicode_string },
{ "RtlUnicodeStringToInteger", (FUNC)ntoskrnl_unicode_to_int },
{ "sprintf", (FUNC)sprintf },
{ "vsprintf", (FUNC)vsprintf },
{ "_snprintf", (FUNC)snprintf },
{ "_vsnprintf", (FUNC)vsnprintf },
{ "DbgPrint", (FUNC)ntoskrnl_dbgprint },
{ "DbgBreakPoint", (FUNC)ntoskrnl_debugger },
{ "strncmp", (FUNC)strncmp },
{ "strcmp", (FUNC)strcmp },
{ "strncpy", (FUNC)strncpy },
{ "strcpy", (FUNC)strcpy },
{ "strlen", (FUNC)strlen },
{ "memcpy", (FUNC)memcpy },
{ "memmove", (FUNC)memcpy },
{ "memset", (FUNC)memset },
{ "IofCallDriver", (FUNC)ntoskrnl_iofcalldriver },
{ "IofCompleteRequest", (FUNC)ntoskrnl_iofcompletereq },
{ "IoBuildSynchronousFsdRequest", (FUNC)ntoskrnl_iobuildsynchfsdreq },
{ "KeWaitForSingleObject", (FUNC)ntoskrnl_waitforobj },
{ "KeWaitForMultipleObjects", (FUNC)ntoskrnl_waitforobjs },
{ "_allmul", (FUNC)_allmul },
{ "_alldiv", (FUNC)_alldiv },
{ "_allrem", (FUNC)_allrem },
{ "_allshr", (FUNC)_allshr },
{ "_allshl", (FUNC)_allshl },
{ "_aullmul", (FUNC)_aullmul },
{ "_aulldiv", (FUNC)_aulldiv },
{ "_aullrem", (FUNC)_aullrem },
{ "_aullshr", (FUNC)_aullshr },
{ "_aullshl", (FUNC)_aullshl },
{ "atoi", (FUNC)atoi },
{ "atol", (FUNC)atol },
{ "rand", (FUNC)rand },
{ "WRITE_REGISTER_USHORT", (FUNC)ntoskrnl_writereg_ushort },
{ "READ_REGISTER_USHORT", (FUNC)ntoskrnl_readreg_ushort },
{ "WRITE_REGISTER_ULONG", (FUNC)ntoskrnl_writereg_ulong },
{ "READ_REGISTER_ULONG", (FUNC)ntoskrnl_readreg_ulong },
{ "READ_REGISTER_UCHAR", (FUNC)ntoskrnl_readreg_uchar },
{ "WRITE_REGISTER_UCHAR", (FUNC)ntoskrnl_writereg_uchar },
{ "ExInitializePagedLookasideList", (FUNC)ntoskrnl_init_lookaside },
{ "ExDeletePagedLookasideList", (FUNC)ntoskrnl_delete_lookaside },
{ "ExInitializeNPagedLookasideList", (FUNC)ntoskrnl_init_nplookaside },
{ "ExDeleteNPagedLookasideList", (FUNC)ntoskrnl_delete_nplookaside },
{ "InterlockedPopEntrySList", (FUNC)ntoskrnl_pop_slist },
{ "InterlockedPushEntrySList", (FUNC)ntoskrnl_push_slist },
{ "ExInterlockedPopEntrySList", (FUNC)ntoskrnl_pop_slist_ex },
{ "ExInterlockedPushEntrySList",(FUNC)ntoskrnl_push_slist_ex },
{ "KefAcquireSpinLockAtDpcLevel", (FUNC)ntoskrnl_lock_dpc },
{ "KefReleaseSpinLockFromDpcLevel", (FUNC)ntoskrnl_unlock_dpc },
{ "InterlockedIncrement", (FUNC)ntoskrnl_interlock_inc },
{ "InterlockedDecrement", (FUNC)ntoskrnl_interlock_dec },
{ "ExInterlockedAddLargeStatistic",
(FUNC)ntoskrnl_interlock_addstat },
{ "IoFreeMdl", (FUNC)ntoskrnl_freemdl },
{ "MmSizeOfMdl", (FUNC)ntoskrnl_sizeofmdl },
{ "MmMapLockedPages", (FUNC)ntoskrnl_mmaplockedpages },
{ "MmMapLockedPagesSpecifyCache",
(FUNC)ntoskrnl_mmaplockedpages_cache },
{ "MmUnmapLockedPages", (FUNC)ntoskrnl_munmaplockedpages },
{ "MmBuildMdlForNonPagedPool", (FUNC)ntoskrnl_build_npaged_mdl },
{ "KeInitializeSpinLock", (FUNC)ntoskrnl_init_lock },
{ "IoIsWdmVersionAvailable", (FUNC)ntoskrnl_wdmver },
{ "IoGetDeviceProperty", (FUNC)ntoskrnl_devprop },
{ "KeInitializeMutex", (FUNC)ntoskrnl_init_mutex },
{ "KeReleaseMutex", (FUNC)ntoskrnl_release_mutex },
{ "KeReadStateMutex", (FUNC)ntoskrnl_read_mutex },
{ "KeInitializeEvent", (FUNC)ntoskrnl_init_event },
{ "KeSetEvent", (FUNC)ntoskrnl_set_event },
{ "KeResetEvent", (FUNC)ntoskrnl_reset_event },
{ "KeClearEvent", (FUNC)ntoskrnl_clear_event },
{ "KeReadStateEvent", (FUNC)ntoskrnl_read_event },
{ "KeInitializeTimer", (FUNC)ntoskrnl_init_timer },
{ "KeInitializeTimerEx", (FUNC)ntoskrnl_init_timer_ex },
{ "KeSetTimer", (FUNC)ntoskrnl_set_timer },
{ "KeSetTimerEx", (FUNC)ntoskrnl_set_timer_ex },
{ "KeCancelTimer", (FUNC)ntoskrnl_cancel_timer },
{ "KeReadStateTimer", (FUNC)ntoskrnl_read_timer },
{ "KeInitializeDpc", (FUNC)ntoskrnl_init_dpc },
{ "KeInsertQueueDpc", (FUNC)ntoskrnl_queue_dpc },
{ "KeRemoveQueueDpc", (FUNC)ntoskrnl_dequeue_dpc },
{ "ObReferenceObjectByHandle", (FUNC)ntoskrnl_objref },
{ "ObfDereferenceObject", (FUNC)ntoskrnl_objderef },
{ "ZwClose", (FUNC)ntoskrnl_zwclose },
{ "PsCreateSystemThread", (FUNC)ntoskrnl_create_thread },
{ "PsTerminateSystemThread", (FUNC)ntoskrnl_thread_exit },
/*
* This last entry is a catch-all for any function we haven't
* implemented yet. The PE import list patching routine will
* use it for any function that doesn't have an explicit match
* in this table.
*/
{ NULL, (FUNC)dummy },
/* End of list. */
{ NULL, NULL },
};