freebsd-nq/sys/arm/freescale/imx/imx6_anatop.c
Pedro F. Giffuni af3dc4a7ca sys/arm: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 15:04:10 +00:00

816 lines
23 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
* Copyright (c) 2014 Steven Lawrance <stl@koffein.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Analog PLL and power regulator driver for Freescale i.MX6 family of SoCs.
* Also, temperature montoring and cpu frequency control. It was Freescale who
* kitchen-sinked this device, not us. :)
*
* We don't really do anything with analog PLLs, but the registers for
* controlling them belong to the same block as the power regulator registers.
* Since the newbus hierarchy makes it hard for anyone other than us to get at
* them, we just export a couple public functions to allow the imx6 CCM clock
* driver to read and write those registers.
*
* We also don't do anything about power regulation yet, but when the need
* arises, this would be the place for that code to live.
*
* I have no idea where the "anatop" name comes from. It's in the standard DTS
* source describing i.MX6 SoCs, and in the linux and u-boot code which comes
* from Freescale, but it's not in the SoC manual.
*
* Note that temperature values throughout this code are handled in two types of
* units. Items with '_cnt' in the name use the hardware temperature count
* units (higher counts are lower temperatures). Items with '_val' in the name
* are deci-Celcius, which are converted to/from deci-Kelvins in the sysctl
* handlers (dK is the standard unit for temperature in sysctl).
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/sysctl.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/bus.h>
#include <arm/arm/mpcore_timervar.h>
#include <arm/freescale/fsl_ocotpreg.h>
#include <arm/freescale/fsl_ocotpvar.h>
#include <arm/freescale/imx/imx_ccmvar.h>
#include <arm/freescale/imx/imx_machdep.h>
#include <arm/freescale/imx/imx6_anatopreg.h>
#include <arm/freescale/imx/imx6_anatopvar.h>
static struct resource_spec imx6_anatop_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ -1, 0 }
};
#define MEMRES 0
#define IRQRES 1
struct imx6_anatop_softc {
device_t dev;
struct resource *res[2];
struct intr_config_hook
intr_setup_hook;
uint32_t cpu_curmhz;
uint32_t cpu_curmv;
uint32_t cpu_minmhz;
uint32_t cpu_minmv;
uint32_t cpu_maxmhz;
uint32_t cpu_maxmv;
uint32_t cpu_maxmhz_hw;
boolean_t cpu_overclock_enable;
boolean_t cpu_init_done;
uint32_t refosc_mhz;
void *temp_intrhand;
uint32_t temp_high_val;
uint32_t temp_high_cnt;
uint32_t temp_last_cnt;
uint32_t temp_room_cnt;
struct callout temp_throttle_callout;
sbintime_t temp_throttle_delay;
uint32_t temp_throttle_reset_cnt;
uint32_t temp_throttle_trigger_cnt;
uint32_t temp_throttle_val;
};
static struct imx6_anatop_softc *imx6_anatop_sc;
/*
* Table of "operating points".
* These are combinations of frequency and voltage blessed by Freescale.
* While the datasheet says the ARM voltage can be as low as 925mV at
* 396MHz, it also says that the ARM and SOC voltages can't differ by
* more than 200mV, and the minimum SOC voltage is 1150mV, so that
* dictates the 950mV entry in this table.
*/
static struct oppt {
uint32_t mhz;
uint32_t mv;
} imx6_oppt_table[] = {
{ 396, 950},
{ 792, 1150},
{ 852, 1225},
{ 996, 1225},
{1200, 1275},
};
/*
* Table of CPU max frequencies. This is used to translate the max frequency
* value (0-3) from the ocotp CFG3 register into a mhz value that can be looked
* up in the operating points table.
*/
static uint32_t imx6_ocotp_mhz_tab[] = {792, 852, 996, 1200};
#define TZ_ZEROC 2731 /* deci-Kelvin <-> deci-Celcius offset. */
uint32_t
imx6_anatop_read_4(bus_size_t offset)
{
KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_read_4 sc NULL"));
return (bus_read_4(imx6_anatop_sc->res[MEMRES], offset));
}
void
imx6_anatop_write_4(bus_size_t offset, uint32_t value)
{
KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_write_4 sc NULL"));
bus_write_4(imx6_anatop_sc->res[MEMRES], offset, value);
}
static void
vdd_set(struct imx6_anatop_softc *sc, int mv)
{
int newtarg, newtargSoc, oldtarg;
uint32_t delay, pmureg;
static boolean_t init_done = false;
/*
* The datasheet says VDD_PU and VDD_SOC must be equal, and VDD_ARM
* can't be more than 50mV above or 200mV below them. We keep them the
* same except in the case of the lowest operating point, which is
* handled as a special case below.
*/
pmureg = imx6_anatop_read_4(IMX6_ANALOG_PMU_REG_CORE);
oldtarg = pmureg & IMX6_ANALOG_PMU_REG0_TARG_MASK;
/* Convert mV to target value. Clamp target to valid range. */
if (mv < 725)
newtarg = 0x00;
else if (mv > 1450)
newtarg = 0x1F;
else
newtarg = (mv - 700) / 25;
/*
* The SOC voltage can't go below 1150mV, and thus because of the 200mV
* rule, the ARM voltage can't go below 950mV. The 950 is encoded in
* our oppt table, here we handle the SOC 1150 rule as a special case.
* (1150-700/25=18).
*/
newtargSoc = (newtarg < 18) ? 18 : newtarg;
/*
* The first time through the 3 voltages might not be equal so use a
* long conservative delay. After that we need to delay 3uS for every
* 25mV step upward; we actually delay 6uS because empirically, it works
* and the 3uS per step recommended by the docs doesn't (3uS fails when
* going from 400->1200, but works for smaller changes).
*/
if (init_done) {
if (newtarg == oldtarg)
return;
else if (newtarg > oldtarg)
delay = (newtarg - oldtarg) * 6;
else
delay = 0;
} else {
delay = (700 / 25) * 6;
init_done = true;
}
/*
* Make the change and wait for it to take effect.
*/
pmureg &= ~(IMX6_ANALOG_PMU_REG0_TARG_MASK |
IMX6_ANALOG_PMU_REG1_TARG_MASK |
IMX6_ANALOG_PMU_REG2_TARG_MASK);
pmureg |= newtarg << IMX6_ANALOG_PMU_REG0_TARG_SHIFT;
pmureg |= newtarg << IMX6_ANALOG_PMU_REG1_TARG_SHIFT;
pmureg |= newtargSoc << IMX6_ANALOG_PMU_REG2_TARG_SHIFT;
imx6_anatop_write_4(IMX6_ANALOG_PMU_REG_CORE, pmureg);
DELAY(delay);
sc->cpu_curmv = newtarg * 25 + 700;
}
static inline uint32_t
cpufreq_mhz_from_div(struct imx6_anatop_softc *sc, uint32_t corediv,
uint32_t plldiv)
{
return ((sc->refosc_mhz * (plldiv / 2)) / (corediv + 1));
}
static inline void
cpufreq_mhz_to_div(struct imx6_anatop_softc *sc, uint32_t cpu_mhz,
uint32_t *corediv, uint32_t *plldiv)
{
*corediv = (cpu_mhz < 650) ? 1 : 0;
*plldiv = ((*corediv + 1) * cpu_mhz) / (sc->refosc_mhz / 2);
}
static inline uint32_t
cpufreq_actual_mhz(struct imx6_anatop_softc *sc, uint32_t cpu_mhz)
{
uint32_t corediv, plldiv;
cpufreq_mhz_to_div(sc, cpu_mhz, &corediv, &plldiv);
return (cpufreq_mhz_from_div(sc, corediv, plldiv));
}
static struct oppt *
cpufreq_nearest_oppt(struct imx6_anatop_softc *sc, uint32_t cpu_newmhz)
{
int d, diff, i, nearest;
if (cpu_newmhz > sc->cpu_maxmhz_hw && !sc->cpu_overclock_enable)
cpu_newmhz = sc->cpu_maxmhz_hw;
diff = INT_MAX;
nearest = 0;
for (i = 0; i < nitems(imx6_oppt_table); ++i) {
d = abs((int)cpu_newmhz - (int)imx6_oppt_table[i].mhz);
if (diff > d) {
diff = d;
nearest = i;
}
}
return (&imx6_oppt_table[nearest]);
}
static void
cpufreq_set_clock(struct imx6_anatop_softc * sc, struct oppt *op)
{
uint32_t corediv, plldiv, timeout, wrk32;
/* If increasing the frequency, we must first increase the voltage. */
if (op->mhz > sc->cpu_curmhz) {
vdd_set(sc, op->mv);
}
/*
* I can't find a documented procedure for changing the ARM PLL divisor,
* but some trial and error came up with this:
* - Set the bypass clock source to REF_CLK_24M (source #0).
* - Set the PLL into bypass mode; cpu should now be running at 24mhz.
* - Change the divisor.
* - Wait for the LOCK bit to come on; it takes ~50 loop iterations.
* - Turn off bypass mode; cpu should now be running at the new speed.
*/
cpufreq_mhz_to_div(sc, op->mhz, &corediv, &plldiv);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
IMX6_ANALOG_CCM_PLL_ARM_CLK_SRC_MASK);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_SET,
IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
wrk32 = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM);
wrk32 &= ~IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
wrk32 |= plldiv;
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM, wrk32);
timeout = 10000;
while ((imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
IMX6_ANALOG_CCM_PLL_ARM_LOCK) == 0)
if (--timeout == 0)
panic("imx6_set_cpu_clock(): PLL never locked");
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
imx_ccm_set_cacrr(corediv);
/* If lowering the frequency, it is now safe to lower the voltage. */
if (op->mhz < sc->cpu_curmhz)
vdd_set(sc, op->mv);
sc->cpu_curmhz = op->mhz;
/* Tell the mpcore timer that its frequency has changed. */
arm_tmr_change_frequency(
cpufreq_actual_mhz(sc, sc->cpu_curmhz) * 1000000 / 2);
}
static int
cpufreq_sysctl_minmhz(SYSCTL_HANDLER_ARGS)
{
struct imx6_anatop_softc *sc;
struct oppt * op;
uint32_t temp;
int err;
sc = arg1;
temp = sc->cpu_minmhz;
err = sysctl_handle_int(oidp, &temp, 0, req);
if (err != 0 || req->newptr == NULL)
return (err);
op = cpufreq_nearest_oppt(sc, temp);
if (op->mhz > sc->cpu_maxmhz)
return (ERANGE);
else if (op->mhz == sc->cpu_minmhz)
return (0);
/*
* Value changed, update softc. If the new min is higher than the
* current speed, raise the current speed to match.
*/
sc->cpu_minmhz = op->mhz;
if (sc->cpu_minmhz > sc->cpu_curmhz) {
cpufreq_set_clock(sc, op);
}
return (err);
}
static int
cpufreq_sysctl_maxmhz(SYSCTL_HANDLER_ARGS)
{
struct imx6_anatop_softc *sc;
struct oppt * op;
uint32_t temp;
int err;
sc = arg1;
temp = sc->cpu_maxmhz;
err = sysctl_handle_int(oidp, &temp, 0, req);
if (err != 0 || req->newptr == NULL)
return (err);
op = cpufreq_nearest_oppt(sc, temp);
if (op->mhz < sc->cpu_minmhz)
return (ERANGE);
else if (op->mhz == sc->cpu_maxmhz)
return (0);
/*
* Value changed, update softc and hardware. The hardware update is
* unconditional. We always try to run at max speed, so any change of
* the max means we need to change the current speed too, regardless of
* whether it is higher or lower than the old max.
*/
sc->cpu_maxmhz = op->mhz;
cpufreq_set_clock(sc, op);
return (err);
}
static void
cpufreq_initialize(struct imx6_anatop_softc *sc)
{
uint32_t cfg3speed;
struct oppt * op;
SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
OID_AUTO, "cpu_mhz", CTLFLAG_RD, &sc->cpu_curmhz, 0,
"CPU frequency");
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
OID_AUTO, "cpu_minmhz", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
sc, 0, cpufreq_sysctl_minmhz, "IU", "Minimum CPU frequency");
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
OID_AUTO, "cpu_maxmhz", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
sc, 0, cpufreq_sysctl_maxmhz, "IU", "Maximum CPU frequency");
SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
OID_AUTO, "cpu_maxmhz_hw", CTLFLAG_RD, &sc->cpu_maxmhz_hw, 0,
"Maximum CPU frequency allowed by hardware");
SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
OID_AUTO, "cpu_overclock_enable", CTLFLAG_RWTUN,
&sc->cpu_overclock_enable, 0,
"Allow setting CPU frequency higher than cpu_maxmhz_hw");
/*
* XXX 24mhz shouldn't be hard-coded, should get this from imx6_ccm
* (even though in the real world it will always be 24mhz). Oh wait a
* sec, I never wrote imx6_ccm.
*/
sc->refosc_mhz = 24;
/*
* Get the maximum speed this cpu can be set to. The values in the
* OCOTP CFG3 register are not documented in the reference manual.
* The following info was in an archived email found via web search:
* - 2b'11: 1200000000Hz;
* - 2b'10: 996000000Hz;
* - 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
* - 2b'00: 792000000Hz;
* The default hardware max speed can be overridden by a tunable.
*/
cfg3speed = (fsl_ocotp_read_4(FSL_OCOTP_CFG3) &
FSL_OCOTP_CFG3_SPEED_MASK) >> FSL_OCOTP_CFG3_SPEED_SHIFT;
sc->cpu_maxmhz_hw = imx6_ocotp_mhz_tab[cfg3speed];
sc->cpu_maxmhz = sc->cpu_maxmhz_hw;
TUNABLE_INT_FETCH("hw.imx6.cpu_minmhz", &sc->cpu_minmhz);
op = cpufreq_nearest_oppt(sc, sc->cpu_minmhz);
sc->cpu_minmhz = op->mhz;
sc->cpu_minmv = op->mv;
TUNABLE_INT_FETCH("hw.imx6.cpu_maxmhz", &sc->cpu_maxmhz);
op = cpufreq_nearest_oppt(sc, sc->cpu_maxmhz);
sc->cpu_maxmhz = op->mhz;
sc->cpu_maxmv = op->mv;
/*
* Set the CPU to maximum speed.
*
* We won't have thermal throttling until interrupts are enabled, but we
* want to run at full speed through all the device init stuff. This
* basically assumes that a single core can't overheat before interrupts
* are enabled; empirical testing shows that to be a safe assumption.
*/
cpufreq_set_clock(sc, op);
}
static inline uint32_t
temp_from_count(struct imx6_anatop_softc *sc, uint32_t count)
{
return (((sc->temp_high_val - (count - sc->temp_high_cnt) *
(sc->temp_high_val - 250) /
(sc->temp_room_cnt - sc->temp_high_cnt))));
}
static inline uint32_t
temp_to_count(struct imx6_anatop_softc *sc, uint32_t temp)
{
return ((sc->temp_room_cnt - sc->temp_high_cnt) *
(sc->temp_high_val - temp) / (sc->temp_high_val - 250) +
sc->temp_high_cnt);
}
static void
temp_update_count(struct imx6_anatop_softc *sc)
{
uint32_t val;
val = imx6_anatop_read_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0);
if (!(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_VALID))
return;
sc->temp_last_cnt =
(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_MASK) >>
IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_SHIFT;
}
static int
temp_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct imx6_anatop_softc *sc = arg1;
uint32_t t;
temp_update_count(sc);
t = temp_from_count(sc, sc->temp_last_cnt) + TZ_ZEROC;
return (sysctl_handle_int(oidp, &t, 0, req));
}
static int
temp_throttle_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct imx6_anatop_softc *sc = arg1;
int err;
uint32_t temp;
temp = sc->temp_throttle_val + TZ_ZEROC;
err = sysctl_handle_int(oidp, &temp, 0, req);
if (temp < TZ_ZEROC)
return (ERANGE);
temp -= TZ_ZEROC;
if (err != 0 || req->newptr == NULL || temp == sc->temp_throttle_val)
return (err);
/* Value changed, update counts in softc and hardware. */
sc->temp_throttle_val = temp;
sc->temp_throttle_trigger_cnt = temp_to_count(sc, sc->temp_throttle_val);
sc->temp_throttle_reset_cnt = temp_to_count(sc, sc->temp_throttle_val - 100);
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_CLR,
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_MASK);
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_SET,
(sc->temp_throttle_trigger_cnt <<
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT));
return (err);
}
static void
tempmon_gofast(struct imx6_anatop_softc *sc)
{
if (sc->cpu_curmhz < sc->cpu_maxmhz) {
cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_maxmhz));
}
}
static void
tempmon_goslow(struct imx6_anatop_softc *sc)
{
if (sc->cpu_curmhz > sc->cpu_minmhz) {
cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_minmhz));
}
}
static int
tempmon_intr(void *arg)
{
struct imx6_anatop_softc *sc = arg;
/*
* XXX Note that this code doesn't currently run (for some mysterious
* reason we just never get an interrupt), so the real monitoring is
* done by tempmon_throttle_check().
*/
tempmon_goslow(sc);
/* XXX Schedule callout to speed back up eventually. */
return (FILTER_HANDLED);
}
static void
tempmon_throttle_check(void *arg)
{
struct imx6_anatop_softc *sc = arg;
/* Lower counts are higher temperatures. */
if (sc->temp_last_cnt < sc->temp_throttle_trigger_cnt)
tempmon_goslow(sc);
else if (sc->temp_last_cnt > (sc->temp_throttle_reset_cnt))
tempmon_gofast(sc);
callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
0, tempmon_throttle_check, sc, 0);
}
static void
initialize_tempmon(struct imx6_anatop_softc *sc)
{
uint32_t cal;
/*
* Fetch calibration data: a sensor count at room temperature (25C),
* a sensor count at a high temperature, and that temperature
*/
cal = fsl_ocotp_read_4(FSL_OCOTP_ANA1);
sc->temp_room_cnt = (cal & 0xFFF00000) >> 20;
sc->temp_high_cnt = (cal & 0x000FFF00) >> 8;
sc->temp_high_val = (cal & 0x000000FF) * 10;
/*
* Throttle to a lower cpu freq at 10C below the "hot" temperature, and
* reset back to max cpu freq at 5C below the trigger.
*/
sc->temp_throttle_val = sc->temp_high_val - 100;
sc->temp_throttle_trigger_cnt =
temp_to_count(sc, sc->temp_throttle_val);
sc->temp_throttle_reset_cnt =
temp_to_count(sc, sc->temp_throttle_val - 50);
/*
* Set the sensor to sample automatically at 16Hz (32.768KHz/0x800), set
* the throttle count, and begin making measurements.
*/
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE1, 0x0800);
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0,
(sc->temp_throttle_trigger_cnt <<
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT) |
IMX6_ANALOG_TEMPMON_TEMPSENSE0_MEASURE);
/*
* XXX Note that the alarm-interrupt feature isn't working yet, so
* we'll use a callout handler to check at 10Hz. Make sure we have an
* initial temperature reading before starting up the callouts so we
* don't get a bogus reading of zero.
*/
while (sc->temp_last_cnt == 0)
temp_update_count(sc);
sc->temp_throttle_delay = 100 * SBT_1MS;
callout_init(&sc->temp_throttle_callout, 0);
callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
0, tempmon_throttle_check, sc, 0);
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, sc, 0,
temp_sysctl_handler, "IK", "Current die temperature");
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
OID_AUTO, "throttle_temperature", CTLTYPE_INT | CTLFLAG_RW, sc,
0, temp_throttle_sysctl_handler, "IK",
"Throttle CPU when exceeding this temperature");
}
static void
intr_setup(void *arg)
{
int rid;
struct imx6_anatop_softc *sc;
sc = arg;
rid = 0;
sc->res[IRQRES] = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->res[IRQRES] != NULL) {
bus_setup_intr(sc->dev, sc->res[IRQRES],
INTR_TYPE_MISC | INTR_MPSAFE, tempmon_intr, NULL, sc,
&sc->temp_intrhand);
} else {
device_printf(sc->dev, "Cannot allocate IRQ resource\n");
}
config_intrhook_disestablish(&sc->intr_setup_hook);
}
static void
imx6_anatop_new_pass(device_t dev)
{
struct imx6_anatop_softc *sc;
const int cpu_init_pass = BUS_PASS_CPU + BUS_PASS_ORDER_MIDDLE;
/*
* We attach during BUS_PASS_BUS (because some day we will be a
* simplebus that has regulator devices as children), but some of our
* init work cannot be done until BUS_PASS_CPU (we rely on other devices
* that attach on the CPU pass).
*/
sc = device_get_softc(dev);
if (!sc->cpu_init_done && bus_current_pass >= cpu_init_pass) {
sc->cpu_init_done = true;
cpufreq_initialize(sc);
initialize_tempmon(sc);
if (bootverbose) {
device_printf(sc->dev, "CPU %uMHz @ %umV\n",
sc->cpu_curmhz, sc->cpu_curmv);
}
}
bus_generic_new_pass(dev);
}
static int
imx6_anatop_detach(device_t dev)
{
/* This device can never detach. */
return (EBUSY);
}
static int
imx6_anatop_attach(device_t dev)
{
struct imx6_anatop_softc *sc;
int err;
sc = device_get_softc(dev);
sc->dev = dev;
/* Allocate bus_space resources. */
if (bus_alloc_resources(dev, imx6_anatop_spec, sc->res)) {
device_printf(dev, "Cannot allocate resources\n");
err = ENXIO;
goto out;
}
sc->intr_setup_hook.ich_func = intr_setup;
sc->intr_setup_hook.ich_arg = sc;
config_intrhook_establish(&sc->intr_setup_hook);
SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
OID_AUTO, "cpu_voltage", CTLFLAG_RD,
&sc->cpu_curmv, 0, "Current CPU voltage in millivolts");
imx6_anatop_sc = sc;
/*
* Other code seen on the net sets this SELFBIASOFF flag around the same
* time the temperature sensor is set up, although it's unclear how the
* two are related (if at all).
*/
imx6_anatop_write_4(IMX6_ANALOG_PMU_MISC0_SET,
IMX6_ANALOG_PMU_MISC0_SELFBIASOFF);
/*
* Some day, when we're ready to deal with the actual anatop regulators
* that are described in fdt data as children of this "bus", this would
* be the place to invoke a simplebus helper routine to instantiate the
* children from the fdt data.
*/
err = 0;
out:
if (err != 0) {
bus_release_resources(dev, imx6_anatop_spec, sc->res);
}
return (err);
}
uint32_t
pll4_configure_output(uint32_t mfi, uint32_t mfn, uint32_t mfd)
{
int reg;
/*
* Audio PLL (PLL4).
* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM)
*/
reg = (IMX6_ANALOG_CCM_PLL_AUDIO_ENABLE);
reg &= ~(IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_MASK << \
IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
reg |= (mfi << IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO, reg);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_NUM, mfn);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_DENOM, mfd);
return (0);
}
static int
imx6_anatop_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "fsl,imx6q-anatop") == 0)
return (ENXIO);
device_set_desc(dev, "Freescale i.MX6 Analog PLLs and Power");
return (BUS_PROBE_DEFAULT);
}
uint32_t
imx6_get_cpu_clock(void)
{
uint32_t corediv, plldiv;
corediv = imx_ccm_get_cacrr();
plldiv = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
return (cpufreq_mhz_from_div(imx6_anatop_sc, corediv, plldiv));
}
static device_method_t imx6_anatop_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, imx6_anatop_probe),
DEVMETHOD(device_attach, imx6_anatop_attach),
DEVMETHOD(device_detach, imx6_anatop_detach),
/* Bus interface */
DEVMETHOD(bus_new_pass, imx6_anatop_new_pass),
DEVMETHOD_END
};
static driver_t imx6_anatop_driver = {
"imx6_anatop",
imx6_anatop_methods,
sizeof(struct imx6_anatop_softc)
};
static devclass_t imx6_anatop_devclass;
EARLY_DRIVER_MODULE(imx6_anatop, simplebus, imx6_anatop_driver,
imx6_anatop_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
EARLY_DRIVER_MODULE(imx6_anatop, ofwbus, imx6_anatop_driver,
imx6_anatop_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);