freebsd-nq/sys/arm/include/atomic-v6.h
Ian Lepore 044477e294 Add 8 and 16 bit versions of atomic_cmpset and atomic_fcmpset for arm.
This adds 8 and 16 bit versions of the cmpset and fcmpset functions. Macros
are used to generate all the flavors from the same set of instructions; the
macro expansion handles the couple minor differences between each size
variation (generating ldrexb/ldrexh/ldrex for 8/16/32, etc).

In addition to handling new sizes, the instruction sequences used for cmpset
and fcmpset are rewritten to be a bit shorter/faster, and the new sequence
will not return false when *dst==*old but the store-exclusive fails because
of concurrent writers. Instead, it just loops like ldrex/strex sequences
normally do until it gets a non-conflicted store. The manpage allows LL/SC
architectures to bogusly return false, but there's no reason to actually do
so, at least on arm.

Reviewed by:	cognet
2019-10-01 19:39:00 +00:00

979 lines
23 KiB
C

/* $NetBSD: atomic.h,v 1.1 2002/10/19 12:22:34 bsh Exp $ */
/*-
* Copyright (C) 2003-2004 Olivier Houchard
* Copyright (C) 1994-1997 Mark Brinicombe
* Copyright (C) 1994 Brini
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of Brini may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _MACHINE_ATOMIC_V6_H_
#define _MACHINE_ATOMIC_V6_H_
#ifndef _MACHINE_ATOMIC_H_
#error Do not include this file directly, use <machine/atomic.h>
#endif
#if __ARM_ARCH >= 7
#define isb() __asm __volatile("isb" : : : "memory")
#define dsb() __asm __volatile("dsb" : : : "memory")
#define dmb() __asm __volatile("dmb" : : : "memory")
#elif __ARM_ARCH >= 6
#define isb() __asm __volatile("mcr p15, 0, %0, c7, c5, 4" : : "r" (0) : "memory")
#define dsb() __asm __volatile("mcr p15, 0, %0, c7, c10, 4" : : "r" (0) : "memory")
#define dmb() __asm __volatile("mcr p15, 0, %0, c7, c10, 5" : : "r" (0) : "memory")
#else
#error Only use this file with ARMv6 and later
#endif
#define mb() dmb()
#define wmb() dmb()
#define rmb() dmb()
#define ARM_HAVE_ATOMIC64
#define ATOMIC_ACQ_REL_LONG(NAME) \
static __inline void \
atomic_##NAME##_acq_long(__volatile u_long *p, u_long v) \
{ \
atomic_##NAME##_long(p, v); \
dmb(); \
} \
\
static __inline void \
atomic_##NAME##_rel_long(__volatile u_long *p, u_long v) \
{ \
dmb(); \
atomic_##NAME##_long(p, v); \
}
#define ATOMIC_ACQ_REL(NAME, WIDTH) \
static __inline void \
atomic_##NAME##_acq_##WIDTH(__volatile uint##WIDTH##_t *p, uint##WIDTH##_t v)\
{ \
atomic_##NAME##_##WIDTH(p, v); \
dmb(); \
} \
\
static __inline void \
atomic_##NAME##_rel_##WIDTH(__volatile uint##WIDTH##_t *p, uint##WIDTH##_t v)\
{ \
dmb(); \
atomic_##NAME##_##WIDTH(p, v); \
}
static __inline void
atomic_add_32(volatile uint32_t *p, uint32_t val)
{
uint32_t tmp = 0, tmp2 = 0;
__asm __volatile(
"1: ldrex %0, [%2] \n"
" add %0, %0, %3 \n"
" strex %1, %0, [%2] \n"
" cmp %1, #0 \n"
" it ne \n"
" bne 1b \n"
: "=&r" (tmp), "+r" (tmp2)
,"+r" (p), "+r" (val) : : "cc", "memory");
}
static __inline void
atomic_add_64(volatile uint64_t *p, uint64_t val)
{
uint64_t tmp;
uint32_t exflag;
__asm __volatile(
"1: \n"
" ldrexd %Q[tmp], %R[tmp], [%[ptr]] \n"
" adds %Q[tmp], %Q[val] \n"
" adc %R[tmp], %R[tmp], %R[val] \n"
" strexd %[exf], %Q[tmp], %R[tmp], [%[ptr]] \n"
" teq %[exf], #0 \n"
" it ne \n"
" bne 1b \n"
: [exf] "=&r" (exflag),
[tmp] "=&r" (tmp)
: [ptr] "r" (p),
[val] "r" (val)
: "cc", "memory");
}
static __inline void
atomic_add_long(volatile u_long *p, u_long val)
{
atomic_add_32((volatile uint32_t *)p, val);
}
ATOMIC_ACQ_REL(add, 32)
ATOMIC_ACQ_REL(add, 64)
ATOMIC_ACQ_REL_LONG(add)
static __inline void
atomic_clear_32(volatile uint32_t *address, uint32_t setmask)
{
uint32_t tmp = 0, tmp2 = 0;
__asm __volatile(
"1: ldrex %0, [%2] \n"
" bic %0, %0, %3 \n"
" strex %1, %0, [%2] \n"
" cmp %1, #0 \n"
" it ne \n"
" bne 1b \n"
: "=&r" (tmp), "+r" (tmp2), "+r" (address), "+r" (setmask)
: : "cc", "memory");
}
static __inline void
atomic_clear_64(volatile uint64_t *p, uint64_t val)
{
uint64_t tmp;
uint32_t exflag;
__asm __volatile(
"1: \n"
" ldrexd %Q[tmp], %R[tmp], [%[ptr]] \n"
" bic %Q[tmp], %Q[val] \n"
" bic %R[tmp], %R[val] \n"
" strexd %[exf], %Q[tmp], %R[tmp], [%[ptr]] \n"
" teq %[exf], #0 \n"
" it ne \n"
" bne 1b \n"
: [exf] "=&r" (exflag),
[tmp] "=&r" (tmp)
: [ptr] "r" (p),
[val] "r" (val)
: "cc", "memory");
}
static __inline void
atomic_clear_long(volatile u_long *address, u_long setmask)
{
atomic_clear_32((volatile uint32_t *)address, setmask);
}
ATOMIC_ACQ_REL(clear, 32)
ATOMIC_ACQ_REL(clear, 64)
ATOMIC_ACQ_REL_LONG(clear)
#define ATOMIC_FCMPSET_CODE(RET, TYPE, SUF) \
{ \
TYPE tmp; \
\
__asm __volatile( \
"1: ldrex" SUF " %[tmp], [%[ptr]] \n" \
" ldr %[ret], [%[oldv]] \n" \
" teq %[tmp], %[ret] \n" \
" ittee ne \n" \
" str" SUF "ne %[tmp], [%[oldv]] \n" \
" movne %[ret], #0 \n" \
" strex" SUF "eq %[ret], %[newv], [%[ptr]] \n" \
" eorseq %[ret], #1 \n" \
" beq 1b \n" \
: [ret] "=&r" (RET), \
[tmp] "=&r" (tmp) \
: [ptr] "r" (_ptr), \
[oldv] "r" (_old), \
[newv] "r" (_new) \
: "cc", "memory"); \
}
#define ATOMIC_FCMPSET_CODE64(RET) \
{ \
uint64_t cmp, tmp; \
\
__asm __volatile( \
"1: ldrexd %Q[tmp], %R[tmp], [%[ptr]] \n" \
" ldrd %Q[cmp], %R[cmp], [%[oldv]] \n" \
" teq %Q[tmp], %Q[cmp] \n" \
" it eq \n" \
" teqeq %R[tmp], %R[cmp] \n" \
" ittee ne \n" \
" movne %[ret], #0 \n" \
" strdne %[cmp], [%[oldv]] \n" \
" strexdeq %[ret], %Q[newv], %R[newv], [%[ptr]] \n" \
" eorseq %[ret], #1 \n" \
" beq 1b \n" \
: [ret] "=&r" (RET), \
[cmp] "=&r" (cmp), \
[tmp] "=&r" (tmp) \
: [ptr] "r" (_ptr), \
[oldv] "r" (_old), \
[newv] "r" (_new) \
: "cc", "memory"); \
}
static __inline int
atomic_fcmpset_8(volatile uint8_t *_ptr, uint8_t *_old, uint8_t _new)
{
int ret;
ATOMIC_FCMPSET_CODE(ret, uint8_t, "b");
return (ret);
}
static __inline int
atomic_fcmpset_acq_8(volatile uint8_t *_ptr, uint8_t *_old, uint8_t _new)
{
int ret;
ATOMIC_FCMPSET_CODE(ret, uint8_t, "b");
dmb();
return (ret);
}
static __inline int
atomic_fcmpset_rel_8(volatile uint8_t *_ptr, uint8_t *_old, uint8_t _new)
{
int ret;
dmb();
ATOMIC_FCMPSET_CODE(ret, uint8_t, "b");
return (ret);
}
static __inline int
atomic_fcmpset_16(volatile uint16_t *_ptr, uint16_t *_old, uint16_t _new)
{
int ret;
ATOMIC_FCMPSET_CODE(ret, uint16_t, "h");
return (ret);
}
static __inline int
atomic_fcmpset_acq_16(volatile uint16_t *_ptr, uint16_t *_old, uint16_t _new)
{
int ret;
ATOMIC_FCMPSET_CODE(ret, uint16_t, "h");
dmb();
return (ret);
}
static __inline int
atomic_fcmpset_rel_16(volatile uint16_t *_ptr, uint16_t *_old, uint16_t _new)
{
int ret;
dmb();
ATOMIC_FCMPSET_CODE(ret, uint16_t, "h");
return (ret);
}
static __inline int
atomic_fcmpset_32(volatile uint32_t *_ptr, uint32_t *_old, uint32_t _new)
{
int ret;
ATOMIC_FCMPSET_CODE(ret, uint32_t, "");
return (ret);
}
static __inline int
atomic_fcmpset_acq_32(volatile uint32_t *_ptr, uint32_t *_old, uint32_t _new)
{
int ret;
ATOMIC_FCMPSET_CODE(ret, uint32_t, "");
dmb();
return (ret);
}
static __inline int
atomic_fcmpset_rel_32(volatile uint32_t *_ptr, uint32_t *_old, uint32_t _new)
{
int ret;
dmb();
ATOMIC_FCMPSET_CODE(ret, uint32_t, "");
return (ret);
}
static __inline int
atomic_fcmpset_long(volatile long *_ptr, long *_old, long _new)
{
int ret;
ATOMIC_FCMPSET_CODE(ret, long, "");
return (ret);
}
static __inline int
atomic_fcmpset_acq_long(volatile long *_ptr, long *_old, long _new)
{
int ret;
ATOMIC_FCMPSET_CODE(ret, long, "");
dmb();
return (ret);
}
static __inline int
atomic_fcmpset_rel_long(volatile long *_ptr, long *_old, long _new)
{
int ret;
dmb();
ATOMIC_FCMPSET_CODE(ret, long, "");
return (ret);
}
static __inline int
atomic_fcmpset_64(volatile uint64_t *_ptr, uint64_t *_old, uint64_t _new)
{
int ret;
ATOMIC_FCMPSET_CODE64(ret);
return (ret);
}
static __inline int
atomic_fcmpset_acq_64(volatile uint64_t *_ptr, uint64_t *_old, uint64_t _new)
{
int ret;
ATOMIC_FCMPSET_CODE64(ret);
dmb();
return (ret);
}
static __inline int
atomic_fcmpset_rel_64(volatile uint64_t *_ptr, uint64_t *_old, uint64_t _new)
{
int ret;
dmb();
ATOMIC_FCMPSET_CODE64(ret);
return (ret);
}
#define ATOMIC_CMPSET_CODE(RET, SUF) \
{ \
__asm __volatile( \
"1: ldrex" SUF " %[ret], [%[ptr]] \n" \
" teq %[ret], %[oldv] \n" \
" itee ne \n" \
" movne %[ret], #0 \n" \
" strex" SUF "eq %[ret], %[newv], [%[ptr]] \n" \
" eorseq %[ret], #1 \n" \
" beq 1b \n" \
: [ret] "=&r" (RET) \
: [ptr] "r" (_ptr), \
[oldv] "r" (_old), \
[newv] "r" (_new) \
: "cc", "memory"); \
}
#define ATOMIC_CMPSET_CODE64(RET) \
{ \
uint64_t tmp; \
\
__asm __volatile( \
"1: ldrexd %Q[tmp], %R[tmp], [%[ptr]] \n" \
" teq %Q[tmp], %Q[oldv] \n" \
" it eq \n" \
" teqeq %R[tmp], %R[oldv] \n" \
" itee ne \n" \
" movne %[ret], #0 \n" \
" strexdeq %[ret], %Q[newv], %R[newv], [%[ptr]] \n" \
" eorseq %[ret], #1 \n" \
" beq 1b \n" \
: [ret] "=&r" (RET), \
[tmp] "=&r" (tmp) \
: [ptr] "r" (_ptr), \
[oldv] "r" (_old), \
[newv] "r" (_new) \
: "cc", "memory"); \
}
static __inline int
atomic_cmpset_8(volatile uint8_t *_ptr, uint8_t _old, uint8_t _new)
{
int ret;
ATOMIC_CMPSET_CODE(ret, "b");
return (ret);
}
static __inline int
atomic_cmpset_acq_8(volatile uint8_t *_ptr, uint8_t _old, uint8_t _new)
{
int ret;
ATOMIC_CMPSET_CODE(ret, "b");
dmb();
return (ret);
}
static __inline int
atomic_cmpset_rel_8(volatile uint8_t *_ptr, uint8_t _old, uint8_t _new)
{
int ret;
dmb();
ATOMIC_CMPSET_CODE(ret, "b");
return (ret);
}
static __inline int
atomic_cmpset_16(volatile uint16_t *_ptr, uint16_t _old, uint16_t _new)
{
int ret;
ATOMIC_CMPSET_CODE(ret, "h");
return (ret);
}
static __inline int
atomic_cmpset_acq_16(volatile uint16_t *_ptr, uint16_t _old, uint16_t _new)
{
int ret;
ATOMIC_CMPSET_CODE(ret, "h");
dmb();
return (ret);
}
static __inline int
atomic_cmpset_rel_16(volatile uint16_t *_ptr, uint16_t _old, uint16_t _new)
{
int ret;
dmb();
ATOMIC_CMPSET_CODE(ret, "h");
return (ret);
}
static __inline int
atomic_cmpset_32(volatile uint32_t *_ptr, uint32_t _old, uint32_t _new)
{
int ret;
ATOMIC_CMPSET_CODE(ret, "");
return (ret);
}
static __inline int
atomic_cmpset_acq_32(volatile uint32_t *_ptr, uint32_t _old, uint32_t _new)
{
int ret;
ATOMIC_CMPSET_CODE(ret, "");
dmb();
return (ret);
}
static __inline int
atomic_cmpset_rel_32(volatile uint32_t *_ptr, uint32_t _old, uint32_t _new)
{
int ret;
dmb();
ATOMIC_CMPSET_CODE(ret, "");
return (ret);
}
static __inline int
atomic_cmpset_long(volatile long *_ptr, long _old, long _new)
{
int ret;
ATOMIC_CMPSET_CODE(ret, "");
return (ret);
}
static __inline int
atomic_cmpset_acq_long(volatile long *_ptr, long _old, long _new)
{
int ret;
ATOMIC_CMPSET_CODE(ret, "");
dmb();
return (ret);
}
static __inline int
atomic_cmpset_rel_long(volatile long *_ptr, long _old, long _new)
{
int ret;
dmb();
ATOMIC_CMPSET_CODE(ret, "");
return (ret);
}
static __inline int
atomic_cmpset_64(volatile uint64_t *_ptr, uint64_t _old, uint64_t _new)
{
int ret;
ATOMIC_CMPSET_CODE64(ret);
return (ret);
}
static __inline int
atomic_cmpset_acq_64(volatile uint64_t *_ptr, uint64_t _old, uint64_t _new)
{
int ret;
ATOMIC_CMPSET_CODE64(ret);
dmb();
return (ret);
}
static __inline int
atomic_cmpset_rel_64(volatile uint64_t *_ptr, uint64_t _old, uint64_t _new)
{
int ret;
dmb();
ATOMIC_CMPSET_CODE64(ret);
return (ret);
}
static __inline uint32_t
atomic_fetchadd_32(volatile uint32_t *p, uint32_t val)
{
uint32_t tmp = 0, tmp2 = 0, ret = 0;
__asm __volatile(
"1: ldrex %0, [%3] \n"
" add %1, %0, %4 \n"
" strex %2, %1, [%3] \n"
" cmp %2, #0 \n"
" it ne \n"
" bne 1b \n"
: "+r" (ret), "=&r" (tmp), "+r" (tmp2), "+r" (p), "+r" (val)
: : "cc", "memory");
return (ret);
}
static __inline uint64_t
atomic_fetchadd_64(volatile uint64_t *p, uint64_t val)
{
uint64_t ret, tmp;
uint32_t exflag;
__asm __volatile(
"1: \n"
" ldrexd %Q[ret], %R[ret], [%[ptr]] \n"
" adds %Q[tmp], %Q[ret], %Q[val] \n"
" adc %R[tmp], %R[ret], %R[val] \n"
" strexd %[exf], %Q[tmp], %R[tmp], [%[ptr]] \n"
" teq %[exf], #0 \n"
" it ne \n"
" bne 1b \n"
: [ret] "=&r" (ret),
[exf] "=&r" (exflag),
[tmp] "=&r" (tmp)
: [ptr] "r" (p),
[val] "r" (val)
: "cc", "memory");
return (ret);
}
static __inline u_long
atomic_fetchadd_long(volatile u_long *p, u_long val)
{
return (atomic_fetchadd_32((volatile uint32_t *)p, val));
}
static __inline uint32_t
atomic_load_acq_32(volatile uint32_t *p)
{
uint32_t v;
v = *p;
dmb();
return (v);
}
static __inline uint64_t
atomic_load_64(volatile uint64_t *p)
{
uint64_t ret;
/*
* The only way to atomically load 64 bits is with LDREXD which puts the
* exclusive monitor into the exclusive state, so reset it to open state
* with CLREX because we don't actually need to store anything.
*/
__asm __volatile(
"ldrexd %Q[ret], %R[ret], [%[ptr]] \n"
"clrex \n"
: [ret] "=&r" (ret)
: [ptr] "r" (p)
: "cc", "memory");
return (ret);
}
static __inline uint64_t
atomic_load_acq_64(volatile uint64_t *p)
{
uint64_t ret;
ret = atomic_load_64(p);
dmb();
return (ret);
}
static __inline u_long
atomic_load_acq_long(volatile u_long *p)
{
u_long v;
v = *p;
dmb();
return (v);
}
static __inline uint32_t
atomic_readandclear_32(volatile uint32_t *p)
{
uint32_t ret, tmp = 0, tmp2 = 0;
__asm __volatile(
"1: ldrex %0, [%3] \n"
" mov %1, #0 \n"
" strex %2, %1, [%3] \n"
" cmp %2, #0 \n"
" it ne \n"
" bne 1b \n"
: "=r" (ret), "=&r" (tmp), "+r" (tmp2), "+r" (p)
: : "cc", "memory");
return (ret);
}
static __inline uint64_t
atomic_readandclear_64(volatile uint64_t *p)
{
uint64_t ret, tmp;
uint32_t exflag;
__asm __volatile(
"1: \n"
" ldrexd %Q[ret], %R[ret], [%[ptr]] \n"
" mov %Q[tmp], #0 \n"
" mov %R[tmp], #0 \n"
" strexd %[exf], %Q[tmp], %R[tmp], [%[ptr]] \n"
" teq %[exf], #0 \n"
" it ne \n"
" bne 1b \n"
: [ret] "=&r" (ret),
[exf] "=&r" (exflag),
[tmp] "=&r" (tmp)
: [ptr] "r" (p)
: "cc", "memory");
return (ret);
}
static __inline u_long
atomic_readandclear_long(volatile u_long *p)
{
return (atomic_readandclear_32((volatile uint32_t *)p));
}
static __inline void
atomic_set_32(volatile uint32_t *address, uint32_t setmask)
{
uint32_t tmp = 0, tmp2 = 0;
__asm __volatile(
"1: ldrex %0, [%2] \n"
" orr %0, %0, %3 \n"
" strex %1, %0, [%2] \n"
" cmp %1, #0 \n"
" it ne \n"
" bne 1b \n"
: "=&r" (tmp), "+r" (tmp2), "+r" (address), "+r" (setmask)
: : "cc", "memory");
}
static __inline void
atomic_set_64(volatile uint64_t *p, uint64_t val)
{
uint64_t tmp;
uint32_t exflag;
__asm __volatile(
"1: \n"
" ldrexd %Q[tmp], %R[tmp], [%[ptr]] \n"
" orr %Q[tmp], %Q[val] \n"
" orr %R[tmp], %R[val] \n"
" strexd %[exf], %Q[tmp], %R[tmp], [%[ptr]] \n"
" teq %[exf], #0 \n"
" it ne \n"
" bne 1b \n"
: [exf] "=&r" (exflag),
[tmp] "=&r" (tmp)
: [ptr] "r" (p),
[val] "r" (val)
: "cc", "memory");
}
static __inline void
atomic_set_long(volatile u_long *address, u_long setmask)
{
atomic_set_32((volatile uint32_t *)address, setmask);
}
ATOMIC_ACQ_REL(set, 32)
ATOMIC_ACQ_REL(set, 64)
ATOMIC_ACQ_REL_LONG(set)
static __inline void
atomic_subtract_32(volatile uint32_t *p, uint32_t val)
{
uint32_t tmp = 0, tmp2 = 0;
__asm __volatile(
"1: ldrex %0, [%2] \n"
" sub %0, %0, %3 \n"
" strex %1, %0, [%2] \n"
" cmp %1, #0 \n"
" it ne \n"
" bne 1b \n"
: "=&r" (tmp), "+r" (tmp2), "+r" (p), "+r" (val)
: : "cc", "memory");
}
static __inline void
atomic_subtract_64(volatile uint64_t *p, uint64_t val)
{
uint64_t tmp;
uint32_t exflag;
__asm __volatile(
"1: \n"
" ldrexd %Q[tmp], %R[tmp], [%[ptr]] \n"
" subs %Q[tmp], %Q[val] \n"
" sbc %R[tmp], %R[tmp], %R[val] \n"
" strexd %[exf], %Q[tmp], %R[tmp], [%[ptr]] \n"
" teq %[exf], #0 \n"
" it ne \n"
" bne 1b \n"
: [exf] "=&r" (exflag),
[tmp] "=&r" (tmp)
: [ptr] "r" (p),
[val] "r" (val)
: "cc", "memory");
}
static __inline void
atomic_subtract_long(volatile u_long *p, u_long val)
{
atomic_subtract_32((volatile uint32_t *)p, val);
}
ATOMIC_ACQ_REL(subtract, 32)
ATOMIC_ACQ_REL(subtract, 64)
ATOMIC_ACQ_REL_LONG(subtract)
static __inline void
atomic_store_64(volatile uint64_t *p, uint64_t val)
{
uint64_t tmp;
uint32_t exflag;
/*
* The only way to atomically store 64 bits is with STREXD, which will
* succeed only if paired up with a preceeding LDREXD using the same
* address, so we read and discard the existing value before storing.
*/
__asm __volatile(
"1: \n"
" ldrexd %Q[tmp], %R[tmp], [%[ptr]] \n"
" strexd %[exf], %Q[val], %R[val], [%[ptr]] \n"
" teq %[exf], #0 \n"
" it ne \n"
" bne 1b \n"
: [tmp] "=&r" (tmp),
[exf] "=&r" (exflag)
: [ptr] "r" (p),
[val] "r" (val)
: "cc", "memory");
}
static __inline void
atomic_store_rel_32(volatile uint32_t *p, uint32_t v)
{
dmb();
*p = v;
}
static __inline void
atomic_store_rel_64(volatile uint64_t *p, uint64_t val)
{
dmb();
atomic_store_64(p, val);
}
static __inline void
atomic_store_rel_long(volatile u_long *p, u_long v)
{
dmb();
*p = v;
}
static __inline int
atomic_testandset_32(volatile uint32_t *p, u_int v)
{
uint32_t tmp, tmp2, res, mask;
mask = 1u << (v & 0x1f);
tmp = tmp2 = 0;
__asm __volatile(
"1: ldrex %0, [%4] \n"
" orr %1, %0, %3 \n"
" strex %2, %1, [%4] \n"
" cmp %2, #0 \n"
" it ne \n"
" bne 1b \n"
: "=&r" (res), "=&r" (tmp), "=&r" (tmp2)
: "r" (mask), "r" (p)
: "cc", "memory");
return ((res & mask) != 0);
}
static __inline int
atomic_testandset_int(volatile u_int *p, u_int v)
{
return (atomic_testandset_32((volatile uint32_t *)p, v));
}
static __inline int
atomic_testandset_long(volatile u_long *p, u_int v)
{
return (atomic_testandset_32((volatile uint32_t *)p, v));
}
static __inline int
atomic_testandset_64(volatile uint64_t *p, u_int v)
{
volatile uint32_t *p32;
p32 = (volatile uint32_t *)p;
/* Assume little-endian */
if (v >= 32) {
v &= 0x1f;
p32++;
}
return (atomic_testandset_32(p32, v));
}
static __inline uint32_t
atomic_swap_32(volatile uint32_t *p, uint32_t v)
{
uint32_t ret, exflag;
__asm __volatile(
"1: ldrex %[ret], [%[ptr]] \n"
" strex %[exf], %[val], [%[ptr]] \n"
" teq %[exf], #0 \n"
" it ne \n"
" bne 1b \n"
: [ret] "=&r" (ret),
[exf] "=&r" (exflag)
: [val] "r" (v),
[ptr] "r" (p)
: "cc", "memory");
return (ret);
}
static __inline uint64_t
atomic_swap_64(volatile uint64_t *p, uint64_t v)
{
uint64_t ret;
uint32_t exflag;
__asm __volatile(
"1: ldrexd %Q[ret], %R[ret], [%[ptr]] \n"
" strexd %[exf], %Q[val], %R[val], [%[ptr]] \n"
" teq %[exf], #0 \n"
" it ne \n"
" bne 1b \n"
: [ret] "=&r" (ret),
[exf] "=&r" (exflag)
: [val] "r" (v),
[ptr] "r" (p)
: "cc", "memory");
return (ret);
}
#undef ATOMIC_ACQ_REL
#undef ATOMIC_ACQ_REL_LONG
static __inline void
atomic_thread_fence_acq(void)
{
dmb();
}
static __inline void
atomic_thread_fence_rel(void)
{
dmb();
}
static __inline void
atomic_thread_fence_acq_rel(void)
{
dmb();
}
static __inline void
atomic_thread_fence_seq_cst(void)
{
dmb();
}
#endif /* _MACHINE_ATOMIC_V6_H_ */