freebsd-nq/sys/x86/iommu/intel_gas.c
Konstantin Belousov 5f01ba81ae Account for the offset of the page run when allocating the
dmar_map_entry.  Non-zero offset both increases the required mapping
size, which is handled in dmar_bus_dmamap_load_something1(), and makes
it possible that allocated range crosses boundary, which needs a check
in dmar_gas_match_one().

Reported and tested by:	jimharris
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
2015-04-08 01:55:22 +00:00

734 lines
22 KiB
C

/*-
* Copyright (c) 2013 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define RB_AUGMENT(entry) dmar_gas_augment_entry(entry)
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/rman.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <sys/uio.h>
#include <sys/vmem.h>
#include <dev/pci/pcivar.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/uma.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#include <x86/include/busdma_impl.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/busdma_dmar.h>
#include <x86/iommu/intel_dmar.h>
/*
* Guest Address Space management.
*/
static uma_zone_t dmar_map_entry_zone;
static void
intel_gas_init(void)
{
dmar_map_entry_zone = uma_zcreate("DMAR_MAP_ENTRY",
sizeof(struct dmar_map_entry), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, 0);
}
SYSINIT(intel_gas, SI_SUB_DRIVERS, SI_ORDER_FIRST, intel_gas_init, NULL);
struct dmar_map_entry *
dmar_gas_alloc_entry(struct dmar_ctx *ctx, u_int flags)
{
struct dmar_map_entry *res;
KASSERT((flags & ~(DMAR_PGF_WAITOK)) == 0,
("unsupported flags %x", flags));
res = uma_zalloc(dmar_map_entry_zone, ((flags & DMAR_PGF_WAITOK) !=
0 ? M_WAITOK : M_NOWAIT) | M_ZERO);
if (res != NULL) {
res->ctx = ctx;
atomic_add_int(&ctx->entries_cnt, 1);
}
return (res);
}
void
dmar_gas_free_entry(struct dmar_ctx *ctx, struct dmar_map_entry *entry)
{
KASSERT(ctx == entry->ctx,
("mismatched free ctx %p entry %p entry->ctx %p", ctx,
entry, entry->ctx));
atomic_subtract_int(&ctx->entries_cnt, 1);
uma_zfree(dmar_map_entry_zone, entry);
}
static int
dmar_gas_cmp_entries(struct dmar_map_entry *a, struct dmar_map_entry *b)
{
/* Last entry have zero size, so <= */
KASSERT(a->start <= a->end, ("inverted entry %p (%jx, %jx)",
a, (uintmax_t)a->start, (uintmax_t)a->end));
KASSERT(b->start <= b->end, ("inverted entry %p (%jx, %jx)",
b, (uintmax_t)b->start, (uintmax_t)b->end));
KASSERT(a->end <= b->start || b->end <= a->start ||
a->end == a->start || b->end == b->start,
("overlapping entries %p (%jx, %jx) %p (%jx, %jx)",
a, (uintmax_t)a->start, (uintmax_t)a->end,
b, (uintmax_t)b->start, (uintmax_t)b->end));
if (a->end < b->end)
return (-1);
else if (b->end < a->end)
return (1);
return (0);
}
static void
dmar_gas_augment_entry(struct dmar_map_entry *entry)
{
struct dmar_map_entry *l, *r;
for (; entry != NULL; entry = RB_PARENT(entry, rb_entry)) {
l = RB_LEFT(entry, rb_entry);
r = RB_RIGHT(entry, rb_entry);
if (l == NULL && r == NULL) {
entry->free_down = entry->free_after;
} else if (l == NULL && r != NULL) {
entry->free_down = MAX(entry->free_after, r->free_down);
} else if (/*l != NULL && */ r == NULL) {
entry->free_down = MAX(entry->free_after, l->free_down);
} else /* if (l != NULL && r != NULL) */ {
entry->free_down = MAX(entry->free_after, l->free_down);
entry->free_down = MAX(entry->free_down, r->free_down);
}
}
}
RB_GENERATE(dmar_gas_entries_tree, dmar_map_entry, rb_entry,
dmar_gas_cmp_entries);
static void
dmar_gas_fix_free(struct dmar_ctx *ctx, struct dmar_map_entry *entry)
{
struct dmar_map_entry *next;
next = RB_NEXT(dmar_gas_entries_tree, &ctx->rb_root, entry);
entry->free_after = (next != NULL ? next->start : ctx->end) -
entry->end;
dmar_gas_augment_entry(entry);
}
#ifdef INVARIANTS
static void
dmar_gas_check_free(struct dmar_ctx *ctx)
{
struct dmar_map_entry *entry, *next, *l, *r;
dmar_gaddr_t v;
RB_FOREACH(entry, dmar_gas_entries_tree, &ctx->rb_root) {
KASSERT(ctx == entry->ctx,
("mismatched free ctx %p entry %p entry->ctx %p", ctx,
entry, entry->ctx));
next = RB_NEXT(dmar_gas_entries_tree, &ctx->rb_root, entry);
if (next == NULL) {
MPASS(entry->free_after == ctx->end - entry->end);
} else {
MPASS(entry->free_after = next->start - entry->end);
MPASS(entry->end <= next->start);
}
l = RB_LEFT(entry, rb_entry);
r = RB_RIGHT(entry, rb_entry);
if (l == NULL && r == NULL) {
MPASS(entry->free_down == entry->free_after);
} else if (l == NULL && r != NULL) {
MPASS(entry->free_down = MAX(entry->free_after,
r->free_down));
} else if (r == NULL) {
MPASS(entry->free_down = MAX(entry->free_after,
l->free_down));
} else {
v = MAX(entry->free_after, l->free_down);
v = MAX(entry->free_down, r->free_down);
MPASS(entry->free_down == v);
}
}
}
#endif
static bool
dmar_gas_rb_insert(struct dmar_ctx *ctx, struct dmar_map_entry *entry)
{
struct dmar_map_entry *prev, *found;
found = RB_INSERT(dmar_gas_entries_tree, &ctx->rb_root, entry);
dmar_gas_fix_free(ctx, entry);
prev = RB_PREV(dmar_gas_entries_tree, &ctx->rb_root, entry);
if (prev != NULL)
dmar_gas_fix_free(ctx, prev);
return (found == NULL);
}
static void
dmar_gas_rb_remove(struct dmar_ctx *ctx, struct dmar_map_entry *entry)
{
struct dmar_map_entry *prev;
prev = RB_PREV(dmar_gas_entries_tree, &ctx->rb_root, entry);
RB_REMOVE(dmar_gas_entries_tree, &ctx->rb_root, entry);
if (prev != NULL)
dmar_gas_fix_free(ctx, prev);
}
void
dmar_gas_init_ctx(struct dmar_ctx *ctx)
{
struct dmar_map_entry *begin, *end;
begin = dmar_gas_alloc_entry(ctx, DMAR_PGF_WAITOK);
end = dmar_gas_alloc_entry(ctx, DMAR_PGF_WAITOK);
DMAR_CTX_LOCK(ctx);
KASSERT(ctx->entries_cnt == 2, ("dirty ctx %p", ctx));
KASSERT(RB_EMPTY(&ctx->rb_root), ("non-empty entries %p", ctx));
begin->start = 0;
begin->end = DMAR_PAGE_SIZE;
begin->free_after = ctx->end - begin->end;
begin->flags = DMAR_MAP_ENTRY_PLACE | DMAR_MAP_ENTRY_UNMAPPED;
dmar_gas_rb_insert(ctx, begin);
end->start = ctx->end;
end->end = ctx->end;
end->free_after = 0;
end->flags = DMAR_MAP_ENTRY_PLACE | DMAR_MAP_ENTRY_UNMAPPED;
dmar_gas_rb_insert(ctx, end);
ctx->first_place = begin;
ctx->last_place = end;
DMAR_CTX_UNLOCK(ctx);
}
void
dmar_gas_fini_ctx(struct dmar_ctx *ctx)
{
struct dmar_map_entry *entry, *entry1;
DMAR_CTX_ASSERT_LOCKED(ctx);
KASSERT(ctx->entries_cnt == 2, ("ctx still in use %p", ctx));
entry = RB_MIN(dmar_gas_entries_tree, &ctx->rb_root);
KASSERT(entry->start == 0, ("start entry start %p", ctx));
KASSERT(entry->end == DMAR_PAGE_SIZE, ("start entry end %p", ctx));
KASSERT(entry->flags == DMAR_MAP_ENTRY_PLACE,
("start entry flags %p", ctx));
RB_REMOVE(dmar_gas_entries_tree, &ctx->rb_root, entry);
dmar_gas_free_entry(ctx, entry);
entry = RB_MAX(dmar_gas_entries_tree, &ctx->rb_root);
KASSERT(entry->start == ctx->end, ("end entry start %p", ctx));
KASSERT(entry->end == ctx->end, ("end entry end %p", ctx));
KASSERT(entry->free_after == 0, ("end entry free_after%p", ctx));
KASSERT(entry->flags == DMAR_MAP_ENTRY_PLACE,
("end entry flags %p", ctx));
RB_REMOVE(dmar_gas_entries_tree, &ctx->rb_root, entry);
dmar_gas_free_entry(ctx, entry);
RB_FOREACH_SAFE(entry, dmar_gas_entries_tree, &ctx->rb_root, entry1) {
KASSERT((entry->flags & DMAR_MAP_ENTRY_RMRR) != 0,
("non-RMRR entry left %p", ctx));
RB_REMOVE(dmar_gas_entries_tree, &ctx->rb_root, entry);
dmar_gas_free_entry(ctx, entry);
}
}
struct dmar_gas_match_args {
struct dmar_ctx *ctx;
dmar_gaddr_t size;
int offset;
const struct bus_dma_tag_common *common;
u_int gas_flags;
struct dmar_map_entry *entry;
};
static bool
dmar_gas_match_one(struct dmar_gas_match_args *a, struct dmar_map_entry *prev,
dmar_gaddr_t end)
{
dmar_gaddr_t bs, start;
if (a->entry->start + a->size > end)
return (false);
/* DMAR_PAGE_SIZE to create gap after new entry. */
if (a->entry->start < prev->end + DMAR_PAGE_SIZE ||
a->entry->start + a->size + a->offset + DMAR_PAGE_SIZE >
prev->end + prev->free_after)
return (false);
/* No boundary crossing. */
if (dmar_test_boundary(a->entry->start + a->offset, a->size,
a->common->boundary))
return (true);
/*
* The start + offset to start + offset + size region crosses
* the boundary. Check if there is enough space after the
* next boundary after the prev->end.
*/
bs = (a->entry->start + a->offset + a->common->boundary) &
~(a->common->boundary - 1);
start = roundup2(bs, a->common->alignment);
/* DMAR_PAGE_SIZE to create gap after new entry. */
if (start + a->offset + a->size + DMAR_PAGE_SIZE <=
prev->end + prev->free_after &&
start + a->offset + a->size <= end &&
dmar_test_boundary(start + a->offset, a->size,
a->common->boundary)) {
a->entry->start = start;
return (true);
}
/*
* Not enough space to align at the requested boundary, or
* boundary is smaller than the size, but allowed to split.
* We already checked that start + size does not overlap end.
*
* XXXKIB. It is possible that bs is exactly at the start of
* the next entry, then we do not have gap. Ignore for now.
*/
if ((a->gas_flags & DMAR_GM_CANSPLIT) != 0) {
a->size = bs - a->entry->start;
return (true);
}
return (false);
}
static void
dmar_gas_match_insert(struct dmar_gas_match_args *a,
struct dmar_map_entry *prev)
{
struct dmar_map_entry *next;
bool found;
/*
* The prev->end is always aligned on the page size, which
* causes page alignment for the entry->start too. The size
* is checked to be multiple of the page size.
*
* The page sized gap is created between consequent
* allocations to ensure that out-of-bounds accesses fault.
*/
a->entry->end = a->entry->start + a->size;
next = RB_NEXT(dmar_gas_entries_tree, &a->ctx->rb_root, prev);
KASSERT(next->start >= a->entry->end &&
next->start - a->entry->start >= a->size &&
prev->end <= a->entry->end,
("dmar_gas_match_insert hole failed %p prev (%jx, %jx) "
"free_after %jx next (%jx, %jx) entry (%jx, %jx)", a->ctx,
(uintmax_t)prev->start, (uintmax_t)prev->end,
(uintmax_t)prev->free_after,
(uintmax_t)next->start, (uintmax_t)next->end,
(uintmax_t)a->entry->start, (uintmax_t)a->entry->end));
prev->free_after = a->entry->start - prev->end;
a->entry->free_after = next->start - a->entry->end;
found = dmar_gas_rb_insert(a->ctx, a->entry);
KASSERT(found, ("found dup %p start %jx size %jx",
a->ctx, (uintmax_t)a->entry->start, (uintmax_t)a->size));
a->entry->flags = DMAR_MAP_ENTRY_MAP;
KASSERT(RB_PREV(dmar_gas_entries_tree, &a->ctx->rb_root,
a->entry) == prev,
("entry %p prev %p inserted prev %p", a->entry, prev,
RB_PREV(dmar_gas_entries_tree, &a->ctx->rb_root, a->entry)));
KASSERT(RB_NEXT(dmar_gas_entries_tree, &a->ctx->rb_root,
a->entry) == next,
("entry %p next %p inserted next %p", a->entry, next,
RB_NEXT(dmar_gas_entries_tree, &a->ctx->rb_root, a->entry)));
}
static int
dmar_gas_lowermatch(struct dmar_gas_match_args *a, struct dmar_map_entry *prev)
{
struct dmar_map_entry *l;
int ret;
if (prev->end < a->common->lowaddr) {
a->entry->start = roundup2(prev->end + DMAR_PAGE_SIZE,
a->common->alignment);
if (dmar_gas_match_one(a, prev, a->common->lowaddr)) {
dmar_gas_match_insert(a, prev);
return (0);
}
}
if (prev->free_down < a->size + a->offset + DMAR_PAGE_SIZE)
return (ENOMEM);
l = RB_LEFT(prev, rb_entry);
if (l != NULL) {
ret = dmar_gas_lowermatch(a, l);
if (ret == 0)
return (0);
}
l = RB_RIGHT(prev, rb_entry);
if (l != NULL)
return (dmar_gas_lowermatch(a, l));
return (ENOMEM);
}
static int
dmar_gas_uppermatch(struct dmar_gas_match_args *a)
{
struct dmar_map_entry *next, *prev, find_entry;
find_entry.start = a->common->highaddr;
next = RB_NFIND(dmar_gas_entries_tree, &a->ctx->rb_root, &find_entry);
if (next == NULL)
return (ENOMEM);
prev = RB_PREV(dmar_gas_entries_tree, &a->ctx->rb_root, next);
KASSERT(prev != NULL, ("no prev %p %jx", a->ctx,
(uintmax_t)find_entry.start));
for (;;) {
a->entry->start = prev->start + DMAR_PAGE_SIZE;
if (a->entry->start < a->common->highaddr)
a->entry->start = a->common->highaddr;
a->entry->start = roundup2(a->entry->start,
a->common->alignment);
if (dmar_gas_match_one(a, prev, a->ctx->end)) {
dmar_gas_match_insert(a, prev);
return (0);
}
/*
* XXXKIB. This falls back to linear iteration over
* the free space in the high region. But high
* regions are almost unused, the code should be
* enough to cover the case, although in the
* non-optimal way.
*/
prev = next;
next = RB_NEXT(dmar_gas_entries_tree, &a->ctx->rb_root, prev);
KASSERT(next != NULL, ("no next %p %jx", a->ctx,
(uintmax_t)find_entry.start));
if (next->end >= a->ctx->end)
return (ENOMEM);
}
}
static int
dmar_gas_find_space(struct dmar_ctx *ctx,
const struct bus_dma_tag_common *common, dmar_gaddr_t size,
int offset, u_int flags, struct dmar_map_entry *entry)
{
struct dmar_gas_match_args a;
int error;
DMAR_CTX_ASSERT_LOCKED(ctx);
KASSERT(entry->flags == 0, ("dirty entry %p %p", ctx, entry));
KASSERT((size & DMAR_PAGE_MASK) == 0, ("size %jx", (uintmax_t)size));
a.ctx = ctx;
a.size = size;
a.offset = offset;
a.common = common;
a.gas_flags = flags;
a.entry = entry;
/* Handle lower region. */
if (common->lowaddr > 0) {
error = dmar_gas_lowermatch(&a, RB_ROOT(&ctx->rb_root));
if (error == 0)
return (0);
KASSERT(error == ENOMEM,
("error %d from dmar_gas_lowermatch", error));
}
/* Handle upper region. */
if (common->highaddr >= ctx->end)
return (ENOMEM);
error = dmar_gas_uppermatch(&a);
KASSERT(error == ENOMEM,
("error %d from dmar_gas_uppermatch", error));
return (error);
}
static int
dmar_gas_alloc_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry,
u_int flags)
{
struct dmar_map_entry *next, *prev;
bool found;
DMAR_CTX_ASSERT_LOCKED(ctx);
if ((entry->start & DMAR_PAGE_MASK) != 0 ||
(entry->end & DMAR_PAGE_MASK) != 0)
return (EINVAL);
if (entry->start >= entry->end)
return (EINVAL);
if (entry->end >= ctx->end)
return (EINVAL);
next = RB_NFIND(dmar_gas_entries_tree, &ctx->rb_root, entry);
KASSERT(next != NULL, ("next must be non-null %p %jx", ctx,
(uintmax_t)entry->start));
prev = RB_PREV(dmar_gas_entries_tree, &ctx->rb_root, next);
/* prev could be NULL */
/*
* Adapt to broken BIOSes which specify overlapping RMRR
* entries.
*
* XXXKIB: this does not handle a case when prev or next
* entries are completely covered by the current one, which
* extends both ways.
*/
if (prev != NULL && prev->end > entry->start &&
(prev->flags & DMAR_MAP_ENTRY_PLACE) == 0) {
if ((prev->flags & DMAR_MAP_ENTRY_RMRR) == 0)
return (EBUSY);
entry->start = prev->end;
}
if (next != NULL && next->start < entry->end &&
(next->flags & DMAR_MAP_ENTRY_PLACE) == 0) {
if ((next->flags & DMAR_MAP_ENTRY_RMRR) == 0)
return (EBUSY);
entry->end = next->start;
}
if (entry->end == entry->start)
return (0);
if (prev != NULL && prev->end > entry->start) {
/* This assumes that prev is the placeholder entry. */
dmar_gas_rb_remove(ctx, prev);
prev = NULL;
}
if (next != NULL && next->start < entry->end) {
dmar_gas_rb_remove(ctx, next);
next = NULL;
}
found = dmar_gas_rb_insert(ctx, entry);
KASSERT(found, ("found RMRR dup %p start %jx end %jx",
ctx, (uintmax_t)entry->start, (uintmax_t)entry->end));
entry->flags = DMAR_MAP_ENTRY_RMRR;
#ifdef INVARIANTS
struct dmar_map_entry *ip, *in;
ip = RB_PREV(dmar_gas_entries_tree, &ctx->rb_root, entry);
in = RB_NEXT(dmar_gas_entries_tree, &ctx->rb_root, entry);
KASSERT(prev == NULL || ip == prev,
("RMRR %p (%jx %jx) prev %p (%jx %jx) ins prev %p (%jx %jx)",
entry, entry->start, entry->end, prev,
prev == NULL ? 0 : prev->start, prev == NULL ? 0 : prev->end,
ip, ip == NULL ? 0 : ip->start, ip == NULL ? 0 : ip->end));
KASSERT(next == NULL || in == next,
("RMRR %p (%jx %jx) next %p (%jx %jx) ins next %p (%jx %jx)",
entry, entry->start, entry->end, next,
next == NULL ? 0 : next->start, next == NULL ? 0 : next->end,
in, in == NULL ? 0 : in->start, in == NULL ? 0 : in->end));
#endif
return (0);
}
void
dmar_gas_free_space(struct dmar_ctx *ctx, struct dmar_map_entry *entry)
{
DMAR_CTX_ASSERT_LOCKED(ctx);
KASSERT((entry->flags & (DMAR_MAP_ENTRY_PLACE | DMAR_MAP_ENTRY_RMRR |
DMAR_MAP_ENTRY_MAP)) == DMAR_MAP_ENTRY_MAP,
("permanent entry %p %p", ctx, entry));
dmar_gas_rb_remove(ctx, entry);
entry->flags &= ~DMAR_MAP_ENTRY_MAP;
#ifdef INVARIANTS
if (dmar_check_free)
dmar_gas_check_free(ctx);
#endif
}
void
dmar_gas_free_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry)
{
struct dmar_map_entry *next, *prev;
DMAR_CTX_ASSERT_LOCKED(ctx);
KASSERT((entry->flags & (DMAR_MAP_ENTRY_PLACE | DMAR_MAP_ENTRY_RMRR |
DMAR_MAP_ENTRY_MAP)) == DMAR_MAP_ENTRY_RMRR,
("non-RMRR entry %p %p", ctx, entry));
prev = RB_PREV(dmar_gas_entries_tree, &ctx->rb_root, entry);
next = RB_NEXT(dmar_gas_entries_tree, &ctx->rb_root, entry);
dmar_gas_rb_remove(ctx, entry);
entry->flags &= ~DMAR_MAP_ENTRY_RMRR;
if (prev == NULL)
dmar_gas_rb_insert(ctx, ctx->first_place);
if (next == NULL)
dmar_gas_rb_insert(ctx, ctx->last_place);
}
int
dmar_gas_map(struct dmar_ctx *ctx, const struct bus_dma_tag_common *common,
dmar_gaddr_t size, int offset, u_int eflags, u_int flags, vm_page_t *ma,
struct dmar_map_entry **res)
{
struct dmar_map_entry *entry;
int error;
KASSERT((flags & ~(DMAR_GM_CANWAIT | DMAR_GM_CANSPLIT)) == 0,
("invalid flags 0x%x", flags));
entry = dmar_gas_alloc_entry(ctx, (flags & DMAR_GM_CANWAIT) != 0 ?
DMAR_PGF_WAITOK : 0);
if (entry == NULL)
return (ENOMEM);
DMAR_CTX_LOCK(ctx);
error = dmar_gas_find_space(ctx, common, size, offset, flags, entry);
if (error == ENOMEM) {
DMAR_CTX_UNLOCK(ctx);
dmar_gas_free_entry(ctx, entry);
return (error);
}
#ifdef INVARIANTS
if (dmar_check_free)
dmar_gas_check_free(ctx);
#endif
KASSERT(error == 0,
("unexpected error %d from dmar_gas_find_entry", error));
KASSERT(entry->end < ctx->end, ("allocated GPA %jx, max GPA %jx",
(uintmax_t)entry->end, (uintmax_t)ctx->end));
entry->flags |= eflags;
DMAR_CTX_UNLOCK(ctx);
error = ctx_map_buf(ctx, entry->start, entry->end - entry->start, ma,
((eflags & DMAR_MAP_ENTRY_READ) != 0 ? DMAR_PTE_R : 0) |
((eflags & DMAR_MAP_ENTRY_WRITE) != 0 ? DMAR_PTE_W : 0) |
((eflags & DMAR_MAP_ENTRY_SNOOP) != 0 ? DMAR_PTE_SNP : 0) |
((eflags & DMAR_MAP_ENTRY_TM) != 0 ? DMAR_PTE_TM : 0),
(flags & DMAR_GM_CANWAIT) != 0 ? DMAR_PGF_WAITOK : 0);
if (error == ENOMEM) {
dmar_ctx_unload_entry(entry, true);
return (error);
}
KASSERT(error == 0,
("unexpected error %d from ctx_map_buf", error));
*res = entry;
return (0);
}
int
dmar_gas_map_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry,
u_int eflags, u_int flags, vm_page_t *ma)
{
dmar_gaddr_t start;
int error;
KASSERT(entry->flags == 0, ("used RMRR entry %p %p %x", ctx,
entry, entry->flags));
KASSERT((flags & ~(DMAR_GM_CANWAIT)) == 0,
("invalid flags 0x%x", flags));
start = entry->start;
DMAR_CTX_LOCK(ctx);
error = dmar_gas_alloc_region(ctx, entry, flags);
if (error != 0) {
DMAR_CTX_UNLOCK(ctx);
return (error);
}
entry->flags |= eflags;
DMAR_CTX_UNLOCK(ctx);
if (entry->end == entry->start)
return (0);
error = ctx_map_buf(ctx, entry->start, entry->end - entry->start,
ma + OFF_TO_IDX(start - entry->start),
((eflags & DMAR_MAP_ENTRY_READ) != 0 ? DMAR_PTE_R : 0) |
((eflags & DMAR_MAP_ENTRY_WRITE) != 0 ? DMAR_PTE_W : 0) |
((eflags & DMAR_MAP_ENTRY_SNOOP) != 0 ? DMAR_PTE_SNP : 0) |
((eflags & DMAR_MAP_ENTRY_TM) != 0 ? DMAR_PTE_TM : 0),
(flags & DMAR_GM_CANWAIT) != 0 ? DMAR_PGF_WAITOK : 0);
if (error == ENOMEM) {
dmar_ctx_unload_entry(entry, false);
return (error);
}
KASSERT(error == 0,
("unexpected error %d from ctx_map_buf", error));
return (0);
}
int
dmar_gas_reserve_region(struct dmar_ctx *ctx, dmar_gaddr_t start,
dmar_gaddr_t end)
{
struct dmar_map_entry *entry;
int error;
entry = dmar_gas_alloc_entry(ctx, DMAR_PGF_WAITOK);
entry->start = start;
entry->end = end;
DMAR_CTX_LOCK(ctx);
error = dmar_gas_alloc_region(ctx, entry, DMAR_GM_CANWAIT);
if (error == 0)
entry->flags |= DMAR_MAP_ENTRY_UNMAPPED;
DMAR_CTX_UNLOCK(ctx);
if (error != 0)
dmar_gas_free_entry(ctx, entry);
return (error);
}