245 lines
6.6 KiB
C++

//===-- BumpVector.h - Vector-like ADT that uses bump allocation --*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides BumpVector, a vector-like ADT whose contents are
// allocated from a BumpPtrAllocator.
//
//===----------------------------------------------------------------------===//
// FIXME: Most of this is copy-and-paste from SmallVector.h. We can
// refactor this core logic into something common that is shared between
// the two. The main thing that is different is the allocation strategy.
#ifndef LLVM_CLANG_BUMP_VECTOR
#define LLVM_CLANG_BUMP_VECTOR
#include "llvm/Support/type_traits.h"
#include "llvm/Support/Allocator.h"
#include "llvm/ADT/PointerIntPair.h"
#include <algorithm>
#include <cstring>
#include <iterator>
#include <memory>
namespace clang {
class BumpVectorContext {
llvm::PointerIntPair<llvm::BumpPtrAllocator*, 1> Alloc;
public:
/// Construct a new BumpVectorContext that creates a new BumpPtrAllocator
/// and destroys it when the BumpVectorContext object is destroyed.
BumpVectorContext() : Alloc(new llvm::BumpPtrAllocator(), 1) {}
/// Construct a new BumpVectorContext that reuses an existing
/// BumpPtrAllocator. This BumpPtrAllocator is not destroyed when the
/// BumpVectorContext object is destroyed.
BumpVectorContext(llvm::BumpPtrAllocator &A) : Alloc(&A, 0) {}
~BumpVectorContext() {
if (Alloc.getInt())
delete Alloc.getPointer();
}
llvm::BumpPtrAllocator &getAllocator() { return *Alloc.getPointer(); }
};
template<typename T>
class BumpVector {
T *Begin, *End, *Capacity;
public:
// Default ctor - Initialize to empty.
explicit BumpVector(BumpVectorContext &C, unsigned N)
: Begin(NULL), End(NULL), Capacity(NULL) {
reserve(C, N);
}
~BumpVector() {
if (llvm::is_class<T>::value) {
// Destroy the constructed elements in the vector.
destroy_range(Begin, End);
}
}
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
// forward iterator creation methods.
iterator begin() { return Begin; }
const_iterator begin() const { return Begin; }
iterator end() { return End; }
const_iterator end() const { return End; }
// reverse iterator creation methods.
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
bool empty() const { return Begin == End; }
size_type size() const { return End-Begin; }
reference operator[](unsigned idx) {
assert(Begin + idx < End);
return Begin[idx];
}
const_reference operator[](unsigned idx) const {
assert(Begin + idx < End);
return Begin[idx];
}
reference front() {
return begin()[0];
}
const_reference front() const {
return begin()[0];
}
reference back() {
return end()[-1];
}
const_reference back() const {
return end()[-1];
}
void pop_back() {
--End;
End->~T();
}
T pop_back_val() {
T Result = back();
pop_back();
return Result;
}
void clear() {
if (llvm::is_class<T>::value) {
destroy_range(Begin, End);
}
End = Begin;
}
/// data - Return a pointer to the vector's buffer, even if empty().
pointer data() {
return pointer(Begin);
}
/// data - Return a pointer to the vector's buffer, even if empty().
const_pointer data() const {
return const_pointer(Begin);
}
void push_back(const_reference Elt, BumpVectorContext &C) {
if (End < Capacity) {
Retry:
new (End) T(Elt);
++End;
return;
}
grow(C);
goto Retry;
}
/// insert - Insert some number of copies of element into a position. Return
/// iterator to position after last inserted copy.
iterator insert(iterator I, size_t Cnt, const_reference E,
BumpVectorContext &C) {
assert (I >= Begin && I <= End && "Iterator out of bounds.");
if (End + Cnt <= Capacity) {
Retry:
move_range_right(I, End, Cnt);
construct_range(I, I + Cnt, E);
End += Cnt;
return I + Cnt;
}
ptrdiff_t D = I - Begin;
grow(C, size() + Cnt);
I = Begin + D;
goto Retry;
}
void reserve(BumpVectorContext &C, unsigned N) {
if (unsigned(Capacity-Begin) < N)
grow(C, N);
}
/// capacity - Return the total number of elements in the currently allocated
/// buffer.
size_t capacity() const { return Capacity - Begin; }
private:
/// grow - double the size of the allocated memory, guaranteeing space for at
/// least one more element or MinSize if specified.
void grow(BumpVectorContext &C, size_type MinSize = 1);
void construct_range(T *S, T *E, const T &Elt) {
for (; S != E; ++S)
new (S) T(Elt);
}
void destroy_range(T *S, T *E) {
while (S != E) {
--E;
E->~T();
}
}
void move_range_right(T *S, T *E, size_t D) {
for (T *I = E + D - 1, *IL = S + D - 1; I != IL; --I) {
--E;
new (I) T(*E);
E->~T();
}
}
};
// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T>
void BumpVector<T>::grow(BumpVectorContext &C, size_t MinSize) {
size_t CurCapacity = Capacity-Begin;
size_t CurSize = size();
size_t NewCapacity = 2*CurCapacity;
if (NewCapacity < MinSize)
NewCapacity = MinSize;
// Allocate the memory from the BumpPtrAllocator.
T *NewElts = C.getAllocator().template Allocate<T>(NewCapacity);
// Copy the elements over.
if (llvm::is_class<T>::value) {
std::uninitialized_copy(Begin, End, NewElts);
// Destroy the original elements.
destroy_range(Begin, End);
}
else {
// Use memcpy for PODs (std::uninitialized_copy optimizes to memmove).
memcpy(NewElts, Begin, CurSize * sizeof(T));
}
// For now, leak 'Begin'. We can add it back to a freelist in
// BumpVectorContext.
Begin = NewElts;
End = NewElts+CurSize;
Capacity = Begin+NewCapacity;
}
} // end: clang namespace
#endif // end: LLVM_CLANG_BUMP_VECTOR