freebsd-nq/sys/dev/vt/hw/vga/vt_vga.c
2014-09-05 18:11:39 +00:00

1244 lines
37 KiB
C

/*-
* Copyright (c) 2005 Marcel Moolenaar
* All rights reserved.
*
* Copyright (c) 2009 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by Ed Schouten
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <dev/vt/vt.h>
#include <dev/vt/hw/vga/vt_vga_reg.h>
#include <machine/bus.h>
#if defined(__amd64__) || defined(__i386__)
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/pmap.h>
#include <machine/vmparam.h>
#endif /* __amd64__ || __i386__ */
struct vga_softc {
bus_space_tag_t vga_fb_tag;
bus_space_handle_t vga_fb_handle;
bus_space_tag_t vga_reg_tag;
bus_space_handle_t vga_reg_handle;
int vga_wmode;
term_color_t vga_curfg, vga_curbg;
};
/* Convenience macros. */
#define MEM_READ1(sc, ofs) \
bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs)
#define MEM_WRITE1(sc, ofs, val) \
bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
#define REG_READ1(sc, reg) \
bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg)
#define REG_WRITE1(sc, reg, val) \
bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val)
#define VT_VGA_WIDTH 640
#define VT_VGA_HEIGHT 480
#define VT_VGA_MEMSIZE (VT_VGA_WIDTH * VT_VGA_HEIGHT / 8)
/*
* VGA is designed to handle 8 pixels at a time (8 pixels in one byte of
* memory).
*/
#define VT_VGA_PIXELS_BLOCK 8
/*
* We use an off-screen addresses to:
* o store the background color;
* o store pixels pattern.
* Those addresses are then loaded in the latches once.
*/
#define VT_VGA_BGCOLOR_OFFSET VT_VGA_MEMSIZE
static vd_probe_t vga_probe;
static vd_init_t vga_init;
static vd_blank_t vga_blank;
static vd_bitblt_text_t vga_bitblt_text;
static vd_bitblt_bmp_t vga_bitblt_bitmap;
static vd_drawrect_t vga_drawrect;
static vd_setpixel_t vga_setpixel;
static vd_postswitch_t vga_postswitch;
static const struct vt_driver vt_vga_driver = {
.vd_name = "vga",
.vd_probe = vga_probe,
.vd_init = vga_init,
.vd_blank = vga_blank,
.vd_bitblt_text = vga_bitblt_text,
.vd_bitblt_bmp = vga_bitblt_bitmap,
.vd_drawrect = vga_drawrect,
.vd_setpixel = vga_setpixel,
.vd_postswitch = vga_postswitch,
.vd_priority = VD_PRIORITY_GENERIC,
};
/*
* Driver supports both text mode and graphics mode. Make sure the
* buffer is always big enough to support both.
*/
static struct vga_softc vga_conssoftc;
VT_DRIVER_DECLARE(vt_vga, vt_vga_driver);
static inline void
vga_setwmode(struct vt_device *vd, int wmode)
{
struct vga_softc *sc = vd->vd_softc;
if (sc->vga_wmode == wmode)
return;
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
REG_WRITE1(sc, VGA_GC_DATA, wmode);
sc->vga_wmode = wmode;
switch (wmode) {
case 3:
/* Re-enable all plans. */
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
break;
}
}
static inline void
vga_setfg(struct vt_device *vd, term_color_t color)
{
struct vga_softc *sc = vd->vd_softc;
vga_setwmode(vd, 3);
if (sc->vga_curfg == color)
return;
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
REG_WRITE1(sc, VGA_GC_DATA, color);
sc->vga_curfg = color;
}
static inline void
vga_setbg(struct vt_device *vd, term_color_t color)
{
struct vga_softc *sc = vd->vd_softc;
vga_setwmode(vd, 3);
if (sc->vga_curbg == color)
return;
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
REG_WRITE1(sc, VGA_GC_DATA, color);
/*
* Write 8 pixels using the background color to an off-screen
* byte in the video memory.
*/
MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff);
/*
* Read those 8 pixels back to load the background color in the
* latches register.
*/
MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET);
sc->vga_curbg = color;
/*
* The Set/Reset register doesn't contain the fg color anymore,
* store an invalid color.
*/
sc->vga_curfg = 0xff;
}
/*
* Binary searchable table for Unicode to CP437 conversion.
*/
struct unicp437 {
uint16_t unicode_base;
uint8_t cp437_base;
uint8_t length;
};
static const struct unicp437 cp437table[] = {
{ 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 },
{ 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 },
{ 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 },
{ 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 },
{ 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 },
{ 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 },
{ 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 },
{ 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 },
{ 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 },
{ 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 },
{ 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 },
{ 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 },
{ 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 },
{ 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 },
{ 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 },
{ 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 },
{ 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 },
{ 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 },
{ 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 },
{ 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 },
{ 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 },
{ 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 },
{ 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 },
{ 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 },
{ 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 },
{ 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 },
{ 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 },
{ 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 },
{ 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 },
{ 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 },
{ 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 },
{ 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 },
{ 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 },
{ 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 },
{ 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 },
{ 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 },
{ 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 },
{ 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 },
{ 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 },
{ 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 },
{ 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 },
{ 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 },
{ 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 },
{ 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 },
{ 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 },
{ 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 },
{ 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 },
{ 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 },
{ 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 },
{ 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 },
{ 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 },
{ 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 },
{ 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 },
{ 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 },
{ 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 },
{ 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 },
{ 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 },
{ 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 },
{ 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 },
{ 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 },
{ 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 },
{ 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 },
{ 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 },
{ 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 },
{ 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 },
{ 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 },
{ 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 },
{ 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 },
{ 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 },
{ 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 },
{ 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 },
{ 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 },
{ 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 },
{ 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 },
{ 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 },
{ 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 },
{ 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 },
{ 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 },
{ 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 },
{ 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 },
{ 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 },
{ 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 },
{ 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 },
{ 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 },
{ 0x266c, 0x0e, 0x00 },
};
static uint8_t
vga_get_cp437(term_char_t c)
{
int min, mid, max;
min = 0;
max = (sizeof(cp437table) / sizeof(struct unicp437)) - 1;
if (c < cp437table[0].unicode_base ||
c > cp437table[max].unicode_base + cp437table[max].length)
return '?';
while (max >= min) {
mid = (min + max) / 2;
if (c < cp437table[mid].unicode_base)
max = mid - 1;
else if (c > cp437table[mid].unicode_base +
cp437table[mid].length)
min = mid + 1;
else
return (c - cp437table[mid].unicode_base +
cp437table[mid].cp437_base);
}
return '?';
}
static void
vga_blank(struct vt_device *vd, term_color_t color)
{
struct vga_softc *sc = vd->vd_softc;
u_int ofs;
vga_setfg(vd, color);
for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++)
MEM_WRITE1(sc, ofs, 0xff);
}
static inline void
vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color,
uint8_t v)
{
struct vga_softc *sc = vd->vd_softc;
/* Skip empty writes, in order to avoid palette changes. */
if (v != 0x00) {
vga_setfg(vd, color);
/*
* When this MEM_READ1() gets disabled, all sorts of
* artifacts occur. This is because this read loads the
* set of 8 pixels that are about to be changed. There
* is one scenario where we can avoid the read, namely
* if all pixels are about to be overwritten anyway.
*/
if (v != 0xff) {
MEM_READ1(sc, dst);
/* The bg color was trashed by the reads. */
sc->vga_curbg = 0xff;
}
MEM_WRITE1(sc, dst, v);
}
}
static void
vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color)
{
if (vd->vd_flags & VDF_TEXTMODE)
return;
vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color,
0x80 >> (x % 8));
}
static void
vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill,
term_color_t color)
{
int x, y;
if (vd->vd_flags & VDF_TEXTMODE)
return;
for (y = y1; y <= y2; y++) {
if (fill || (y == y1) || (y == y2)) {
for (x = x1; x <= x2; x++)
vga_setpixel(vd, x, y, color);
} else {
vga_setpixel(vd, x1, y, color);
vga_setpixel(vd, x2, y, color);
}
}
}
static void
vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes,
unsigned int src_x, unsigned int x_count, unsigned int dst_x,
uint8_t *pattern, uint8_t *mask)
{
unsigned int n;
n = src_x / 8;
/*
* This mask has bits set, where a pixel (ether 0 or 1)
* comes from the source bitmap.
*/
if (mask != NULL) {
*mask = (0xff
>> (8 - x_count))
<< (8 - x_count - dst_x);
}
if (n == (src_x + x_count - 1) / 8) {
/* All the pixels we want are in the same byte. */
*pattern = src[n];
if (dst_x >= src_x)
*pattern >>= (dst_x - src_x % 8);
else
*pattern <<= (src_x % 8 - dst_x);
} else {
/* The pixels we want are split into two bytes. */
if (dst_x >= src_x % 8) {
*pattern =
src[n] << (8 - dst_x - src_x % 8) |
src[n + 1] >> (dst_x - src_x % 8);
} else {
*pattern =
src[n] << (src_x % 8 - dst_x) |
src[n + 1] >> (8 - src_x % 8 - dst_x);
}
}
}
static void
vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors,
const uint8_t *src, const uint8_t *src_mask, unsigned int src_width,
unsigned int src_x, unsigned int dst_x, unsigned int x_count,
unsigned int src_y, unsigned int dst_y, unsigned int y_count,
term_color_t fg, term_color_t bg, int overwrite)
{
unsigned int i, bytes;
uint8_t pattern, relevant_bits, mask;
bytes = (src_width + 7) / 8;
for (i = 0; i < y_count; ++i) {
vga_compute_shifted_pattern(src + (src_y + i) * bytes,
bytes, src_x, x_count, dst_x, &pattern, &relevant_bits);
if (src_mask == NULL) {
/*
* No src mask. Consider that all wanted bits
* from the source are "authoritative".
*/
mask = relevant_bits;
} else {
/*
* There's an src mask. We shift it the same way
* we shifted the source pattern.
*/
vga_compute_shifted_pattern(
src_mask + (src_y + i) * bytes,
bytes, src_x, x_count, dst_x,
&mask, NULL);
/* Now, only keep the wanted bits among them. */
mask &= relevant_bits;
}
/*
* Clear bits from the pattern which must be
* transparent, according to the source mask.
*/
pattern &= mask;
/* Set the bits in the 2-colors array. */
if (overwrite)
pattern_2colors[dst_y + i] &= ~mask;
pattern_2colors[dst_y + i] |= pattern;
if (pattern_ncolors == NULL)
continue;
/*
* Set the same bits in the n-colors array. This one
* supports transparency, when a given bit is cleared in
* all colors.
*/
if (overwrite) {
/*
* Ensure that the pixels used by this bitmap are
* cleared in other colors.
*/
for (int j = 0; j < 16; ++j)
pattern_ncolors[(dst_y + i) * 16 + j] &=
~mask;
}
pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern;
pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask);
}
}
static void
vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks,
term_color_t fg, term_color_t bg,
unsigned int x, unsigned int y, unsigned int height)
{
unsigned int i, offset;
struct vga_softc *sc;
/*
* The great advantage of Write Mode 3 is that we just need
* to load the foreground in the Set/Reset register, load the
* background color in the latches register (this is done
* through a write in offscreen memory followed by a read of
* that data), then write the pattern to video memory. This
* pattern indicates if the pixel should use the foreground
* color (bit set) or the background color (bit cleared).
*/
vga_setbg(vd, bg);
vga_setfg(vd, fg);
sc = vd->vd_softc;
offset = (VT_VGA_WIDTH * y + x) / 8;
for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) {
MEM_WRITE1(sc, offset, masks[i]);
}
}
static void
vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks,
unsigned int x, unsigned int y, unsigned int height)
{
unsigned int i, j, plan, color, offset;
struct vga_softc *sc;
uint8_t mask, plans[height * 4];
sc = vd->vd_softc;
memset(plans, 0, sizeof(plans));
/*
* To write a group of pixels using 3 or more colors, we select
* Write Mode 0 and write one byte to each plan separately.
*/
/*
* We first compute each byte: each plan contains one bit of the
* color code for each of the 8 pixels.
*
* For example, if the 8 pixels are like this:
* GBBBBBBY
* where:
* G (gray) = 0b0111
* B (black) = 0b0000
* Y (yellow) = 0b0011
*
* The corresponding for bytes are:
* GBBBBBBY
* Plan 0: 10000001 = 0x81
* Plan 1: 10000001 = 0x81
* Plan 2: 10000000 = 0x80
* Plan 3: 00000000 = 0x00
* | | |
* | | +-> 0b0011 (Y)
* | +-----> 0b0000 (B)
* +--------> 0b0111 (G)
*/
for (i = 0; i < height; ++i) {
for (color = 0; color < 16; ++color) {
mask = masks[i * 16 + color];
if (mask == 0x00)
continue;
for (j = 0; j < 8; ++j) {
if (!((mask >> (7 - j)) & 0x1))
continue;
/* The pixel "j" uses color "color". */
for (plan = 0; plan < 4; ++plan)
plans[i * 4 + plan] |=
((color >> plan) & 0x1) << (7 - j);
}
}
}
/*
* The bytes are ready: we now switch to Write Mode 0 and write
* all bytes, one plan at a time.
*/
vga_setwmode(vd, 0);
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
for (plan = 0; plan < 4; ++plan) {
/* Select plan. */
REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plan);
/* Write all bytes for this plan, from Y to Y+height. */
for (i = 0; i < height; ++i) {
offset = (VT_VGA_WIDTH * (y + i) + x) / 8;
MEM_WRITE1(sc, offset, plans[i * 4 + plan]);
}
}
}
static void
vga_bitblt_one_text_pixels_block(struct vt_device *vd,
const struct vt_window *vw, unsigned int x, unsigned int y)
{
const struct vt_buf *vb;
const struct vt_font *vf;
unsigned int i, col, row, src_x, x_count;
unsigned int used_colors_list[16], used_colors;
uint8_t pattern_2colors[vw->vw_font->vf_height];
uint8_t pattern_ncolors[vw->vw_font->vf_height * 16];
term_char_t c;
term_color_t fg, bg;
const uint8_t *src;
vb = &vw->vw_buf;
vf = vw->vw_font;
/*
* The current pixels block.
*
* We fill it with portions of characters, because both "grids"
* may not match.
*
* i is the index in this pixels block.
*/
i = x;
used_colors = 0;
memset(used_colors_list, 0, sizeof(used_colors_list));
memset(pattern_2colors, 0, sizeof(pattern_2colors));
memset(pattern_ncolors, 0, sizeof(pattern_ncolors));
if (i < vw->vw_draw_area.tr_begin.tp_col) {
/*
* i is in the margin used to center the text area on
* the screen.
*/
i = vw->vw_draw_area.tr_begin.tp_col;
}
while (i < x + VT_VGA_PIXELS_BLOCK &&
i < vw->vw_draw_area.tr_end.tp_col) {
/*
* Find which character is drawn on this pixel in the
* pixels block.
*
* While here, record what colors it uses.
*/
col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width;
row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height;
c = VTBUF_GET_FIELD(vb, row, col);
src = vtfont_lookup(vf, c);
vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg);
if ((used_colors_list[fg] & 0x1) != 0x1)
used_colors++;
if ((used_colors_list[bg] & 0x2) != 0x2)
used_colors++;
used_colors_list[fg] |= 0x1;
used_colors_list[bg] |= 0x2;
/*
* Compute the portion of the character we want to draw,
* because the pixels block may start in the middle of a
* character.
*
* The first pixel to draw in the character is
* the current position -
* the start position of the character
*
* The last pixel to draw is either
* - the last pixel of the character, or
* - the pixel of the character matching the end of
* the pixels block
* whichever comes first. This position is then
* changed to be relative to the start position of the
* character.
*/
src_x = i -
(col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col);
x_count = min(min(
(col + 1) * vf->vf_width +
vw->vw_draw_area.tr_begin.tp_col,
x + VT_VGA_PIXELS_BLOCK),
vw->vw_draw_area.tr_end.tp_col);
x_count -= col * vf->vf_width +
vw->vw_draw_area.tr_begin.tp_col;
x_count -= src_x;
/* Copy a portion of the character. */
vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
src, NULL, vf->vf_width,
src_x, i % VT_VGA_PIXELS_BLOCK, x_count,
0, 0, vf->vf_height, fg, bg, 0);
/* We move to the next portion. */
i += x_count;
}
#ifndef SC_NO_CUTPASTE
/*
* Copy the mouse pointer bitmap if it's over the current pixels
* block.
*
* We use the saved cursor position (saved in vt_flush()), because
* the current position could be different than the one used
* to mark the area dirty.
*/
term_rect_t drawn_area;
drawn_area.tr_begin.tp_col = x;
drawn_area.tr_begin.tp_row = y;
drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK;
drawn_area.tr_end.tp_row = y + vf->vf_height;
if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) {
struct vt_mouse_cursor *cursor;
unsigned int mx, my;
unsigned int dst_x, src_y, dst_y, y_count;
cursor = vd->vd_mcursor;
mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col;
my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row;
/* Compute the portion of the cursor we want to copy. */
src_x = x > mx ? x - mx : 0;
dst_x = mx > x ? mx - x : 0;
x_count = min(min(min(
cursor->width - src_x,
x + VT_VGA_PIXELS_BLOCK - mx),
vw->vw_draw_area.tr_end.tp_col - mx),
VT_VGA_PIXELS_BLOCK);
/*
* The cursor isn't aligned on the Y-axis with
* characters, so we need to compute the vertical
* start/count.
*/
src_y = y > my ? y - my : 0;
dst_y = my > y ? my - y : 0;
y_count = min(
min(cursor->height - src_y, y + vf->vf_height - my),
vf->vf_height);
/* Copy the cursor portion. */
vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
cursor->map, cursor->mask, cursor->width,
src_x, dst_x, x_count, src_y, dst_y, y_count,
vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1);
if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1)
used_colors++;
if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2)
used_colors++;
}
#endif
/*
* The pixels block is completed, we can now draw it on the
* screen.
*/
if (used_colors == 2)
vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg,
x, y, vf->vf_height);
else
vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors,
x, y, vf->vf_height);
}
static void
vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw,
const term_rect_t *area)
{
const struct vt_font *vf;
unsigned int col, row;
unsigned int x1, y1, x2, y2, x, y;
vf = vw->vw_font;
/*
* Compute the top-left pixel position aligned with the video
* adapter pixels block size.
*
* This is calculated from the top-left column of te dirty area:
*
* 1. Compute the top-left pixel of the character:
* col * font width + x offset
*
* NOTE: x offset is used to center the text area on the
* screen. It's expressed in pixels, not in characters
* col/row!
*
* 2. Find the pixel further on the left marking the start of
* an aligned pixels block (eg. chunk of 8 pixels):
* character's x / blocksize * blocksize
*
* The division, being made on integers, achieves the
* alignment.
*
* For the Y-axis, we need to compute the character's y
* coordinate, but we don't need to align it.
*/
col = area->tr_begin.tp_col;
row = area->tr_begin.tp_row;
x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col)
/ VT_VGA_PIXELS_BLOCK)
* VT_VGA_PIXELS_BLOCK;
y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
/*
* Compute the bottom right pixel position, again, aligned with
* the pixels block size.
*
* The same rules apply, we just add 1 to base the computation
* on the "right border" of the dirty area.
*/
col = area->tr_end.tp_col;
row = area->tr_end.tp_row;
x2 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col
+ VT_VGA_PIXELS_BLOCK - 1)
/ VT_VGA_PIXELS_BLOCK)
* VT_VGA_PIXELS_BLOCK;
y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
/* Clip the area to the screen size. */
x2 = min(x2, vw->vw_draw_area.tr_end.tp_col);
y2 = min(y2, vw->vw_draw_area.tr_end.tp_row);
/*
* Now, we take care of N pixels line at a time (the first for
* loop, N = font height), and for these lines, draw one pixels
* block at a time (the second for loop), not a character at a
* time.
*
* Therefore, on the X-axis, characters my be drawn partially if
* they are not aligned on 8-pixels boundary.
*
* However, the operation is repeated for the full height of the
* font before moving to the next character, because it allows
* to keep the color settings and write mode, before perhaps
* changing them with the next one.
*/
for (y = y1; y < y2; y += vf->vf_height) {
for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) {
vga_bitblt_one_text_pixels_block(vd, vw, x, y);
}
}
}
static void
vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw,
const term_rect_t *area)
{
struct vga_softc *sc;
const struct vt_buf *vb;
unsigned int col, row;
term_char_t c;
term_color_t fg, bg;
uint8_t ch, attr;
sc = vd->vd_softc;
vb = &vw->vw_buf;
for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
for (col = area->tr_begin.tp_col;
col < area->tr_end.tp_col;
++col) {
/*
* Get next character and its associated fg/bg
* colors.
*/
c = VTBUF_GET_FIELD(vb, row, col);
vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col),
&fg, &bg);
/*
* Convert character to CP437, which is the
* character set used by the VGA hardware by
* default.
*/
ch = vga_get_cp437(TCHAR_CHARACTER(c));
/* Convert colors to VGA attributes. */
attr = bg << 4 | fg;
MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 0,
ch);
MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 1,
attr);
}
}
}
static void
vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw,
const term_rect_t *area)
{
if (!(vd->vd_flags & VDF_TEXTMODE)) {
vga_bitblt_text_gfxmode(vd, vw, area);
} else {
vga_bitblt_text_txtmode(vd, vw, area);
}
}
static void
vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw,
const uint8_t *pattern, const uint8_t *mask,
unsigned int width, unsigned int height,
unsigned int x, unsigned int y, term_color_t fg, term_color_t bg)
{
unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count;
uint8_t pattern_2colors;
/* Align coordinates with the 8-pxels grid. */
x1 = x / VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK;
y1 = y;
x2 = (x + width + VT_VGA_PIXELS_BLOCK - 1) /
VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK;
y2 = y + height;
x2 = min(x2, vd->vd_width - 1);
y2 = min(y2, vd->vd_height - 1);
for (j = y1; j < y2; ++j) {
src_x = 0;
dst_x = x - x1;
x_count = VT_VGA_PIXELS_BLOCK - dst_x;
for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) {
pattern_2colors = 0;
vga_copy_bitmap_portion(
&pattern_2colors, NULL,
pattern, mask, width,
src_x, dst_x, x_count,
j - y1, 0, 1, fg, bg, 0);
vga_bitblt_pixels_block_2colors(vd,
&pattern_2colors, fg, bg,
i, j, 1);
src_x += x_count;
dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK;
x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK);
}
}
}
static void
vga_initialize_graphics(struct vt_device *vd)
{
struct vga_softc *sc = vd->vd_softc;
/* Clock select. */
REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP |
VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA);
/* Set sequencer clocking and memory mode. */
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE);
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89);
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE);
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM);
/* Set the graphics controller in graphics mode. */
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS);
REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA);
/* Program the CRT controller. */
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL);
REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f); /* 760 */
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END);
REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f); /* 640 - 8 */
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK);
REG_WRITE1(sc, VGA_CRTC_DATA, 0x50); /* 640 */
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK);
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE);
REG_WRITE1(sc, VGA_CRTC_DATA, 0x54); /* 672 */
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE);
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL);
REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b); /* 523 */
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW);
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 |
VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE);
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START);
REG_WRITE1(sc, VGA_CRTC_DATA, 0xea); /* 480 + 10 */
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END);
REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf); /* 480 - 1*/
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET);
REG_WRITE1(sc, VGA_CRTC_DATA, 0x28);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK);
REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7); /* 480 + 7 */
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK);
REG_WRITE1(sc, VGA_CRTC_DATA, 0x04);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW |
VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE);
REG_WRITE1(sc, VGA_CRTC_DATA, 0xff); /* 480 + 31 */
REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0);
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT);
REG_WRITE1(sc, VGA_SEQ_DATA, 0);
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
REG_WRITE1(sc, VGA_GC_DATA, 0);
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE);
REG_WRITE1(sc, VGA_GC_DATA, 0);
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE);
REG_WRITE1(sc, VGA_GC_DATA, 0);
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT);
REG_WRITE1(sc, VGA_GC_DATA, 0);
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
REG_WRITE1(sc, VGA_GC_DATA, 0);
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE);
REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK);
REG_WRITE1(sc, VGA_GC_DATA, 0xff);
}
static void
vga_initialize(struct vt_device *vd, int textmode)
{
struct vga_softc *sc = vd->vd_softc;
uint8_t x;
/* Make sure the VGA adapter is not in monochrome emulation mode. */
x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R);
REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA);
/* Unprotect CRTC registers 0-7. */
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
x = REG_READ1(sc, VGA_CRTC_DATA);
REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR);
/*
* Wait for the vertical retrace.
* NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has
* the side-effect of clearing the internal flip-flip of the attribute
* controller's write register. This means that because this code is
* here, we know for sure that the first write to the attribute
* controller will be a write to the address register. Removing this
* code therefore also removes that guarantee and appropriate measures
* need to be taken.
*/
do {
x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1);
x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE;
} while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE));
/* Now, disable the sync. signals. */
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
x = REG_READ1(sc, VGA_CRTC_DATA);
REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR);
/* Asynchronous sequencer reset. */
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR);
if (!textmode)
vga_initialize_graphics(vd);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN);
REG_WRITE1(sc, VGA_CRTC_DATA, 0);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START);
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END);
REG_WRITE1(sc, VGA_CRTC_DATA, 0);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH);
REG_WRITE1(sc, VGA_CRTC_DATA, 0);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW);
REG_WRITE1(sc, VGA_CRTC_DATA, 0);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH);
REG_WRITE1(sc, VGA_CRTC_DATA, 0);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW);
REG_WRITE1(sc, VGA_CRTC_DATA, 0x59);
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC);
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL);
if (textmode) {
/* Set the attribute controller to blink disable. */
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
REG_WRITE1(sc, VGA_AC_WRITE, 0);
} else {
/* Set the attribute controller in graphics mode. */
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING);
REG_WRITE1(sc, VGA_AC_WRITE, 0);
}
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0));
REG_WRITE1(sc, VGA_AC_WRITE, 0);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
VGA_AC_PAL_SB);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
VGA_AC_PAL_SB | VGA_AC_PAL_R);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
VGA_AC_PAL_SB | VGA_AC_PAL_G);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
VGA_AC_PAL_SB | VGA_AC_PAL_B);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15));
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR);
REG_WRITE1(sc, VGA_AC_WRITE, 0);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE);
REG_WRITE1(sc, VGA_AC_WRITE, 0x0f);
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT);
REG_WRITE1(sc, VGA_AC_WRITE, 0);
if (!textmode) {
u_int ofs;
/*
* Done. Clear the frame buffer. All bit planes are
* enabled, so a single-paged loop should clear all
* planes.
*/
for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) {
MEM_WRITE1(sc, ofs, 0);
}
}
/* Re-enable the sequencer. */
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR);
/* Re-enable the sync signals. */
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
x = REG_READ1(sc, VGA_CRTC_DATA);
REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR);
if (!textmode) {
/* Switch to write mode 3, because we'll mainly do bitblt. */
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
REG_WRITE1(sc, VGA_GC_DATA, 3);
sc->vga_wmode = 3;
/*
* In Write Mode 3, Enable Set/Reset is ignored, but we
* use Write Mode 0 to write a group of 8 pixels using
* 3 or more colors. In this case, we want to disable
* Set/Reset: set Enable Set/Reset to 0.
*/
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
REG_WRITE1(sc, VGA_GC_DATA, 0x00);
/*
* Clear the colors we think are loaded into Set/Reset or
* the latches.
*/
sc->vga_curfg = sc->vga_curbg = 0xff;
}
}
static int
vga_probe(struct vt_device *vd)
{
return (CN_INTERNAL);
}
static int
vga_init(struct vt_device *vd)
{
struct vga_softc *sc;
int textmode;
if (vd->vd_softc == NULL)
vd->vd_softc = (void *)&vga_conssoftc;
sc = vd->vd_softc;
textmode = 0;
#if defined(__amd64__) || defined(__i386__)
sc->vga_fb_tag = X86_BUS_SPACE_MEM;
sc->vga_fb_handle = KERNBASE + VGA_MEM_BASE;
sc->vga_reg_tag = X86_BUS_SPACE_IO;
sc->vga_reg_handle = VGA_REG_BASE;
#else
# error "Architecture not yet supported!"
#endif
TUNABLE_INT_FETCH("hw.vga.textmode", &textmode);
if (textmode) {
vd->vd_flags |= VDF_TEXTMODE;
vd->vd_width = 80;
vd->vd_height = 25;
} else {
vd->vd_width = VT_VGA_WIDTH;
vd->vd_height = VT_VGA_HEIGHT;
}
vga_initialize(vd, textmode);
return (CN_INTERNAL);
}
static void
vga_postswitch(struct vt_device *vd)
{
/* Reinit VGA mode, to restore view after app which change mode. */
vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE));
/* Ask vt(9) to update chars on visible area. */
vd->vd_flags |= VDF_INVALID;
}