6cbf3f62e0
MFC after: 3 days
1244 lines
37 KiB
C
1244 lines
37 KiB
C
/*-
|
|
* Copyright (c) 2005 Marcel Moolenaar
|
|
* All rights reserved.
|
|
*
|
|
* Copyright (c) 2009 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this software were developed by Ed Schouten
|
|
* under sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <dev/vt/vt.h>
|
|
#include <dev/vt/hw/vga/vt_vga_reg.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#if defined(__amd64__) || defined(__i386__)
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <machine/pmap.h>
|
|
#include <machine/vmparam.h>
|
|
#endif /* __amd64__ || __i386__ */
|
|
|
|
struct vga_softc {
|
|
bus_space_tag_t vga_fb_tag;
|
|
bus_space_handle_t vga_fb_handle;
|
|
bus_space_tag_t vga_reg_tag;
|
|
bus_space_handle_t vga_reg_handle;
|
|
int vga_wmode;
|
|
term_color_t vga_curfg, vga_curbg;
|
|
};
|
|
|
|
/* Convenience macros. */
|
|
#define MEM_READ1(sc, ofs) \
|
|
bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs)
|
|
#define MEM_WRITE1(sc, ofs, val) \
|
|
bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
|
|
#define REG_READ1(sc, reg) \
|
|
bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg)
|
|
#define REG_WRITE1(sc, reg, val) \
|
|
bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val)
|
|
|
|
#define VT_VGA_WIDTH 640
|
|
#define VT_VGA_HEIGHT 480
|
|
#define VT_VGA_MEMSIZE (VT_VGA_WIDTH * VT_VGA_HEIGHT / 8)
|
|
|
|
/*
|
|
* VGA is designed to handle 8 pixels at a time (8 pixels in one byte of
|
|
* memory).
|
|
*/
|
|
#define VT_VGA_PIXELS_BLOCK 8
|
|
|
|
/*
|
|
* We use an off-screen addresses to:
|
|
* o store the background color;
|
|
* o store pixels pattern.
|
|
* Those addresses are then loaded in the latches once.
|
|
*/
|
|
#define VT_VGA_BGCOLOR_OFFSET VT_VGA_MEMSIZE
|
|
|
|
static vd_probe_t vga_probe;
|
|
static vd_init_t vga_init;
|
|
static vd_blank_t vga_blank;
|
|
static vd_bitblt_text_t vga_bitblt_text;
|
|
static vd_bitblt_bmp_t vga_bitblt_bitmap;
|
|
static vd_drawrect_t vga_drawrect;
|
|
static vd_setpixel_t vga_setpixel;
|
|
static vd_postswitch_t vga_postswitch;
|
|
|
|
static const struct vt_driver vt_vga_driver = {
|
|
.vd_name = "vga",
|
|
.vd_probe = vga_probe,
|
|
.vd_init = vga_init,
|
|
.vd_blank = vga_blank,
|
|
.vd_bitblt_text = vga_bitblt_text,
|
|
.vd_bitblt_bmp = vga_bitblt_bitmap,
|
|
.vd_drawrect = vga_drawrect,
|
|
.vd_setpixel = vga_setpixel,
|
|
.vd_postswitch = vga_postswitch,
|
|
.vd_priority = VD_PRIORITY_GENERIC,
|
|
};
|
|
|
|
/*
|
|
* Driver supports both text mode and graphics mode. Make sure the
|
|
* buffer is always big enough to support both.
|
|
*/
|
|
static struct vga_softc vga_conssoftc;
|
|
VT_DRIVER_DECLARE(vt_vga, vt_vga_driver);
|
|
|
|
static inline void
|
|
vga_setwmode(struct vt_device *vd, int wmode)
|
|
{
|
|
struct vga_softc *sc = vd->vd_softc;
|
|
|
|
if (sc->vga_wmode == wmode)
|
|
return;
|
|
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
|
|
REG_WRITE1(sc, VGA_GC_DATA, wmode);
|
|
sc->vga_wmode = wmode;
|
|
|
|
switch (wmode) {
|
|
case 3:
|
|
/* Re-enable all plans. */
|
|
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
|
|
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
|
|
VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
vga_setfg(struct vt_device *vd, term_color_t color)
|
|
{
|
|
struct vga_softc *sc = vd->vd_softc;
|
|
|
|
vga_setwmode(vd, 3);
|
|
|
|
if (sc->vga_curfg == color)
|
|
return;
|
|
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
|
|
REG_WRITE1(sc, VGA_GC_DATA, color);
|
|
sc->vga_curfg = color;
|
|
}
|
|
|
|
static inline void
|
|
vga_setbg(struct vt_device *vd, term_color_t color)
|
|
{
|
|
struct vga_softc *sc = vd->vd_softc;
|
|
|
|
vga_setwmode(vd, 3);
|
|
|
|
if (sc->vga_curbg == color)
|
|
return;
|
|
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
|
|
REG_WRITE1(sc, VGA_GC_DATA, color);
|
|
|
|
/*
|
|
* Write 8 pixels using the background color to an off-screen
|
|
* byte in the video memory.
|
|
*/
|
|
MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff);
|
|
|
|
/*
|
|
* Read those 8 pixels back to load the background color in the
|
|
* latches register.
|
|
*/
|
|
MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET);
|
|
|
|
sc->vga_curbg = color;
|
|
|
|
/*
|
|
* The Set/Reset register doesn't contain the fg color anymore,
|
|
* store an invalid color.
|
|
*/
|
|
sc->vga_curfg = 0xff;
|
|
}
|
|
|
|
/*
|
|
* Binary searchable table for Unicode to CP437 conversion.
|
|
*/
|
|
|
|
struct unicp437 {
|
|
uint16_t unicode_base;
|
|
uint8_t cp437_base;
|
|
uint8_t length;
|
|
};
|
|
|
|
static const struct unicp437 cp437table[] = {
|
|
{ 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 },
|
|
{ 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 },
|
|
{ 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 },
|
|
{ 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 },
|
|
{ 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 },
|
|
{ 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 },
|
|
{ 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 },
|
|
{ 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 },
|
|
{ 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 },
|
|
{ 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 },
|
|
{ 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 },
|
|
{ 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 },
|
|
{ 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 },
|
|
{ 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 },
|
|
{ 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 },
|
|
{ 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 },
|
|
{ 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 },
|
|
{ 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 },
|
|
{ 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 },
|
|
{ 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 },
|
|
{ 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 },
|
|
{ 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 },
|
|
{ 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 },
|
|
{ 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 },
|
|
{ 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 },
|
|
{ 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 },
|
|
{ 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 },
|
|
{ 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 },
|
|
{ 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 },
|
|
{ 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 },
|
|
{ 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 },
|
|
{ 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 },
|
|
{ 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 },
|
|
{ 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 },
|
|
{ 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 },
|
|
{ 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 },
|
|
{ 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 },
|
|
{ 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 },
|
|
{ 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 },
|
|
{ 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 },
|
|
{ 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 },
|
|
{ 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 },
|
|
{ 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 },
|
|
{ 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 },
|
|
{ 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 },
|
|
{ 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 },
|
|
{ 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 },
|
|
{ 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 },
|
|
{ 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 },
|
|
{ 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 },
|
|
{ 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 },
|
|
{ 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 },
|
|
{ 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 },
|
|
{ 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 },
|
|
{ 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 },
|
|
{ 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 },
|
|
{ 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 },
|
|
{ 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 },
|
|
{ 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 },
|
|
{ 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 },
|
|
{ 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 },
|
|
{ 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 },
|
|
{ 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 },
|
|
{ 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 },
|
|
{ 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 },
|
|
{ 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 },
|
|
{ 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 },
|
|
{ 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 },
|
|
{ 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 },
|
|
{ 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 },
|
|
{ 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 },
|
|
{ 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 },
|
|
{ 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 },
|
|
{ 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 },
|
|
{ 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 },
|
|
{ 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 },
|
|
{ 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 },
|
|
{ 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 },
|
|
{ 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 },
|
|
{ 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 },
|
|
{ 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 },
|
|
{ 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 },
|
|
{ 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 },
|
|
{ 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 },
|
|
{ 0x266c, 0x0e, 0x00 },
|
|
};
|
|
|
|
static uint8_t
|
|
vga_get_cp437(term_char_t c)
|
|
{
|
|
int min, mid, max;
|
|
|
|
min = 0;
|
|
max = (sizeof(cp437table) / sizeof(struct unicp437)) - 1;
|
|
|
|
if (c < cp437table[0].unicode_base ||
|
|
c > cp437table[max].unicode_base + cp437table[max].length)
|
|
return '?';
|
|
|
|
while (max >= min) {
|
|
mid = (min + max) / 2;
|
|
if (c < cp437table[mid].unicode_base)
|
|
max = mid - 1;
|
|
else if (c > cp437table[mid].unicode_base +
|
|
cp437table[mid].length)
|
|
min = mid + 1;
|
|
else
|
|
return (c - cp437table[mid].unicode_base +
|
|
cp437table[mid].cp437_base);
|
|
}
|
|
|
|
return '?';
|
|
}
|
|
|
|
static void
|
|
vga_blank(struct vt_device *vd, term_color_t color)
|
|
{
|
|
struct vga_softc *sc = vd->vd_softc;
|
|
u_int ofs;
|
|
|
|
vga_setfg(vd, color);
|
|
for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++)
|
|
MEM_WRITE1(sc, ofs, 0xff);
|
|
}
|
|
|
|
static inline void
|
|
vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color,
|
|
uint8_t v)
|
|
{
|
|
struct vga_softc *sc = vd->vd_softc;
|
|
|
|
/* Skip empty writes, in order to avoid palette changes. */
|
|
if (v != 0x00) {
|
|
vga_setfg(vd, color);
|
|
/*
|
|
* When this MEM_READ1() gets disabled, all sorts of
|
|
* artifacts occur. This is because this read loads the
|
|
* set of 8 pixels that are about to be changed. There
|
|
* is one scenario where we can avoid the read, namely
|
|
* if all pixels are about to be overwritten anyway.
|
|
*/
|
|
if (v != 0xff) {
|
|
MEM_READ1(sc, dst);
|
|
|
|
/* The bg color was trashed by the reads. */
|
|
sc->vga_curbg = 0xff;
|
|
}
|
|
MEM_WRITE1(sc, dst, v);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color)
|
|
{
|
|
|
|
if (vd->vd_flags & VDF_TEXTMODE)
|
|
return;
|
|
|
|
vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color,
|
|
0x80 >> (x % 8));
|
|
}
|
|
|
|
static void
|
|
vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill,
|
|
term_color_t color)
|
|
{
|
|
int x, y;
|
|
|
|
if (vd->vd_flags & VDF_TEXTMODE)
|
|
return;
|
|
|
|
for (y = y1; y <= y2; y++) {
|
|
if (fill || (y == y1) || (y == y2)) {
|
|
for (x = x1; x <= x2; x++)
|
|
vga_setpixel(vd, x, y, color);
|
|
} else {
|
|
vga_setpixel(vd, x1, y, color);
|
|
vga_setpixel(vd, x2, y, color);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes,
|
|
unsigned int src_x, unsigned int x_count, unsigned int dst_x,
|
|
uint8_t *pattern, uint8_t *mask)
|
|
{
|
|
unsigned int n;
|
|
|
|
n = src_x / 8;
|
|
|
|
/*
|
|
* This mask has bits set, where a pixel (ether 0 or 1)
|
|
* comes from the source bitmap.
|
|
*/
|
|
if (mask != NULL) {
|
|
*mask = (0xff
|
|
>> (8 - x_count))
|
|
<< (8 - x_count - dst_x);
|
|
}
|
|
|
|
if (n == (src_x + x_count - 1) / 8) {
|
|
/* All the pixels we want are in the same byte. */
|
|
*pattern = src[n];
|
|
if (dst_x >= src_x)
|
|
*pattern >>= (dst_x - src_x % 8);
|
|
else
|
|
*pattern <<= (src_x % 8 - dst_x);
|
|
} else {
|
|
/* The pixels we want are split into two bytes. */
|
|
if (dst_x >= src_x % 8) {
|
|
*pattern =
|
|
src[n] << (8 - dst_x - src_x % 8) |
|
|
src[n + 1] >> (dst_x - src_x % 8);
|
|
} else {
|
|
*pattern =
|
|
src[n] << (src_x % 8 - dst_x) |
|
|
src[n + 1] >> (8 - src_x % 8 - dst_x);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors,
|
|
const uint8_t *src, const uint8_t *src_mask, unsigned int src_width,
|
|
unsigned int src_x, unsigned int dst_x, unsigned int x_count,
|
|
unsigned int src_y, unsigned int dst_y, unsigned int y_count,
|
|
term_color_t fg, term_color_t bg, int overwrite)
|
|
{
|
|
unsigned int i, bytes;
|
|
uint8_t pattern, relevant_bits, mask;
|
|
|
|
bytes = (src_width + 7) / 8;
|
|
|
|
for (i = 0; i < y_count; ++i) {
|
|
vga_compute_shifted_pattern(src + (src_y + i) * bytes,
|
|
bytes, src_x, x_count, dst_x, &pattern, &relevant_bits);
|
|
|
|
if (src_mask == NULL) {
|
|
/*
|
|
* No src mask. Consider that all wanted bits
|
|
* from the source are "authoritative".
|
|
*/
|
|
mask = relevant_bits;
|
|
} else {
|
|
/*
|
|
* There's an src mask. We shift it the same way
|
|
* we shifted the source pattern.
|
|
*/
|
|
vga_compute_shifted_pattern(
|
|
src_mask + (src_y + i) * bytes,
|
|
bytes, src_x, x_count, dst_x,
|
|
&mask, NULL);
|
|
|
|
/* Now, only keep the wanted bits among them. */
|
|
mask &= relevant_bits;
|
|
}
|
|
|
|
/*
|
|
* Clear bits from the pattern which must be
|
|
* transparent, according to the source mask.
|
|
*/
|
|
pattern &= mask;
|
|
|
|
/* Set the bits in the 2-colors array. */
|
|
if (overwrite)
|
|
pattern_2colors[dst_y + i] &= ~mask;
|
|
pattern_2colors[dst_y + i] |= pattern;
|
|
|
|
if (pattern_ncolors == NULL)
|
|
continue;
|
|
|
|
/*
|
|
* Set the same bits in the n-colors array. This one
|
|
* supports transparency, when a given bit is cleared in
|
|
* all colors.
|
|
*/
|
|
if (overwrite) {
|
|
/*
|
|
* Ensure that the pixels used by this bitmap are
|
|
* cleared in other colors.
|
|
*/
|
|
for (int j = 0; j < 16; ++j)
|
|
pattern_ncolors[(dst_y + i) * 16 + j] &=
|
|
~mask;
|
|
}
|
|
pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern;
|
|
pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks,
|
|
term_color_t fg, term_color_t bg,
|
|
unsigned int x, unsigned int y, unsigned int height)
|
|
{
|
|
unsigned int i, offset;
|
|
struct vga_softc *sc;
|
|
|
|
/*
|
|
* The great advantage of Write Mode 3 is that we just need
|
|
* to load the foreground in the Set/Reset register, load the
|
|
* background color in the latches register (this is done
|
|
* through a write in offscreen memory followed by a read of
|
|
* that data), then write the pattern to video memory. This
|
|
* pattern indicates if the pixel should use the foreground
|
|
* color (bit set) or the background color (bit cleared).
|
|
*/
|
|
|
|
vga_setbg(vd, bg);
|
|
vga_setfg(vd, fg);
|
|
|
|
sc = vd->vd_softc;
|
|
offset = (VT_VGA_WIDTH * y + x) / 8;
|
|
|
|
for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) {
|
|
MEM_WRITE1(sc, offset, masks[i]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks,
|
|
unsigned int x, unsigned int y, unsigned int height)
|
|
{
|
|
unsigned int i, j, plan, color, offset;
|
|
struct vga_softc *sc;
|
|
uint8_t mask, plans[height * 4];
|
|
|
|
sc = vd->vd_softc;
|
|
|
|
memset(plans, 0, sizeof(plans));
|
|
|
|
/*
|
|
* To write a group of pixels using 3 or more colors, we select
|
|
* Write Mode 0 and write one byte to each plan separately.
|
|
*/
|
|
|
|
/*
|
|
* We first compute each byte: each plan contains one bit of the
|
|
* color code for each of the 8 pixels.
|
|
*
|
|
* For example, if the 8 pixels are like this:
|
|
* GBBBBBBY
|
|
* where:
|
|
* G (gray) = 0b0111
|
|
* B (black) = 0b0000
|
|
* Y (yellow) = 0b0011
|
|
*
|
|
* The corresponding for bytes are:
|
|
* GBBBBBBY
|
|
* Plan 0: 10000001 = 0x81
|
|
* Plan 1: 10000001 = 0x81
|
|
* Plan 2: 10000000 = 0x80
|
|
* Plan 3: 00000000 = 0x00
|
|
* | | |
|
|
* | | +-> 0b0011 (Y)
|
|
* | +-----> 0b0000 (B)
|
|
* +--------> 0b0111 (G)
|
|
*/
|
|
|
|
for (i = 0; i < height; ++i) {
|
|
for (color = 0; color < 16; ++color) {
|
|
mask = masks[i * 16 + color];
|
|
if (mask == 0x00)
|
|
continue;
|
|
|
|
for (j = 0; j < 8; ++j) {
|
|
if (!((mask >> (7 - j)) & 0x1))
|
|
continue;
|
|
|
|
/* The pixel "j" uses color "color". */
|
|
for (plan = 0; plan < 4; ++plan)
|
|
plans[i * 4 + plan] |=
|
|
((color >> plan) & 0x1) << (7 - j);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The bytes are ready: we now switch to Write Mode 0 and write
|
|
* all bytes, one plan at a time.
|
|
*/
|
|
vga_setwmode(vd, 0);
|
|
|
|
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
|
|
for (plan = 0; plan < 4; ++plan) {
|
|
/* Select plan. */
|
|
REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plan);
|
|
|
|
/* Write all bytes for this plan, from Y to Y+height. */
|
|
for (i = 0; i < height; ++i) {
|
|
offset = (VT_VGA_WIDTH * (y + i) + x) / 8;
|
|
MEM_WRITE1(sc, offset, plans[i * 4 + plan]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vga_bitblt_one_text_pixels_block(struct vt_device *vd,
|
|
const struct vt_window *vw, unsigned int x, unsigned int y)
|
|
{
|
|
const struct vt_buf *vb;
|
|
const struct vt_font *vf;
|
|
unsigned int i, col, row, src_x, x_count;
|
|
unsigned int used_colors_list[16], used_colors;
|
|
uint8_t pattern_2colors[vw->vw_font->vf_height];
|
|
uint8_t pattern_ncolors[vw->vw_font->vf_height * 16];
|
|
term_char_t c;
|
|
term_color_t fg, bg;
|
|
const uint8_t *src;
|
|
|
|
vb = &vw->vw_buf;
|
|
vf = vw->vw_font;
|
|
|
|
/*
|
|
* The current pixels block.
|
|
*
|
|
* We fill it with portions of characters, because both "grids"
|
|
* may not match.
|
|
*
|
|
* i is the index in this pixels block.
|
|
*/
|
|
|
|
i = x;
|
|
used_colors = 0;
|
|
memset(used_colors_list, 0, sizeof(used_colors_list));
|
|
memset(pattern_2colors, 0, sizeof(pattern_2colors));
|
|
memset(pattern_ncolors, 0, sizeof(pattern_ncolors));
|
|
|
|
if (i < vw->vw_draw_area.tr_begin.tp_col) {
|
|
/*
|
|
* i is in the margin used to center the text area on
|
|
* the screen.
|
|
*/
|
|
|
|
i = vw->vw_draw_area.tr_begin.tp_col;
|
|
}
|
|
|
|
while (i < x + VT_VGA_PIXELS_BLOCK &&
|
|
i < vw->vw_draw_area.tr_end.tp_col) {
|
|
/*
|
|
* Find which character is drawn on this pixel in the
|
|
* pixels block.
|
|
*
|
|
* While here, record what colors it uses.
|
|
*/
|
|
|
|
col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width;
|
|
row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height;
|
|
|
|
c = VTBUF_GET_FIELD(vb, row, col);
|
|
src = vtfont_lookup(vf, c);
|
|
|
|
vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg);
|
|
if ((used_colors_list[fg] & 0x1) != 0x1)
|
|
used_colors++;
|
|
if ((used_colors_list[bg] & 0x2) != 0x2)
|
|
used_colors++;
|
|
used_colors_list[fg] |= 0x1;
|
|
used_colors_list[bg] |= 0x2;
|
|
|
|
/*
|
|
* Compute the portion of the character we want to draw,
|
|
* because the pixels block may start in the middle of a
|
|
* character.
|
|
*
|
|
* The first pixel to draw in the character is
|
|
* the current position -
|
|
* the start position of the character
|
|
*
|
|
* The last pixel to draw is either
|
|
* - the last pixel of the character, or
|
|
* - the pixel of the character matching the end of
|
|
* the pixels block
|
|
* whichever comes first. This position is then
|
|
* changed to be relative to the start position of the
|
|
* character.
|
|
*/
|
|
|
|
src_x = i -
|
|
(col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col);
|
|
x_count = min(min(
|
|
(col + 1) * vf->vf_width +
|
|
vw->vw_draw_area.tr_begin.tp_col,
|
|
x + VT_VGA_PIXELS_BLOCK),
|
|
vw->vw_draw_area.tr_end.tp_col);
|
|
x_count -= col * vf->vf_width +
|
|
vw->vw_draw_area.tr_begin.tp_col;
|
|
x_count -= src_x;
|
|
|
|
/* Copy a portion of the character. */
|
|
vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
|
|
src, NULL, vf->vf_width,
|
|
src_x, i % VT_VGA_PIXELS_BLOCK, x_count,
|
|
0, 0, vf->vf_height, fg, bg, 0);
|
|
|
|
/* We move to the next portion. */
|
|
i += x_count;
|
|
}
|
|
|
|
#ifndef SC_NO_CUTPASTE
|
|
/*
|
|
* Copy the mouse pointer bitmap if it's over the current pixels
|
|
* block.
|
|
*
|
|
* We use the saved cursor position (saved in vt_flush()), because
|
|
* the current position could be different than the one used
|
|
* to mark the area dirty.
|
|
*/
|
|
term_rect_t drawn_area;
|
|
|
|
drawn_area.tr_begin.tp_col = x;
|
|
drawn_area.tr_begin.tp_row = y;
|
|
drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK;
|
|
drawn_area.tr_end.tp_row = y + vf->vf_height;
|
|
if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) {
|
|
struct vt_mouse_cursor *cursor;
|
|
unsigned int mx, my;
|
|
unsigned int dst_x, src_y, dst_y, y_count;
|
|
|
|
cursor = vd->vd_mcursor;
|
|
mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col;
|
|
my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row;
|
|
|
|
/* Compute the portion of the cursor we want to copy. */
|
|
src_x = x > mx ? x - mx : 0;
|
|
dst_x = mx > x ? mx - x : 0;
|
|
x_count = min(min(min(
|
|
cursor->width - src_x,
|
|
x + VT_VGA_PIXELS_BLOCK - mx),
|
|
vw->vw_draw_area.tr_end.tp_col - mx),
|
|
VT_VGA_PIXELS_BLOCK);
|
|
|
|
/*
|
|
* The cursor isn't aligned on the Y-axis with
|
|
* characters, so we need to compute the vertical
|
|
* start/count.
|
|
*/
|
|
src_y = y > my ? y - my : 0;
|
|
dst_y = my > y ? my - y : 0;
|
|
y_count = min(
|
|
min(cursor->height - src_y, y + vf->vf_height - my),
|
|
vf->vf_height);
|
|
|
|
/* Copy the cursor portion. */
|
|
vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
|
|
cursor->map, cursor->mask, cursor->width,
|
|
src_x, dst_x, x_count, src_y, dst_y, y_count,
|
|
vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1);
|
|
|
|
if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1)
|
|
used_colors++;
|
|
if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2)
|
|
used_colors++;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The pixels block is completed, we can now draw it on the
|
|
* screen.
|
|
*/
|
|
if (used_colors == 2)
|
|
vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg,
|
|
x, y, vf->vf_height);
|
|
else
|
|
vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors,
|
|
x, y, vf->vf_height);
|
|
}
|
|
|
|
static void
|
|
vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw,
|
|
const term_rect_t *area)
|
|
{
|
|
const struct vt_font *vf;
|
|
unsigned int col, row;
|
|
unsigned int x1, y1, x2, y2, x, y;
|
|
|
|
vf = vw->vw_font;
|
|
|
|
/*
|
|
* Compute the top-left pixel position aligned with the video
|
|
* adapter pixels block size.
|
|
*
|
|
* This is calculated from the top-left column of te dirty area:
|
|
*
|
|
* 1. Compute the top-left pixel of the character:
|
|
* col * font width + x offset
|
|
*
|
|
* NOTE: x offset is used to center the text area on the
|
|
* screen. It's expressed in pixels, not in characters
|
|
* col/row!
|
|
*
|
|
* 2. Find the pixel further on the left marking the start of
|
|
* an aligned pixels block (eg. chunk of 8 pixels):
|
|
* character's x / blocksize * blocksize
|
|
*
|
|
* The division, being made on integers, achieves the
|
|
* alignment.
|
|
*
|
|
* For the Y-axis, we need to compute the character's y
|
|
* coordinate, but we don't need to align it.
|
|
*/
|
|
|
|
col = area->tr_begin.tp_col;
|
|
row = area->tr_begin.tp_row;
|
|
x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col)
|
|
/ VT_VGA_PIXELS_BLOCK)
|
|
* VT_VGA_PIXELS_BLOCK;
|
|
y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
|
|
|
|
/*
|
|
* Compute the bottom right pixel position, again, aligned with
|
|
* the pixels block size.
|
|
*
|
|
* The same rules apply, we just add 1 to base the computation
|
|
* on the "right border" of the dirty area.
|
|
*/
|
|
|
|
col = area->tr_end.tp_col;
|
|
row = area->tr_end.tp_row;
|
|
x2 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col
|
|
+ VT_VGA_PIXELS_BLOCK - 1)
|
|
/ VT_VGA_PIXELS_BLOCK)
|
|
* VT_VGA_PIXELS_BLOCK;
|
|
y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
|
|
|
|
/* Clip the area to the screen size. */
|
|
x2 = min(x2, vw->vw_draw_area.tr_end.tp_col);
|
|
y2 = min(y2, vw->vw_draw_area.tr_end.tp_row);
|
|
|
|
/*
|
|
* Now, we take care of N pixels line at a time (the first for
|
|
* loop, N = font height), and for these lines, draw one pixels
|
|
* block at a time (the second for loop), not a character at a
|
|
* time.
|
|
*
|
|
* Therefore, on the X-axis, characters my be drawn partially if
|
|
* they are not aligned on 8-pixels boundary.
|
|
*
|
|
* However, the operation is repeated for the full height of the
|
|
* font before moving to the next character, because it allows
|
|
* to keep the color settings and write mode, before perhaps
|
|
* changing them with the next one.
|
|
*/
|
|
|
|
for (y = y1; y < y2; y += vf->vf_height) {
|
|
for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) {
|
|
vga_bitblt_one_text_pixels_block(vd, vw, x, y);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw,
|
|
const term_rect_t *area)
|
|
{
|
|
struct vga_softc *sc;
|
|
const struct vt_buf *vb;
|
|
unsigned int col, row;
|
|
term_char_t c;
|
|
term_color_t fg, bg;
|
|
uint8_t ch, attr;
|
|
|
|
sc = vd->vd_softc;
|
|
vb = &vw->vw_buf;
|
|
|
|
for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
|
|
for (col = area->tr_begin.tp_col;
|
|
col < area->tr_end.tp_col;
|
|
++col) {
|
|
/*
|
|
* Get next character and its associated fg/bg
|
|
* colors.
|
|
*/
|
|
c = VTBUF_GET_FIELD(vb, row, col);
|
|
vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col),
|
|
&fg, &bg);
|
|
|
|
/*
|
|
* Convert character to CP437, which is the
|
|
* character set used by the VGA hardware by
|
|
* default.
|
|
*/
|
|
ch = vga_get_cp437(TCHAR_CHARACTER(c));
|
|
|
|
/* Convert colors to VGA attributes. */
|
|
attr = bg << 4 | fg;
|
|
|
|
MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 0,
|
|
ch);
|
|
MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 1,
|
|
attr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw,
|
|
const term_rect_t *area)
|
|
{
|
|
|
|
if (!(vd->vd_flags & VDF_TEXTMODE)) {
|
|
vga_bitblt_text_gfxmode(vd, vw, area);
|
|
} else {
|
|
vga_bitblt_text_txtmode(vd, vw, area);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw,
|
|
const uint8_t *pattern, const uint8_t *mask,
|
|
unsigned int width, unsigned int height,
|
|
unsigned int x, unsigned int y, term_color_t fg, term_color_t bg)
|
|
{
|
|
unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count;
|
|
uint8_t pattern_2colors;
|
|
|
|
/* Align coordinates with the 8-pxels grid. */
|
|
x1 = x / VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK;
|
|
y1 = y;
|
|
|
|
x2 = (x + width + VT_VGA_PIXELS_BLOCK - 1) /
|
|
VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK;
|
|
y2 = y + height;
|
|
x2 = min(x2, vd->vd_width - 1);
|
|
y2 = min(y2, vd->vd_height - 1);
|
|
|
|
for (j = y1; j < y2; ++j) {
|
|
src_x = 0;
|
|
dst_x = x - x1;
|
|
x_count = VT_VGA_PIXELS_BLOCK - dst_x;
|
|
|
|
for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) {
|
|
pattern_2colors = 0;
|
|
|
|
vga_copy_bitmap_portion(
|
|
&pattern_2colors, NULL,
|
|
pattern, mask, width,
|
|
src_x, dst_x, x_count,
|
|
j - y1, 0, 1, fg, bg, 0);
|
|
|
|
vga_bitblt_pixels_block_2colors(vd,
|
|
&pattern_2colors, fg, bg,
|
|
i, j, 1);
|
|
|
|
src_x += x_count;
|
|
dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK;
|
|
x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vga_initialize_graphics(struct vt_device *vd)
|
|
{
|
|
struct vga_softc *sc = vd->vd_softc;
|
|
|
|
/* Clock select. */
|
|
REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP |
|
|
VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA);
|
|
/* Set sequencer clocking and memory mode. */
|
|
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE);
|
|
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89);
|
|
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE);
|
|
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM);
|
|
|
|
/* Set the graphics controller in graphics mode. */
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS);
|
|
REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA);
|
|
/* Program the CRT controller. */
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f); /* 760 */
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f); /* 640 - 8 */
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0x50); /* 640 */
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0x54); /* 672 */
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b); /* 523 */
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 |
|
|
VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0xea); /* 480 + 10 */
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf); /* 480 - 1*/
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0x28);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7); /* 480 + 7 */
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0x04);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW |
|
|
VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0xff); /* 480 + 31 */
|
|
|
|
REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0);
|
|
|
|
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
|
|
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
|
|
VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
|
|
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT);
|
|
REG_WRITE1(sc, VGA_SEQ_DATA, 0);
|
|
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
|
|
REG_WRITE1(sc, VGA_GC_DATA, 0);
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
|
|
REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE);
|
|
REG_WRITE1(sc, VGA_GC_DATA, 0);
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE);
|
|
REG_WRITE1(sc, VGA_GC_DATA, 0);
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT);
|
|
REG_WRITE1(sc, VGA_GC_DATA, 0);
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
|
|
REG_WRITE1(sc, VGA_GC_DATA, 0);
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE);
|
|
REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK);
|
|
REG_WRITE1(sc, VGA_GC_DATA, 0xff);
|
|
}
|
|
|
|
static void
|
|
vga_initialize(struct vt_device *vd, int textmode)
|
|
{
|
|
struct vga_softc *sc = vd->vd_softc;
|
|
uint8_t x;
|
|
|
|
/* Make sure the VGA adapter is not in monochrome emulation mode. */
|
|
x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R);
|
|
REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA);
|
|
|
|
/* Unprotect CRTC registers 0-7. */
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
|
|
x = REG_READ1(sc, VGA_CRTC_DATA);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR);
|
|
|
|
/*
|
|
* Wait for the vertical retrace.
|
|
* NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has
|
|
* the side-effect of clearing the internal flip-flip of the attribute
|
|
* controller's write register. This means that because this code is
|
|
* here, we know for sure that the first write to the attribute
|
|
* controller will be a write to the address register. Removing this
|
|
* code therefore also removes that guarantee and appropriate measures
|
|
* need to be taken.
|
|
*/
|
|
do {
|
|
x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1);
|
|
x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE;
|
|
} while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE));
|
|
|
|
/* Now, disable the sync. signals. */
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
|
|
x = REG_READ1(sc, VGA_CRTC_DATA);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR);
|
|
|
|
/* Asynchronous sequencer reset. */
|
|
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
|
|
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR);
|
|
|
|
if (!textmode)
|
|
vga_initialize_graphics(vd);
|
|
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, 0x59);
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL);
|
|
|
|
if (textmode) {
|
|
/* Set the attribute controller to blink disable. */
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, 0);
|
|
} else {
|
|
/* Set the attribute controller in graphics mode. */
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, 0);
|
|
}
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, 0);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
|
|
VGA_AC_PAL_SB);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
|
|
VGA_AC_PAL_SB | VGA_AC_PAL_R);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
|
|
VGA_AC_PAL_SB | VGA_AC_PAL_G);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
|
|
VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
|
|
VGA_AC_PAL_SB | VGA_AC_PAL_B);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
|
|
VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
|
|
VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15));
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
|
|
VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, 0);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, 0x0f);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT);
|
|
REG_WRITE1(sc, VGA_AC_WRITE, 0);
|
|
|
|
if (!textmode) {
|
|
u_int ofs;
|
|
|
|
/*
|
|
* Done. Clear the frame buffer. All bit planes are
|
|
* enabled, so a single-paged loop should clear all
|
|
* planes.
|
|
*/
|
|
for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) {
|
|
MEM_WRITE1(sc, ofs, 0);
|
|
}
|
|
}
|
|
|
|
/* Re-enable the sequencer. */
|
|
REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
|
|
REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR);
|
|
/* Re-enable the sync signals. */
|
|
REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
|
|
x = REG_READ1(sc, VGA_CRTC_DATA);
|
|
REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR);
|
|
|
|
if (!textmode) {
|
|
/* Switch to write mode 3, because we'll mainly do bitblt. */
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
|
|
REG_WRITE1(sc, VGA_GC_DATA, 3);
|
|
sc->vga_wmode = 3;
|
|
|
|
/*
|
|
* In Write Mode 3, Enable Set/Reset is ignored, but we
|
|
* use Write Mode 0 to write a group of 8 pixels using
|
|
* 3 or more colors. In this case, we want to disable
|
|
* Set/Reset: set Enable Set/Reset to 0.
|
|
*/
|
|
REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
|
|
REG_WRITE1(sc, VGA_GC_DATA, 0x00);
|
|
|
|
/*
|
|
* Clear the colors we think are loaded into Set/Reset or
|
|
* the latches.
|
|
*/
|
|
sc->vga_curfg = sc->vga_curbg = 0xff;
|
|
}
|
|
}
|
|
|
|
static int
|
|
vga_probe(struct vt_device *vd)
|
|
{
|
|
|
|
return (CN_INTERNAL);
|
|
}
|
|
|
|
static int
|
|
vga_init(struct vt_device *vd)
|
|
{
|
|
struct vga_softc *sc;
|
|
int textmode;
|
|
|
|
if (vd->vd_softc == NULL)
|
|
vd->vd_softc = (void *)&vga_conssoftc;
|
|
sc = vd->vd_softc;
|
|
textmode = 0;
|
|
|
|
#if defined(__amd64__) || defined(__i386__)
|
|
sc->vga_fb_tag = X86_BUS_SPACE_MEM;
|
|
sc->vga_fb_handle = KERNBASE + VGA_MEM_BASE;
|
|
sc->vga_reg_tag = X86_BUS_SPACE_IO;
|
|
sc->vga_reg_handle = VGA_REG_BASE;
|
|
#else
|
|
# error "Architecture not yet supported!"
|
|
#endif
|
|
|
|
TUNABLE_INT_FETCH("hw.vga.textmode", &textmode);
|
|
if (textmode) {
|
|
vd->vd_flags |= VDF_TEXTMODE;
|
|
vd->vd_width = 80;
|
|
vd->vd_height = 25;
|
|
} else {
|
|
vd->vd_width = VT_VGA_WIDTH;
|
|
vd->vd_height = VT_VGA_HEIGHT;
|
|
}
|
|
vga_initialize(vd, textmode);
|
|
|
|
return (CN_INTERNAL);
|
|
}
|
|
|
|
static void
|
|
vga_postswitch(struct vt_device *vd)
|
|
{
|
|
|
|
/* Reinit VGA mode, to restore view after app which change mode. */
|
|
vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE));
|
|
/* Ask vt(9) to update chars on visible area. */
|
|
vd->vd_flags |= VDF_INVALID;
|
|
}
|