375bdb2b20
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #11879
1750 lines
43 KiB
C
1750 lines
43 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
*
|
|
* ZFS volume emulation driver.
|
|
*
|
|
* Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
|
|
* Volumes are accessed through the symbolic links named:
|
|
*
|
|
* /dev/<pool_name>/<dataset_name>
|
|
*
|
|
* Volumes are persistent through reboot and module load. No user command
|
|
* needs to be run before opening and using a device.
|
|
*
|
|
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* Note on locking of zvol state structures.
|
|
*
|
|
* These structures are used to maintain internal state used to emulate block
|
|
* devices on top of zvols. In particular, management of device minor number
|
|
* operations - create, remove, rename, and set_snapdev - involves access to
|
|
* these structures. The zvol_state_lock is primarily used to protect the
|
|
* zvol_state_list. The zv->zv_state_lock is used to protect the contents
|
|
* of the zvol_state_t structures, as well as to make sure that when the
|
|
* time comes to remove the structure from the list, it is not in use, and
|
|
* therefore, it can be taken off zvol_state_list and freed.
|
|
*
|
|
* The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
|
|
* e.g. for the duration of receive and rollback operations. This lock can be
|
|
* held for significant periods of time. Given that it is undesirable to hold
|
|
* mutexes for long periods of time, the following lock ordering applies:
|
|
* - take zvol_state_lock if necessary, to protect zvol_state_list
|
|
* - take zv_suspend_lock if necessary, by the code path in question
|
|
* - take zv_state_lock to protect zvol_state_t
|
|
*
|
|
* The minor operations are issued to spa->spa_zvol_taskq queues, that are
|
|
* single-threaded (to preserve order of minor operations), and are executed
|
|
* through the zvol_task_cb that dispatches the specific operations. Therefore,
|
|
* these operations are serialized per pool. Consequently, we can be certain
|
|
* that for a given zvol, there is only one operation at a time in progress.
|
|
* That is why one can be sure that first, zvol_state_t for a given zvol is
|
|
* allocated and placed on zvol_state_list, and then other minor operations
|
|
* for this zvol are going to proceed in the order of issue.
|
|
*
|
|
*/
|
|
|
|
#include <sys/dataset_kstats.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_rlock.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zvol.h>
|
|
|
|
#include <sys/zvol_impl.h>
|
|
|
|
|
|
unsigned int zvol_inhibit_dev = 0;
|
|
unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
|
|
|
|
struct hlist_head *zvol_htable;
|
|
list_t zvol_state_list;
|
|
krwlock_t zvol_state_lock;
|
|
const zvol_platform_ops_t *ops;
|
|
|
|
typedef enum {
|
|
ZVOL_ASYNC_REMOVE_MINORS,
|
|
ZVOL_ASYNC_RENAME_MINORS,
|
|
ZVOL_ASYNC_SET_SNAPDEV,
|
|
ZVOL_ASYNC_SET_VOLMODE,
|
|
ZVOL_ASYNC_MAX
|
|
} zvol_async_op_t;
|
|
|
|
typedef struct {
|
|
zvol_async_op_t op;
|
|
char pool[MAXNAMELEN];
|
|
char name1[MAXNAMELEN];
|
|
char name2[MAXNAMELEN];
|
|
zprop_source_t source;
|
|
uint64_t value;
|
|
} zvol_task_t;
|
|
|
|
uint64_t
|
|
zvol_name_hash(const char *name)
|
|
{
|
|
int i;
|
|
uint64_t crc = -1ULL;
|
|
const uint8_t *p = (const uint8_t *)name;
|
|
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
|
|
for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
|
|
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
|
|
}
|
|
return (crc);
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the name and hash generated by zvol_name_hash.
|
|
* If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
|
|
* return (NULL) without the taking locks. The zv_suspend_lock is always taken
|
|
* before zv_state_lock. The mode argument indicates the mode (including none)
|
|
* for zv_suspend_lock to be taken.
|
|
*/
|
|
zvol_state_t *
|
|
zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
|
|
{
|
|
zvol_state_t *zv;
|
|
struct hlist_node *p = NULL;
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
|
|
zv = hlist_entry(p, zvol_state_t, zv_hlink);
|
|
mutex_enter(&zv->zv_state_lock);
|
|
if (zv->zv_hash == hash &&
|
|
strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
|
|
/*
|
|
* this is the right zvol, take the locks in the
|
|
* right order
|
|
*/
|
|
if (mode != RW_NONE &&
|
|
!rw_tryenter(&zv->zv_suspend_lock, mode)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_enter(&zv->zv_suspend_lock, mode);
|
|
mutex_enter(&zv->zv_state_lock);
|
|
/*
|
|
* zvol cannot be renamed as we continue
|
|
* to hold zvol_state_lock
|
|
*/
|
|
ASSERT(zv->zv_hash == hash &&
|
|
strncmp(zv->zv_name, name, MAXNAMELEN)
|
|
== 0);
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
return (zv);
|
|
}
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the name.
|
|
* If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
|
|
* return (NULL) without the taking locks. The zv_suspend_lock is always taken
|
|
* before zv_state_lock. The mode argument indicates the mode (including none)
|
|
* for zv_suspend_lock to be taken.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_name(const char *name, int mode)
|
|
{
|
|
return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
|
|
*/
|
|
void
|
|
zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
|
|
{
|
|
zfs_creat_t *zct = arg;
|
|
nvlist_t *nvprops = zct->zct_props;
|
|
int error;
|
|
uint64_t volblocksize, volsize;
|
|
|
|
VERIFY(nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
|
|
if (nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
|
|
volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
|
|
|
|
/*
|
|
* These properties must be removed from the list so the generic
|
|
* property setting step won't apply to them.
|
|
*/
|
|
VERIFY(nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
|
|
(void) nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
|
|
|
|
error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
|
|
ASSERT(error == 0);
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_OBJSET_STATS entry point.
|
|
*/
|
|
int
|
|
zvol_get_stats(objset_t *os, nvlist_t *nv)
|
|
{
|
|
int error;
|
|
dmu_object_info_t *doi;
|
|
uint64_t val;
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
|
|
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
|
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
|
|
|
if (error == 0) {
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
|
|
doi->doi_data_block_size);
|
|
}
|
|
|
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume size.
|
|
*/
|
|
int
|
|
zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
|
|
{
|
|
if (volsize == 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (volsize % blocksize != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
#ifdef _ILP32
|
|
if (volsize - 1 > SPEC_MAXOFFSET_T)
|
|
return (SET_ERROR(EOVERFLOW));
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Ensure the zap is flushed then inform the VFS of the capacity change.
|
|
*/
|
|
static int
|
|
zvol_update_volsize(uint64_t volsize, objset_t *os)
|
|
{
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
uint64_t txg;
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
|
|
dmu_tx_mark_netfree(tx);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
return (SET_ERROR(error));
|
|
}
|
|
txg = dmu_tx_get_txg(tx);
|
|
|
|
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
|
|
&volsize, tx);
|
|
dmu_tx_commit(tx);
|
|
|
|
txg_wait_synced(dmu_objset_pool(os), txg);
|
|
|
|
if (error == 0)
|
|
error = dmu_free_long_range(os,
|
|
ZVOL_OBJ, volsize, DMU_OBJECT_END);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
|
|
* size will result in a udev "change" event being generated.
|
|
*/
|
|
int
|
|
zvol_set_volsize(const char *name, uint64_t volsize)
|
|
{
|
|
objset_t *os = NULL;
|
|
uint64_t readonly;
|
|
int error;
|
|
boolean_t owned = B_FALSE;
|
|
|
|
error = dsl_prop_get_integer(name,
|
|
zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
|
|
if (error != 0)
|
|
return (SET_ERROR(error));
|
|
if (readonly)
|
|
return (SET_ERROR(EROFS));
|
|
|
|
zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
|
|
|
|
ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
|
|
RW_READ_HELD(&zv->zv_suspend_lock)));
|
|
|
|
if (zv == NULL || zv->zv_objset == NULL) {
|
|
if (zv != NULL)
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
|
|
FTAG, &os)) != 0) {
|
|
if (zv != NULL)
|
|
mutex_exit(&zv->zv_state_lock);
|
|
return (SET_ERROR(error));
|
|
}
|
|
owned = B_TRUE;
|
|
if (zv != NULL)
|
|
zv->zv_objset = os;
|
|
} else {
|
|
os = zv->zv_objset;
|
|
}
|
|
|
|
dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
|
|
|
|
if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
|
|
(error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
|
|
goto out;
|
|
|
|
error = zvol_update_volsize(volsize, os);
|
|
if (error == 0 && zv != NULL) {
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_changed = 1;
|
|
}
|
|
out:
|
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
|
|
|
if (owned) {
|
|
dmu_objset_disown(os, B_TRUE, FTAG);
|
|
if (zv != NULL)
|
|
zv->zv_objset = NULL;
|
|
} else {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
}
|
|
|
|
if (zv != NULL)
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
if (error == 0 && zv != NULL)
|
|
ops->zv_update_volsize(zv, volsize);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume block size.
|
|
*/
|
|
int
|
|
zvol_check_volblocksize(const char *name, uint64_t volblocksize)
|
|
{
|
|
/* Record sizes above 128k need the feature to be enabled */
|
|
if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
|
|
spa_t *spa;
|
|
int error;
|
|
|
|
if ((error = spa_open(name, &spa, FTAG)) != 0)
|
|
return (error);
|
|
|
|
if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
|
|
spa_close(spa, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* We don't allow setting the property above 1MB,
|
|
* unless the tunable has been changed.
|
|
*/
|
|
if (volblocksize > zfs_max_recordsize)
|
|
return (SET_ERROR(EDOM));
|
|
|
|
spa_close(spa, FTAG);
|
|
}
|
|
|
|
if (volblocksize < SPA_MINBLOCKSIZE ||
|
|
volblocksize > SPA_MAXBLOCKSIZE ||
|
|
!ISP2(volblocksize))
|
|
return (SET_ERROR(EDOM));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set ZFS_PROP_VOLBLOCKSIZE set entry point.
|
|
*/
|
|
int
|
|
zvol_set_volblocksize(const char *name, uint64_t volblocksize)
|
|
{
|
|
zvol_state_t *zv;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
zv = zvol_find_by_name(name, RW_READER);
|
|
|
|
if (zv == NULL)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
|
|
|
if (zv->zv_flags & ZVOL_RDONLY) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
return (SET_ERROR(EROFS));
|
|
}
|
|
|
|
tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_hold_bonus(tx, ZVOL_OBJ);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
|
|
volblocksize, 0, tx);
|
|
if (error == ENOTSUP)
|
|
error = SET_ERROR(EBUSY);
|
|
dmu_tx_commit(tx);
|
|
if (error == 0)
|
|
zv->zv_volblocksize = volblocksize;
|
|
}
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
|
|
* implement DKIOCFREE/free-long-range.
|
|
*/
|
|
static int
|
|
zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
|
|
{
|
|
zvol_state_t *zv = arg1;
|
|
lr_truncate_t *lr = arg2;
|
|
uint64_t offset, length;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
offset = lr->lr_offset;
|
|
length = lr->lr_length;
|
|
|
|
dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_mark_netfree(tx);
|
|
int error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error != 0) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
zil_replaying(zv->zv_zilog, tx);
|
|
dmu_tx_commit(tx);
|
|
error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
|
|
length);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Replay a TX_WRITE ZIL transaction that didn't get committed
|
|
* after a system failure
|
|
*/
|
|
static int
|
|
zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
|
|
{
|
|
zvol_state_t *zv = arg1;
|
|
lr_write_t *lr = arg2;
|
|
objset_t *os = zv->zv_objset;
|
|
char *data = (char *)(lr + 1); /* data follows lr_write_t */
|
|
uint64_t offset, length;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
offset = lr->lr_offset;
|
|
length = lr->lr_length;
|
|
|
|
/* If it's a dmu_sync() block, write the whole block */
|
|
if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
|
|
uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
|
|
if (length < blocksize) {
|
|
offset -= offset % blocksize;
|
|
length = blocksize;
|
|
}
|
|
}
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
|
|
zil_replaying(zv->zv_zilog, tx);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
|
|
{
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* Callback vectors for replaying records.
|
|
* Only TX_WRITE and TX_TRUNCATE are needed for zvol.
|
|
*/
|
|
zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
|
|
zvol_replay_err, /* no such transaction type */
|
|
zvol_replay_err, /* TX_CREATE */
|
|
zvol_replay_err, /* TX_MKDIR */
|
|
zvol_replay_err, /* TX_MKXATTR */
|
|
zvol_replay_err, /* TX_SYMLINK */
|
|
zvol_replay_err, /* TX_REMOVE */
|
|
zvol_replay_err, /* TX_RMDIR */
|
|
zvol_replay_err, /* TX_LINK */
|
|
zvol_replay_err, /* TX_RENAME */
|
|
zvol_replay_write, /* TX_WRITE */
|
|
zvol_replay_truncate, /* TX_TRUNCATE */
|
|
zvol_replay_err, /* TX_SETATTR */
|
|
zvol_replay_err, /* TX_ACL */
|
|
zvol_replay_err, /* TX_CREATE_ATTR */
|
|
zvol_replay_err, /* TX_CREATE_ACL_ATTR */
|
|
zvol_replay_err, /* TX_MKDIR_ACL */
|
|
zvol_replay_err, /* TX_MKDIR_ATTR */
|
|
zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
|
|
zvol_replay_err, /* TX_WRITE2 */
|
|
};
|
|
|
|
/*
|
|
* zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
|
|
*
|
|
* We store data in the log buffers if it's small enough.
|
|
* Otherwise we will later flush the data out via dmu_sync().
|
|
*/
|
|
ssize_t zvol_immediate_write_sz = 32768;
|
|
|
|
void
|
|
zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
|
|
uint64_t size, int sync)
|
|
{
|
|
uint32_t blocksize = zv->zv_volblocksize;
|
|
zilog_t *zilog = zv->zv_zilog;
|
|
itx_wr_state_t write_state;
|
|
|
|
if (zil_replaying(zilog, tx))
|
|
return;
|
|
|
|
if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
|
|
write_state = WR_INDIRECT;
|
|
else if (!spa_has_slogs(zilog->zl_spa) &&
|
|
size >= blocksize && blocksize > zvol_immediate_write_sz)
|
|
write_state = WR_INDIRECT;
|
|
else if (sync)
|
|
write_state = WR_COPIED;
|
|
else
|
|
write_state = WR_NEED_COPY;
|
|
|
|
while (size) {
|
|
itx_t *itx;
|
|
lr_write_t *lr;
|
|
itx_wr_state_t wr_state = write_state;
|
|
ssize_t len = size;
|
|
|
|
if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
|
|
wr_state = WR_NEED_COPY;
|
|
else if (wr_state == WR_INDIRECT)
|
|
len = MIN(blocksize - P2PHASE(offset, blocksize), size);
|
|
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
|
|
(wr_state == WR_COPIED ? len : 0));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
|
|
offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
|
|
zil_itx_destroy(itx);
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
wr_state = WR_NEED_COPY;
|
|
}
|
|
|
|
itx->itx_wr_state = wr_state;
|
|
lr->lr_foid = ZVOL_OBJ;
|
|
lr->lr_offset = offset;
|
|
lr->lr_length = len;
|
|
lr->lr_blkoff = 0;
|
|
BP_ZERO(&lr->lr_blkptr);
|
|
|
|
itx->itx_private = zv;
|
|
itx->itx_sync = sync;
|
|
|
|
(void) zil_itx_assign(zilog, itx, tx);
|
|
|
|
offset += len;
|
|
size -= len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
|
|
*/
|
|
void
|
|
zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
|
|
boolean_t sync)
|
|
{
|
|
itx_t *itx;
|
|
lr_truncate_t *lr;
|
|
zilog_t *zilog = zv->zv_zilog;
|
|
|
|
if (zil_replaying(zilog, tx))
|
|
return;
|
|
|
|
itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
|
|
lr = (lr_truncate_t *)&itx->itx_lr;
|
|
lr->lr_foid = ZVOL_OBJ;
|
|
lr->lr_offset = off;
|
|
lr->lr_length = len;
|
|
|
|
itx->itx_sync = sync;
|
|
zil_itx_assign(zilog, itx, tx);
|
|
}
|
|
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
zvol_get_done(zgd_t *zgd, int error)
|
|
{
|
|
if (zgd->zgd_db)
|
|
dmu_buf_rele(zgd->zgd_db, zgd);
|
|
|
|
zfs_rangelock_exit(zgd->zgd_lr);
|
|
|
|
kmem_free(zgd, sizeof (zgd_t));
|
|
}
|
|
|
|
/*
|
|
* Get data to generate a TX_WRITE intent log record.
|
|
*/
|
|
int
|
|
zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
|
|
struct lwb *lwb, zio_t *zio)
|
|
{
|
|
zvol_state_t *zv = arg;
|
|
uint64_t offset = lr->lr_offset;
|
|
uint64_t size = lr->lr_length;
|
|
dmu_buf_t *db;
|
|
zgd_t *zgd;
|
|
int error;
|
|
|
|
ASSERT3P(lwb, !=, NULL);
|
|
ASSERT3P(zio, !=, NULL);
|
|
ASSERT3U(size, !=, 0);
|
|
|
|
zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
|
|
zgd->zgd_lwb = lwb;
|
|
|
|
/*
|
|
* Write records come in two flavors: immediate and indirect.
|
|
* For small writes it's cheaper to store the data with the
|
|
* log record (immediate); for large writes it's cheaper to
|
|
* sync the data and get a pointer to it (indirect) so that
|
|
* we don't have to write the data twice.
|
|
*/
|
|
if (buf != NULL) { /* immediate write */
|
|
zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
|
|
size, RL_READER);
|
|
error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
|
|
DMU_READ_NO_PREFETCH);
|
|
} else { /* indirect write */
|
|
/*
|
|
* Have to lock the whole block to ensure when it's written out
|
|
* and its checksum is being calculated that no one can change
|
|
* the data. Contrarily to zfs_get_data we need not re-check
|
|
* blocksize after we get the lock because it cannot be changed.
|
|
*/
|
|
size = zv->zv_volblocksize;
|
|
offset = P2ALIGN_TYPED(offset, size, uint64_t);
|
|
zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
|
|
size, RL_READER);
|
|
error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
|
|
DMU_READ_NO_PREFETCH);
|
|
if (error == 0) {
|
|
blkptr_t *bp = &lr->lr_blkptr;
|
|
|
|
zgd->zgd_db = db;
|
|
zgd->zgd_bp = bp;
|
|
|
|
ASSERT(db != NULL);
|
|
ASSERT(db->db_offset == offset);
|
|
ASSERT(db->db_size == size);
|
|
|
|
error = dmu_sync(zio, lr->lr_common.lrc_txg,
|
|
zvol_get_done, zgd);
|
|
|
|
if (error == 0)
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
zvol_get_done(zgd, error);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
|
|
*/
|
|
|
|
void
|
|
zvol_insert(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zvol_state_lock));
|
|
list_insert_head(&zvol_state_list, zv);
|
|
hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
|
|
}
|
|
|
|
/*
|
|
* Simply remove the zvol from to list of zvols.
|
|
*/
|
|
static void
|
|
zvol_remove(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zvol_state_lock));
|
|
list_remove(&zvol_state_list, zv);
|
|
hlist_del(&zv->zv_hlink);
|
|
}
|
|
|
|
/*
|
|
* Setup zv after we just own the zv->objset
|
|
*/
|
|
static int
|
|
zvol_setup_zv(zvol_state_t *zv)
|
|
{
|
|
uint64_t volsize;
|
|
int error;
|
|
uint64_t ro;
|
|
objset_t *os = zv->zv_objset;
|
|
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
|
|
|
|
zv->zv_zilog = NULL;
|
|
zv->zv_flags &= ~ZVOL_WRITTEN_TO;
|
|
|
|
error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
ops->zv_set_capacity(zv, volsize >> 9);
|
|
zv->zv_volsize = volsize;
|
|
|
|
if (ro || dmu_objset_is_snapshot(os) ||
|
|
!spa_writeable(dmu_objset_spa(os))) {
|
|
ops->zv_set_disk_ro(zv, 1);
|
|
zv->zv_flags |= ZVOL_RDONLY;
|
|
} else {
|
|
ops->zv_set_disk_ro(zv, 0);
|
|
zv->zv_flags &= ~ZVOL_RDONLY;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Shutdown every zv_objset related stuff except zv_objset itself.
|
|
* The is the reverse of zvol_setup_zv.
|
|
*/
|
|
static void
|
|
zvol_shutdown_zv(zvol_state_t *zv)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
|
|
RW_LOCK_HELD(&zv->zv_suspend_lock));
|
|
|
|
if (zv->zv_flags & ZVOL_WRITTEN_TO) {
|
|
ASSERT(zv->zv_zilog != NULL);
|
|
zil_close(zv->zv_zilog);
|
|
}
|
|
|
|
zv->zv_zilog = NULL;
|
|
|
|
dnode_rele(zv->zv_dn, zv);
|
|
zv->zv_dn = NULL;
|
|
|
|
/*
|
|
* Evict cached data. We must write out any dirty data before
|
|
* disowning the dataset.
|
|
*/
|
|
if (zv->zv_flags & ZVOL_WRITTEN_TO)
|
|
txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
|
|
(void) dmu_objset_evict_dbufs(zv->zv_objset);
|
|
}
|
|
|
|
/*
|
|
* return the proper tag for rollback and recv
|
|
*/
|
|
void *
|
|
zvol_tag(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
|
|
return (zv->zv_open_count > 0 ? zv : NULL);
|
|
}
|
|
|
|
/*
|
|
* Suspend the zvol for recv and rollback.
|
|
*/
|
|
zvol_state_t *
|
|
zvol_suspend(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
zv = zvol_find_by_name(name, RW_WRITER);
|
|
|
|
if (zv == NULL)
|
|
return (NULL);
|
|
|
|
/* block all I/O, release in zvol_resume. */
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
|
|
|
|
atomic_inc(&zv->zv_suspend_ref);
|
|
|
|
if (zv->zv_open_count > 0)
|
|
zvol_shutdown_zv(zv);
|
|
|
|
/*
|
|
* do not hold zv_state_lock across suspend/resume to
|
|
* avoid locking up zvol lookups
|
|
*/
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
/* zv_suspend_lock is released in zvol_resume() */
|
|
return (zv);
|
|
}
|
|
|
|
int
|
|
zvol_resume(zvol_state_t *zv)
|
|
{
|
|
int error = 0;
|
|
|
|
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
|
|
if (zv->zv_open_count > 0) {
|
|
VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
|
|
VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
|
|
VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
|
|
dmu_objset_rele(zv->zv_objset, zv);
|
|
|
|
error = zvol_setup_zv(zv);
|
|
}
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
/*
|
|
* We need this because we don't hold zvol_state_lock while releasing
|
|
* zv_suspend_lock. zvol_remove_minors_impl thus cannot check
|
|
* zv_suspend_lock to determine it is safe to free because rwlock is
|
|
* not inherent atomic.
|
|
*/
|
|
atomic_dec(&zv->zv_suspend_ref);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
int
|
|
zvol_first_open(zvol_state_t *zv, boolean_t readonly)
|
|
{
|
|
objset_t *os;
|
|
int error, locked = 0;
|
|
boolean_t ro;
|
|
|
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
|
|
/*
|
|
* In all other cases the spa_namespace_lock is taken before the
|
|
* bdev->bd_mutex lock. But in this case the Linux __blkdev_get()
|
|
* function calls fops->open() with the bdev->bd_mutex lock held.
|
|
* This deadlock can be easily observed with zvols used as vdevs.
|
|
*
|
|
* To avoid a potential lock inversion deadlock we preemptively
|
|
* try to take the spa_namespace_lock(). Normally it will not
|
|
* be contended and this is safe because spa_open_common() handles
|
|
* the case where the caller already holds the spa_namespace_lock.
|
|
*
|
|
* When it is contended we risk a lock inversion if we were to
|
|
* block waiting for the lock. Luckily, the __blkdev_get()
|
|
* function allows us to return -ERESTARTSYS which will result in
|
|
* bdev->bd_mutex being dropped, reacquired, and fops->open() being
|
|
* called again. This process can be repeated safely until both
|
|
* locks are acquired.
|
|
*/
|
|
if (!mutex_owned(&spa_namespace_lock)) {
|
|
locked = mutex_tryenter(&spa_namespace_lock);
|
|
if (!locked)
|
|
return (SET_ERROR(EINTR));
|
|
}
|
|
|
|
ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
|
|
error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
|
|
if (error)
|
|
goto out_mutex;
|
|
|
|
zv->zv_objset = os;
|
|
|
|
error = zvol_setup_zv(zv);
|
|
|
|
if (error) {
|
|
dmu_objset_disown(os, 1, zv);
|
|
zv->zv_objset = NULL;
|
|
}
|
|
|
|
out_mutex:
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
void
|
|
zvol_last_close(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
|
|
zvol_shutdown_zv(zv);
|
|
|
|
dmu_objset_disown(zv->zv_objset, 1, zv);
|
|
zv->zv_objset = NULL;
|
|
}
|
|
|
|
typedef struct minors_job {
|
|
list_t *list;
|
|
list_node_t link;
|
|
/* input */
|
|
char *name;
|
|
/* output */
|
|
int error;
|
|
} minors_job_t;
|
|
|
|
/*
|
|
* Prefetch zvol dnodes for the minors_job
|
|
*/
|
|
static void
|
|
zvol_prefetch_minors_impl(void *arg)
|
|
{
|
|
minors_job_t *job = arg;
|
|
char *dsname = job->name;
|
|
objset_t *os = NULL;
|
|
|
|
job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
|
|
FTAG, &os);
|
|
if (job->error == 0) {
|
|
dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
|
|
dmu_objset_disown(os, B_TRUE, FTAG);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mask errors to continue dmu_objset_find() traversal
|
|
*/
|
|
static int
|
|
zvol_create_snap_minor_cb(const char *dsname, void *arg)
|
|
{
|
|
minors_job_t *j = arg;
|
|
list_t *minors_list = j->list;
|
|
const char *name = j->name;
|
|
|
|
ASSERT0(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
/* skip the designated dataset */
|
|
if (name && strcmp(dsname, name) == 0)
|
|
return (0);
|
|
|
|
/* at this point, the dsname should name a snapshot */
|
|
if (strchr(dsname, '@') == 0) {
|
|
dprintf("zvol_create_snap_minor_cb(): "
|
|
"%s is not a snapshot name\n", dsname);
|
|
} else {
|
|
minors_job_t *job;
|
|
char *n = kmem_strdup(dsname);
|
|
if (n == NULL)
|
|
return (0);
|
|
|
|
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
|
|
job->name = n;
|
|
job->list = minors_list;
|
|
job->error = 0;
|
|
list_insert_tail(minors_list, job);
|
|
/* don't care if dispatch fails, because job->error is 0 */
|
|
taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
|
|
TQ_SLEEP);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Mask errors to continue dmu_objset_find() traversal
|
|
*/
|
|
static int
|
|
zvol_create_minors_cb(const char *dsname, void *arg)
|
|
{
|
|
uint64_t snapdev;
|
|
int error;
|
|
list_t *minors_list = arg;
|
|
|
|
ASSERT0(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
|
|
if (error)
|
|
return (0);
|
|
|
|
/*
|
|
* Given the name and the 'snapdev' property, create device minor nodes
|
|
* with the linkages to zvols/snapshots as needed.
|
|
* If the name represents a zvol, create a minor node for the zvol, then
|
|
* check if its snapshots are 'visible', and if so, iterate over the
|
|
* snapshots and create device minor nodes for those.
|
|
*/
|
|
if (strchr(dsname, '@') == 0) {
|
|
minors_job_t *job;
|
|
char *n = kmem_strdup(dsname);
|
|
if (n == NULL)
|
|
return (0);
|
|
|
|
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
|
|
job->name = n;
|
|
job->list = minors_list;
|
|
job->error = 0;
|
|
list_insert_tail(minors_list, job);
|
|
/* don't care if dispatch fails, because job->error is 0 */
|
|
taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
|
|
TQ_SLEEP);
|
|
|
|
if (snapdev == ZFS_SNAPDEV_VISIBLE) {
|
|
/*
|
|
* traverse snapshots only, do not traverse children,
|
|
* and skip the 'dsname'
|
|
*/
|
|
error = dmu_objset_find(dsname,
|
|
zvol_create_snap_minor_cb, (void *)job,
|
|
DS_FIND_SNAPSHOTS);
|
|
}
|
|
} else {
|
|
dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
|
|
dsname);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Create minors for the specified dataset, including children and snapshots.
|
|
* Pay attention to the 'snapdev' property and iterate over the snapshots
|
|
* only if they are 'visible'. This approach allows one to assure that the
|
|
* snapshot metadata is read from disk only if it is needed.
|
|
*
|
|
* The name can represent a dataset to be recursively scanned for zvols and
|
|
* their snapshots, or a single zvol snapshot. If the name represents a
|
|
* dataset, the scan is performed in two nested stages:
|
|
* - scan the dataset for zvols, and
|
|
* - for each zvol, create a minor node, then check if the zvol's snapshots
|
|
* are 'visible', and only then iterate over the snapshots if needed
|
|
*
|
|
* If the name represents a snapshot, a check is performed if the snapshot is
|
|
* 'visible' (which also verifies that the parent is a zvol), and if so,
|
|
* a minor node for that snapshot is created.
|
|
*/
|
|
void
|
|
zvol_create_minors_recursive(const char *name)
|
|
{
|
|
list_t minors_list;
|
|
minors_job_t *job;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
/*
|
|
* This is the list for prefetch jobs. Whenever we found a match
|
|
* during dmu_objset_find, we insert a minors_job to the list and do
|
|
* taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
|
|
* any lock because all list operation is done on the current thread.
|
|
*
|
|
* We will use this list to do zvol_create_minor_impl after prefetch
|
|
* so we don't have to traverse using dmu_objset_find again.
|
|
*/
|
|
list_create(&minors_list, sizeof (minors_job_t),
|
|
offsetof(minors_job_t, link));
|
|
|
|
|
|
if (strchr(name, '@') != NULL) {
|
|
uint64_t snapdev;
|
|
|
|
int error = dsl_prop_get_integer(name, "snapdev",
|
|
&snapdev, NULL);
|
|
|
|
if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
|
|
(void) ops->zv_create_minor(name);
|
|
} else {
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
(void) dmu_objset_find(name, zvol_create_minors_cb,
|
|
&minors_list, DS_FIND_CHILDREN);
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
taskq_wait_outstanding(system_taskq, 0);
|
|
|
|
/*
|
|
* Prefetch is completed, we can do zvol_create_minor_impl
|
|
* sequentially.
|
|
*/
|
|
while ((job = list_head(&minors_list)) != NULL) {
|
|
list_remove(&minors_list, job);
|
|
if (!job->error)
|
|
(void) ops->zv_create_minor(job->name);
|
|
kmem_strfree(job->name);
|
|
kmem_free(job, sizeof (minors_job_t));
|
|
}
|
|
|
|
list_destroy(&minors_list);
|
|
}
|
|
|
|
void
|
|
zvol_create_minor(const char *name)
|
|
{
|
|
/*
|
|
* Note: the dsl_pool_config_lock must not be held.
|
|
* Minor node creation needs to obtain the zvol_state_lock.
|
|
* zvol_open() obtains the zvol_state_lock and then the dsl pool
|
|
* config lock. Therefore, we can't have the config lock now if
|
|
* we are going to wait for the zvol_state_lock, because it
|
|
* would be a lock order inversion which could lead to deadlock.
|
|
*/
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
if (strchr(name, '@') != NULL) {
|
|
uint64_t snapdev;
|
|
|
|
int error = dsl_prop_get_integer(name,
|
|
"snapdev", &snapdev, NULL);
|
|
|
|
if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
|
|
(void) ops->zv_create_minor(name);
|
|
} else {
|
|
(void) ops->zv_create_minor(name);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove minors for specified dataset including children and snapshots.
|
|
*/
|
|
|
|
void
|
|
zvol_remove_minors_impl(const char *name)
|
|
{
|
|
zvol_state_t *zv, *zv_next;
|
|
int namelen = ((name) ? strlen(name) : 0);
|
|
taskqid_t t;
|
|
list_t free_list;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
list_create(&free_list, sizeof (zvol_state_t),
|
|
offsetof(zvol_state_t, zv_next));
|
|
|
|
rw_enter(&zvol_state_lock, RW_WRITER);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
|
|
(strncmp(zv->zv_name, name, namelen) == 0 &&
|
|
(zv->zv_name[namelen] == '/' ||
|
|
zv->zv_name[namelen] == '@'))) {
|
|
/*
|
|
* By holding zv_state_lock here, we guarantee that no
|
|
* one is currently using this zv
|
|
*/
|
|
|
|
/* If in use, leave alone */
|
|
if (zv->zv_open_count > 0 ||
|
|
atomic_read(&zv->zv_suspend_ref)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
continue;
|
|
}
|
|
|
|
zvol_remove(zv);
|
|
|
|
/*
|
|
* Cleared while holding zvol_state_lock as a writer
|
|
* which will prevent zvol_open() from opening it.
|
|
*/
|
|
ops->zv_clear_private(zv);
|
|
|
|
/* Drop zv_state_lock before zvol_free() */
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
/* Try parallel zv_free, if failed do it in place */
|
|
t = taskq_dispatch(system_taskq,
|
|
(task_func_t *)ops->zv_free, zv, TQ_SLEEP);
|
|
if (t == TASKQID_INVALID)
|
|
list_insert_head(&free_list, zv);
|
|
} else {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
/* Drop zvol_state_lock before calling zvol_free() */
|
|
while ((zv = list_head(&free_list)) != NULL) {
|
|
list_remove(&free_list, zv);
|
|
ops->zv_free(zv);
|
|
}
|
|
}
|
|
|
|
/* Remove minor for this specific volume only */
|
|
static void
|
|
zvol_remove_minor_impl(const char *name)
|
|
{
|
|
zvol_state_t *zv = NULL, *zv_next;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
rw_enter(&zvol_state_lock, RW_WRITER);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
if (strcmp(zv->zv_name, name) == 0) {
|
|
/*
|
|
* By holding zv_state_lock here, we guarantee that no
|
|
* one is currently using this zv
|
|
*/
|
|
|
|
/* If in use, leave alone */
|
|
if (zv->zv_open_count > 0 ||
|
|
atomic_read(&zv->zv_suspend_ref)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
continue;
|
|
}
|
|
zvol_remove(zv);
|
|
|
|
ops->zv_clear_private(zv);
|
|
mutex_exit(&zv->zv_state_lock);
|
|
break;
|
|
} else {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
}
|
|
|
|
/* Drop zvol_state_lock before calling zvol_free() */
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
if (zv != NULL)
|
|
ops->zv_free(zv);
|
|
}
|
|
|
|
/*
|
|
* Rename minors for specified dataset including children and snapshots.
|
|
*/
|
|
static void
|
|
zvol_rename_minors_impl(const char *oldname, const char *newname)
|
|
{
|
|
zvol_state_t *zv, *zv_next;
|
|
int oldnamelen, newnamelen;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
oldnamelen = strlen(oldname);
|
|
newnamelen = strlen(newname);
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
|
|
if (strcmp(zv->zv_name, oldname) == 0) {
|
|
ops->zv_rename_minor(zv, newname);
|
|
} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
|
|
(zv->zv_name[oldnamelen] == '/' ||
|
|
zv->zv_name[oldnamelen] == '@')) {
|
|
char *name = kmem_asprintf("%s%c%s", newname,
|
|
zv->zv_name[oldnamelen],
|
|
zv->zv_name + oldnamelen + 1);
|
|
ops->zv_rename_minor(zv, name);
|
|
kmem_strfree(name);
|
|
}
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
|
|
rw_exit(&zvol_state_lock);
|
|
}
|
|
|
|
typedef struct zvol_snapdev_cb_arg {
|
|
uint64_t snapdev;
|
|
} zvol_snapdev_cb_arg_t;
|
|
|
|
static int
|
|
zvol_set_snapdev_cb(const char *dsname, void *param)
|
|
{
|
|
zvol_snapdev_cb_arg_t *arg = param;
|
|
|
|
if (strchr(dsname, '@') == NULL)
|
|
return (0);
|
|
|
|
switch (arg->snapdev) {
|
|
case ZFS_SNAPDEV_VISIBLE:
|
|
(void) ops->zv_create_minor(dsname);
|
|
break;
|
|
case ZFS_SNAPDEV_HIDDEN:
|
|
(void) zvol_remove_minor_impl(dsname);
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zvol_set_snapdev_impl(char *name, uint64_t snapdev)
|
|
{
|
|
zvol_snapdev_cb_arg_t arg = {snapdev};
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
/*
|
|
* The zvol_set_snapdev_sync() sets snapdev appropriately
|
|
* in the dataset hierarchy. Here, we only scan snapshots.
|
|
*/
|
|
dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
static void
|
|
zvol_set_volmode_impl(char *name, uint64_t volmode)
|
|
{
|
|
fstrans_cookie_t cookie;
|
|
uint64_t old_volmode;
|
|
zvol_state_t *zv;
|
|
|
|
if (strchr(name, '@') != NULL)
|
|
return;
|
|
|
|
/*
|
|
* It's unfortunate we need to remove minors before we create new ones:
|
|
* this is necessary because our backing gendisk (zvol_state->zv_disk)
|
|
* could be different when we set, for instance, volmode from "geom"
|
|
* to "dev" (or vice versa).
|
|
*/
|
|
zv = zvol_find_by_name(name, RW_NONE);
|
|
if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
|
|
return;
|
|
if (zv != NULL) {
|
|
old_volmode = zv->zv_volmode;
|
|
mutex_exit(&zv->zv_state_lock);
|
|
if (old_volmode == volmode)
|
|
return;
|
|
zvol_wait_close(zv);
|
|
}
|
|
cookie = spl_fstrans_mark();
|
|
switch (volmode) {
|
|
case ZFS_VOLMODE_NONE:
|
|
(void) zvol_remove_minor_impl(name);
|
|
break;
|
|
case ZFS_VOLMODE_GEOM:
|
|
case ZFS_VOLMODE_DEV:
|
|
(void) zvol_remove_minor_impl(name);
|
|
(void) ops->zv_create_minor(name);
|
|
break;
|
|
case ZFS_VOLMODE_DEFAULT:
|
|
(void) zvol_remove_minor_impl(name);
|
|
if (zvol_volmode == ZFS_VOLMODE_NONE)
|
|
break;
|
|
else /* if zvol_volmode is invalid defaults to "geom" */
|
|
(void) ops->zv_create_minor(name);
|
|
break;
|
|
}
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
static zvol_task_t *
|
|
zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
|
|
uint64_t value)
|
|
{
|
|
zvol_task_t *task;
|
|
char *delim;
|
|
|
|
/* Never allow tasks on hidden names. */
|
|
if (name1[0] == '$')
|
|
return (NULL);
|
|
|
|
task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
|
|
task->op = op;
|
|
task->value = value;
|
|
delim = strchr(name1, '/');
|
|
strlcpy(task->pool, name1, delim ? (delim - name1 + 1) : MAXNAMELEN);
|
|
|
|
strlcpy(task->name1, name1, MAXNAMELEN);
|
|
if (name2 != NULL)
|
|
strlcpy(task->name2, name2, MAXNAMELEN);
|
|
|
|
return (task);
|
|
}
|
|
|
|
static void
|
|
zvol_task_free(zvol_task_t *task)
|
|
{
|
|
kmem_free(task, sizeof (zvol_task_t));
|
|
}
|
|
|
|
/*
|
|
* The worker thread function performed asynchronously.
|
|
*/
|
|
static void
|
|
zvol_task_cb(void *arg)
|
|
{
|
|
zvol_task_t *task = arg;
|
|
|
|
switch (task->op) {
|
|
case ZVOL_ASYNC_REMOVE_MINORS:
|
|
zvol_remove_minors_impl(task->name1);
|
|
break;
|
|
case ZVOL_ASYNC_RENAME_MINORS:
|
|
zvol_rename_minors_impl(task->name1, task->name2);
|
|
break;
|
|
case ZVOL_ASYNC_SET_SNAPDEV:
|
|
zvol_set_snapdev_impl(task->name1, task->value);
|
|
break;
|
|
case ZVOL_ASYNC_SET_VOLMODE:
|
|
zvol_set_volmode_impl(task->name1, task->value);
|
|
break;
|
|
default:
|
|
VERIFY(0);
|
|
break;
|
|
}
|
|
|
|
zvol_task_free(task);
|
|
}
|
|
|
|
typedef struct zvol_set_prop_int_arg {
|
|
const char *zsda_name;
|
|
uint64_t zsda_value;
|
|
zprop_source_t zsda_source;
|
|
dmu_tx_t *zsda_tx;
|
|
} zvol_set_prop_int_arg_t;
|
|
|
|
/*
|
|
* Sanity check the dataset for safe use by the sync task. No additional
|
|
* conditions are imposed.
|
|
*/
|
|
static int
|
|
zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
int error;
|
|
|
|
error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
|
{
|
|
char dsname[MAXNAMELEN];
|
|
zvol_task_t *task;
|
|
uint64_t snapdev;
|
|
|
|
dsl_dataset_name(ds, dsname);
|
|
if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
|
|
return (0);
|
|
task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
|
|
if (task == NULL)
|
|
return (0);
|
|
|
|
(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
|
|
task, TQ_SLEEP);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Traverse all child datasets and apply snapdev appropriately.
|
|
* We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
|
|
* dataset and read the effective "snapdev" on every child in the callback
|
|
* function: this is because the value is not guaranteed to be the same in the
|
|
* whole dataset hierarchy.
|
|
*/
|
|
static void
|
|
zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
dsl_dataset_t *ds;
|
|
int error;
|
|
|
|
VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
|
|
zsda->zsda_tx = tx;
|
|
|
|
error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
|
|
if (error == 0) {
|
|
dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
|
|
zsda->zsda_source, sizeof (zsda->zsda_value), 1,
|
|
&zsda->zsda_value, zsda->zsda_tx);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
|
|
zsda, DS_FIND_CHILDREN);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
}
|
|
|
|
int
|
|
zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
|
|
{
|
|
zvol_set_prop_int_arg_t zsda;
|
|
|
|
zsda.zsda_name = ddname;
|
|
zsda.zsda_source = source;
|
|
zsda.zsda_value = snapdev;
|
|
|
|
return (dsl_sync_task(ddname, zvol_set_snapdev_check,
|
|
zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
|
|
}
|
|
|
|
/*
|
|
* Sanity check the dataset for safe use by the sync task. No additional
|
|
* conditions are imposed.
|
|
*/
|
|
static int
|
|
zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
int error;
|
|
|
|
error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
|
{
|
|
char dsname[MAXNAMELEN];
|
|
zvol_task_t *task;
|
|
uint64_t volmode;
|
|
|
|
dsl_dataset_name(ds, dsname);
|
|
if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
|
|
return (0);
|
|
task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
|
|
if (task == NULL)
|
|
return (0);
|
|
|
|
(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
|
|
task, TQ_SLEEP);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Traverse all child datasets and apply volmode appropriately.
|
|
* We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
|
|
* dataset and read the effective "volmode" on every child in the callback
|
|
* function: this is because the value is not guaranteed to be the same in the
|
|
* whole dataset hierarchy.
|
|
*/
|
|
static void
|
|
zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
dsl_dataset_t *ds;
|
|
int error;
|
|
|
|
VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
|
|
zsda->zsda_tx = tx;
|
|
|
|
error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
|
|
if (error == 0) {
|
|
dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
|
|
zsda->zsda_source, sizeof (zsda->zsda_value), 1,
|
|
&zsda->zsda_value, zsda->zsda_tx);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
|
|
dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
|
|
zsda, DS_FIND_CHILDREN);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
}
|
|
|
|
int
|
|
zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
|
|
{
|
|
zvol_set_prop_int_arg_t zsda;
|
|
|
|
zsda.zsda_name = ddname;
|
|
zsda.zsda_source = source;
|
|
zsda.zsda_value = volmode;
|
|
|
|
return (dsl_sync_task(ddname, zvol_set_volmode_check,
|
|
zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
|
|
}
|
|
|
|
void
|
|
zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
|
|
{
|
|
zvol_task_t *task;
|
|
taskqid_t id;
|
|
|
|
task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
|
|
if (task == NULL)
|
|
return;
|
|
|
|
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
|
|
if ((async == B_FALSE) && (id != TASKQID_INVALID))
|
|
taskq_wait_id(spa->spa_zvol_taskq, id);
|
|
}
|
|
|
|
void
|
|
zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
|
|
boolean_t async)
|
|
{
|
|
zvol_task_t *task;
|
|
taskqid_t id;
|
|
|
|
task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
|
|
if (task == NULL)
|
|
return;
|
|
|
|
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
|
|
if ((async == B_FALSE) && (id != TASKQID_INVALID))
|
|
taskq_wait_id(spa->spa_zvol_taskq, id);
|
|
}
|
|
|
|
boolean_t
|
|
zvol_is_zvol(const char *name)
|
|
{
|
|
|
|
return (ops->zv_is_zvol(name));
|
|
}
|
|
|
|
void
|
|
zvol_register_ops(const zvol_platform_ops_t *zvol_ops)
|
|
{
|
|
ops = zvol_ops;
|
|
}
|
|
|
|
int
|
|
zvol_init_impl(void)
|
|
{
|
|
int i;
|
|
|
|
list_create(&zvol_state_list, sizeof (zvol_state_t),
|
|
offsetof(zvol_state_t, zv_next));
|
|
rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
|
|
|
|
zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
|
|
KM_SLEEP);
|
|
for (i = 0; i < ZVOL_HT_SIZE; i++)
|
|
INIT_HLIST_HEAD(&zvol_htable[i]);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zvol_fini_impl(void)
|
|
{
|
|
zvol_remove_minors_impl(NULL);
|
|
|
|
/*
|
|
* The call to "zvol_remove_minors_impl" may dispatch entries to
|
|
* the system_taskq, but it doesn't wait for those entries to
|
|
* complete before it returns. Thus, we must wait for all of the
|
|
* removals to finish, before we can continue.
|
|
*/
|
|
taskq_wait_outstanding(system_taskq, 0);
|
|
|
|
kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
|
|
list_destroy(&zvol_state_list);
|
|
rw_destroy(&zvol_state_lock);
|
|
}
|