freebsd-nq/sys/i386/isa/if_lnc.c

1681 lines
43 KiB
C

/*
* Copyright (c) 1994, Paul Richards.
*
* All rights reserved.
*
* This software may be used, modified, copied, distributed, and
* sold, in both source and binary form provided that the above
* copyright and these terms are retained, verbatim, as the first
* lines of this file. Under no circumstances is the author
* responsible for the proper functioning of this software, nor does
* the author assume any responsibility for damages incurred with
* its use.
*/
/*
#define DIAGNOSTIC
#define DEBUG
*
* TODO ----
*
* This driver will need bounce buffer support when dma'ing to mbufs above the
* 16Mb mark.
*
* Check all the XXX comments -- some of them are just things I've left
* unfinished rather than "difficult" problems that were hacked around.
*
* Check log settings.
*
* Check how all the arpcom flags get set and used.
*
* Re-inline and re-static all routines after debugging.
*
* Remember to assign iobase in SHMEM probe routines.
*
* Replace all occurences of LANCE-controller-card etc in prints by the name
* strings of the appropriate type -- nifty window dressing
*
* Add DEPCA support -- mostly done.
*
*/
#include "lnc.h"
#if NLNC > 0
#include "bpfilter.h"
/* Some defines that should really be in generic locations */
#define FCS_LEN 4
#define ETHER_ADDR_LEN 6
#define ETHER_HDR_LEN 14
#define MULTICAST_ADDR_LEN 8
#define ETHER_MIN_LEN 64
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioccom.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/devconf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <i386/isa/isa_device.h>
#include <i386/isa/if_lnc.h>
struct lnc_softc {
struct arpcom arpcom; /* see ../../netinet/if_ether.h */
struct nic_info nic; /* NIC specific info */
int nrdre;
struct host_ring_entry *recv_ring; /* start of alloc'd mem */
int recv_next;
int ntdre;
struct host_ring_entry *trans_ring;
int trans_next;
struct init_block *init_block; /* Initialisation block */
int pending_transmits; /* No. of transmit descriptors in use */
int next_to_send;
struct mbuf *mbufs;
int mbuf_count;
int initialised;
int rap;
int rdp;
#ifdef DEBUG
int lnc_debug;
#endif
#if NBPFILTER > 0
caddr_t bpf; /* XXX bpf magic cookie - move to arpcom */
#endif
LNCSTATS_STRUCT
} lnc_softc[NLNC];
/* Function prototypes */
void lnc_init(int);
void lnc_start(struct ifnet *);
int lnc_ioctl(struct ifnet *, int, caddr_t);
void lnc_watchdog(int);
int lnc_probe(struct isa_device *);
int lnc_attach(struct isa_device *);
void lnc_dump_state(int);
struct isa_driver lncdriver = {lnc_probe, lnc_attach, "lnc"};
inline void
write_csr(int unit, u_short port, u_short val)
{
outw(lnc_softc[unit].rap, port);
outw(lnc_softc[unit].rdp, val);
}
inline u_short
read_csr(int unit, u_short port)
{
outw(lnc_softc[unit].rap, port);
return (inw(lnc_softc[unit].rdp));
}
void
lnc_setladrf(struct ifnet *ifp, struct lnc_softc *sc)
{
}
void
lnc_stop(int unit)
{
write_csr(unit, CSR0, STOP);
}
void
lnc_reset(int unit)
{
int s;
lnc_init(unit);
}
void
lnc_free_mbufs(struct lnc_softc *sc)
{
int i;
/*
* We rely on other routines to keep the buff.mbuf field valid. If
* it's not NULL then we assume it points to an allocated mbuf.
*/
for (i = 0; i < NDESC(sc->nrdre); i++)
if ((sc->recv_ring + i)->buff.mbuf)
m_free((sc->recv_ring + i)->buff.mbuf);
for (i = 0; i < NDESC(sc->ntdre); i++)
if ((sc->trans_ring + i)->buff.mbuf)
m_free((sc->trans_ring + i)->buff.mbuf);
if (sc->mbuf_count)
m_freem(sc->mbufs);
}
inline int
alloc_mbuf_cluster(struct lnc_softc *sc, struct host_ring_entry *desc)
{
register struct mds *md = desc->md;
struct mbuf *m=0;
int addr;
/* Try and get cluster off local cache */
if (sc->mbuf_count) {
sc->mbuf_count--;
m = sc->mbufs;
sc->mbufs = m->m_next;
/* XXX m->m_data = m->m_ext.ext_buf;*/
} else {
MGET(m, M_DONTWAIT, MT_DATA);
if (!m)
return(1);
MCLGET(m, M_DONTWAIT);
if (!m->m_ext.ext_buf) {
m_free(m);
return(1);
}
}
desc->buff.mbuf = m;
addr = kvtop(m->m_data);
md->md0 = addr;
md->md1= ((addr >> 16) & 0xff) | OWN;
md->md2 = -(short)(MCLBYTES - sizeof(struct pkthdr));
md->md3 = 0;
return(0);
}
inline struct mbuf *
chain_mbufs(struct lnc_softc *sc, int start_of_packet, int pkt_len)
{
struct mbuf *head, *m;
struct host_ring_entry *desc;
/*
* Turn head into a pkthdr mbuf --
* assumes a pkthdr type mbuf was
* allocated to the descriptor
* originally.
*/
desc = sc->recv_ring + start_of_packet;
head = desc->buff.mbuf;
head->m_flags |= M_PKTHDR;
m = head;
do {
m = desc->buff.mbuf;
m->m_len = min(-(desc->md->md2), pkt_len);
pkt_len -= m->m_len;
if (alloc_mbuf_cluster(sc, desc))
return((struct mbuf *)NULL);
INC_MD_PTR(start_of_packet, sc->nrdre)
desc = sc->recv_ring + start_of_packet;
m->m_next = desc->buff.mbuf;
} while (start_of_packet != sc->recv_next);
m->m_next = 0;
return(head);
}
inline struct mbuf *
mbuf_packet(struct lnc_softc *sc, int start_of_packet, int pkt_len)
{
struct host_ring_entry *start;
struct mbuf *head,*m,*m_prev;
char *data,*mbuf_data;
short blen;
int amount;
/* Get a pkthdr mbuf for the start of packet */
MGETHDR(head, M_DONTWAIT, MT_DATA);
if (!head) {
LNCSTATS(drop_packet)
return(0);
}
m = head;
m->m_len = 0;
start = sc->recv_ring + start_of_packet;
blen = -(start->md->md2);
data = start->buff.data;
mbuf_data = m->m_data;
while (start_of_packet != sc->recv_next) {
/*
* If the data left fits in a single buffer then set
* blen to the size of the data left.
*/
if (pkt_len < blen)
blen = pkt_len;
/*
* amount is least of data in current ring buffer and
* amount of space left in current mbuf.
*/
amount = min(blen, M_TRAILINGSPACE(m));
if (amount == 0) {
/* mbuf must be empty */
m_prev = m;
MGET(m, M_DONTWAIT, MT_DATA);
if (!m) {
m_freem(head);
return(0);
}
if (pkt_len >= MINCLSIZE)
MCLGET(m, M_DONTWAIT);
m->m_len = 0;
m_prev->m_next = m;
amount = min(blen, M_TRAILINGSPACE(m));
mbuf_data = m->m_data;
}
bcopy(data, mbuf_data, amount);
blen -= amount;
pkt_len -= amount;
m->m_len += amount;
data += amount;
mbuf_data += amount;
if (blen == 0) {
start->md->md1 &= HADR;
start->md->md1 |= OWN;
INC_MD_PTR(start_of_packet, sc->nrdre)
start = sc->recv_ring + start_of_packet;
data = start->buff.data;
blen = -(start->md->md2);
}
}
return(head);
}
inline void
lnc_rint(int unit)
{
register struct lnc_softc *sc = &lnc_softc[unit];
struct host_ring_entry *next, *start;
int start_of_packet;
struct mbuf *head;
struct ether_header *eh;
int lookahead;
int flags;
int pkt_len;
/*
* The LANCE will issue a RINT interrupt when the ownership of the
* last buffer of a receive packet has been relinquished by the LANCE.
* Therefore, it can be assumed that a complete packet can be found
* before hitting buffers that are still owned by the LANCE, if not
* then there is a bug in the driver that is causing the descriptors
* to get out of sync.
*/
#ifdef DIAGNOSTIC
if ((sc->recv_ring + sc->recv_next)->md->md1 & OWN) {
log(LOG_ERR, "lnc%d: Receive interrupt with buffer still owned by controller -- Resetting\n", unit);
lnc_reset(unit);
return;
}
if (!((sc->recv_ring + sc->recv_next)->md->md1 & STP)) {
log(LOG_ERR, "lnc%d: Receive interrupt but not start of packet -- Resetting\n", unit);
lnc_reset(unit);
return;
}
#endif
lookahead = 0;
next = sc->recv_ring + sc->recv_next;
while ((flags = next->md->md1) & STP) {
/* Make a note of the start of the packet */
start_of_packet = sc->recv_next;
/*
* Find the end of the packet. Even if not data chaining,
* jabber packets can overrun into a second descriptor.
* If there is no error, then the ENP flag is set in the last
* descriptor of the packet. If there is an error then the ERR
* flag will be set in the descriptor where the error occured.
* Therefore, to find the last buffer of a packet we search for
* either ERR or ENP.
*/
if (!(flags & (ENP | MDERR))) {
do {
INC_MD_PTR(sc->recv_next, sc->nrdre)
next = sc->recv_ring + sc->recv_next;
flags = next->md->md1;
} while (!(flags & (STP | OWN | ENP | MDERR)));
if (flags & STP) {
log(LOG_ERR, "lnc%d: Start of packet found before end of previous in receive ring -- Resetting\n", unit);
lnc_reset(unit);
return;
}
if (flags & OWN) {
if (lookahead) {
/*
* Looked ahead into a packet still
* being received
*/
sc->recv_next = start_of_packet;
break;
} else {
log(LOG_ERR, "lnc%d: End of received packet not found-- Resetting\n", unit);
lnc_reset(unit);
return;
}
}
}
pkt_len = next->md->md3 & MCNT - FCS_LEN;
/* Move pointer onto start of next packet */
INC_MD_PTR(sc->recv_next, sc->nrdre)
next = sc->recv_ring + sc->recv_next;
if (flags & MDERR) {
if (flags & RBUFF) {
LNCSTATS(rbuff)
log(LOG_ERR, "lnc%d: Receive buffer error\n", unit);
}
if (flags & OFLO) {
/* OFLO only valid if ENP is not set */
if (!(flags & ENP)) {
LNCSTATS(oflo)
log(LOG_ERR, "lnc%d: Receive overflow error \n", unit);
}
} else {
/*
* FRAM and CRC are valid only if OFLO is not
* set and ENP is
*/
if (flags & (FRAM | ENP)) {
LNCSTATS(fram)
log(LOG_ERR, "lnc%d: Framming error\n", unit);
/*
* FRAM is only set if there's a CRC
* error so avoid multiple messages
*/
} else if (flags & (CRC | ENP)) {
LNCSTATS(crc)
log(LOG_ERR, "lnc%d: Receive CRC error\n", unit);
}
}
/* Drop packet */
LNCSTATS(rerr)
sc->arpcom.ac_if.if_ierrors++;
while (start_of_packet != sc->recv_next) {
start = sc->recv_ring + start_of_packet;
start->md->md1 &= HADR;
start->md->md1 |= OWN;
INC_MD_PTR(start_of_packet, sc->nrdre)
}
} else { /* Valid packet */
sc->arpcom.ac_if.if_ipackets++;
if (sc->nic.mem_mode == DMA_MBUF)
head = chain_mbufs(sc,start_of_packet,pkt_len);
else
head = mbuf_packet(sc,start_of_packet,pkt_len);
if (head) {
/*
* First mbuf in packet holds the
* ethernet and packet headers
*/
head->m_pkthdr.rcvif = &sc->arpcom.ac_if;
head->m_pkthdr.len = pkt_len - sizeof(*eh);
eh = (struct ether_header *) head->m_data;
head->m_data += sizeof *eh;
head->m_len -= sizeof *eh;
#if NBPFILTER > 0
if (sc->bpf)
bpf_mtap(sc->bpf, head);
/* Check this packet is really for us */
/* XXX -- this doesn't look right */
if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0) &&
(bcmp(eh->ether_dhost, etherbroadcastaddr,
sizeof(eh->ether_dhost)) != 0))
m_freem(head);
else
#endif
ether_input(&sc->arpcom.ac_if, eh, head);
} else {
log(LOG_ERR,"lnc%d: Packet dropped, no mbufs\n",unit);
LNCSTATS(drop_packet)
}
}
lookahead++;
}
/*
* At this point all completely received packets have been processed
* so clear RINT since any packets that have arrived while we were in
* here have been dealt with.
*/
outw(sc->rdp, RINT | INEA);
}
inline void
lnc_tint(int unit)
{
register struct lnc_softc *sc = &lnc_softc[unit];
struct host_ring_entry *next, *start;
int start_of_packet;
int lookahead;
/*
* If the driver is reset in this routine then we return immediately to
* the interrupt driver routine. Any interrupts that have occured
* since the reset will be dealt with there. sc->trans_next
* should point to the start of the first packet that was awaiting
* transmission after the last transmit interrupt was dealt with. The
* LANCE should have relinquished ownership of that descriptor before
* the interrupt. Therefore, sc->trans_next should point to a
* descriptor with STP set and OWN cleared. If not then the driver's
* pointers are out of sync with the LANCE, which signifies a bug in
* the driver. Therefore, the following two checks are really
* diagnostic, since if the driver is working correctly they should
* never happen.
*/
#ifdef DIAGNOSTIC
if ((sc->trans_ring + sc->trans_next)->md->md1 & OWN) {
log(LOG_ERR, "lnc%d: Transmit interrupt with buffer still owned by controller -- Resetting\n", unit);
lnc_reset(unit);
return;
}
#endif
/*
* The LANCE will write the status information for the packet it just
* tried to transmit in one of two places. If the packet was
* transmitted successfully then the status will be written into the
* last descriptor of the packet. If the transmit failed then the
* status will be written into the descriptor that was being accessed
* when the error occured and all subsequent descriptors in that
* packet will have been relinquished by the LANCE.
*
* At this point we know that sc->trans_next points to the start
* of a packet that the LANCE has just finished trying to transmit.
* We now search for a buffer with either ENP or ERR set.
*/
lookahead = 0;
do {
start_of_packet = sc->trans_next;
next = sc->trans_ring + sc->trans_next;
#ifdef DIAGNOSTIC
if (!(next->md->md1 & STP)) {
log(LOG_ERR, "lnc%d: Transmit interrupt but not start of packet -- Resetting\n", unit);
lnc_reset(unit);
return;
}
#endif
/*
* Find end of packet.
*/
if (!(next->md->md1 & (ENP | MDERR))) {
do {
INC_MD_PTR(sc->trans_next, sc->ntdre)
next = sc->trans_ring + sc->trans_next;
} while (!(next->md->md1 & (STP | OWN | ENP | MDERR)));
if (next->md->md1 & STP) {
log(LOG_ERR, "lnc%d: Start of packet found before end of previous in transmit ring -- Resetting\n", unit);
lnc_reset(unit);
return;
}
if (next->md->md1 & OWN) {
if (lookahead) {
/*
* Looked ahead into a packet still
* being transmitted
*/
sc->trans_next = start_of_packet;
break;
} else {
log(LOG_ERR, "lnc%d: End of transmitted packet not found -- Resetting\n", unit);
lnc_reset(unit);
return;
}
}
}
/*
* Check for ERR first since other flags are irrelevant if an
* error occurred.
*/
if (next->md->md1 & MDERR) {
LNCSTATS(terr)
sc->arpcom.ac_if.if_oerrors++;
if (next->md->md3 & LCOL) {
LNCSTATS(lcol)
log(LOG_ERR, "lnc%d: Transmit late collision -- Net error?\n", unit);
sc->arpcom.ac_if.if_collisions++;
/*
* Clear TBUFF since it's not valid when LCOL
* set
*/
next->md->md3 &= ~TBUFF;
}
if (next->md->md3 & LCAR) {
LNCSTATS(lcar)
log(LOG_ERR, "lnc%d: Loss of carrier during transmit -- Net error?\n", unit);
}
if (next->md->md3 & RTRY) {
LNCSTATS(rtry)
log(LOG_ERR, "lnc%d: Transmit of packet failed after 16 attempts -- TDR = %d\n", unit, ((sc->trans_ring + sc->trans_next)->md->md3 & TDR));
sc->arpcom.ac_if.if_collisions += 16;
/*
* Clear TBUFF since it's not valid when RTRY
* set
*/
next->md->md3 &= ~TBUFF;
}
/*
* TBUFF is only valid if neither LCOL nor RTRY are set.
* We need to check UFLO after LCOL and RTRY so that we
* know whether or not TBUFF is valid. If either are
* set then TBUFF will have been cleared above. A
* UFLO error will turn off the transmitter so we
* have to reset.
*
*/
if (next->md->md3 & UFLO) {
LNCSTATS(uflo)
/*
* If an UFLO has occured it's possibly due
* to a TBUFF error
*/
if (next->md->md3 & TBUFF) {
LNCSTATS(tbuff)
log(LOG_ERR, "lnc%d: Transmit buffer error -- Resetting\n", unit);
} else
log(LOG_ERR, "lnc%d: Transmit underflow error -- Resetting\n", unit);
lnc_reset(unit);
return;
}
do {
INC_MD_PTR(sc->trans_next, sc->ntdre)
next = sc->trans_ring + sc->trans_next;
} while (!(next->md->md1 & STP) && (sc->trans_next != sc->next_to_send));
} else {
/*
* Since we check for ERR first then if we get here
* the packet was transmitted correctly. There may
* still have been non-fatal errors though.
* Don't bother checking for DEF, waste of time.
*/
sc->arpcom.ac_if.if_opackets++;
if (next->md->md1 & MORE) {
LNCSTATS(more)
sc->arpcom.ac_if.if_collisions += 2;
}
/*
* ONE is invalid if LCOL is set. If LCOL was set then
* ERR would have also been set and we would have
* returned from lnc_tint above. Therefore we can
* assume if we arrive here that ONE is valid.
*
*/
if (next->md->md1 & ONE) {
LNCSTATS(one)
sc->arpcom.ac_if.if_collisions++;
}
INC_MD_PTR(sc->trans_next, sc->ntdre)
next = sc->trans_ring + sc->trans_next;
}
/*
* Clear descriptors and free any mbufs.
*/
do {
start = sc->trans_ring + start_of_packet;
start->md->md1 &= HADR;
if (sc->nic.mem_mode == DMA_MBUF) {
/* Cache clusters on a local queue */
if ((start->buff.mbuf->m_flags & M_EXT) && (sc->mbuf_count < MBUF_CACHE_LIMIT)) {
if (sc->mbuf_count) {
start->buff.mbuf->m_next = sc->mbufs;
sc->mbufs = start->buff.mbuf;
} else
sc->mbufs = start->buff.mbuf;
sc->mbuf_count++;
start->buff.mbuf = 0;
} else {
struct mbuf *junk;
MFREE(start->buff.mbuf, junk);
start->buff.mbuf = 0;
}
}
sc->pending_transmits--;
INC_MD_PTR(start_of_packet, sc->ntdre)
}while (start_of_packet != sc->trans_next);
/*
* There's now at least one free descriptor
* in the ring so indicate that we can accept
* more packets again.
*/
sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
lookahead++;
} while (sc->pending_transmits && !(next->md->md1 & OWN));
/*
* Clear TINT since we've dealt with all
* the completed transmissions.
*/
outw(sc->rdp, TINT | INEA);
/* XXX only while doing if_is comparisons */
if (!(sc->arpcom.ac_if.if_flags & IFF_OACTIVE))
lnc_start(&sc->arpcom.ac_if);
}
static struct kern_devconf kdc_lnc[NLNC] = { {
0, 0, 0, /* filled in by dev_attach */
"lnc", 0, { MDDT_ISA, 0, "net" },
isa_generic_externalize, 0, 0, ISA_EXTERNALLEN,
&kdc_isa0, /* parent */
0, /* parentdata */
DC_BUSY,
"Generic LANCE-based Ethernet adapter"
} };
static inline void
lnc_registerdev(struct isa_device *id)
{
if(id->id_unit)
kdc_lnc[id->id_unit] = kdc_lnc[0];
kdc_lnc[id->id_unit].kdc_unit = id->id_unit;
kdc_lnc[id->id_unit].kdc_isa = id;
dev_attach(&kdc_lnc[id->id_unit]);
}
int
lnc_probe(struct isa_device * isa_dev)
{
int nports;
int vsw;
#ifdef DEBUG
{
int i;
log(LOG_DEBUG, "Dumping io space for lnc%d starting at %x\n", isa_dev->id_unit, isa_dev->id_iobase);
for (i = 0; i < 32; i++)
log(LOG_DEBUG, " %x ", inb(isa_dev->id_iobase + i));
}
#endif
#ifdef DIAGNOSTIC
/* First check the Vendor Specific Word */
vsw = inw(isa_dev->id_iobase + PCNET_VSW);
printf("Vendor Specific Word = %x\n", vsw);
#endif
if (nports = bicc_probe(isa_dev))
return (nports);
if (nports = ne2100_probe(isa_dev))
return (nports);
if (nports = depca_probe(isa_dev))
return (nports);
return (0);
}
int
ne2100_probe(struct isa_device * isa_dev)
{
struct lnc_softc *sc = &lnc_softc[isa_dev->id_unit];
int i;
sc->rap = isa_dev->id_iobase + PCNET_RAP;
sc->rdp = isa_dev->id_iobase + PCNET_RDP;
if (sc->nic.ic = lance_probe(isa_dev->id_unit)) {
sc->nic.ident = NE2100;
sc->nic.mem_mode = DMA_FIXED;
/* Extract MAC address from PROM */
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc->arpcom.ac_enaddr[i] = inb(isa_dev->id_iobase + i);
return (NE2100_IOSIZE);
} else {
return (0);
}
}
int
bicc_probe(struct isa_device * isa_dev)
{
struct lnc_softc *sc = &lnc_softc[isa_dev->id_unit];
int i;
/*
* There isn't any way to determine if a NIC is a BICC. Basically, if
* the lance probe succeeds using the i/o addresses of the BICC then
* we assume it's a BICC.
*
*/
sc->rap = isa_dev->id_iobase + BICC_RAP;
sc->rdp = isa_dev->id_iobase + BICC_RDP;
/* I think all these cards us the Am7990 */
if (sc->nic.ic = lance_probe(isa_dev->id_unit)) {
sc->nic.ident = BICC;
sc->nic.mem_mode = DMA_FIXED;
/* XXX - For now just use the defines */
sc->nrdre = NRDRE;
sc->ntdre = NTDRE;
/* Extract MAC address from PROM */
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc->arpcom.ac_enaddr[i] = inb(isa_dev->id_iobase + (i * 2));
return (BICC_IOSIZE);
} else {
return (0);
}
}
/*
* I don't have data sheets for the dec cards but it looks like the mac
* address is contained in a 32 byte ring. Each time you read from the port
* you get the next byte in the ring. The mac address is stored after a
* signature so keep searching for the signature first.
*/
int
dec_macaddr_extract(u_char ring[], struct lnc_softc * sc)
{
const unsigned char signature[] = {0xff, 0x00, 0x55, 0xaa, 0xff, 0x00, 0x55, 0xaa};
int i, j, rindex;
for (i = 0; i < sizeof ring; i++) {
for (j = 0, rindex = i; j < sizeof signature; j++) {
if (ring[rindex] != signature[j])
break;
if (++rindex > sizeof ring)
rindex = 0;
}
if (j == sizeof signature) {
for (j = 0, rindex = i; j < ETHER_ADDR_LEN; j++) {
sc->arpcom.ac_enaddr[j] = ring[rindex];
if (++rindex > sizeof ring)
rindex = 0;
}
return (1);
}
}
return (0);
}
int
depca_probe(struct isa_device * isa_dev)
{
int i;
struct lnc_softc *sc = &lnc_softc[isa_dev->id_unit];
unsigned char maddr_ring[DEPCA_ADDR_ROM_SIZE];
sc->rap = isa_dev->id_iobase + DEPCA_RAP;
sc->rdp = isa_dev->id_iobase + DEPCA_RDP;
if (sc->nic.ic = lance_probe(isa_dev->id_unit)) {
sc->nic.ident = DEPCA;
sc->nic.mem_mode = SHMEM;
/* Extract MAC address from PROM */
for (i = 0; i < DEPCA_ADDR_ROM_SIZE; i++)
maddr_ring[i] = inb(isa_dev->id_iobase + DEPCA_ADP);
if (dec_macaddr_extract(maddr_ring, sc))
return (DEPCA_IOSIZE);
}
return (0);
}
int
lance_probe(int unit)
{
write_csr(unit, CSR0, STOP);
if ((inw(lnc_softc[unit].rdp) & STOP) && !(read_csr(unit, CSR3))) {
/*
* Check to see if it's a C-LANCE. For the LANCE the INEA bit
* cannot be set while the STOP bit is. This restriction is
* removed for the C-LANCE.
*/
write_csr(unit, CSR0, INEA);
if (read_csr(unit, CSR0) & INEA)
return (C_LANCE);
else
return (LANCE);
} else
return (UNKNOWN);
}
int
pcnet_probe(int unit)
{
u_long chip_id;
int type;
/*
* The PCnet family don't reset the RAP register on reset so we'll
* have to write during the probe :-) It does have an ID register
* though so the probe is just a matter of reading it.
*/
if (type = lance_probe(unit)) {
chip_id = read_csr(unit, CSR88);
chip_id <<= 16;
chip_id |= read_csr(unit, CSR89);
if (chip_id & AMD_MASK) {
chip_id >>= 12;
switch (chip_id & PART_MASK) {
case Am79C960:
return (PCnet_ISA);
case Am79C961:
return (PCnet_ISAplus);
case Am79C965:
return (PCnet_32);
case Am79C970:
return (PCnet_PCI);
default:
break;
}
}
}
return (type);
}
int
lnc_attach(struct isa_device * isa_dev)
{
struct lnc_softc *sc = &lnc_softc[isa_dev->id_unit];
int lnc_mem_size;
/*
* Allocate memory for use by the controller.
*
* XXX -- the Am7990 and Am79C960 only have 24 address lines and so can
* only access the lower 16Mb of physical memory. For the moment we
* assume that malloc will allocate memory within the lower 16Mb
* range. This is not a very valid assumption but there's nothing
* that can be done about it yet. For shared memory NICs this isn't
* relevant.
*
*/
lnc_mem_size = ((NDESC(sc->nrdre) + NDESC(sc->ntdre)) *
sizeof(struct host_ring_entry));
if (sc->nic.mem_mode != SHMEM)
lnc_mem_size += sizeof(struct init_block) + (sizeof(struct mds) *
(NDESC(sc->nrdre) + NDESC(sc->ntdre))) +
MEM_SLEW;
/* If using DMA to fixed host buffers then allocate memory for them */
if (sc->nic.mem_mode == DMA_FIXED)
lnc_mem_size += (NDESC(sc->nrdre) * RECVBUFSIZE) + (NDESC(sc->ntdre) * TRANSBUFSIZE);
sc->recv_ring = malloc(lnc_mem_size, M_DEVBUF, M_NOWAIT);
if (!sc->recv_ring) {
log(LOG_ERR, "lnc%d: Couldn't allocate memory for NIC\n", isa_dev->id_unit);
return (0); /* XXX -- attach failed -- not tested in
* calling routines */
}
if ((sc->nic.mem_mode != SHMEM) && (kvtop(sc->recv_ring) > 0x1000000)) {
log(LOG_ERR, "lnc%d: Memory allocated above 16Mb limit\n", isa_dev->id_unit);
return (0);
}
if (sc->nic.mem_mode != SHMEM)
isa_dmacascade(isa_dev->id_drq);
/* Set default mode */
sc->nic.mode = NORMAL;
/* Fill in arpcom structure entries */
sc->arpcom.ac_if.if_name = lncdriver.name;
sc->arpcom.ac_if.if_unit = isa_dev->id_unit;
sc->arpcom.ac_if.if_mtu = ETHERMTU;
sc->arpcom.ac_if.if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_SIMPLEX;
sc->arpcom.ac_if.if_timer = 0;
sc->arpcom.ac_if.if_init = lnc_init;
sc->arpcom.ac_if.if_output = ether_output;
sc->arpcom.ac_if.if_start = lnc_start;
sc->arpcom.ac_if.if_ioctl = lnc_ioctl;
sc->arpcom.ac_if.if_reset = lnc_reset;
sc->arpcom.ac_if.if_watchdog = lnc_watchdog;
sc->arpcom.ac_if.if_type = IFT_ETHER;
sc->arpcom.ac_if.if_addrlen = ETHER_ADDR_LEN;
sc->arpcom.ac_if.if_hdrlen = ETHER_HDR_LEN;
/*
* XXX -- should check return status of if_attach
*/
if_attach(&sc->arpcom.ac_if);
printf("lnc%d: %s, %s address %s\n",
isa_dev->id_unit,
nic_ident[sc->nic.ident],
ic_ident[sc->nic.ic],
ether_sprintf(sc->arpcom.ac_enaddr));
#if NBPFILTER > 0
bpfattach(&sc->bpf, &sc->arpcom.ac_if, DLT_EN10MB, sizeof(struct ether_header));
#endif
return (1);
}
void
lnc_init(int unit)
{
struct lnc_softc *sc = &lnc_softc[unit];
int s, i;
char *lnc_mem;
struct mbuf *m = 0;
/* Check that interface has valid address */
if (!sc->arpcom.ac_if.if_addrlist)
return;
/* Shut down interface */
s = splimp();
lnc_stop(unit);
sc->arpcom.ac_if.if_flags |= IFF_BROADCAST | IFF_NOTRAILERS | IFF_SIMPLEX;
/*
* This sets up the memory area for the controller. Memory is set up for
* the initialisation block (12 words of contiguous memory starting
* on a word boundary),the transmit and receive ring structures (each
* entry is 4 words long and must start on a quadword boundary) and
* the data buffers.
*
* The alignment tests are particularly paranoid.
*/
sc->recv_next = 0;
sc->trans_ring = sc->recv_ring + NDESC(sc->nrdre);
sc->trans_next = 0;
if (sc->nic.mem_mode == SHMEM)
lnc_mem = (char *) sc->nic.iobase;
else
lnc_mem = (char *) (sc->trans_ring + NDESC(sc->ntdre));
lnc_mem = (char *)(((int)lnc_mem + 1) & ~1);
sc->init_block = (struct init_block *) ((int) lnc_mem & ~1);
lnc_mem = (char *) (sc->init_block + 1);
lnc_mem = (char *)(((int)lnc_mem + 7) & ~7);
/* Initialise pointers to descriptor entries */
for (i = 0; i < NDESC(sc->nrdre); i++) {
(sc->recv_ring + i)->md = (struct mds *) lnc_mem;
lnc_mem += sizeof(struct mds);
}
for (i = 0; i < NDESC(sc->ntdre); i++) {
(sc->trans_ring + i)->md = (struct mds *) lnc_mem;
lnc_mem += sizeof(struct mds);
}
/* Initialise the remaining ring entries */
if (sc->nic.mem_mode == DMA_MBUF) {
sc->mbufs = 0;
sc->mbuf_count = 0;
/* Free previously allocated mbufs */
if (sc->initialised)
lnc_free_mbufs(sc);
for (i = 0; i < NDESC(sc->nrdre); i++) {
if (alloc_mbuf_cluster(sc, sc->recv_ring+i)) {
log(LOG_ERR, "Initialisation failed -- no mbufs\n");
splx(s);
return;
}
}
for (i = 0; i < NDESC(sc->ntdre); i++) {
(sc->trans_ring + i)->buff.mbuf = 0;
(sc->trans_ring + i)->md->md0 = 0;
(sc->trans_ring + i)->md->md1 = 0;
(sc->trans_ring + i)->md->md2 = 0;
(sc->trans_ring + i)->md->md3 = 0;
}
} else {
for (i = 0; i < NDESC(sc->nrdre); i++) {
(sc->recv_ring + i)->md->md0 = kvtop(lnc_mem);
(sc->recv_ring + i)->md->md1 = ((kvtop(lnc_mem) >> 16) & 0xff) | OWN;
(sc->recv_ring + i)->md->md2 = -RECVBUFSIZE;
(sc->recv_ring + i)->md->md3 = 0;
(sc->recv_ring + i)->buff.data = lnc_mem;
lnc_mem += RECVBUFSIZE;
}
for (i = 0; i < NDESC(sc->ntdre); i++) {
(sc->trans_ring + i)->md->md0 = kvtop(lnc_mem);
(sc->trans_ring + i)->md->md1 = ((kvtop(lnc_mem) >> 16) & 0xff);
(sc->trans_ring + i)->md->md2 = 0;
(sc->trans_ring + i)->md->md3 = 0;
(sc->trans_ring + i)->buff.data = lnc_mem;
lnc_mem += TRANSBUFSIZE;
}
}
sc->next_to_send = 0;
/* Set up initialisation block */
sc->init_block->mode = sc->nic.mode;
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc->init_block->padr[i] = sc->arpcom.ac_enaddr[i];
for (i = 0; i < MULTICAST_ADDR_LEN; i++)
sc->init_block->ladrf[i] = MULTI_INIT_ADDR;
sc->init_block->rdra = kvtop(sc->recv_ring->md);
sc->init_block->rlen = ((kvtop(sc->recv_ring->md) >> 16) & 0xff) | (sc->nrdre << 13);
sc->init_block->tdra = kvtop(sc->trans_ring->md);
sc->init_block->tlen = ((kvtop(sc->trans_ring->md) >> 16) & 0xff) | (sc->ntdre << 13);
/* Set initialised to show that the memory area is valid */
sc->initialised = 1;
sc->pending_transmits = 0;
/* Give the LANCE the physical address of the initialisation block */
write_csr(unit, CSR1, kvtop(sc->init_block));
write_csr(unit, CSR2, (kvtop(sc->init_block) >> 16) & 0xff);
/*
* Depending on which controller this is, CSR3 has different meanings.
* For the Am7990 it controls DMA operations, for the Am79C960 it
* controls interrupt masks and transmitter algorithms. In either
* case, none of the flags are set.
*
*/
write_csr(unit, CSR3, 0);
/* Let's see if it starts */
write_csr(unit, CSR0, INIT);
for (i = 0; i < 1000; i++)
if (read_csr(unit, CSR0) & IDON)
break;
/*
* Now that the initialisation is complete there's no reason to
* access anything except CSR0, so we leave RAP pointing there
* so we can just access RDP from now on, saving an outw each
* time.
*/
if (read_csr(unit, CSR0) & IDON) {
/*
* Enable interrupts, start the LANCE, mark the interface as
* running and transmit any pending packets.
*/
write_csr(unit, CSR0, STRT | INEA);
sc->arpcom.ac_if.if_flags |= IFF_RUNNING;
sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
lnc_start(&sc->arpcom.ac_if);
} else
log(LOG_ERR, "lnc%d: Initialisation failed\n", unit);
splx(s);
}
/*
* The interrupt flag (INTR) will be set and provided that the interrupt enable
* flag (INEA) is also set, the interrupt pin will be driven low when any of
* the following occur:
*
* 1) Completion of the initialisation routine (IDON). 2) The reception of a
* packet (RINT). 3) The transmission of a packet (TINT). 4) A transmitter
* timeout error (BABL). 5) A missed packet (MISS). 6) A memory error (MERR).
*
* The interrupt flag is cleared when all of the above conditions are cleared.
*
* If the driver is reset from this routine then it first checks to see if any
* interrupts have ocurred since the reset and handles them before returning.
* This is because the NIC may signify a pending interrupt in CSR0 using the
* INTR flag even if a hardware interrupt is currently inhibited (at least I
* think it does from reading the data sheets). We may as well deal with
* these pending interrupts now rather than get the overhead of another
* hardware interrupt immediately upon returning from the interrupt handler.
*
*/
void
lncintr(int unit)
{
struct lnc_softc *sc = &lnc_softc[unit];
u_short csr0;
/*
* INEA is the only bit that can be cleared by writing a 0 to it so
* we have to include it in any writes that clear other flags.
*/
while ((csr0 = inw(sc->rdp)) & INTR) {
/*
* Clear interrupt flags early to avoid race conditions. The
* controller can still set these flags even while we're in
* this interrupt routine. If the flag is still set from the
* event that caused this interrupt any new events will
* be missed.
*/
outw(sc->rdp, IDON | CERR | BABL | MISS | MERR | RINT | TINT | INEA);
/* We don't do anything with the IDON flag */
if (csr0 & ERR) {
if (csr0 & CERR) {
log(LOG_ERR, "lnc%d: Heartbeat error -- SQE test failed\n", unit);
LNCSTATS(cerr)
}
if (csr0 & BABL) {
log(LOG_ERR, "lnc%d: Babble error - more than 1519 bytes transmitted\n", unit);
LNCSTATS(babl)
sc->arpcom.ac_if.if_oerrors++;
}
if (csr0 & MISS) {
log(LOG_ERR, "lnc%d: Missed packet -- no receive buffer\n", unit);
LNCSTATS(miss)
sc->arpcom.ac_if.if_ierrors++;
}
if (csr0 & MERR) {
log(LOG_ERR, "lnc%d: Memory error -- Resetting\n", unit);
LNCSTATS(merr)
lnc_reset(unit);
continue;
}
}
if (csr0 & RINT) {
LNCSTATS(rint)
lnc_rint(unit);
}
if (csr0 & TINT) {
LNCSTATS(tint)
sc->arpcom.ac_if.if_timer = 0;
lnc_tint(unit);
}
/*
* If there's room in the transmit descriptor ring then queue
* some more transmit packets.
*/
if (!(sc->arpcom.ac_if.if_flags & IFF_OACTIVE))
lnc_start(&sc->arpcom.ac_if);
}
}
inline int
mbuf_to_buffer(struct mbuf *m, char *buffer)
{
int len=0;
for( ; m; m = m->m_next) {
bcopy(mtod(m, caddr_t), buffer, m->m_len);
buffer += m->m_len;
len += m->m_len;
}
return(len);
}
inline struct mbuf *
chain_to_cluster(struct mbuf *m)
{
struct mbuf *new;
MGET(new, M_DONTWAIT, MT_DATA);
if (new) {
MCLGET(new, M_DONTWAIT);
if (new->m_ext.ext_buf) {
new->m_len = mbuf_to_buffer(m, new->m_data);
m_freem(m);
return(new);
} else
m_free(new);
}
return(0);
}
/*
* IFF_OACTIVE and IFF_RUNNING are checked in ether_output so it's redundant
* to check them again since we wouldn't have got here if they were not
* appropriately set. This is also called from lnc_init and lncintr but the
* flags should be ok at those points too.
*/
void
lnc_start(struct ifnet *ifp)
{
struct lnc_softc *sc = &lnc_softc[ifp->if_unit];
struct host_ring_entry *desc;
int tmp;
int end_of_packet;
struct mbuf *head, *m;
int len, chunk;
char *buffer;
int addr;
int no_entries_needed;
do {
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, head);
if (!head)
return;
if (sc->nic.mem_mode == DMA_MBUF) {
no_entries_needed = 0;
for (m=head; m; m = m->m_next)
no_entries_needed++;
/*
* We try and avoid bcopy as much as possible
* but there are two cases when we use it.
*
* 1) If there are not enough free entries in the ring
* to hold each mbuf in the chain then compact the
* chain into a single cluster.
*
* 2) The Am7990 and Am79C90 must not have less than
* 100 bytes in the first descriptor of a chained
* packet so it's necessary to shuffle the mbuf
* contents to ensure this.
*/
if (no_entries_needed > (NDESC(sc->ntdre) - sc->pending_transmits))
if (!(head = chain_to_cluster(head))) {
log(LOG_ERR, "lnc%d: Couldn't get mbuf for transmit packet -- Resetting \n ",ifp->if_unit);
lnc_reset(ifp->if_unit);
return;
}
else if ((sc->nic.ic == LANCE) || (sc->nic.ic == C_LANCE)) {
if ((head->m_len < 100) && (head->m_next)) {
len = 100 - head->m_len;
if (M_TRAILINGSPACE(head) < len) {
/*
* Move data to start of data
* area. We assume the first
* mbuf has a packet header
* and is not a cluster.
*/
bcopy((caddr_t)head->m_data, (caddr_t)head->m_pktdat, head->m_len);
head->m_data = head->m_pktdat;
}
m = head->m_next;
while (m && (len > 0)) {
chunk = min(len, m->m_len);
bcopy(mtod(m, caddr_t), mtod(head, caddr_t) + head->m_len, chunk);
len -= chunk;
head->m_len += chunk;
m->m_len -= chunk;
m->m_data += chunk;
if (m->m_len <= 0) {
MFREE(m, head->m_next);
m = head->m_next;
}
}
}
}
tmp = sc->next_to_send;
/*
* On entering this loop we know that tmp points to a
* descriptor with a clear OWN bit.
*/
desc = sc->trans_ring + tmp;
len = ETHER_MIN_LEN;
for (m = head; m; m = m->m_next) {
desc->buff.mbuf = m;
addr = kvtop(m->m_data);
desc->md->md0 = addr;
desc->md->md1 = ((addr >> 16) & 0xff);
desc->md->md3 = 0;
desc->md->md2 = -m->m_len;
sc->pending_transmits++;
len -= m->m_len;
INC_MD_PTR(tmp, sc->ntdre)
desc = sc->trans_ring + tmp;
}
end_of_packet = tmp;
DEC_MD_PTR(tmp, sc->ntdre)
desc = sc->trans_ring + tmp;
desc->md->md1 |= ENP;
if (len > 0)
desc->md->md2 -= len;
/*
* Set OWN bits in reverse order, otherwise the Lance
* could start sending the packet before all the
* buffers have been relinquished by the host.
*/
while (tmp != sc->next_to_send) {
desc->md->md1 |= OWN;
DEC_MD_PTR(tmp, sc->ntdre)
desc = sc->trans_ring + tmp;
}
sc->next_to_send = end_of_packet;
desc->md->md1 |= STP | OWN;
} else {
sc->pending_transmits++;
desc = sc->trans_ring + sc->next_to_send;
len = mbuf_to_buffer(head, desc->buff.data);
desc->md->md3 = 0;
desc->md->md2 = -max(len, ETHER_MIN_LEN);
desc->md->md1 |= OWN | STP | ENP;
INC_MD_PTR(sc->next_to_send, sc->ntdre)
}
/* Force an immediate poll of the transmit ring */
outw(sc->rdp, TDMD | INEA);
/*
* Set a timer so if the buggy Am7990.h shuts
* down we can wake it up.
*/
ifp->if_timer = 2;
#if NBPFILTER > 0
if (sc->bpf)
bpf_mtap(sc->bpf, head);
#endif
if (sc->nic.mem_mode != DMA_MBUF)
m_freem(head);
} while (sc->pending_transmits < NDESC(sc->ntdre));
/*
* Transmit ring is full so set IFF_OACTIVE
* since we can't buffer any more packets.
*/
sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
LNCSTATS(trans_ring_full)
}
int
lnc_ioctl(struct ifnet * ifp, int command, caddr_t data)
{
struct lnc_softc *sc = &lnc_softc[ifp->if_unit];
struct ifaddr *ifa = (struct ifaddr *) data;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
lnc_init(ifp->if_unit);
arp_ifinit((struct arpcom *)ifp, ifa);
break;
#endif
default:
lnc_init(ifp->if_unit);
break;
}
break;
case SIOCSIFFLAGS:
#ifdef DEBUG
if (ifp->if_flags & IFF_DEBUG)
sc->lnc_debug = 1;
else
sc->lnc_debug = 0;
#endif
if (ifp->if_flags & IFF_PROMISC) {
if (!(sc->nic.mode & PROM)) {
sc->nic.mode |= PROM;
lnc_init(ifp->if_unit);
}
} else if (sc->nic.mode & PROM) {
sc->nic.mode &= ~PROM;
lnc_init(ifp->if_unit);
}
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running,
* then stop it.
*/
lnc_stop(ifp->if_unit);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
lnc_init(ifp->if_unit);
}
break;
#ifdef notyet
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->arpcom) :
ether_delmulti(ifr, &sc->arpcom);
if (error == ENETRESET) {
lnc_setladrf(ifp,sc);
error = 0;
}
break;
#endif
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
if (ifr->ifr_mtu > ETHERMTU) {
error = EINVAL;
} else
ifp->if_mtu = ifr->ifr_mtu;
break;
default:
error = EINVAL;
}
(void) splx(s);
return error;
}
void
lnc_watchdog(int unit)
{
log(LOG_ERR, "lnc%d: Device timeout -- Resetting\n", unit);
++lnc_softc[unit].arpcom.ac_if.if_oerrors;
lnc_reset(unit);
}
#ifdef DEBUG
void
lnc_dump_state(int unit)
{
struct lnc_softc *sc = &lnc_softc[unit];
int i;
log(LOG_DEBUG, "\nDriver/NIC [%d] state dump\n", unit);
log(LOG_DEBUG, "Memory access mode: %b\n", sc->nic.mem_mode, MEM_MODES);
log(LOG_DEBUG, "Host memory\n");
log(LOG_DEBUG, "-----------\n");
log(LOG_DEBUG, "Receive ring: base = %x, next = %x\n",
sc->recv_ring, (sc->recv_ring + sc->recv_next));
for (i = 0; i < NDESC(sc->nrdre); i++)
log(LOG_DEBUG, "\t%d:%x md = %x buff = %x\n",
i, sc->recv_ring + i, (sc->recv_ring + i)->md,
(sc->recv_ring + i)->buff);
log(LOG_DEBUG, "Transmit ring: base = %x, next = %x\n",
sc->trans_ring, (sc->trans_ring + sc->trans_next));
for (i = 0; i < NDESC(sc->ntdre); i++)
log(LOG_DEBUG, "\t%d:%x md = %x buff = %x\n",
i, sc->trans_ring + i, (sc->trans_ring + i)->md,
(sc->trans_ring + i)->buff);
log(LOG_DEBUG, "Lance memory (may be on host(DMA) or card(SHMEM))\n");
log(LOG_DEBUG, "Init block = %x\n", sc->init_block);
log(LOG_DEBUG, "\tmode = %b rlen:rdra = %x:%x tlen:tdra = %x:%x\n",
sc->init_block->mode, INIT_MODE, sc->init_block->rlen,
sc->init_block->rdra, sc->init_block->tlen, sc->init_block->tdra);
log(LOG_DEBUG, "Receive descriptor ring\n");
for (i = 0; i < NDESC(sc->nrdre); i++)
log(LOG_DEBUG, "\t%d buffer = 0x%x%x, BCNT = %d,\tMCNT = %u,\tflags = %b\n",
i, ((sc->recv_ring + i)->md->md1 & HADR),
(sc->recv_ring + i)->md->md0,
-(short) (sc->recv_ring + i)->md->md2,
(sc->recv_ring + i)->md->md3,
(((sc->recv_ring + i)->md->md1 & ~HADR) >> 8), RECV_MD1);
log(LOG_DEBUG, "Transmit descriptor ring\n");
for (i = 0; i < NDESC(sc->ntdre); i++)
log(LOG_DEBUG, "\t%d buffer = 0x%x%x, BCNT = %d,\tflags = %b %b\n",
i, ((sc->trans_ring + i)->md->md1 & HADR),
(sc->trans_ring + i)->md->md0,
-(short) (sc->trans_ring + i)->md->md2,
((sc->trans_ring + i)->md->md1 >> 8), TRANS_MD1,
((sc->trans_ring + i)->md->md3 >> 10), TRANS_MD3);
log(LOG_DEBUG, "\nnext_to_send = %x\n", sc->next_to_send);
log(LOG_DEBUG, "\n CSR0 = %b CSR1 = %x CSR2 = %x CSR3 = %x\n\n", read_csr(unit, CSR0), CSR0_FLAGS, read_csr(unit, CSR1), read_csr(unit, CSR2), read_csr(unit, CSR3));
/* Set RAP back to CSR0 */
outw(sc->rap, CSR0);
}
void
mbuf_dump_chain(struct mbuf * m)
{
#define MBUF_FLAGS \
"\20\1M_EXT\2M_PKTHDR\3M_EOR\4UNKNOWN\5M_BCAST\6M_MCAST"
if (!m)
log(LOG_DEBUG, "m == NULL\n");
do {
log(LOG_DEBUG, "m = %x\n", m);
log(LOG_DEBUG, "m_hdr.mh_next = %x\n", m->m_hdr.mh_next);
log(LOG_DEBUG, "m_hdr.mh_nextpkt = %x\n", m->m_hdr.mh_nextpkt);
log(LOG_DEBUG, "m_hdr.mh_len = %d\n", m->m_hdr.mh_len);
log(LOG_DEBUG, "m_hdr.mh_data = %x\n", m->m_hdr.mh_data);
log(LOG_DEBUG, "m_hdr.mh_type = %d\n", m->m_hdr.mh_type);
log(LOG_DEBUG, "m_hdr.mh_flags = %b\n", m->m_hdr.mh_flags, MBUF_FLAGS);
if (!(m->m_hdr.mh_flags & (M_PKTHDR | M_EXT)))
log(LOG_DEBUG, "M_dat.M_databuf = %x\n", m->M_dat.M_databuf);
else {
if (m->m_hdr.mh_flags & M_PKTHDR) {
log(LOG_DEBUG, "M_dat.MH.MH_pkthdr.len = %d\n", m->M_dat.MH.MH_pkthdr.len);
log(LOG_DEBUG, "M_dat.MH.MH_pkthdr.rcvif = %x\n", m->M_dat.MH.MH_pkthdr.rcvif);
if (!(m->m_hdr.mh_flags & M_EXT))
log(LOG_DEBUG, "M_dat.MH.MH_dat.MH_databuf = %x\n", m->M_dat.MH.MH_dat.MH_databuf);
}
if (m->m_hdr.mh_flags & M_EXT) {
log(LOG_DEBUG, "M_dat.MH.MH_dat.MH_ext.ext_buff %x\n", m->M_dat.MH.MH_dat.MH_ext.ext_buf);
log(LOG_DEBUG, "M_dat.MH.MH_dat.MH_ext.ext_free %x\n", m->M_dat.MH.MH_dat.MH_ext.ext_free);
log(LOG_DEBUG, "M_dat.MH.MH_dat.MH_ext.ext_size %d\n", m->M_dat.MH.MH_dat.MH_ext.ext_size);
}
}
} while (m = m->m_next);
}
#endif
#endif