1003 lines
40 KiB
C++
1003 lines
40 KiB
C++
//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This simple pass provides alias and mod/ref information for global values
|
|
// that do not have their address taken, and keeps track of whether functions
|
|
// read or write memory (are "pure"). For this simple (but very common) case,
|
|
// we can provide pretty accurate and useful information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "globalsmodref-aa"
|
|
|
|
STATISTIC(NumNonAddrTakenGlobalVars,
|
|
"Number of global vars without address taken");
|
|
STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
|
|
STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
|
|
STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
|
|
STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
|
|
|
|
// An option to enable unsafe alias results from the GlobalsModRef analysis.
|
|
// When enabled, GlobalsModRef will provide no-alias results which in extremely
|
|
// rare cases may not be conservatively correct. In particular, in the face of
|
|
// transforms which cause assymetry between how effective GetUnderlyingObject
|
|
// is for two pointers, it may produce incorrect results.
|
|
//
|
|
// These unsafe results have been returned by GMR for many years without
|
|
// causing significant issues in the wild and so we provide a mechanism to
|
|
// re-enable them for users of LLVM that have a particular performance
|
|
// sensitivity and no known issues. The option also makes it easy to evaluate
|
|
// the performance impact of these results.
|
|
static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
|
|
"enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
|
|
|
|
/// The mod/ref information collected for a particular function.
|
|
///
|
|
/// We collect information about mod/ref behavior of a function here, both in
|
|
/// general and as pertains to specific globals. We only have this detailed
|
|
/// information when we know *something* useful about the behavior. If we
|
|
/// saturate to fully general mod/ref, we remove the info for the function.
|
|
class GlobalsAAResult::FunctionInfo {
|
|
typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
|
|
|
|
/// Build a wrapper struct that has 8-byte alignment. All heap allocations
|
|
/// should provide this much alignment at least, but this makes it clear we
|
|
/// specifically rely on this amount of alignment.
|
|
struct LLVM_ALIGNAS(8) AlignedMap {
|
|
AlignedMap() {}
|
|
AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
|
|
GlobalInfoMapType Map;
|
|
};
|
|
|
|
/// Pointer traits for our aligned map.
|
|
struct AlignedMapPointerTraits {
|
|
static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
|
|
static inline AlignedMap *getFromVoidPointer(void *P) {
|
|
return (AlignedMap *)P;
|
|
}
|
|
enum { NumLowBitsAvailable = 3 };
|
|
static_assert(AlignOf<AlignedMap>::Alignment >= (1 << NumLowBitsAvailable),
|
|
"AlignedMap insufficiently aligned to have enough low bits.");
|
|
};
|
|
|
|
/// The bit that flags that this function may read any global. This is
|
|
/// chosen to mix together with ModRefInfo bits.
|
|
enum { MayReadAnyGlobal = 4 };
|
|
|
|
/// Checks to document the invariants of the bit packing here.
|
|
static_assert((MayReadAnyGlobal & MRI_ModRef) == 0,
|
|
"ModRef and the MayReadAnyGlobal flag bits overlap.");
|
|
static_assert(((MayReadAnyGlobal | MRI_ModRef) >>
|
|
AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
|
|
"Insufficient low bits to store our flag and ModRef info.");
|
|
|
|
public:
|
|
FunctionInfo() : Info() {}
|
|
~FunctionInfo() {
|
|
delete Info.getPointer();
|
|
}
|
|
// Spell out the copy ond move constructors and assignment operators to get
|
|
// deep copy semantics and correct move semantics in the face of the
|
|
// pointer-int pair.
|
|
FunctionInfo(const FunctionInfo &Arg)
|
|
: Info(nullptr, Arg.Info.getInt()) {
|
|
if (const auto *ArgPtr = Arg.Info.getPointer())
|
|
Info.setPointer(new AlignedMap(*ArgPtr));
|
|
}
|
|
FunctionInfo(FunctionInfo &&Arg)
|
|
: Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
|
|
Arg.Info.setPointerAndInt(nullptr, 0);
|
|
}
|
|
FunctionInfo &operator=(const FunctionInfo &RHS) {
|
|
delete Info.getPointer();
|
|
Info.setPointerAndInt(nullptr, RHS.Info.getInt());
|
|
if (const auto *RHSPtr = RHS.Info.getPointer())
|
|
Info.setPointer(new AlignedMap(*RHSPtr));
|
|
return *this;
|
|
}
|
|
FunctionInfo &operator=(FunctionInfo &&RHS) {
|
|
delete Info.getPointer();
|
|
Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
|
|
RHS.Info.setPointerAndInt(nullptr, 0);
|
|
return *this;
|
|
}
|
|
|
|
/// Returns the \c ModRefInfo info for this function.
|
|
ModRefInfo getModRefInfo() const {
|
|
return ModRefInfo(Info.getInt() & MRI_ModRef);
|
|
}
|
|
|
|
/// Adds new \c ModRefInfo for this function to its state.
|
|
void addModRefInfo(ModRefInfo NewMRI) {
|
|
Info.setInt(Info.getInt() | NewMRI);
|
|
}
|
|
|
|
/// Returns whether this function may read any global variable, and we don't
|
|
/// know which global.
|
|
bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
|
|
|
|
/// Sets this function as potentially reading from any global.
|
|
void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
|
|
|
|
/// Returns the \c ModRefInfo info for this function w.r.t. a particular
|
|
/// global, which may be more precise than the general information above.
|
|
ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
|
|
ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef;
|
|
if (AlignedMap *P = Info.getPointer()) {
|
|
auto I = P->Map.find(&GV);
|
|
if (I != P->Map.end())
|
|
GlobalMRI = ModRefInfo(GlobalMRI | I->second);
|
|
}
|
|
return GlobalMRI;
|
|
}
|
|
|
|
/// Add mod/ref info from another function into ours, saturating towards
|
|
/// MRI_ModRef.
|
|
void addFunctionInfo(const FunctionInfo &FI) {
|
|
addModRefInfo(FI.getModRefInfo());
|
|
|
|
if (FI.mayReadAnyGlobal())
|
|
setMayReadAnyGlobal();
|
|
|
|
if (AlignedMap *P = FI.Info.getPointer())
|
|
for (const auto &G : P->Map)
|
|
addModRefInfoForGlobal(*G.first, G.second);
|
|
}
|
|
|
|
void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
|
|
AlignedMap *P = Info.getPointer();
|
|
if (!P) {
|
|
P = new AlignedMap();
|
|
Info.setPointer(P);
|
|
}
|
|
auto &GlobalMRI = P->Map[&GV];
|
|
GlobalMRI = ModRefInfo(GlobalMRI | NewMRI);
|
|
}
|
|
|
|
/// Clear a global's ModRef info. Should be used when a global is being
|
|
/// deleted.
|
|
void eraseModRefInfoForGlobal(const GlobalValue &GV) {
|
|
if (AlignedMap *P = Info.getPointer())
|
|
P->Map.erase(&GV);
|
|
}
|
|
|
|
private:
|
|
/// All of the information is encoded into a single pointer, with a three bit
|
|
/// integer in the low three bits. The high bit provides a flag for when this
|
|
/// function may read any global. The low two bits are the ModRefInfo. And
|
|
/// the pointer, when non-null, points to a map from GlobalValue to
|
|
/// ModRefInfo specific to that GlobalValue.
|
|
PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
|
|
};
|
|
|
|
void GlobalsAAResult::DeletionCallbackHandle::deleted() {
|
|
Value *V = getValPtr();
|
|
if (auto *F = dyn_cast<Function>(V))
|
|
GAR->FunctionInfos.erase(F);
|
|
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
if (GAR->NonAddressTakenGlobals.erase(GV)) {
|
|
// This global might be an indirect global. If so, remove it and
|
|
// remove any AllocRelatedValues for it.
|
|
if (GAR->IndirectGlobals.erase(GV)) {
|
|
// Remove any entries in AllocsForIndirectGlobals for this global.
|
|
for (auto I = GAR->AllocsForIndirectGlobals.begin(),
|
|
E = GAR->AllocsForIndirectGlobals.end();
|
|
I != E; ++I)
|
|
if (I->second == GV)
|
|
GAR->AllocsForIndirectGlobals.erase(I);
|
|
}
|
|
|
|
// Scan the function info we have collected and remove this global
|
|
// from all of them.
|
|
for (auto &FIPair : GAR->FunctionInfos)
|
|
FIPair.second.eraseModRefInfoForGlobal(*GV);
|
|
}
|
|
}
|
|
|
|
// If this is an allocation related to an indirect global, remove it.
|
|
GAR->AllocsForIndirectGlobals.erase(V);
|
|
|
|
// And clear out the handle.
|
|
setValPtr(nullptr);
|
|
GAR->Handles.erase(I);
|
|
// This object is now destroyed!
|
|
}
|
|
|
|
FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
|
|
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
|
|
|
|
if (FunctionInfo *FI = getFunctionInfo(F)) {
|
|
if (FI->getModRefInfo() == MRI_NoModRef)
|
|
Min = FMRB_DoesNotAccessMemory;
|
|
else if ((FI->getModRefInfo() & MRI_Mod) == 0)
|
|
Min = FMRB_OnlyReadsMemory;
|
|
}
|
|
|
|
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
|
|
}
|
|
|
|
FunctionModRefBehavior
|
|
GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) {
|
|
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
|
|
|
|
if (const Function *F = CS.getCalledFunction())
|
|
if (FunctionInfo *FI = getFunctionInfo(F)) {
|
|
if (FI->getModRefInfo() == MRI_NoModRef)
|
|
Min = FMRB_DoesNotAccessMemory;
|
|
else if ((FI->getModRefInfo() & MRI_Mod) == 0)
|
|
Min = FMRB_OnlyReadsMemory;
|
|
}
|
|
|
|
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
|
|
}
|
|
|
|
/// Returns the function info for the function, or null if we don't have
|
|
/// anything useful to say about it.
|
|
GlobalsAAResult::FunctionInfo *
|
|
GlobalsAAResult::getFunctionInfo(const Function *F) {
|
|
auto I = FunctionInfos.find(F);
|
|
if (I != FunctionInfos.end())
|
|
return &I->second;
|
|
return nullptr;
|
|
}
|
|
|
|
/// AnalyzeGlobals - Scan through the users of all of the internal
|
|
/// GlobalValue's in the program. If none of them have their "address taken"
|
|
/// (really, their address passed to something nontrivial), record this fact,
|
|
/// and record the functions that they are used directly in.
|
|
void GlobalsAAResult::AnalyzeGlobals(Module &M) {
|
|
SmallPtrSet<Function *, 64> TrackedFunctions;
|
|
for (Function &F : M)
|
|
if (F.hasLocalLinkage())
|
|
if (!AnalyzeUsesOfPointer(&F)) {
|
|
// Remember that we are tracking this global.
|
|
NonAddressTakenGlobals.insert(&F);
|
|
TrackedFunctions.insert(&F);
|
|
Handles.emplace_front(*this, &F);
|
|
Handles.front().I = Handles.begin();
|
|
++NumNonAddrTakenFunctions;
|
|
}
|
|
|
|
SmallPtrSet<Function *, 64> Readers, Writers;
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (GV.hasLocalLinkage()) {
|
|
if (!AnalyzeUsesOfPointer(&GV, &Readers,
|
|
GV.isConstant() ? nullptr : &Writers)) {
|
|
// Remember that we are tracking this global, and the mod/ref fns
|
|
NonAddressTakenGlobals.insert(&GV);
|
|
Handles.emplace_front(*this, &GV);
|
|
Handles.front().I = Handles.begin();
|
|
|
|
for (Function *Reader : Readers) {
|
|
if (TrackedFunctions.insert(Reader).second) {
|
|
Handles.emplace_front(*this, Reader);
|
|
Handles.front().I = Handles.begin();
|
|
}
|
|
FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref);
|
|
}
|
|
|
|
if (!GV.isConstant()) // No need to keep track of writers to constants
|
|
for (Function *Writer : Writers) {
|
|
if (TrackedFunctions.insert(Writer).second) {
|
|
Handles.emplace_front(*this, Writer);
|
|
Handles.front().I = Handles.begin();
|
|
}
|
|
FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod);
|
|
}
|
|
++NumNonAddrTakenGlobalVars;
|
|
|
|
// If this global holds a pointer type, see if it is an indirect global.
|
|
if (GV.getType()->getElementType()->isPointerTy() &&
|
|
AnalyzeIndirectGlobalMemory(&GV))
|
|
++NumIndirectGlobalVars;
|
|
}
|
|
Readers.clear();
|
|
Writers.clear();
|
|
}
|
|
}
|
|
|
|
/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
|
|
/// If this is used by anything complex (i.e., the address escapes), return
|
|
/// true. Also, while we are at it, keep track of those functions that read and
|
|
/// write to the value.
|
|
///
|
|
/// If OkayStoreDest is non-null, stores into this global are allowed.
|
|
bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
|
|
SmallPtrSetImpl<Function *> *Readers,
|
|
SmallPtrSetImpl<Function *> *Writers,
|
|
GlobalValue *OkayStoreDest) {
|
|
if (!V->getType()->isPointerTy())
|
|
return true;
|
|
|
|
for (Use &U : V->uses()) {
|
|
User *I = U.getUser();
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
if (Readers)
|
|
Readers->insert(LI->getParent()->getParent());
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
if (V == SI->getOperand(1)) {
|
|
if (Writers)
|
|
Writers->insert(SI->getParent()->getParent());
|
|
} else if (SI->getOperand(1) != OkayStoreDest) {
|
|
return true; // Storing the pointer
|
|
}
|
|
} else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
|
|
if (AnalyzeUsesOfPointer(I, Readers, Writers))
|
|
return true;
|
|
} else if (Operator::getOpcode(I) == Instruction::BitCast) {
|
|
if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
|
|
return true;
|
|
} else if (auto CS = CallSite(I)) {
|
|
// Make sure that this is just the function being called, not that it is
|
|
// passing into the function.
|
|
if (CS.isDataOperand(&U)) {
|
|
// Detect calls to free.
|
|
if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) {
|
|
if (Writers)
|
|
Writers->insert(CS->getParent()->getParent());
|
|
} else if (CS.doesNotCapture(CS.getDataOperandNo(&U))) {
|
|
Function *ParentF = CS->getParent()->getParent();
|
|
// A nocapture argument may be read from or written to, but does not
|
|
// escape unless the call can somehow recurse.
|
|
//
|
|
// nocapture "indicates that the callee does not make any copies of
|
|
// the pointer that outlive itself". Therefore if we directly or
|
|
// indirectly recurse, we must treat the pointer as escaping.
|
|
if (FunctionToSCCMap[ParentF] ==
|
|
FunctionToSCCMap[CS.getCalledFunction()])
|
|
return true;
|
|
if (Readers)
|
|
Readers->insert(ParentF);
|
|
if (Writers)
|
|
Writers->insert(ParentF);
|
|
} else {
|
|
return true; // Argument of an unknown call.
|
|
}
|
|
// If the Callee is not ReadNone, it may read the global,
|
|
// and if it is not ReadOnly, it may also write to it.
|
|
Function *CalleeF = CS.getCalledFunction();
|
|
if (!CalleeF->doesNotAccessMemory()) {
|
|
if (Readers)
|
|
Readers->insert(CalleeF);
|
|
if (Writers && !CalleeF->onlyReadsMemory())
|
|
Writers->insert(CalleeF);
|
|
}
|
|
}
|
|
} else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
|
|
if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
|
|
return true; // Allow comparison against null.
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
|
|
/// which holds a pointer type. See if the global always points to non-aliased
|
|
/// heap memory: that is, all initializers of the globals are allocations, and
|
|
/// those allocations have no use other than initialization of the global.
|
|
/// Further, all loads out of GV must directly use the memory, not store the
|
|
/// pointer somewhere. If this is true, we consider the memory pointed to by
|
|
/// GV to be owned by GV and can disambiguate other pointers from it.
|
|
bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
|
|
// Keep track of values related to the allocation of the memory, f.e. the
|
|
// value produced by the malloc call and any casts.
|
|
std::vector<Value *> AllocRelatedValues;
|
|
|
|
// If the initializer is a valid pointer, bail.
|
|
if (Constant *C = GV->getInitializer())
|
|
if (!C->isNullValue())
|
|
return false;
|
|
|
|
// Walk the user list of the global. If we find anything other than a direct
|
|
// load or store, bail out.
|
|
for (User *U : GV->users()) {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
|
|
// The pointer loaded from the global can only be used in simple ways:
|
|
// we allow addressing of it and loading storing to it. We do *not* allow
|
|
// storing the loaded pointer somewhere else or passing to a function.
|
|
if (AnalyzeUsesOfPointer(LI))
|
|
return false; // Loaded pointer escapes.
|
|
// TODO: Could try some IP mod/ref of the loaded pointer.
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
|
|
// Storing the global itself.
|
|
if (SI->getOperand(0) == GV)
|
|
return false;
|
|
|
|
// If storing the null pointer, ignore it.
|
|
if (isa<ConstantPointerNull>(SI->getOperand(0)))
|
|
continue;
|
|
|
|
// Check the value being stored.
|
|
Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
|
|
GV->getParent()->getDataLayout());
|
|
|
|
if (!isAllocLikeFn(Ptr, &TLI))
|
|
return false; // Too hard to analyze.
|
|
|
|
// Analyze all uses of the allocation. If any of them are used in a
|
|
// non-simple way (e.g. stored to another global) bail out.
|
|
if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
|
|
GV))
|
|
return false; // Loaded pointer escapes.
|
|
|
|
// Remember that this allocation is related to the indirect global.
|
|
AllocRelatedValues.push_back(Ptr);
|
|
} else {
|
|
// Something complex, bail out.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Okay, this is an indirect global. Remember all of the allocations for
|
|
// this global in AllocsForIndirectGlobals.
|
|
while (!AllocRelatedValues.empty()) {
|
|
AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
|
|
Handles.emplace_front(*this, AllocRelatedValues.back());
|
|
Handles.front().I = Handles.begin();
|
|
AllocRelatedValues.pop_back();
|
|
}
|
|
IndirectGlobals.insert(GV);
|
|
Handles.emplace_front(*this, GV);
|
|
Handles.front().I = Handles.begin();
|
|
return true;
|
|
}
|
|
|
|
void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
|
|
// We do a bottom-up SCC traversal of the call graph. In other words, we
|
|
// visit all callees before callers (leaf-first).
|
|
unsigned SCCID = 0;
|
|
for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
|
|
const std::vector<CallGraphNode *> &SCC = *I;
|
|
assert(!SCC.empty() && "SCC with no functions?");
|
|
|
|
for (auto *CGN : SCC)
|
|
if (Function *F = CGN->getFunction())
|
|
FunctionToSCCMap[F] = SCCID;
|
|
++SCCID;
|
|
}
|
|
}
|
|
|
|
/// AnalyzeCallGraph - At this point, we know the functions where globals are
|
|
/// immediately stored to and read from. Propagate this information up the call
|
|
/// graph to all callers and compute the mod/ref info for all memory for each
|
|
/// function.
|
|
void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
|
|
// We do a bottom-up SCC traversal of the call graph. In other words, we
|
|
// visit all callees before callers (leaf-first).
|
|
for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
|
|
const std::vector<CallGraphNode *> &SCC = *I;
|
|
assert(!SCC.empty() && "SCC with no functions?");
|
|
|
|
if (!SCC[0]->getFunction() || SCC[0]->getFunction()->mayBeOverridden()) {
|
|
// Calls externally or is weak - can't say anything useful. Remove any existing
|
|
// function records (may have been created when scanning globals).
|
|
for (auto *Node : SCC)
|
|
FunctionInfos.erase(Node->getFunction());
|
|
continue;
|
|
}
|
|
|
|
FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()];
|
|
bool KnowNothing = false;
|
|
|
|
// Collect the mod/ref properties due to called functions. We only compute
|
|
// one mod-ref set.
|
|
for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
|
|
Function *F = SCC[i]->getFunction();
|
|
if (!F) {
|
|
KnowNothing = true;
|
|
break;
|
|
}
|
|
|
|
if (F->isDeclaration()) {
|
|
// Try to get mod/ref behaviour from function attributes.
|
|
if (F->doesNotAccessMemory() || F->onlyAccessesInaccessibleMemory()) {
|
|
// Can't do better than that!
|
|
} else if (F->onlyReadsMemory()) {
|
|
FI.addModRefInfo(MRI_Ref);
|
|
if (!F->isIntrinsic())
|
|
// This function might call back into the module and read a global -
|
|
// consider every global as possibly being read by this function.
|
|
FI.setMayReadAnyGlobal();
|
|
} else if (F->onlyAccessesArgMemory() ||
|
|
F->onlyAccessesInaccessibleMemOrArgMem()) {
|
|
// This function may only access (read/write) memory pointed to by its
|
|
// arguments. If this pointer is to a global, this escaping use of the
|
|
// pointer is captured in AnalyzeUsesOfPointer().
|
|
FI.addModRefInfo(MRI_ModRef);
|
|
} else {
|
|
FI.addModRefInfo(MRI_ModRef);
|
|
// Can't say anything useful unless it's an intrinsic - they don't
|
|
// read or write global variables of the kind considered here.
|
|
KnowNothing = !F->isIntrinsic();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
|
|
CI != E && !KnowNothing; ++CI)
|
|
if (Function *Callee = CI->second->getFunction()) {
|
|
if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
|
|
// Propagate function effect up.
|
|
FI.addFunctionInfo(*CalleeFI);
|
|
} else {
|
|
// Can't say anything about it. However, if it is inside our SCC,
|
|
// then nothing needs to be done.
|
|
CallGraphNode *CalleeNode = CG[Callee];
|
|
if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
|
|
KnowNothing = true;
|
|
}
|
|
} else {
|
|
KnowNothing = true;
|
|
}
|
|
}
|
|
|
|
// If we can't say anything useful about this SCC, remove all SCC functions
|
|
// from the FunctionInfos map.
|
|
if (KnowNothing) {
|
|
for (auto *Node : SCC)
|
|
FunctionInfos.erase(Node->getFunction());
|
|
continue;
|
|
}
|
|
|
|
// Scan the function bodies for explicit loads or stores.
|
|
for (auto *Node : SCC) {
|
|
if (FI.getModRefInfo() == MRI_ModRef)
|
|
break; // The mod/ref lattice saturates here.
|
|
for (Instruction &I : instructions(Node->getFunction())) {
|
|
if (FI.getModRefInfo() == MRI_ModRef)
|
|
break; // The mod/ref lattice saturates here.
|
|
|
|
// We handle calls specially because the graph-relevant aspects are
|
|
// handled above.
|
|
if (auto CS = CallSite(&I)) {
|
|
if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) {
|
|
// FIXME: It is completely unclear why this is necessary and not
|
|
// handled by the above graph code.
|
|
FI.addModRefInfo(MRI_ModRef);
|
|
} else if (Function *Callee = CS.getCalledFunction()) {
|
|
// The callgraph doesn't include intrinsic calls.
|
|
if (Callee->isIntrinsic()) {
|
|
FunctionModRefBehavior Behaviour =
|
|
AAResultBase::getModRefBehavior(Callee);
|
|
FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef));
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// All non-call instructions we use the primary predicates for whether
|
|
// thay read or write memory.
|
|
if (I.mayReadFromMemory())
|
|
FI.addModRefInfo(MRI_Ref);
|
|
if (I.mayWriteToMemory())
|
|
FI.addModRefInfo(MRI_Mod);
|
|
}
|
|
}
|
|
|
|
if ((FI.getModRefInfo() & MRI_Mod) == 0)
|
|
++NumReadMemFunctions;
|
|
if (FI.getModRefInfo() == MRI_NoModRef)
|
|
++NumNoMemFunctions;
|
|
|
|
// Finally, now that we know the full effect on this SCC, clone the
|
|
// information to each function in the SCC.
|
|
// FI is a reference into FunctionInfos, so copy it now so that it doesn't
|
|
// get invalidated if DenseMap decides to re-hash.
|
|
FunctionInfo CachedFI = FI;
|
|
for (unsigned i = 1, e = SCC.size(); i != e; ++i)
|
|
FunctionInfos[SCC[i]->getFunction()] = CachedFI;
|
|
}
|
|
}
|
|
|
|
// GV is a non-escaping global. V is a pointer address that has been loaded from.
|
|
// If we can prove that V must escape, we can conclude that a load from V cannot
|
|
// alias GV.
|
|
static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
|
|
const Value *V,
|
|
int &Depth,
|
|
const DataLayout &DL) {
|
|
SmallPtrSet<const Value *, 8> Visited;
|
|
SmallVector<const Value *, 8> Inputs;
|
|
Visited.insert(V);
|
|
Inputs.push_back(V);
|
|
do {
|
|
const Value *Input = Inputs.pop_back_val();
|
|
|
|
if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
|
|
isa<InvokeInst>(Input))
|
|
// Arguments to functions or returns from functions are inherently
|
|
// escaping, so we can immediately classify those as not aliasing any
|
|
// non-addr-taken globals.
|
|
//
|
|
// (Transitive) loads from a global are also safe - if this aliased
|
|
// another global, its address would escape, so no alias.
|
|
continue;
|
|
|
|
// Recurse through a limited number of selects, loads and PHIs. This is an
|
|
// arbitrary depth of 4, lower numbers could be used to fix compile time
|
|
// issues if needed, but this is generally expected to be only be important
|
|
// for small depths.
|
|
if (++Depth > 4)
|
|
return false;
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(Input)) {
|
|
Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
|
|
continue;
|
|
}
|
|
if (auto *SI = dyn_cast<SelectInst>(Input)) {
|
|
const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
|
|
const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
|
|
if (Visited.insert(LHS).second)
|
|
Inputs.push_back(LHS);
|
|
if (Visited.insert(RHS).second)
|
|
Inputs.push_back(RHS);
|
|
continue;
|
|
}
|
|
if (auto *PN = dyn_cast<PHINode>(Input)) {
|
|
for (const Value *Op : PN->incoming_values()) {
|
|
Op = GetUnderlyingObject(Op, DL);
|
|
if (Visited.insert(Op).second)
|
|
Inputs.push_back(Op);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
} while (!Inputs.empty());
|
|
|
|
// All inputs were known to be no-alias.
|
|
return true;
|
|
}
|
|
|
|
// There are particular cases where we can conclude no-alias between
|
|
// a non-addr-taken global and some other underlying object. Specifically,
|
|
// a non-addr-taken global is known to not be escaped from any function. It is
|
|
// also incorrect for a transformation to introduce an escape of a global in
|
|
// a way that is observable when it was not there previously. One function
|
|
// being transformed to introduce an escape which could possibly be observed
|
|
// (via loading from a global or the return value for example) within another
|
|
// function is never safe. If the observation is made through non-atomic
|
|
// operations on different threads, it is a data-race and UB. If the
|
|
// observation is well defined, by being observed the transformation would have
|
|
// changed program behavior by introducing the observed escape, making it an
|
|
// invalid transform.
|
|
//
|
|
// This property does require that transformations which *temporarily* escape
|
|
// a global that was not previously escaped, prior to restoring it, cannot rely
|
|
// on the results of GMR::alias. This seems a reasonable restriction, although
|
|
// currently there is no way to enforce it. There is also no realistic
|
|
// optimization pass that would make this mistake. The closest example is
|
|
// a transformation pass which does reg2mem of SSA values but stores them into
|
|
// global variables temporarily before restoring the global variable's value.
|
|
// This could be useful to expose "benign" races for example. However, it seems
|
|
// reasonable to require that a pass which introduces escapes of global
|
|
// variables in this way to either not trust AA results while the escape is
|
|
// active, or to be forced to operate as a module pass that cannot co-exist
|
|
// with an alias analysis such as GMR.
|
|
bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
|
|
const Value *V) {
|
|
// In order to know that the underlying object cannot alias the
|
|
// non-addr-taken global, we must know that it would have to be an escape.
|
|
// Thus if the underlying object is a function argument, a load from
|
|
// a global, or the return of a function, it cannot alias. We can also
|
|
// recurse through PHI nodes and select nodes provided all of their inputs
|
|
// resolve to one of these known-escaping roots.
|
|
SmallPtrSet<const Value *, 8> Visited;
|
|
SmallVector<const Value *, 8> Inputs;
|
|
Visited.insert(V);
|
|
Inputs.push_back(V);
|
|
int Depth = 0;
|
|
do {
|
|
const Value *Input = Inputs.pop_back_val();
|
|
|
|
if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
|
|
// If one input is the very global we're querying against, then we can't
|
|
// conclude no-alias.
|
|
if (InputGV == GV)
|
|
return false;
|
|
|
|
// Distinct GlobalVariables never alias, unless overriden or zero-sized.
|
|
// FIXME: The condition can be refined, but be conservative for now.
|
|
auto *GVar = dyn_cast<GlobalVariable>(GV);
|
|
auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
|
|
if (GVar && InputGVar &&
|
|
!GVar->isDeclaration() && !InputGVar->isDeclaration() &&
|
|
!GVar->mayBeOverridden() && !InputGVar->mayBeOverridden()) {
|
|
Type *GVType = GVar->getInitializer()->getType();
|
|
Type *InputGVType = InputGVar->getInitializer()->getType();
|
|
if (GVType->isSized() && InputGVType->isSized() &&
|
|
(DL.getTypeAllocSize(GVType) > 0) &&
|
|
(DL.getTypeAllocSize(InputGVType) > 0))
|
|
continue;
|
|
}
|
|
|
|
// Conservatively return false, even though we could be smarter
|
|
// (e.g. look through GlobalAliases).
|
|
return false;
|
|
}
|
|
|
|
if (isa<Argument>(Input) || isa<CallInst>(Input) ||
|
|
isa<InvokeInst>(Input)) {
|
|
// Arguments to functions or returns from functions are inherently
|
|
// escaping, so we can immediately classify those as not aliasing any
|
|
// non-addr-taken globals.
|
|
continue;
|
|
}
|
|
|
|
// Recurse through a limited number of selects, loads and PHIs. This is an
|
|
// arbitrary depth of 4, lower numbers could be used to fix compile time
|
|
// issues if needed, but this is generally expected to be only be important
|
|
// for small depths.
|
|
if (++Depth > 4)
|
|
return false;
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(Input)) {
|
|
// A pointer loaded from a global would have been captured, and we know
|
|
// that the global is non-escaping, so no alias.
|
|
const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
|
|
if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
|
|
// The load does not alias with GV.
|
|
continue;
|
|
// Otherwise, a load could come from anywhere, so bail.
|
|
return false;
|
|
}
|
|
if (auto *SI = dyn_cast<SelectInst>(Input)) {
|
|
const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
|
|
const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
|
|
if (Visited.insert(LHS).second)
|
|
Inputs.push_back(LHS);
|
|
if (Visited.insert(RHS).second)
|
|
Inputs.push_back(RHS);
|
|
continue;
|
|
}
|
|
if (auto *PN = dyn_cast<PHINode>(Input)) {
|
|
for (const Value *Op : PN->incoming_values()) {
|
|
Op = GetUnderlyingObject(Op, DL);
|
|
if (Visited.insert(Op).second)
|
|
Inputs.push_back(Op);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// FIXME: It would be good to handle other obvious no-alias cases here, but
|
|
// it isn't clear how to do so reasonbly without building a small version
|
|
// of BasicAA into this code. We could recurse into AAResultBase::alias
|
|
// here but that seems likely to go poorly as we're inside the
|
|
// implementation of such a query. Until then, just conservatievly retun
|
|
// false.
|
|
return false;
|
|
} while (!Inputs.empty());
|
|
|
|
// If all the inputs to V were definitively no-alias, then V is no-alias.
|
|
return true;
|
|
}
|
|
|
|
/// alias - If one of the pointers is to a global that we are tracking, and the
|
|
/// other is some random pointer, we know there cannot be an alias, because the
|
|
/// address of the global isn't taken.
|
|
AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB) {
|
|
// Get the base object these pointers point to.
|
|
const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
|
|
const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
|
|
|
|
// If either of the underlying values is a global, they may be non-addr-taken
|
|
// globals, which we can answer queries about.
|
|
const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
|
|
const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
|
|
if (GV1 || GV2) {
|
|
// If the global's address is taken, pretend we don't know it's a pointer to
|
|
// the global.
|
|
if (GV1 && !NonAddressTakenGlobals.count(GV1))
|
|
GV1 = nullptr;
|
|
if (GV2 && !NonAddressTakenGlobals.count(GV2))
|
|
GV2 = nullptr;
|
|
|
|
// If the two pointers are derived from two different non-addr-taken
|
|
// globals we know these can't alias.
|
|
if (GV1 && GV2 && GV1 != GV2)
|
|
return NoAlias;
|
|
|
|
// If one is and the other isn't, it isn't strictly safe but we can fake
|
|
// this result if necessary for performance. This does not appear to be
|
|
// a common problem in practice.
|
|
if (EnableUnsafeGlobalsModRefAliasResults)
|
|
if ((GV1 || GV2) && GV1 != GV2)
|
|
return NoAlias;
|
|
|
|
// Check for a special case where a non-escaping global can be used to
|
|
// conclude no-alias.
|
|
if ((GV1 || GV2) && GV1 != GV2) {
|
|
const GlobalValue *GV = GV1 ? GV1 : GV2;
|
|
const Value *UV = GV1 ? UV2 : UV1;
|
|
if (isNonEscapingGlobalNoAlias(GV, UV))
|
|
return NoAlias;
|
|
}
|
|
|
|
// Otherwise if they are both derived from the same addr-taken global, we
|
|
// can't know the two accesses don't overlap.
|
|
}
|
|
|
|
// These pointers may be based on the memory owned by an indirect global. If
|
|
// so, we may be able to handle this. First check to see if the base pointer
|
|
// is a direct load from an indirect global.
|
|
GV1 = GV2 = nullptr;
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
|
|
if (IndirectGlobals.count(GV))
|
|
GV1 = GV;
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
|
|
if (IndirectGlobals.count(GV))
|
|
GV2 = GV;
|
|
|
|
// These pointers may also be from an allocation for the indirect global. If
|
|
// so, also handle them.
|
|
if (!GV1)
|
|
GV1 = AllocsForIndirectGlobals.lookup(UV1);
|
|
if (!GV2)
|
|
GV2 = AllocsForIndirectGlobals.lookup(UV2);
|
|
|
|
// Now that we know whether the two pointers are related to indirect globals,
|
|
// use this to disambiguate the pointers. If the pointers are based on
|
|
// different indirect globals they cannot alias.
|
|
if (GV1 && GV2 && GV1 != GV2)
|
|
return NoAlias;
|
|
|
|
// If one is based on an indirect global and the other isn't, it isn't
|
|
// strictly safe but we can fake this result if necessary for performance.
|
|
// This does not appear to be a common problem in practice.
|
|
if (EnableUnsafeGlobalsModRefAliasResults)
|
|
if ((GV1 || GV2) && GV1 != GV2)
|
|
return NoAlias;
|
|
|
|
return AAResultBase::alias(LocA, LocB);
|
|
}
|
|
|
|
ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS,
|
|
const GlobalValue *GV) {
|
|
if (CS.doesNotAccessMemory())
|
|
return MRI_NoModRef;
|
|
ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef;
|
|
|
|
// Iterate through all the arguments to the called function. If any argument
|
|
// is based on GV, return the conservative result.
|
|
for (auto &A : CS.args()) {
|
|
SmallVector<Value*, 4> Objects;
|
|
GetUnderlyingObjects(A, Objects, DL);
|
|
|
|
// All objects must be identified.
|
|
if (!std::all_of(Objects.begin(), Objects.end(), isIdentifiedObject))
|
|
return ConservativeResult;
|
|
|
|
if (std::find(Objects.begin(), Objects.end(), GV) != Objects.end())
|
|
return ConservativeResult;
|
|
}
|
|
|
|
// We identified all objects in the argument list, and none of them were GV.
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS,
|
|
const MemoryLocation &Loc) {
|
|
unsigned Known = MRI_ModRef;
|
|
|
|
// If we are asking for mod/ref info of a direct call with a pointer to a
|
|
// global we are tracking, return information if we have it.
|
|
if (const GlobalValue *GV =
|
|
dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
|
|
if (GV->hasLocalLinkage())
|
|
if (const Function *F = CS.getCalledFunction())
|
|
if (NonAddressTakenGlobals.count(GV))
|
|
if (const FunctionInfo *FI = getFunctionInfo(F))
|
|
Known = FI->getModRefInfoForGlobal(*GV) |
|
|
getModRefInfoForArgument(CS, GV);
|
|
|
|
if (Known == MRI_NoModRef)
|
|
return MRI_NoModRef; // No need to query other mod/ref analyses
|
|
return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc));
|
|
}
|
|
|
|
GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
|
|
const TargetLibraryInfo &TLI)
|
|
: AAResultBase(TLI), DL(DL) {}
|
|
|
|
GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
|
|
: AAResultBase(std::move(Arg)), DL(Arg.DL),
|
|
NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
|
|
IndirectGlobals(std::move(Arg.IndirectGlobals)),
|
|
AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
|
|
FunctionInfos(std::move(Arg.FunctionInfos)),
|
|
Handles(std::move(Arg.Handles)) {
|
|
// Update the parent for each DeletionCallbackHandle.
|
|
for (auto &H : Handles) {
|
|
assert(H.GAR == &Arg);
|
|
H.GAR = this;
|
|
}
|
|
}
|
|
|
|
/*static*/ GlobalsAAResult
|
|
GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI,
|
|
CallGraph &CG) {
|
|
GlobalsAAResult Result(M.getDataLayout(), TLI);
|
|
|
|
// Discover which functions aren't recursive, to feed into AnalyzeGlobals.
|
|
Result.CollectSCCMembership(CG);
|
|
|
|
// Find non-addr taken globals.
|
|
Result.AnalyzeGlobals(M);
|
|
|
|
// Propagate on CG.
|
|
Result.AnalyzeCallGraph(CG, M);
|
|
|
|
return Result;
|
|
}
|
|
|
|
GlobalsAAResult GlobalsAA::run(Module &M, AnalysisManager<Module> *AM) {
|
|
return GlobalsAAResult::analyzeModule(M,
|
|
AM->getResult<TargetLibraryAnalysis>(M),
|
|
AM->getResult<CallGraphAnalysis>(M));
|
|
}
|
|
|
|
char GlobalsAA::PassID;
|
|
|
|
char GlobalsAAWrapperPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
|
|
"Globals Alias Analysis", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
|
|
"Globals Alias Analysis", false, true)
|
|
|
|
ModulePass *llvm::createGlobalsAAWrapperPass() {
|
|
return new GlobalsAAWrapperPass();
|
|
}
|
|
|
|
GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
|
|
initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool GlobalsAAWrapperPass::runOnModule(Module &M) {
|
|
Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
|
|
M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
|
|
getAnalysis<CallGraphWrapperPass>().getCallGraph())));
|
|
return false;
|
|
}
|
|
|
|
bool GlobalsAAWrapperPass::doFinalization(Module &M) {
|
|
Result.reset();
|
|
return false;
|
|
}
|
|
|
|
void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<CallGraphWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
}
|