freebsd-nq/sys/dev/aic7xxx/aic79xx_pci.c
Justin T. Gibbs acae33b029 aic79xx.c:
Clear the LQICRC_NLQ status should it pop up after we have
	already handled the SCSIPERR.  During some streaming operations
	this status can be delayed until the stream ends.  Without this
	change, the driver would complain about a "Missing case in
	ahd_handle_scsiint".

	In the LQOBUSFREE handler...

		Don't return the LQOMGR back to the idle state until after
		we have cleaned up ENSELO and any status related to this
		selection.  The last thing we need is the LQO manager starting
		another select-out before we have updated the execution queue.
		It is not clear whether the LQOMGR would, or would not
		start a new selection early.

		Make sure ENSELO is off prior to clearing SELDO by flushing
		device writes.

		Move assignment of the next target SCB pointer inside of
		an if to make the code clearer.  The effect is the same.

	Dump card state in both "Unexpected PKT busfree" paths.

	In ahd_reset(), set the chip to SCSI mode before reading SXFRCTL1.
	That register only exists in the SCSI mode.  Also set the mode
	explicitly to the SCSI mode after chip reset due to paranoia.
	Re-arrange code so that SXFRCTL1 is restored as quickly after the
	chip reset as possible.

	S/G structurs must be 8byte aligned.  Make this official by saying
	so in our DMA tag.

	Disable CIO bus stretch on MDFFSTAT if SHVALID is about to come
	true.  This can cause a CIO bus lockup if a PCI or PCI-X error
	occurs while the stretch is occurring - the host cannot service
	the PCI-X error since the CIO bus is locked out and SHVALID will
	never resolve.  The stretch was added in the Rev B to simplify the
	wait for SHVALID to resolve, but the code to do this in the open
	source sequencer is so simple it was never removed.

	Consistently use MAX_OFFSET for the user max syncrate set from
	non-volatile storage.  This ensures that the offset does not
	conflict with AH?_OFFSET_UNKNOWN.

	Have ahd_pause_and_flushwork set the mode to ensure that it has
	access to the registers it checks.  Also modify the checking of
	intstat so that the check against 0xFF can actually succeed if
	the INT_PEND mask is something other than 0xFF.  Although there
	are no cardbus U320 controllers, this check may be needed to
	recover from a hot-plug PCI removal that occurs without informing
	the driver.

	Fix a typo.  sg_prefetch_cnt -> sg_prefetch_align.  This fixes
	an infinite loop at card initialization if the cacheline size is 0.

aic79xx.h:
	Add AHD_EARLY_REQ_BUG bug flag.

	Fix spelling errors.

	Include the CDB's length just after the CDB pointer in the DMA'ed
	CDB case.

	Change AH?_OFFSET_UNKNOWN to 0xFF.  This is a value that the
	curr->offset can never be, unlike '0' which we previously used.
	This fixes code that only checks for a non-zero offset to
	determine if a sync negotiation is required since it will fire
	in the unknown case even if the goal is async.

aic79xx.reg:
	Add comments for LQISTAT bits indicating their names in the 7902
	data book.  We use slightly different and more descriptive names
	in the firmware.

	Fix spelling errors.

	Include the CDB's length just after the CDB pointer in the DMA'ed
	CDB case.

aic79xx.seq:
	Update comments regarding rundown of the GSFIFO to reflect reality.

	Fix spelling errors.

	Since we use an 8byte address and 1 byte length, shorten the size
	of a block move for the legacy DMA'ed CDB case from 11 to 9 bytes.

	Remove code that, assuming the abort pending feature worked, would
	set MK_MESSAGE in the SCB's control byte on completion to catch
	invalid reselections.  Since we don't see interrupts for completed
	selections, this status update could occur prior to us noticing the
	SELDO.  The "select-out" queue logic will get confused by the
	MK_MESSAGE bit being set as this is used to catch packatized
	connections where we select-out with ATN.  Since the abort pending
	feature doesn't work on any released controllers yet, this code was
	never executed.

	Add support for the AHD_EARLY_REQ_BUG.  Don't ignore persistent REQ
	assertions just because they were asserted within the bus settle delay
	window.  This allows us to tolerate devices like the GEM318 that
	violate the SCSI spec.

	Remove unintentional settnig of SG_CACHE_AVAIL.  Writing this bit
	should have no effect, but who knows...

	On the Rev A, we must wait for HDMAENACK before loading additional
	segments to avoid clobbering the address of the first segment in
	the S/G FIFO.  This resolves data-corruption issues with certain
	IBM (now Hitachi) and Fujitsu U320 drives.

	Rearrange calc_residual to avoid an extra jmp instruction.

	On RevA Silicon, if the target returns us to data-out after we
	have already trained for data-out, it is possible for us to
	transition the free running clock to data-valid before the required
	100ns P1 setup time (8 P1 assertions in fast-160 mode).  This will
	only happen if this L-Q is a continuation of a data transfer for
	which we have already prefetched data into our FIFO (LQ/Data
	followed by LQ/Data for the same write transaction).  This can
	cause some target implementations to miss the first few data
	transfers on the bus.  We detect this situation by noticing that
	this is the first data transfer after an LQ (LQIWORKONLQ true),
	that the data transfer is a continuation of a transfer already
	setup in our FIFO (SAVEPTRS interrupt), and that the transaction
	is a write (DIRECTION set in DFCNTRL). The delay is performed by
	disabling SCSIEN until we see the first REQ from the target.

	Only compile in snapshot savepointers handler for RevA silicon
	where it is enabled.

	Handle the cfg4icmd packetized interrupt.  We just need to load
	the address and count, start the DMA, and CLRCHN once the transfer
	is complete.

	Fix an oversight in the overrun handler for packetized status
	operations.  We need to wait for either CTXTDONE or an overrun
	when checking for an overrun.  The previous code did not wait
	and thus could decide that no overrun had occurred even though
	an overrun will occur on the next data-valid req.  Add some
	comment to this section for clarity.

	Use LAST_SEG_DONE instead of LASTSDONE for testing transfer
	completion in the packetized status case.  LASTSDONE may come up
	more quickly since it only records completion on the SCSI side,
	but since LAST_SEG_DONE is used everywhere else (and needs to be),
	this is less confusing.

	Add a missing invalidation of the longjmp address in the non-pack
	handler.  This code needs additional review.

aic79xx_inline.h:
	Fix spelling error.

aic79xx_osm.c:
	Set the cdb length for CDBs dma'ed from host memory.

	Add a comment indicating that, should CAM start supporting cdbs
	larger than 16bytes, the driver could store the CDB in the status
	buffer.

aic79xx_pci.c:
	Add a table entry for the 39320A.

	Added a missing comma to an error string table.

	Fix spelling errors.
2003-02-27 23:23:16 +00:00

931 lines
25 KiB
C

/*
* Product specific probe and attach routines for:
* aic7901 and aic7902 SCSI controllers
*
* Copyright (c) 1994-2001 Justin T. Gibbs.
* Copyright (c) 2000-2002 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/aic7xxx/aic7xxx/aic79xx_pci.c#66 $
*
* $FreeBSD$
*/
#ifdef __linux__
#include "aic79xx_osm.h"
#include "aic79xx_inline.h"
#else
#include <dev/aic7xxx/aic79xx_osm.h>
#include <dev/aic7xxx/aic79xx_inline.h>
#endif
static __inline uint64_t
ahd_compose_id(u_int device, u_int vendor, u_int subdevice, u_int subvendor)
{
uint64_t id;
id = subvendor
| (subdevice << 16)
| ((uint64_t)vendor << 32)
| ((uint64_t)device << 48);
return (id);
}
#define ID_ALL_MASK 0xFFFFFFFFFFFFFFFFull
#define ID_DEV_VENDOR_MASK 0xFFFFFFFF00000000ull
#define ID_9005_GENERIC_MASK 0xFFF0FFFF00000000ull
#define ID_AIC7901 0x800F9005FFFF9005ull
#define ID_AIC7901A 0x801E9005FFFF9005ull
#define ID_AIC7901A_IROC 0x809E9005FFFF9005ull
#define ID_AHA_29320A 0x8000900500609005ull
#define ID_AHA_29320LP 0x8014900500449005ull
#define ID_AHA_29320LP_IROC 0x8094900500449005ull
#define ID_AIC7902 0x801F9005FFFF9005ull
#define ID_AIC7902_IROC 0x809F9005FFFF9005ull
#define ID_AIC7902_B 0x801D9005FFFF9005ull
#define ID_AIC7902_B_IROC 0x809D9005FFFF9005ull
#define ID_AHA_39320 0x8010900500409005ull
#define ID_AHA_39320A 0x8016900500409005ull
#define ID_AHA_39320D 0x8011900500419005ull
#define ID_AHA_39320D_B 0x801C900500419005ull
#define ID_AHA_39320D_HP 0x8011900500AC0E11ull
#define ID_AHA_39320D_B_HP 0x801C900500AC0E11ull
#define ID_AHA_29320 0x8012900500429005ull
#define ID_AHA_29320B 0x8013900500439005ull
#define ID_AIC7902_PCI_REV_A4 0x3
#define ID_AIC7902_PCI_REV_B0 0x10
#define SUBID_HP 0x0E11
#define DEVID_9005_TYPE(id) ((id) & 0xF)
#define DEVID_9005_TYPE_HBA 0x0 /* Standard Card */
#define DEVID_9005_TYPE_HBA_2EXT 0x1 /* 2 External Ports */
#define DEVID_9005_TYPE_IROC 0x8 /* Raid(0,1,10) Card */
#define DEVID_9005_TYPE_MB 0xF /* On Motherboard */
#define DEVID_9005_MFUNC(id) ((id) & 0x10)
#define DEVID_9005_PACKETIZED(id) ((id) & 0x8000)
#define SUBID_9005_TYPE(id) ((id) & 0xF)
#define SUBID_9005_TYPE_HBA 0x0 /* Standard Card */
#define SUBID_9005_TYPE_MB 0xF /* On Motherboard */
#define SUBID_9005_AUTOTERM(id) (((id) & 0x10) == 0)
#define SUBID_9005_LEGACYCONN_FUNC(id) ((id) & 0x20)
#define SUBID_9005_SEEPTYPE(id) ((id) & 0x0C0) >> 6)
#define SUBID_9005_SEEPTYPE_NONE 0x0
#define SUBID_9005_SEEPTYPE_4K 0x1
static ahd_device_setup_t ahd_aic7901A_setup;
static ahd_device_setup_t ahd_aic7902_setup;
struct ahd_pci_identity ahd_pci_ident_table [] =
{
/* aic7901A based controllers */
{
ID_AHA_29320LP,
ID_ALL_MASK,
"Adaptec 29320LP Ultra320 SCSI adapter",
ahd_aic7901A_setup
},
{
ID_AHA_29320A,
ID_ALL_MASK,
"Adaptec 29320A Ultra320 SCSI adapter",
ahd_aic7901A_setup
},
/* aic7902 based controllers */
{
ID_AHA_39320,
ID_ALL_MASK,
"Adaptec 39320 Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320A,
ID_ALL_MASK,
"Adaptec 39320A Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D,
ID_ALL_MASK,
"Adaptec 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D_HP,
ID_ALL_MASK,
"Adaptec (HP OEM) 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D_B,
ID_ALL_MASK,
"Adaptec 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D_B_HP,
ID_ALL_MASK,
"Adaptec (HP OEM) 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_29320,
ID_ALL_MASK,
"Adaptec 29320 Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_29320B,
ID_ALL_MASK,
"Adaptec 29320B Ultra320 SCSI adapter",
ahd_aic7902_setup
},
/* Generic chip probes for devices we don't know 'exactly' */
{
ID_AIC7901A & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec AIC7901A Ultra320 SCSI adapter",
ahd_aic7901A_setup
},
{
ID_AIC7902 & ID_9005_GENERIC_MASK,
ID_9005_GENERIC_MASK,
"Adaptec AIC7902 Ultra320 SCSI adapter",
ahd_aic7902_setup
}
};
const u_int ahd_num_pci_devs = NUM_ELEMENTS(ahd_pci_ident_table);
#define DEVCONFIG 0x40
#define PCIXINITPAT 0x0000E000ul
#define PCIXINIT_PCI33_66 0x0000E000ul
#define PCIXINIT_PCIX50_66 0x0000C000ul
#define PCIXINIT_PCIX66_100 0x0000A000ul
#define PCIXINIT_PCIX100_133 0x00008000ul
#define PCI_BUS_MODES_INDEX(devconfig) \
(((devconfig) & PCIXINITPAT) >> 13)
static const char *pci_bus_modes[] =
{
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI-X 101-133Mhz",
"PCI-X 67-100Mhz",
"PCI-X 50-66Mhz",
"PCI 33 or 66Mhz"
};
#define TESTMODE 0x00000800ul
#define IRDY_RST 0x00000200ul
#define FRAME_RST 0x00000100ul
#define PCI64BIT 0x00000080ul
#define MRDCEN 0x00000040ul
#define ENDIANSEL 0x00000020ul
#define MIXQWENDIANEN 0x00000008ul
#define DACEN 0x00000004ul
#define STPWLEVEL 0x00000002ul
#define QWENDIANSEL 0x00000001ul
#define DEVCONFIG1 0x44
#define PREQDIS 0x01
#define CSIZE_LATTIME 0x0c
#define CACHESIZE 0x000000fful
#define LATTIME 0x0000ff00ul
static int ahd_check_extport(struct ahd_softc *ahd);
static void ahd_configure_termination(struct ahd_softc *ahd,
u_int adapter_control);
static void ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat);
struct ahd_pci_identity *
ahd_find_pci_device(ahd_dev_softc_t pci)
{
uint64_t full_id;
uint16_t device;
uint16_t vendor;
uint16_t subdevice;
uint16_t subvendor;
struct ahd_pci_identity *entry;
u_int i;
vendor = ahd_pci_read_config(pci, PCIR_DEVVENDOR, /*bytes*/2);
device = ahd_pci_read_config(pci, PCIR_DEVICE, /*bytes*/2);
subvendor = ahd_pci_read_config(pci, PCIR_SUBVEND_0, /*bytes*/2);
subdevice = ahd_pci_read_config(pci, PCIR_SUBDEV_0, /*bytes*/2);
full_id = ahd_compose_id(device,
vendor,
subdevice,
subvendor);
for (i = 0; i < ahd_num_pci_devs; i++) {
entry = &ahd_pci_ident_table[i];
if (entry->full_id == (full_id & entry->id_mask)) {
/* Honor exclusion entries. */
if (entry->name == NULL)
return (NULL);
return (entry);
}
}
return (NULL);
}
int
ahd_pci_config(struct ahd_softc *ahd, struct ahd_pci_identity *entry)
{
struct scb_data *shared_scb_data;
u_long l;
u_int command;
uint32_t devconfig;
uint16_t subvendor;
int error;
shared_scb_data = NULL;
ahd->description = entry->name;
/*
* Record if this is an HP board.
*/
subvendor = ahd_pci_read_config(ahd->dev_softc,
PCIR_SUBVEND_0, /*bytes*/2);
if (subvendor == SUBID_HP)
ahd->flags |= AHD_HP_BOARD;
error = entry->setup(ahd);
if (error != 0)
return (error);
devconfig = ahd_pci_read_config(ahd->dev_softc, DEVCONFIG, /*bytes*/4);
if ((devconfig & PCIXINITPAT) == PCIXINIT_PCI33_66) {
ahd->chip |= AHD_PCI;
/* Disable PCIX workarounds when running in PCI mode. */
ahd->bugs &= ~AHD_PCIX_BUG_MASK;
} else {
ahd->chip |= AHD_PCIX;
}
ahd->bus_description = pci_bus_modes[PCI_BUS_MODES_INDEX(devconfig)];
ahd_power_state_change(ahd, AHD_POWER_STATE_D0);
error = ahd_pci_map_registers(ahd);
if (error != 0)
return (error);
/*
* If we need to support high memory, enable dual
* address cycles. This bit must be set to enable
* high address bit generation even if we are on a
* 64bit bus (PCI64BIT set in devconfig).
*/
if ((ahd->flags & (AHD_39BIT_ADDRESSING|AHD_64BIT_ADDRESSING)) != 0) {
uint32_t devconfig;
if (bootverbose)
printf("%s: Enabling 39Bit Addressing\n",
ahd_name(ahd));
devconfig = ahd_pci_read_config(ahd->dev_softc,
DEVCONFIG, /*bytes*/4);
devconfig |= DACEN;
ahd_pci_write_config(ahd->dev_softc, DEVCONFIG,
devconfig, /*bytes*/4);
}
/* Ensure busmastering is enabled */
command = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/1);
command |= PCIM_CMD_BUSMASTEREN;
ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, command, /*bytes*/1);
error = ahd_softc_init(ahd);
if (error != 0)
return (error);
ahd->bus_intr = ahd_pci_intr;
error = ahd_reset(ahd);
if (error != 0)
return (ENXIO);
ahd->pci_cachesize =
ahd_pci_read_config(ahd->dev_softc, CSIZE_LATTIME,
/*bytes*/1) & CACHESIZE;
ahd->pci_cachesize *= 4;
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/* See if we have a SEEPROM and perform auto-term */
error = ahd_check_extport(ahd);
if (error != 0)
return (error);
/* Core initialization */
error = ahd_init(ahd);
if (error != 0)
return (error);
/*
* Allow interrupts now that we are completely setup.
*/
error = ahd_pci_map_int(ahd);
if (error != 0)
return (error);
ahd_list_lock(&l);
/*
* Link this softc in with all other ahd instances.
*/
ahd_softc_insert(ahd);
ahd_list_unlock(&l);
return (0);
}
/*
* Perform some simple tests that should catch situations where
* our registers are invalidly mapped.
*/
int
ahd_pci_test_register_access(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
uint32_t cmd;
int error;
uint8_t hcntrl;
saved_modes = ahd_save_modes(ahd);
error = EIO;
/*
* Enable PCI error interrupt status, but suppress NMIs
* generated by SERR raised due to target aborts.
*/
cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
cmd & ~PCIM_CMD_SERRESPEN, /*bytes*/2);
/*
* First a simple test to see if any
* registers can be read. Reading
* HCNTRL has no side effects and has
* at least one bit that is guaranteed to
* be zero so it is a good register to
* use for this test.
*/
hcntrl = ahd_inb(ahd, HCNTRL);
if (hcntrl == 0xFF)
goto fail;
/*
* Next create a situation where write combining
* or read prefetching could be initiated by the
* CPU or host bridge. Our device does not support
* either, so look for data corruption and/or flaged
* PCI errors.
*/
ahd_outb(ahd, HCNTRL, hcntrl|PAUSE);
while (ahd_is_paused(ahd) == 0)
;
ahd_outb(ahd, SEQCTL0, PERRORDIS);
ahd_outl(ahd, SRAM_BASE, 0x5aa555aa);
if (ahd_inl(ahd, SRAM_BASE) != 0x5aa555aa)
goto fail;
if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) {
u_int targpcistat;
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
targpcistat = ahd_inb(ahd, TARGPCISTAT);
if ((targpcistat & STA) != 0)
goto fail;
}
error = 0;
fail:
if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) {
u_int targpcistat;
u_int pci_status1;
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
targpcistat = ahd_inb(ahd, TARGPCISTAT);
/* Silently clear any latched errors. */
ahd_outb(ahd, TARGPCISTAT, targpcistat);
pci_status1 = ahd_pci_read_config(ahd->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
pci_status1, /*bytes*/1);
ahd_outb(ahd, CLRINT, CLRPCIINT);
}
ahd_restore_modes(ahd, saved_modes);
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS);
ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, cmd, /*bytes*/2);
return (error);
}
/*
* Check the external port logic for a serial eeprom
* and termination/cable detection contrls.
*/
static int
ahd_check_extport(struct ahd_softc *ahd)
{
struct seeprom_config *sc;
u_int adapter_control;
int have_seeprom;
int error;
sc = ahd->seep_config;
have_seeprom = ahd_acquire_seeprom(ahd);
if (have_seeprom) {
u_int start_addr;
if (bootverbose)
printf("%s: Reading SEEPROM...", ahd_name(ahd));
/* Address is always in units of 16bit words */
start_addr = (sizeof(*sc) / 2) * (ahd->channel - 'A');
error = ahd_read_seeprom(ahd, (uint16_t *)sc,
start_addr, sizeof(*sc)/2);
if (error != 0) {
printf("Unable to read SEEPROM\n");
have_seeprom = 0;
} else {
have_seeprom = ahd_verify_cksum(sc);
if (bootverbose) {
if (have_seeprom == 0)
printf ("checksum error\n");
else
printf ("done.\n");
}
}
ahd_release_seeprom(ahd);
}
if (!have_seeprom) {
u_int nvram_scb;
/*
* Pull scratch ram settings and treat them as
* if they are the contents of an seeprom if
* the 'ADPT', 'BIOS', or 'ASPI' signature is found
* in SCB 0xFF. We manually compose the data as 16bit
* values to avoid endian issues.
*/
ahd_set_scbptr(ahd, 0xFF);
nvram_scb = ahd_inb_scbram(ahd, SCB_BASE + NVRAM_SCB_OFFSET);
if (nvram_scb != 0xFF
&& ((ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'D'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'T')
|| (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'B'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'I'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'O'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'S')
|| (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'S'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'I'))) {
uint16_t *sc_data;
int i;
ahd_set_scbptr(ahd, nvram_scb);
sc_data = (uint16_t *)sc;
for (i = 0; i < 64; i += 2)
*sc_data++ = ahd_inw_scbram(ahd, SCB_BASE+i);
have_seeprom = ahd_verify_cksum(sc);
if (have_seeprom)
ahd->flags |= AHD_SCB_CONFIG_USED;
}
}
#if AHD_DEBUG
if (have_seeprom != 0
&& (ahd_debug & AHD_DUMP_SEEPROM) != 0) {
uint8_t *sc_data;
int i;
printf("%s: Seeprom Contents:", ahd_name(ahd));
sc_data = (uint8_t *)sc;
for (i = 0; i < (sizeof(*sc)); i += 2)
printf("\n\t0x%.4x",
sc_data[i] | (sc_data[i+1] << 8));
printf("\n");
}
#endif
if (!have_seeprom) {
if (bootverbose)
printf("%s: No SEEPROM available.\n", ahd_name(ahd));
ahd->flags |= AHD_USEDEFAULTS;
error = ahd_default_config(ahd);
adapter_control = CFAUTOTERM|CFSEAUTOTERM;
free(ahd->seep_config, M_DEVBUF);
ahd->seep_config = NULL;
} else {
error = ahd_parse_cfgdata(ahd, sc);
adapter_control = sc->adapter_control;
}
if (error != 0)
return (error);
ahd_configure_termination(ahd, adapter_control);
return (0);
}
static void
ahd_configure_termination(struct ahd_softc *ahd, u_int adapter_control)
{
int error;
u_int sxfrctl1;
uint8_t termctl;
uint32_t devconfig;
devconfig = ahd_pci_read_config(ahd->dev_softc, DEVCONFIG, /*bytes*/4);
devconfig &= ~STPWLEVEL;
if ((ahd->flags & AHD_STPWLEVEL_A) != 0)
devconfig |= STPWLEVEL;
if (bootverbose)
printf("%s: STPWLEVEL is %s\n",
ahd_name(ahd), (devconfig & STPWLEVEL) ? "on" : "off");
ahd_pci_write_config(ahd->dev_softc, DEVCONFIG, devconfig, /*bytes*/4);
/* Make sure current sensing is off. */
if ((ahd->flags & AHD_CURRENT_SENSING) != 0) {
(void)ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
}
/*
* Read to sense. Write to set.
*/
error = ahd_read_flexport(ahd, FLXADDR_TERMCTL, &termctl);
if ((adapter_control & CFAUTOTERM) == 0) {
if (bootverbose)
printf("%s: Manual Primary Termination\n",
ahd_name(ahd));
termctl &= ~(FLX_TERMCTL_ENPRILOW|FLX_TERMCTL_ENPRIHIGH);
if ((adapter_control & CFSTERM) != 0)
termctl |= FLX_TERMCTL_ENPRILOW;
if ((adapter_control & CFWSTERM) != 0)
termctl |= FLX_TERMCTL_ENPRIHIGH;
} else if (error != 0) {
printf("%s: Primary Auto-Term Sensing failed! "
"Using Defaults.\n", ahd_name(ahd));
termctl = FLX_TERMCTL_ENPRILOW|FLX_TERMCTL_ENPRIHIGH;
}
if ((adapter_control & CFSEAUTOTERM) == 0) {
if (bootverbose)
printf("%s: Manual Secondary Termination\n",
ahd_name(ahd));
termctl &= ~(FLX_TERMCTL_ENSECLOW|FLX_TERMCTL_ENSECHIGH);
if ((adapter_control & CFSELOWTERM) != 0)
termctl |= FLX_TERMCTL_ENSECLOW;
if ((adapter_control & CFSEHIGHTERM) != 0)
termctl |= FLX_TERMCTL_ENSECHIGH;
} else if (error != 0) {
printf("%s: Secondary Auto-Term Sensing failed! "
"Using Defaults.\n", ahd_name(ahd));
termctl |= FLX_TERMCTL_ENSECLOW|FLX_TERMCTL_ENSECHIGH;
}
/*
* Now set the termination based on what we found.
*/
sxfrctl1 = ahd_inb(ahd, SXFRCTL1) & ~STPWEN;
if ((termctl & FLX_TERMCTL_ENPRILOW) != 0) {
ahd->flags |= AHD_TERM_ENB_A;
sxfrctl1 |= STPWEN;
}
/* Must set the latch once in order to be effective. */
ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
ahd_outb(ahd, SXFRCTL1, sxfrctl1);
error = ahd_write_flexport(ahd, FLXADDR_TERMCTL, termctl);
if (error != 0) {
printf("%s: Unable to set termination settings!\n",
ahd_name(ahd));
} else if (bootverbose) {
printf("%s: Primary High byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENPRIHIGH) ? "En" : "Dis");
printf("%s: Primary Low byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENPRILOW) ? "En" : "Dis");
printf("%s: Secondary High byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENSECHIGH) ? "En" : "Dis");
printf("%s: Secondary Low byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENSECLOW) ? "En" : "Dis");
}
return;
}
#define DPE 0x80
#define SSE 0x40
#define RMA 0x20
#define RTA 0x10
#define STA 0x08
#define DPR 0x01
static const char *split_status_source[] =
{
"DFF0",
"DFF1",
"OVLY",
"CMC",
};
static const char *pci_status_source[] =
{
"DFF0",
"DFF1",
"SG",
"CMC",
"OVLY",
"NONE",
"MSI",
"TARG"
};
static const char *split_status_strings[] =
{
"%s: Received split response in %s.\n",
"%s: Received split completion error message in %s\n",
"%s: Receive overrun in %s\n",
"%s: Count not complete in %s\n",
"%s: Split completion data bucket in %s\n",
"%s: Split completion address error in %s\n",
"%s: Split completion byte count error in %s\n",
"%s: Signaled Target-abort to early terminate a split in %s\n"
};
static const char *pci_status_strings[] =
{
"%s: Data Parity Error has been reported via PERR# in %s\n",
"%s: Target initial wait state error in %s\n",
"%s: Split completion read data parity error in %s\n",
"%s: Split completion address attribute parity error in %s\n",
"%s: Received a Target Abort in %s\n",
"%s: Received a Master Abort in %s\n",
"%s: Signal System Error Detected in %s\n",
"%s: Address or Write Phase Parity Error Detected in %s.\n"
};
void
ahd_pci_intr(struct ahd_softc *ahd)
{
uint8_t pci_status[8];
ahd_mode_state saved_modes;
u_int pci_status1;
u_int intstat;
u_int i;
u_int reg;
intstat = ahd_inb(ahd, INTSTAT);
if ((intstat & SPLTINT) != 0)
ahd_pci_split_intr(ahd, intstat);
if ((intstat & PCIINT) == 0)
return;
printf("%s: PCI error Interrupt\n", ahd_name(ahd));
saved_modes = ahd_save_modes(ahd);
ahd_dump_card_state(ahd);
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
for (i = 0, reg = DF0PCISTAT; i < 8; i++, reg++) {
if (i == 5)
continue;
pci_status[i] = ahd_inb(ahd, reg);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, reg, pci_status[i]);
}
for (i = 0; i < 8; i++) {
u_int bit;
if (i == 5)
continue;
for (bit = 0; bit < 8; bit++) {
if ((pci_status[i] & (0x1 << bit)) != 0) {
static const char *s;
s = pci_status_strings[bit];
if (i == 7/*TARG*/ && bit == 3)
s = "%s: Signaled Target Abort\n";
printf(s, ahd_name(ahd), pci_status_source[i]);
}
}
}
pci_status1 = ahd_pci_read_config(ahd->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
pci_status1, /*bytes*/1);
ahd_restore_modes(ahd, saved_modes);
ahd_outb(ahd, CLRINT, CLRPCIINT);
ahd_unpause(ahd);
}
static void
ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat)
{
uint8_t split_status[4];
uint8_t split_status1[4];
uint8_t sg_split_status[2];
uint8_t sg_split_status1[2];
ahd_mode_state saved_modes;
u_int i;
uint16_t pcix_status;
/*
* Check for splits in all modes. Modes 0 and 1
* additionally have SG engine splits to look at.
*/
pcix_status = ahd_pci_read_config(ahd->dev_softc, PCIXR_STATUS,
/*bytes*/2);
printf("%s: PCI Split Interrupt - PCI-X status = 0x%x\n",
ahd_name(ahd), pcix_status);
saved_modes = ahd_save_modes(ahd);
for (i = 0; i < 4; i++) {
ahd_set_modes(ahd, i, i);
split_status[i] = ahd_inb(ahd, DCHSPLTSTAT0);
split_status1[i] = ahd_inb(ahd, DCHSPLTSTAT1);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, DCHSPLTSTAT0, split_status[i]);
ahd_outb(ahd, DCHSPLTSTAT1, split_status1[i]);
if (i != 0)
continue;
sg_split_status[i] = ahd_inb(ahd, SGSPLTSTAT0);
sg_split_status1[i] = ahd_inb(ahd, SGSPLTSTAT1);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, SGSPLTSTAT0, sg_split_status[i]);
ahd_outb(ahd, SGSPLTSTAT1, sg_split_status1[i]);
}
for (i = 0; i < 4; i++) {
u_int bit;
for (bit = 0; bit < 8; bit++) {
if ((split_status[i] & (0x1 << bit)) != 0) {
static const char *s;
s = split_status_strings[bit];
printf(s, ahd_name(ahd),
split_status_source[i]);
}
if (i != 0)
continue;
if ((sg_split_status[i] & (0x1 << bit)) != 0) {
static const char *s;
s = split_status_strings[bit];
printf(s, ahd_name(ahd), "SG");
}
}
}
/*
* Clear PCI-X status bits.
*/
ahd_pci_write_config(ahd->dev_softc, PCIXR_STATUS,
pcix_status, /*bytes*/2);
ahd_outb(ahd, CLRINT, CLRSPLTINT);
ahd_restore_modes(ahd, saved_modes);
}
static int
ahd_aic7901A_setup(struct ahd_softc *ahd)
{
int error;
error = ahd_aic7902_setup(ahd);
if (error != 0)
return (error);
ahd->chip = AHD_AIC7901A;
return (0);
}
static int
ahd_aic7902_setup(struct ahd_softc *ahd)
{
ahd_dev_softc_t pci;
u_int rev;
pci = ahd->dev_softc;
rev = ahd_pci_read_config(pci, PCIR_REVID, /*bytes*/1);
if (rev < ID_AIC7902_PCI_REV_A4) {
printf("%s: Unable to attach to unsupported chip revision %d\n",
ahd_name(ahd), rev);
ahd_pci_write_config(pci, PCIR_COMMAND, 0, /*bytes*/1);
return (ENXIO);
}
ahd->channel = ahd_get_pci_function(pci) + 'A';
ahd->chip = AHD_AIC7902;
ahd->features = AHD_AIC7902_FE;
if (rev < ID_AIC7902_PCI_REV_B0) {
/*
* Enable A series workarounds.
*/
ahd->bugs |= AHD_SENT_SCB_UPDATE_BUG|AHD_ABORT_LQI_BUG
| AHD_PKT_BITBUCKET_BUG|AHD_LONG_SETIMO_BUG
| AHD_NLQICRC_DELAYED_BUG|AHD_SCSIRST_BUG
| AHD_LQO_ATNO_BUG|AHD_AUTOFLUSH_BUG
| AHD_CLRLQO_AUTOCLR_BUG|AHD_PCIX_MMAPIO_BUG
| AHD_PCIX_CHIPRST_BUG|AHD_PKTIZED_STATUS_BUG
| AHD_PKT_LUN_BUG|AHD_MDFF_WSCBPTR_BUG
| AHD_REG_SLOW_SETTLE_BUG|AHD_SET_MODE_BUG
| AHD_BUSFREEREV_BUG|AHD_NONPACKFIFO_BUG
| AHD_PACED_NEGTABLE_BUG;
/*
* IO Cell paramter setup.
*/
AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29);
if ((ahd->flags & AHD_HP_BOARD) == 0)
AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVA);
} else {
u_int devconfig1;
ahd->features |= AHD_RTI|AHD_NEW_IOCELL_OPTS
| AHD_NEW_DFCNTRL_OPTS;
ahd->bugs |= AHD_LQOOVERRUN_BUG|AHD_ABORT_LQI_BUG
| AHD_INTCOLLISION_BUG|AHD_EARLY_REQ_BUG;
/*
* IO Cell paramter setup.
*/
AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29);
AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVB);
AHD_SET_AMPLITUDE(ahd, AHD_AMPLITUDE_DEF);
/*
* Set the PREQDIS bit for H2B which disables some workaround
* that doesn't work on regular PCI busses.
* XXX - Find out exactly what this does from the hardware
* folks!
*/
devconfig1 = ahd_pci_read_config(pci, DEVCONFIG1, /*bytes*/1);
ahd_pci_write_config(pci, DEVCONFIG1,
devconfig1|PREQDIS, /*bytes*/1);
devconfig1 = ahd_pci_read_config(pci, DEVCONFIG1, /*bytes*/1);
}
return (0);
}