freebsd-nq/lib/libefi/rdwr_efi.c
Brian Behlendorf fe20400db5 cppcheck: (error) Memory leak: vtoc
Resolve the reported memory leak by using a dedicated local vptr
variable to store the pointer reported by calloc().  Only assign the
passed **vtoc function argument on success, in all other cases vptr
is freed.

[lib/libefi/rdwr_efi.c:403]: (error) Memory leak: vtoc
[lib/libefi/rdwr_efi.c:422]: (error) Memory leak: vtoc
[lib/libefi/rdwr_efi.c:440]: (error) Memory leak: vtoc
[lib/libefi/rdwr_efi.c:454]: (error) Memory leak: vtoc
[lib/libefi/rdwr_efi.c:470]: (error) Memory leak: vtoc

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #9732
2019-12-18 17:25:04 -08:00

1656 lines
43 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2018 by Delphix. All rights reserved.
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <uuid/uuid.h>
#include <zlib.h>
#include <libintl.h>
#include <sys/types.h>
#include <sys/dkio.h>
#include <sys/vtoc.h>
#include <sys/mhd.h>
#include <sys/param.h>
#include <sys/dktp/fdisk.h>
#include <sys/efi_partition.h>
#include <sys/byteorder.h>
#include <sys/vdev_disk.h>
#include <linux/fs.h>
static struct uuid_to_ptag {
struct uuid uuid;
} conversion_array[] = {
{ EFI_UNUSED },
{ EFI_BOOT },
{ EFI_ROOT },
{ EFI_SWAP },
{ EFI_USR },
{ EFI_BACKUP },
{ EFI_UNUSED }, /* STAND is never used */
{ EFI_VAR },
{ EFI_HOME },
{ EFI_ALTSCTR },
{ EFI_UNUSED }, /* CACHE (cachefs) is never used */
{ EFI_RESERVED },
{ EFI_SYSTEM },
{ EFI_LEGACY_MBR },
{ EFI_SYMC_PUB },
{ EFI_SYMC_CDS },
{ EFI_MSFT_RESV },
{ EFI_DELL_BASIC },
{ EFI_DELL_RAID },
{ EFI_DELL_SWAP },
{ EFI_DELL_LVM },
{ EFI_DELL_RESV },
{ EFI_AAPL_HFS },
{ EFI_AAPL_UFS },
{ EFI_FREEBSD_BOOT },
{ EFI_FREEBSD_SWAP },
{ EFI_FREEBSD_UFS },
{ EFI_FREEBSD_VINUM },
{ EFI_FREEBSD_ZFS },
{ EFI_BIOS_BOOT },
{ EFI_INTC_RS },
{ EFI_SNE_BOOT },
{ EFI_LENOVO_BOOT },
{ EFI_MSFT_LDMM },
{ EFI_MSFT_LDMD },
{ EFI_MSFT_RE },
{ EFI_IBM_GPFS },
{ EFI_MSFT_STORAGESPACES },
{ EFI_HPQ_DATA },
{ EFI_HPQ_SVC },
{ EFI_RHT_DATA },
{ EFI_RHT_HOME },
{ EFI_RHT_SRV },
{ EFI_RHT_DMCRYPT },
{ EFI_RHT_LUKS },
{ EFI_FREEBSD_DISKLABEL },
{ EFI_AAPL_RAID },
{ EFI_AAPL_RAIDOFFLINE },
{ EFI_AAPL_BOOT },
{ EFI_AAPL_LABEL },
{ EFI_AAPL_TVRECOVERY },
{ EFI_AAPL_CORESTORAGE },
{ EFI_NETBSD_SWAP },
{ EFI_NETBSD_FFS },
{ EFI_NETBSD_LFS },
{ EFI_NETBSD_RAID },
{ EFI_NETBSD_CAT },
{ EFI_NETBSD_CRYPT },
{ EFI_GOOG_KERN },
{ EFI_GOOG_ROOT },
{ EFI_GOOG_RESV },
{ EFI_HAIKU_BFS },
{ EFI_MIDNIGHTBSD_BOOT },
{ EFI_MIDNIGHTBSD_DATA },
{ EFI_MIDNIGHTBSD_SWAP },
{ EFI_MIDNIGHTBSD_UFS },
{ EFI_MIDNIGHTBSD_VINUM },
{ EFI_MIDNIGHTBSD_ZFS },
{ EFI_CEPH_JOURNAL },
{ EFI_CEPH_DMCRYPTJOURNAL },
{ EFI_CEPH_OSD },
{ EFI_CEPH_DMCRYPTOSD },
{ EFI_CEPH_CREATE },
{ EFI_CEPH_DMCRYPTCREATE },
{ EFI_OPENBSD_DISKLABEL },
{ EFI_BBRY_QNX },
{ EFI_BELL_PLAN9 },
{ EFI_VMW_KCORE },
{ EFI_VMW_VMFS },
{ EFI_VMW_RESV },
{ EFI_RHT_ROOTX86 },
{ EFI_RHT_ROOTAMD64 },
{ EFI_RHT_ROOTARM },
{ EFI_RHT_ROOTARM64 },
{ EFI_ACRONIS_SECUREZONE },
{ EFI_ONIE_BOOT },
{ EFI_ONIE_CONFIG },
{ EFI_IBM_PPRPBOOT },
{ EFI_FREEDESKTOP_BOOT }
};
/*
* Default vtoc information for non-SVr4 partitions
*/
struct dk_map2 default_vtoc_map[NDKMAP] = {
{ V_ROOT, 0 }, /* a - 0 */
{ V_SWAP, V_UNMNT }, /* b - 1 */
{ V_BACKUP, V_UNMNT }, /* c - 2 */
{ V_UNASSIGNED, 0 }, /* d - 3 */
{ V_UNASSIGNED, 0 }, /* e - 4 */
{ V_UNASSIGNED, 0 }, /* f - 5 */
{ V_USR, 0 }, /* g - 6 */
{ V_UNASSIGNED, 0 }, /* h - 7 */
#if defined(_SUNOS_VTOC_16)
#if defined(i386) || defined(__amd64) || defined(__arm) || \
defined(__powerpc) || defined(__sparc) || defined(__s390__) || \
defined(__mips__) || defined(__rv64g__)
{ V_BOOT, V_UNMNT }, /* i - 8 */
{ V_ALTSCTR, 0 }, /* j - 9 */
#else
#error No VTOC format defined.
#endif /* defined(i386) */
{ V_UNASSIGNED, 0 }, /* k - 10 */
{ V_UNASSIGNED, 0 }, /* l - 11 */
{ V_UNASSIGNED, 0 }, /* m - 12 */
{ V_UNASSIGNED, 0 }, /* n - 13 */
{ V_UNASSIGNED, 0 }, /* o - 14 */
{ V_UNASSIGNED, 0 }, /* p - 15 */
#endif /* defined(_SUNOS_VTOC_16) */
};
int efi_debug = 0;
static int efi_read(int, struct dk_gpt *);
/*
* Return a 32-bit CRC of the contents of the buffer. Pre-and-post
* one's conditioning will be handled by crc32() internally.
*/
static uint32_t
efi_crc32(const unsigned char *buf, unsigned int size)
{
uint32_t crc = crc32(0, Z_NULL, 0);
crc = crc32(crc, buf, size);
return (crc);
}
static int
read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
{
int sector_size;
unsigned long long capacity_size;
if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
return (-1);
if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
return (-1);
*lbsize = (uint_t)sector_size;
*capacity = (diskaddr_t)(capacity_size / sector_size);
return (0);
}
static int
efi_get_info(int fd, struct dk_cinfo *dki_info)
{
char *path;
char *dev_path;
int rval = 0;
memset(dki_info, 0, sizeof (*dki_info));
path = calloc(1, PATH_MAX);
if (path == NULL)
goto error;
/*
* The simplest way to get the partition number under linux is
* to parse it out of the /dev/<disk><partition> block device name.
* The kernel creates this using the partition number when it
* populates /dev/ so it may be trusted. The tricky bit here is
* that the naming convention is based on the block device type.
* So we need to take this in to account when parsing out the
* partition information. Another issue is that the libefi API
* API only provides the open fd and not the file path. To handle
* this realpath(3) is used to resolve the block device name from
* /proc/self/fd/<fd>. Aside from the partition number we collect
* some additional device info.
*/
(void) sprintf(path, "/proc/self/fd/%d", fd);
dev_path = realpath(path, NULL);
free(path);
if (dev_path == NULL)
goto error;
if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
strcpy(dki_info->dki_cname, "sd");
dki_info->dki_ctype = DKC_SCSI_CCS;
rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
dki_info->dki_dname,
&dki_info->dki_partition);
} else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
strcpy(dki_info->dki_cname, "hd");
dki_info->dki_ctype = DKC_DIRECT;
rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
dki_info->dki_dname,
&dki_info->dki_partition);
} else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
strcpy(dki_info->dki_cname, "pseudo");
dki_info->dki_ctype = DKC_MD;
strcpy(dki_info->dki_dname, "md");
rval = sscanf(dev_path, "/dev/md%[0-9]p%hu",
dki_info->dki_dname + 2,
&dki_info->dki_partition);
} else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
strcpy(dki_info->dki_cname, "vd");
dki_info->dki_ctype = DKC_MD;
rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
dki_info->dki_dname,
&dki_info->dki_partition);
} else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) {
strcpy(dki_info->dki_cname, "xvd");
dki_info->dki_ctype = DKC_MD;
rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
dki_info->dki_dname,
&dki_info->dki_partition);
} else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) {
strcpy(dki_info->dki_cname, "zd");
dki_info->dki_ctype = DKC_MD;
strcpy(dki_info->dki_dname, "zd");
rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu",
dki_info->dki_dname + 2,
&dki_info->dki_partition);
} else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
strcpy(dki_info->dki_cname, "pseudo");
dki_info->dki_ctype = DKC_VBD;
strcpy(dki_info->dki_dname, "dm-");
rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu",
dki_info->dki_dname + 3,
&dki_info->dki_partition);
} else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
strcpy(dki_info->dki_cname, "pseudo");
dki_info->dki_ctype = DKC_PCMCIA_MEM;
strcpy(dki_info->dki_dname, "ram");
rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu",
dki_info->dki_dname + 3,
&dki_info->dki_partition);
} else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
strcpy(dki_info->dki_cname, "pseudo");
dki_info->dki_ctype = DKC_VBD;
strcpy(dki_info->dki_dname, "loop");
rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu",
dki_info->dki_dname + 4,
&dki_info->dki_partition);
} else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) {
strcpy(dki_info->dki_cname, "nvme");
dki_info->dki_ctype = DKC_SCSI_CCS;
strcpy(dki_info->dki_dname, "nvme");
(void) sscanf(dev_path, "/dev/nvme%[0-9]",
dki_info->dki_dname + 4);
size_t controller_length = strlen(
dki_info->dki_dname);
strcpy(dki_info->dki_dname + controller_length,
"n");
rval = sscanf(dev_path,
"/dev/nvme%*[0-9]n%[0-9]p%hu",
dki_info->dki_dname + controller_length + 1,
&dki_info->dki_partition);
} else {
strcpy(dki_info->dki_dname, "unknown");
strcpy(dki_info->dki_cname, "unknown");
dki_info->dki_ctype = DKC_UNKNOWN;
}
switch (rval) {
case 0:
errno = EINVAL;
goto error;
case 1:
dki_info->dki_partition = 0;
}
free(dev_path);
return (0);
error:
if (efi_debug)
(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
switch (errno) {
case EIO:
return (VT_EIO);
case EINVAL:
return (VT_EINVAL);
default:
return (VT_ERROR);
}
}
/*
* the number of blocks the EFI label takes up (round up to nearest
* block)
*/
#define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
((l) - 1)) / (l)))
/* number of partitions -- limited by what we can malloc */
#define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
sizeof (struct dk_part))
int
efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
{
diskaddr_t capacity = 0;
uint_t lbsize = 0;
uint_t nblocks;
size_t length;
struct dk_gpt *vptr;
struct uuid uuid;
struct dk_cinfo dki_info;
if (read_disk_info(fd, &capacity, &lbsize) != 0)
return (-1);
if (efi_get_info(fd, &dki_info) != 0)
return (-1);
if (dki_info.dki_partition != 0)
return (-1);
if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
(dki_info.dki_ctype == DKC_VBD) ||
(dki_info.dki_ctype == DKC_UNKNOWN))
return (-1);
nblocks = NBLOCKS(nparts, lbsize);
if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
/* 16K plus one block for the GPT */
nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
}
if (nparts > MAX_PARTS) {
if (efi_debug) {
(void) fprintf(stderr,
"the maximum number of partitions supported is %lu\n",
MAX_PARTS);
}
return (-1);
}
length = sizeof (struct dk_gpt) +
sizeof (struct dk_part) * (nparts - 1);
vptr = calloc(1, length);
if (vptr == NULL)
return (-1);
*vtoc = vptr;
vptr->efi_version = EFI_VERSION_CURRENT;
vptr->efi_lbasize = lbsize;
vptr->efi_nparts = nparts;
/*
* add one block here for the PMBR; on disks with a 512 byte
* block size and 128 or fewer partitions, efi_first_u_lba
* should work out to "34"
*/
vptr->efi_first_u_lba = nblocks + 1;
vptr->efi_last_lba = capacity - 1;
vptr->efi_altern_lba = capacity -1;
vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
(void) uuid_generate((uchar_t *)&uuid);
UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
return (0);
}
/*
* Read EFI - return partition number upon success.
*/
int
efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
{
int rval;
uint32_t nparts;
int length;
struct dk_gpt *vptr;
/* figure out the number of entries that would fit into 16K */
nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
length = (int) sizeof (struct dk_gpt) +
(int) sizeof (struct dk_part) * (nparts - 1);
vptr = calloc(1, length);
if (vptr == NULL)
return (VT_ERROR);
vptr->efi_nparts = nparts;
rval = efi_read(fd, vptr);
if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) {
void *tmp;
length = (int) sizeof (struct dk_gpt) +
(int) sizeof (struct dk_part) * (vptr->efi_nparts - 1);
nparts = vptr->efi_nparts;
if ((tmp = realloc(vptr, length)) == NULL) {
free(vptr);
*vtoc = NULL;
return (VT_ERROR);
} else {
vptr = tmp;
rval = efi_read(fd, vptr);
}
}
if (rval < 0) {
if (efi_debug) {
(void) fprintf(stderr,
"read of EFI table failed, rval=%d\n", rval);
}
free(vptr);
*vtoc = NULL;
} else {
*vtoc = vptr;
}
return (rval);
}
static int
efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
{
void *data = dk_ioc->dki_data;
int error;
diskaddr_t capacity;
uint_t lbsize;
/*
* When the IO is not being performed in kernel as an ioctl we need
* to know the sector size so we can seek to the proper byte offset.
*/
if (read_disk_info(fd, &capacity, &lbsize) == -1) {
if (efi_debug)
fprintf(stderr, "unable to read disk info: %d", errno);
errno = EIO;
return (-1);
}
switch (cmd) {
case DKIOCGETEFI:
if (lbsize == 0) {
if (efi_debug)
(void) fprintf(stderr, "DKIOCGETEFI assuming "
"LBA %d bytes\n", DEV_BSIZE);
lbsize = DEV_BSIZE;
}
error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
if (error == -1) {
if (efi_debug)
(void) fprintf(stderr, "DKIOCGETEFI lseek "
"error: %d\n", errno);
return (error);
}
error = read(fd, data, dk_ioc->dki_length);
if (error == -1) {
if (efi_debug)
(void) fprintf(stderr, "DKIOCGETEFI read "
"error: %d\n", errno);
return (error);
}
if (error != dk_ioc->dki_length) {
if (efi_debug)
(void) fprintf(stderr, "DKIOCGETEFI short "
"read of %d bytes\n", error);
errno = EIO;
return (-1);
}
error = 0;
break;
case DKIOCSETEFI:
if (lbsize == 0) {
if (efi_debug)
(void) fprintf(stderr, "DKIOCSETEFI unknown "
"LBA size\n");
errno = EIO;
return (-1);
}
error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
if (error == -1) {
if (efi_debug)
(void) fprintf(stderr, "DKIOCSETEFI lseek "
"error: %d\n", errno);
return (error);
}
error = write(fd, data, dk_ioc->dki_length);
if (error == -1) {
if (efi_debug)
(void) fprintf(stderr, "DKIOCSETEFI write "
"error: %d\n", errno);
return (error);
}
if (error != dk_ioc->dki_length) {
if (efi_debug)
(void) fprintf(stderr, "DKIOCSETEFI short "
"write of %d bytes\n", error);
errno = EIO;
return (-1);
}
/* Sync the new EFI table to disk */
error = fsync(fd);
if (error == -1)
return (error);
/* Ensure any local disk cache is also flushed */
if (ioctl(fd, BLKFLSBUF, 0) == -1)
return (error);
error = 0;
break;
default:
if (efi_debug)
(void) fprintf(stderr, "unsupported ioctl()\n");
errno = EIO;
return (-1);
}
return (error);
}
int
efi_rescan(int fd)
{
int retry = 10;
int error;
/* Notify the kernel a devices partition table has been updated */
while ((error = ioctl(fd, BLKRRPART)) != 0) {
if ((--retry == 0) || (errno != EBUSY)) {
(void) fprintf(stderr, "the kernel failed to rescan "
"the partition table: %d\n", errno);
return (-1);
}
usleep(50000);
}
return (0);
}
static int
check_label(int fd, dk_efi_t *dk_ioc)
{
efi_gpt_t *efi;
uint_t crc;
if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
switch (errno) {
case EIO:
return (VT_EIO);
default:
return (VT_ERROR);
}
}
efi = dk_ioc->dki_data;
if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
if (efi_debug)
(void) fprintf(stderr,
"Bad EFI signature: 0x%llx != 0x%llx\n",
(long long)efi->efi_gpt_Signature,
(long long)LE_64(EFI_SIGNATURE));
return (VT_EINVAL);
}
/*
* check CRC of the header; the size of the header should
* never be larger than one block
*/
crc = efi->efi_gpt_HeaderCRC32;
efi->efi_gpt_HeaderCRC32 = 0;
len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
if (efi_debug)
(void) fprintf(stderr,
"Invalid EFI HeaderSize %llu. Assuming %d.\n",
headerSize, EFI_MIN_LABEL_SIZE);
}
if ((headerSize > dk_ioc->dki_length) ||
crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
if (efi_debug)
(void) fprintf(stderr,
"Bad EFI CRC: 0x%x != 0x%x\n",
crc, LE_32(efi_crc32((unsigned char *)efi,
headerSize)));
return (VT_EINVAL);
}
return (0);
}
static int
efi_read(int fd, struct dk_gpt *vtoc)
{
int i, j;
int label_len;
int rval = 0;
int md_flag = 0;
int vdc_flag = 0;
diskaddr_t capacity = 0;
uint_t lbsize = 0;
struct dk_minfo disk_info;
dk_efi_t dk_ioc;
efi_gpt_t *efi;
efi_gpe_t *efi_parts;
struct dk_cinfo dki_info;
uint32_t user_length;
boolean_t legacy_label = B_FALSE;
/*
* get the partition number for this file descriptor.
*/
if ((rval = efi_get_info(fd, &dki_info)) != 0)
return (rval);
if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
(strncmp(dki_info.dki_dname, "md", 3) == 0)) {
md_flag++;
} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
(strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
/*
* The controller and drive name "vdc" (virtual disk client)
* indicates a LDoms virtual disk.
*/
vdc_flag++;
}
/* get the LBA size */
if (read_disk_info(fd, &capacity, &lbsize) == -1) {
if (efi_debug) {
(void) fprintf(stderr,
"unable to read disk info: %d",
errno);
}
return (VT_EINVAL);
}
disk_info.dki_lbsize = lbsize;
disk_info.dki_capacity = capacity;
if (disk_info.dki_lbsize == 0) {
if (efi_debug) {
(void) fprintf(stderr,
"efi_read: assuming LBA 512 bytes\n");
}
disk_info.dki_lbsize = DEV_BSIZE;
}
/*
* Read the EFI GPT to figure out how many partitions we need
* to deal with.
*/
dk_ioc.dki_lba = 1;
if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
} else {
label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
disk_info.dki_lbsize;
if (label_len % disk_info.dki_lbsize) {
/* pad to physical sector size */
label_len += disk_info.dki_lbsize;
label_len &= ~(disk_info.dki_lbsize - 1);
}
}
if (posix_memalign((void **)&dk_ioc.dki_data,
disk_info.dki_lbsize, label_len))
return (VT_ERROR);
memset(dk_ioc.dki_data, 0, label_len);
dk_ioc.dki_length = disk_info.dki_lbsize;
user_length = vtoc->efi_nparts;
efi = dk_ioc.dki_data;
if (md_flag) {
dk_ioc.dki_length = label_len;
if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
switch (errno) {
case EIO:
return (VT_EIO);
default:
return (VT_ERROR);
}
}
} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
/*
* No valid label here; try the alternate. Note that here
* we just read GPT header and save it into dk_ioc.data,
* Later, we will read GUID partition entry array if we
* can get valid GPT header.
*/
/*
* This is a workaround for legacy systems. In the past, the
* last sector of SCSI disk was invisible on x86 platform. At
* that time, backup label was saved on the next to the last
* sector. It is possible for users to move a disk from previous
* solaris system to present system. Here, we attempt to search
* legacy backup EFI label first.
*/
dk_ioc.dki_lba = disk_info.dki_capacity - 2;
dk_ioc.dki_length = disk_info.dki_lbsize;
rval = check_label(fd, &dk_ioc);
if (rval == VT_EINVAL) {
/*
* we didn't find legacy backup EFI label, try to
* search backup EFI label in the last block.
*/
dk_ioc.dki_lba = disk_info.dki_capacity - 1;
dk_ioc.dki_length = disk_info.dki_lbsize;
rval = check_label(fd, &dk_ioc);
if (rval == 0) {
legacy_label = B_TRUE;
if (efi_debug)
(void) fprintf(stderr,
"efi_read: primary label corrupt; "
"using EFI backup label located on"
" the last block\n");
}
} else {
if ((efi_debug) && (rval == 0))
(void) fprintf(stderr, "efi_read: primary label"
" corrupt; using legacy EFI backup label "
" located on the next to last block\n");
}
if (rval == 0) {
dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
vtoc->efi_nparts =
LE_32(efi->efi_gpt_NumberOfPartitionEntries);
/*
* Partition tables are between backup GPT header
* table and ParitionEntryLBA (the starting LBA of
* the GUID partition entries array). Now that we
* already got valid GPT header and saved it in
* dk_ioc.dki_data, we try to get GUID partition
* entry array here.
*/
/* LINTED */
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
+ disk_info.dki_lbsize);
if (legacy_label)
dk_ioc.dki_length = disk_info.dki_capacity - 1 -
dk_ioc.dki_lba;
else
dk_ioc.dki_length = disk_info.dki_capacity - 2 -
dk_ioc.dki_lba;
dk_ioc.dki_length *= disk_info.dki_lbsize;
if (dk_ioc.dki_length >
((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
rval = VT_EINVAL;
} else {
/*
* read GUID partition entry array
*/
rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
}
}
} else if (rval == 0) {
dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
/* LINTED */
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
+ disk_info.dki_lbsize);
dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
/*
* When the device is a LDoms virtual disk, the DKIOCGETEFI
* ioctl can fail with EINVAL if the virtual disk backend
* is a ZFS volume serviced by a domain running an old version
* of Solaris. This is because the DKIOCGETEFI ioctl was
* initially incorrectly implemented for a ZFS volume and it
* expected the GPT and GPE to be retrieved with a single ioctl.
* So we try to read the GPT and the GPE using that old style
* ioctl.
*/
dk_ioc.dki_lba = 1;
dk_ioc.dki_length = label_len;
rval = check_label(fd, &dk_ioc);
}
if (rval < 0) {
free(efi);
return (rval);
}
/* LINTED -- always longlong aligned */
efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
/*
* Assemble this into a "dk_gpt" struct for easier
* digestibility by applications.
*/
vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
vtoc->efi_lbasize = disk_info.dki_lbsize;
vtoc->efi_last_lba = disk_info.dki_capacity - 1;
vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
/*
* If the array the user passed in is too small, set the length
* to what it needs to be and return
*/
if (user_length < vtoc->efi_nparts) {
return (VT_EINVAL);
}
for (i = 0; i < vtoc->efi_nparts; i++) {
UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
efi_parts[i].efi_gpe_PartitionTypeGUID);
for (j = 0;
j < sizeof (conversion_array)
/ sizeof (struct uuid_to_ptag); j++) {
if (bcmp(&vtoc->efi_parts[i].p_guid,
&conversion_array[j].uuid,
sizeof (struct uuid)) == 0) {
vtoc->efi_parts[i].p_tag = j;
break;
}
}
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
continue;
vtoc->efi_parts[i].p_flag =
LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
vtoc->efi_parts[i].p_start =
LE_64(efi_parts[i].efi_gpe_StartingLBA);
vtoc->efi_parts[i].p_size =
LE_64(efi_parts[i].efi_gpe_EndingLBA) -
vtoc->efi_parts[i].p_start + 1;
for (j = 0; j < EFI_PART_NAME_LEN; j++) {
vtoc->efi_parts[i].p_name[j] =
(uchar_t)LE_16(
efi_parts[i].efi_gpe_PartitionName[j]);
}
UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
efi_parts[i].efi_gpe_UniquePartitionGUID);
}
free(efi);
return (dki_info.dki_partition);
}
/* writes a "protective" MBR */
static int
write_pmbr(int fd, struct dk_gpt *vtoc)
{
dk_efi_t dk_ioc;
struct mboot mb;
uchar_t *cp;
diskaddr_t size_in_lba;
uchar_t *buf;
int len;
len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
if (posix_memalign((void **)&buf, len, len))
return (VT_ERROR);
/*
* Preserve any boot code and disk signature if the first block is
* already an MBR.
*/
memset(buf, 0, len);
dk_ioc.dki_lba = 0;
dk_ioc.dki_length = len;
/* LINTED -- always longlong aligned */
dk_ioc.dki_data = (efi_gpt_t *)buf;
if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
(void) memcpy(&mb, buf, sizeof (mb));
bzero(&mb, sizeof (mb));
mb.signature = LE_16(MBB_MAGIC);
} else {
(void) memcpy(&mb, buf, sizeof (mb));
if (mb.signature != LE_16(MBB_MAGIC)) {
bzero(&mb, sizeof (mb));
mb.signature = LE_16(MBB_MAGIC);
}
}
bzero(&mb.parts, sizeof (mb.parts));
cp = (uchar_t *)&mb.parts[0];
/* bootable or not */
*cp++ = 0;
/* beginning CHS; 0xffffff if not representable */
*cp++ = 0xff;
*cp++ = 0xff;
*cp++ = 0xff;
/* OS type */
*cp++ = EFI_PMBR;
/* ending CHS; 0xffffff if not representable */
*cp++ = 0xff;
*cp++ = 0xff;
*cp++ = 0xff;
/* starting LBA: 1 (little endian format) by EFI definition */
*cp++ = 0x01;
*cp++ = 0x00;
*cp++ = 0x00;
*cp++ = 0x00;
/* ending LBA: last block on the disk (little endian format) */
size_in_lba = vtoc->efi_last_lba;
if (size_in_lba < 0xffffffff) {
*cp++ = (size_in_lba & 0x000000ff);
*cp++ = (size_in_lba & 0x0000ff00) >> 8;
*cp++ = (size_in_lba & 0x00ff0000) >> 16;
*cp++ = (size_in_lba & 0xff000000) >> 24;
} else {
*cp++ = 0xff;
*cp++ = 0xff;
*cp++ = 0xff;
*cp++ = 0xff;
}
(void) memcpy(buf, &mb, sizeof (mb));
/* LINTED -- always longlong aligned */
dk_ioc.dki_data = (efi_gpt_t *)buf;
dk_ioc.dki_lba = 0;
dk_ioc.dki_length = len;
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
free(buf);
switch (errno) {
case EIO:
return (VT_EIO);
case EINVAL:
return (VT_EINVAL);
default:
return (VT_ERROR);
}
}
free(buf);
return (0);
}
/* make sure the user specified something reasonable */
static int
check_input(struct dk_gpt *vtoc)
{
int resv_part = -1;
int i, j;
diskaddr_t istart, jstart, isize, jsize, endsect;
/*
* Sanity-check the input (make sure no partitions overlap)
*/
for (i = 0; i < vtoc->efi_nparts; i++) {
/* It can't be unassigned and have an actual size */
if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
(vtoc->efi_parts[i].p_size != 0)) {
if (efi_debug) {
(void) fprintf(stderr, "partition %d is "
"\"unassigned\" but has a size of %llu",
i, vtoc->efi_parts[i].p_size);
}
return (VT_EINVAL);
}
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
continue;
/* we have encountered an unknown uuid */
vtoc->efi_parts[i].p_tag = 0xff;
}
if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
if (resv_part != -1) {
if (efi_debug) {
(void) fprintf(stderr, "found "
"duplicate reserved partition "
"at %d\n", i);
}
return (VT_EINVAL);
}
resv_part = i;
}
if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
(vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
if (efi_debug) {
(void) fprintf(stderr,
"Partition %d starts at %llu. ",
i,
vtoc->efi_parts[i].p_start);
(void) fprintf(stderr,
"It must be between %llu and %llu.\n",
vtoc->efi_first_u_lba,
vtoc->efi_last_u_lba);
}
return (VT_EINVAL);
}
if ((vtoc->efi_parts[i].p_start +
vtoc->efi_parts[i].p_size <
vtoc->efi_first_u_lba) ||
(vtoc->efi_parts[i].p_start +
vtoc->efi_parts[i].p_size >
vtoc->efi_last_u_lba + 1)) {
if (efi_debug) {
(void) fprintf(stderr,
"Partition %d ends at %llu. ",
i,
vtoc->efi_parts[i].p_start +
vtoc->efi_parts[i].p_size);
(void) fprintf(stderr,
"It must be between %llu and %llu.\n",
vtoc->efi_first_u_lba,
vtoc->efi_last_u_lba);
}
return (VT_EINVAL);
}
for (j = 0; j < vtoc->efi_nparts; j++) {
isize = vtoc->efi_parts[i].p_size;
jsize = vtoc->efi_parts[j].p_size;
istart = vtoc->efi_parts[i].p_start;
jstart = vtoc->efi_parts[j].p_start;
if ((i != j) && (isize != 0) && (jsize != 0)) {
endsect = jstart + jsize -1;
if ((jstart <= istart) &&
(istart <= endsect)) {
if (efi_debug) {
(void) fprintf(stderr,
"Partition %d overlaps "
"partition %d.", i, j);
}
return (VT_EINVAL);
}
}
}
}
/* just a warning for now */
if ((resv_part == -1) && efi_debug) {
(void) fprintf(stderr,
"no reserved partition found\n");
}
return (0);
}
/*
* add all the unallocated space to the current label
*/
int
efi_use_whole_disk(int fd)
{
struct dk_gpt *efi_label = NULL;
int rval;
int i;
uint_t resv_index = 0, data_index = 0;
diskaddr_t resv_start = 0, data_start = 0;
diskaddr_t data_size, limit, difference;
boolean_t sync_needed = B_FALSE;
uint_t nblocks;
rval = efi_alloc_and_read(fd, &efi_label);
if (rval < 0) {
if (efi_label != NULL)
efi_free(efi_label);
return (rval);
}
/*
* Find the last physically non-zero partition.
* This should be the reserved partition.
*/
for (i = 0; i < efi_label->efi_nparts; i ++) {
if (resv_start < efi_label->efi_parts[i].p_start) {
resv_start = efi_label->efi_parts[i].p_start;
resv_index = i;
}
}
/*
* Find the last physically non-zero partition before that.
* This is the data partition.
*/
for (i = 0; i < resv_index; i ++) {
if (data_start < efi_label->efi_parts[i].p_start) {
data_start = efi_label->efi_parts[i].p_start;
data_index = i;
}
}
data_size = efi_label->efi_parts[data_index].p_size;
/*
* See the "efi_alloc_and_init" function for more information
* about where this "nblocks" value comes from.
*/
nblocks = efi_label->efi_first_u_lba - 1;
/*
* Determine if the EFI label is out of sync. We check that:
*
* 1. the data partition ends at the limit we set, and
* 2. the reserved partition starts at the limit we set.
*
* If either of these conditions is not met, then we need to
* resync the EFI label.
*
* The limit is the last usable LBA, determined by the last LBA
* and the first usable LBA fields on the EFI label of the disk
* (see the lines directly above). Additionally, we factor in
* EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and
* P2ALIGN it to ensure the partition boundaries are aligned
* (for performance reasons). The alignment should match the
* alignment used by the "zpool_label_disk" function.
*/
limit = P2ALIGN(efi_label->efi_last_lba - nblocks - EFI_MIN_RESV_SIZE,
PARTITION_END_ALIGNMENT);
if (data_start + data_size != limit || resv_start != limit)
sync_needed = B_TRUE;
if (efi_debug && sync_needed)
(void) fprintf(stderr, "efi_use_whole_disk: sync needed\n");
/*
* If alter_lba is 1, we are using the backup label.
* Since we can locate the backup label by disk capacity,
* there must be no unallocated space.
*/
if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
>= efi_label->efi_last_lba && !sync_needed)) {
if (efi_debug) {
(void) fprintf(stderr,
"efi_use_whole_disk: requested space not found\n");
}
efi_free(efi_label);
return (VT_ENOSPC);
}
/*
* Verify that we've found the reserved partition by checking
* that it looks the way it did when we created it in zpool_label_disk.
* If we've found the incorrect partition, then we know that this
* device was reformatted and no longer is solely used by ZFS.
*/
if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) ||
(efi_label->efi_parts[resv_index].p_tag != V_RESERVED) ||
(resv_index != 8)) {
if (efi_debug) {
(void) fprintf(stderr,
"efi_use_whole_disk: wholedisk not available\n");
}
efi_free(efi_label);
return (VT_ENOSPC);
}
if (data_start + data_size != resv_start) {
if (efi_debug) {
(void) fprintf(stderr,
"efi_use_whole_disk: "
"data_start (%lli) + "
"data_size (%lli) != "
"resv_start (%lli)\n",
data_start, data_size, resv_start);
}
return (VT_EINVAL);
}
if (limit < resv_start) {
if (efi_debug) {
(void) fprintf(stderr,
"efi_use_whole_disk: "
"limit (%lli) < resv_start (%lli)\n",
limit, resv_start);
}
return (VT_EINVAL);
}
difference = limit - resv_start;
if (efi_debug)
(void) fprintf(stderr,
"efi_use_whole_disk: difference is %lli\n", difference);
/*
* Move the reserved partition. There is currently no data in
* here except fabricated devids (which get generated via
* efi_write()). So there is no need to copy data.
*/
efi_label->efi_parts[data_index].p_size += difference;
efi_label->efi_parts[resv_index].p_start += difference;
efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
rval = efi_write(fd, efi_label);
if (rval < 0) {
if (efi_debug) {
(void) fprintf(stderr,
"efi_use_whole_disk:fail to write label, rval=%d\n",
rval);
}
efi_free(efi_label);
return (rval);
}
efi_free(efi_label);
return (0);
}
/*
* write EFI label and backup label
*/
int
efi_write(int fd, struct dk_gpt *vtoc)
{
dk_efi_t dk_ioc;
efi_gpt_t *efi;
efi_gpe_t *efi_parts;
int i, j;
struct dk_cinfo dki_info;
int rval;
int md_flag = 0;
int nblocks;
diskaddr_t lba_backup_gpt_hdr;
if ((rval = efi_get_info(fd, &dki_info)) != 0)
return (rval);
/* check if we are dealing with a metadevice */
if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
(strncmp(dki_info.dki_dname, "md", 3) == 0)) {
md_flag = 1;
}
if (check_input(vtoc)) {
/*
* not valid; if it's a metadevice just pass it down
* because SVM will do its own checking
*/
if (md_flag == 0) {
return (VT_EINVAL);
}
}
dk_ioc.dki_lba = 1;
if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
} else {
dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
vtoc->efi_lbasize) *
vtoc->efi_lbasize;
}
/*
* the number of blocks occupied by GUID partition entry array
*/
nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
/*
* Backup GPT header is located on the block after GUID
* partition entry array. Here, we calculate the address
* for backup GPT header.
*/
lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
if (posix_memalign((void **)&dk_ioc.dki_data,
vtoc->efi_lbasize, dk_ioc.dki_length))
return (VT_ERROR);
memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
efi = dk_ioc.dki_data;
/* stuff user's input into EFI struct */
efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
efi->efi_gpt_Reserved1 = 0;
efi->efi_gpt_MyLBA = LE_64(1ULL);
efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
/* LINTED -- always longlong aligned */
efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
for (i = 0; i < vtoc->efi_nparts; i++) {
for (j = 0;
j < sizeof (conversion_array) /
sizeof (struct uuid_to_ptag); j++) {
if (vtoc->efi_parts[i].p_tag == j) {
UUID_LE_CONVERT(
efi_parts[i].efi_gpe_PartitionTypeGUID,
conversion_array[j].uuid);
break;
}
}
if (j == sizeof (conversion_array) /
sizeof (struct uuid_to_ptag)) {
/*
* If we didn't have a matching uuid match, bail here.
* Don't write a label with unknown uuid.
*/
if (efi_debug) {
(void) fprintf(stderr,
"Unknown uuid for p_tag %d\n",
vtoc->efi_parts[i].p_tag);
}
return (VT_EINVAL);
}
/* Zero's should be written for empty partitions */
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
continue;
efi_parts[i].efi_gpe_StartingLBA =
LE_64(vtoc->efi_parts[i].p_start);
efi_parts[i].efi_gpe_EndingLBA =
LE_64(vtoc->efi_parts[i].p_start +
vtoc->efi_parts[i].p_size - 1);
efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
LE_16(vtoc->efi_parts[i].p_flag);
for (j = 0; j < EFI_PART_NAME_LEN; j++) {
efi_parts[i].efi_gpe_PartitionName[j] =
LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
}
if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
(void) uuid_generate((uchar_t *)
&vtoc->efi_parts[i].p_uguid);
}
bcopy(&vtoc->efi_parts[i].p_uguid,
&efi_parts[i].efi_gpe_UniquePartitionGUID,
sizeof (uuid_t));
}
efi->efi_gpt_PartitionEntryArrayCRC32 =
LE_32(efi_crc32((unsigned char *)efi_parts,
vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
efi->efi_gpt_HeaderCRC32 =
LE_32(efi_crc32((unsigned char *)efi,
LE_32(efi->efi_gpt_HeaderSize)));
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
free(dk_ioc.dki_data);
switch (errno) {
case EIO:
return (VT_EIO);
case EINVAL:
return (VT_EINVAL);
default:
return (VT_ERROR);
}
}
/* if it's a metadevice we're done */
if (md_flag) {
free(dk_ioc.dki_data);
return (0);
}
/* write backup partition array */
dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
dk_ioc.dki_length -= vtoc->efi_lbasize;
/* LINTED */
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
vtoc->efi_lbasize);
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
/*
* we wrote the primary label okay, so don't fail
*/
if (efi_debug) {
(void) fprintf(stderr,
"write of backup partitions to block %llu "
"failed, errno %d\n",
vtoc->efi_last_u_lba + 1,
errno);
}
}
/*
* now swap MyLBA and AlternateLBA fields and write backup
* partition table header
*/
dk_ioc.dki_lba = lba_backup_gpt_hdr;
dk_ioc.dki_length = vtoc->efi_lbasize;
/* LINTED */
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
vtoc->efi_lbasize);
efi->efi_gpt_AlternateLBA = LE_64(1ULL);
efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
efi->efi_gpt_HeaderCRC32 = 0;
efi->efi_gpt_HeaderCRC32 =
LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
LE_32(efi->efi_gpt_HeaderSize)));
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
if (efi_debug) {
(void) fprintf(stderr,
"write of backup header to block %llu failed, "
"errno %d\n",
lba_backup_gpt_hdr,
errno);
}
}
/* write the PMBR */
(void) write_pmbr(fd, vtoc);
free(dk_ioc.dki_data);
return (0);
}
void
efi_free(struct dk_gpt *ptr)
{
free(ptr);
}
/*
* Input: File descriptor
* Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
* Otherwise 0.
*/
int
efi_type(int fd)
{
#if 0
struct vtoc vtoc;
struct extvtoc extvtoc;
if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
if (errno == ENOTSUP)
return (1);
else if (errno == ENOTTY) {
if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
if (errno == ENOTSUP)
return (1);
}
}
return (0);
#else
return (ENOSYS);
#endif
}
void
efi_err_check(struct dk_gpt *vtoc)
{
int resv_part = -1;
int i, j;
diskaddr_t istart, jstart, isize, jsize, endsect;
int overlap = 0;
/*
* make sure no partitions overlap
*/
for (i = 0; i < vtoc->efi_nparts; i++) {
/* It can't be unassigned and have an actual size */
if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
(vtoc->efi_parts[i].p_size != 0)) {
(void) fprintf(stderr,
"partition %d is \"unassigned\" but has a size "
"of %llu\n", i, vtoc->efi_parts[i].p_size);
}
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
continue;
}
if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
if (resv_part != -1) {
(void) fprintf(stderr,
"found duplicate reserved partition at "
"%d\n", i);
}
resv_part = i;
if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
(void) fprintf(stderr,
"Warning: reserved partition size must "
"be %d sectors\n", EFI_MIN_RESV_SIZE);
}
if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
(vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
(void) fprintf(stderr,
"Partition %d starts at %llu\n",
i,
vtoc->efi_parts[i].p_start);
(void) fprintf(stderr,
"It must be between %llu and %llu.\n",
vtoc->efi_first_u_lba,
vtoc->efi_last_u_lba);
}
if ((vtoc->efi_parts[i].p_start +
vtoc->efi_parts[i].p_size <
vtoc->efi_first_u_lba) ||
(vtoc->efi_parts[i].p_start +
vtoc->efi_parts[i].p_size >
vtoc->efi_last_u_lba + 1)) {
(void) fprintf(stderr,
"Partition %d ends at %llu\n",
i,
vtoc->efi_parts[i].p_start +
vtoc->efi_parts[i].p_size);
(void) fprintf(stderr,
"It must be between %llu and %llu.\n",
vtoc->efi_first_u_lba,
vtoc->efi_last_u_lba);
}
for (j = 0; j < vtoc->efi_nparts; j++) {
isize = vtoc->efi_parts[i].p_size;
jsize = vtoc->efi_parts[j].p_size;
istart = vtoc->efi_parts[i].p_start;
jstart = vtoc->efi_parts[j].p_start;
if ((i != j) && (isize != 0) && (jsize != 0)) {
endsect = jstart + jsize -1;
if ((jstart <= istart) &&
(istart <= endsect)) {
if (!overlap) {
(void) fprintf(stderr,
"label error: EFI Labels do not "
"support overlapping partitions\n");
}
(void) fprintf(stderr,
"Partition %d overlaps partition "
"%d.\n", i, j);
overlap = 1;
}
}
}
}
/* make sure there is a reserved partition */
if (resv_part == -1) {
(void) fprintf(stderr,
"no reserved partition found\n");
}
}
/*
* We need to get information necessary to construct a *new* efi
* label type
*/
int
efi_auto_sense(int fd, struct dk_gpt **vtoc)
{
int i;
/*
* Now build the default partition table
*/
if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
if (efi_debug) {
(void) fprintf(stderr, "efi_alloc_and_init failed.\n");
}
return (-1);
}
for (i = 0; i < MIN((*vtoc)->efi_nparts, V_NUMPAR); i++) {
(*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
(*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
(*vtoc)->efi_parts[i].p_start = 0;
(*vtoc)->efi_parts[i].p_size = 0;
}
/*
* Make constants first
* and variable partitions later
*/
/* root partition - s0 128 MB */
(*vtoc)->efi_parts[0].p_start = 34;
(*vtoc)->efi_parts[0].p_size = 262144;
/* partition - s1 128 MB */
(*vtoc)->efi_parts[1].p_start = 262178;
(*vtoc)->efi_parts[1].p_size = 262144;
/* partition -s2 is NOT the Backup disk */
(*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
/* partition -s6 /usr partition - HOG */
(*vtoc)->efi_parts[6].p_start = 524322;
(*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
- (1024 * 16);
/* efi reserved partition - s9 16K */
(*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
(*vtoc)->efi_parts[8].p_size = (1024 * 16);
(*vtoc)->efi_parts[8].p_tag = V_RESERVED;
return (0);
}