c794871343
adds a lock to ensure only a single device is accessing the hardware. A reference count is added to only enable when we start to use the clock, and to disable after we have finished needing the clock. This was extracted from a larger review to add OHCI support to the Allwinner SoCs. Submitted by: Emmanuel Vadot <manu@bidouilliste.com> Reviewed by: jmcneill X-Differential Revision: https://reviews.freebsd.org/D5481
863 lines
20 KiB
C
863 lines
20 KiB
C
/*-
|
|
* Copyright (c) 2013 Ganbold Tsagaankhuu <ganbold@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Simple clock driver for Allwinner A10 */
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/rman.h>
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/ofw/openfirm.h>
|
|
#include <dev/ofw/ofw_bus_subr.h>
|
|
|
|
#include "a10_clk.h"
|
|
|
|
#define TCON_PLL_WORST 1000000
|
|
#define TCON_PLL_N_MIN 1
|
|
#define TCON_PLL_N_MAX 15
|
|
#define TCON_PLL_M_MIN 9
|
|
#define TCON_PLL_M_MAX 127
|
|
#define TCON_PLLREF_SINGLE 3000 /* kHz */
|
|
#define TCON_PLLREF_DOUBLE 6000 /* kHz */
|
|
#define TCON_RATE_KHZ(rate_hz) ((rate_hz) / 1000)
|
|
#define TCON_RATE_HZ(rate_khz) ((rate_khz) * 1000)
|
|
#define HDMI_DEFAULT_RATE 297000000
|
|
#define DEBE_DEFAULT_RATE 300000000
|
|
|
|
struct a10_ccm_softc {
|
|
struct resource *res;
|
|
bus_space_tag_t bst;
|
|
bus_space_handle_t bsh;
|
|
struct mtx mtx;
|
|
int pll6_enabled;
|
|
int ehci_cnt;
|
|
int ohci_cnt;
|
|
int usbphy_cnt;
|
|
int usb_cnt;
|
|
};
|
|
|
|
static struct a10_ccm_softc *a10_ccm_sc = NULL;
|
|
|
|
static int a10_clk_usbphy_activate(struct a10_ccm_softc *sc);
|
|
static int a10_clk_usbphy_deactivate(struct a10_ccm_softc *sc);
|
|
static int a10_clk_usb_activate(struct a10_ccm_softc *sc);
|
|
static int a10_clk_usb_deactivate(struct a10_ccm_softc *sc);
|
|
|
|
#define CCM_LOCK(sc) mtx_lock(&(sc)->mtx);
|
|
#define CCM_UNLOCK(sc) mtx_unlock(&(sc)->mtx);
|
|
#define CCM_LOCK_ASSERT(sc) mtx_assert(&(sc)->mtx, MA_OWNED)
|
|
#define ccm_read_4(sc, reg) \
|
|
bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
|
|
#define ccm_write_4(sc, reg, val) \
|
|
bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
|
|
|
|
static int
|
|
a10_ccm_probe(device_t dev)
|
|
{
|
|
|
|
if (!ofw_bus_status_okay(dev))
|
|
return (ENXIO);
|
|
|
|
if (ofw_bus_is_compatible(dev, "allwinner,sun4i-ccm")) {
|
|
device_set_desc(dev, "Allwinner Clock Control Module");
|
|
return(BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static int
|
|
a10_ccm_attach(device_t dev)
|
|
{
|
|
struct a10_ccm_softc *sc = device_get_softc(dev);
|
|
int rid = 0;
|
|
|
|
if (a10_ccm_sc)
|
|
return (ENXIO);
|
|
|
|
sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
|
|
if (!sc->res) {
|
|
device_printf(dev, "could not allocate resource\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
sc->bst = rman_get_bustag(sc->res);
|
|
sc->bsh = rman_get_bushandle(sc->res);
|
|
|
|
mtx_init(&sc->mtx, "a10_ccm", NULL, MTX_DEF);
|
|
|
|
a10_ccm_sc = sc;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static device_method_t a10_ccm_methods[] = {
|
|
DEVMETHOD(device_probe, a10_ccm_probe),
|
|
DEVMETHOD(device_attach, a10_ccm_attach),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t a10_ccm_driver = {
|
|
"a10_ccm",
|
|
a10_ccm_methods,
|
|
sizeof(struct a10_ccm_softc),
|
|
};
|
|
|
|
static devclass_t a10_ccm_devclass;
|
|
|
|
EARLY_DRIVER_MODULE(a10_ccm, simplebus, a10_ccm_driver, a10_ccm_devclass, 0, 0,
|
|
BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
|
|
|
|
int
|
|
a10_clk_ehci_activate(void)
|
|
{
|
|
struct a10_ccm_softc *sc = a10_ccm_sc;
|
|
uint32_t reg_value;
|
|
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
CCM_LOCK(sc);
|
|
|
|
if (++sc->ehci_cnt == 1) {
|
|
/* Gating AHB clock for USB */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
|
|
reg_value |= CCM_AHB_GATING_EHCI0; /* AHB clock gate ehci0 */
|
|
reg_value |= CCM_AHB_GATING_EHCI1; /* AHB clock gate ehci1 */
|
|
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
|
|
}
|
|
|
|
a10_clk_usb_activate(sc);
|
|
a10_clk_usbphy_activate(sc);
|
|
|
|
CCM_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_ehci_deactivate(void)
|
|
{
|
|
struct a10_ccm_softc *sc = a10_ccm_sc;
|
|
uint32_t reg_value;
|
|
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
CCM_LOCK(sc);
|
|
|
|
if (--sc->ehci_cnt == 0) {
|
|
/* Disable gating AHB clock for USB */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
|
|
reg_value &= ~CCM_AHB_GATING_EHCI0; /* disable AHB clock gate ehci0 */
|
|
reg_value &= ~CCM_AHB_GATING_EHCI1; /* disable AHB clock gate ehci1 */
|
|
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
|
|
}
|
|
|
|
a10_clk_usb_deactivate(sc);
|
|
a10_clk_usbphy_deactivate(sc);
|
|
|
|
CCM_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_ohci_activate(void)
|
|
{
|
|
struct a10_ccm_softc *sc = a10_ccm_sc;
|
|
uint32_t reg_value;
|
|
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
CCM_LOCK(sc);
|
|
|
|
if (++sc->ohci_cnt == 1) {
|
|
/* Gating AHB clock for USB */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
|
|
reg_value |= CCM_AHB_GATING_OHCI0; /* AHB clock gate ohci0 */
|
|
reg_value |= CCM_AHB_GATING_OHCI1; /* AHB clock gate ohci1 */
|
|
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
|
|
|
|
/* Enable clock for USB */
|
|
reg_value = ccm_read_4(sc, CCM_USB_CLK);
|
|
reg_value |= CCM_SCLK_GATING_OHCI0;
|
|
reg_value |= CCM_SCLK_GATING_OHCI1;
|
|
ccm_write_4(sc, CCM_USB_CLK, reg_value);
|
|
}
|
|
|
|
a10_clk_usb_activate(sc);
|
|
a10_clk_usbphy_activate(sc);
|
|
|
|
CCM_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_ohci_deactivate(void)
|
|
{
|
|
struct a10_ccm_softc *sc = a10_ccm_sc;
|
|
uint32_t reg_value;
|
|
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
CCM_LOCK(sc);
|
|
|
|
if (--sc->ohci_cnt == 0) {
|
|
/* Disable clock for USB */
|
|
reg_value = ccm_read_4(sc, CCM_USB_CLK);
|
|
reg_value &= ~CCM_SCLK_GATING_OHCI0;
|
|
reg_value &= ~CCM_SCLK_GATING_OHCI1;
|
|
ccm_write_4(sc, CCM_USB_CLK, reg_value);
|
|
|
|
/* Disable gating AHB clock for USB */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
|
|
reg_value &= ~CCM_AHB_GATING_OHCI0; /* disable AHB clock gate ohci0 */
|
|
reg_value &= ~CCM_AHB_GATING_OHCI1; /* disable AHB clock gate ohci1 */
|
|
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
|
|
}
|
|
|
|
a10_clk_usb_deactivate(sc);
|
|
a10_clk_usbphy_deactivate(sc);
|
|
|
|
CCM_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
a10_clk_usb_activate(struct a10_ccm_softc *sc)
|
|
{
|
|
uint32_t reg_value;
|
|
|
|
CCM_LOCK_ASSERT(sc);
|
|
|
|
if (++sc->usb_cnt == 1) {
|
|
/* Gating AHB clock for USB */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
|
|
reg_value |= CCM_AHB_GATING_USB0; /* AHB clock gate usb0 */
|
|
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
a10_clk_usb_deactivate(struct a10_ccm_softc *sc)
|
|
{
|
|
uint32_t reg_value;
|
|
|
|
CCM_LOCK_ASSERT(sc);
|
|
|
|
if (--sc->usb_cnt == 0) {
|
|
/* Disable gating AHB clock for USB */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
|
|
reg_value &= ~CCM_AHB_GATING_USB0; /* disable AHB clock gate usb0 */
|
|
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
a10_clk_usbphy_activate(struct a10_ccm_softc *sc)
|
|
{
|
|
uint32_t reg_value;
|
|
|
|
CCM_LOCK_ASSERT(sc);
|
|
|
|
if (++sc->usbphy_cnt == 1) {
|
|
/* Enable clock for USB */
|
|
reg_value = ccm_read_4(sc, CCM_USB_CLK);
|
|
reg_value |= CCM_USB_PHY; /* USBPHY */
|
|
reg_value |= CCM_USBPHY0_RESET; /* disable reset for USBPHY0 */
|
|
reg_value |= CCM_USBPHY1_RESET; /* disable reset for USBPHY1 */
|
|
reg_value |= CCM_USBPHY2_RESET; /* disable reset for USBPHY2 */
|
|
ccm_write_4(sc, CCM_USB_CLK, reg_value);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
a10_clk_usbphy_deactivate(struct a10_ccm_softc *sc)
|
|
{
|
|
uint32_t reg_value;
|
|
|
|
CCM_LOCK_ASSERT(sc);
|
|
|
|
if (--sc->usbphy_cnt == 0) {
|
|
/* Disable clock for USB */
|
|
reg_value = ccm_read_4(sc, CCM_USB_CLK);
|
|
reg_value &= ~CCM_USB_PHY; /* USBPHY */
|
|
reg_value &= ~CCM_USBPHY0_RESET; /* reset for USBPHY0 */
|
|
reg_value &= ~CCM_USBPHY1_RESET; /* reset for USBPHY1 */
|
|
reg_value &= ~CCM_USBPHY2_RESET; /* reset for USBPHY2 */
|
|
ccm_write_4(sc, CCM_USB_CLK, reg_value);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_emac_activate(void)
|
|
{
|
|
struct a10_ccm_softc *sc = a10_ccm_sc;
|
|
uint32_t reg_value;
|
|
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
/* Gating AHB clock for EMAC */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
|
|
reg_value |= CCM_AHB_GATING_EMAC;
|
|
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_gmac_activate(phandle_t node)
|
|
{
|
|
char *phy_type;
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
/* Gating AHB clock for GMAC */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING1);
|
|
reg_value |= CCM_AHB_GATING_GMAC;
|
|
ccm_write_4(sc, CCM_AHB_GATING1, reg_value);
|
|
|
|
/* Set GMAC mode. */
|
|
reg_value = CCM_GMAC_CLK_MII;
|
|
if (OF_getprop_alloc(node, "phy-mode", 1, (void **)&phy_type) > 0) {
|
|
if (strcasecmp(phy_type, "rgmii") == 0)
|
|
reg_value = CCM_GMAC_CLK_RGMII | CCM_GMAC_MODE_RGMII;
|
|
else if (strcasecmp(phy_type, "rgmii-bpi") == 0) {
|
|
reg_value = CCM_GMAC_CLK_RGMII | CCM_GMAC_MODE_RGMII;
|
|
reg_value |= (3 << CCM_GMAC_CLK_DELAY_SHIFT);
|
|
}
|
|
free(phy_type, M_OFWPROP);
|
|
}
|
|
ccm_write_4(sc, CCM_GMAC_CLK, reg_value);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
a10_clk_pll6_enable(void)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
|
|
/*
|
|
* SATA needs PLL6 to be a 100MHz clock.
|
|
* The SATA output frequency is 24MHz * n * k / m / 6.
|
|
* To get to 100MHz, k & m must be equal and n must be 25.
|
|
* For other uses the output frequency is 24MHz * n * k / 2.
|
|
*/
|
|
sc = a10_ccm_sc;
|
|
if (sc->pll6_enabled)
|
|
return;
|
|
reg_value = ccm_read_4(sc, CCM_PLL6_CFG);
|
|
reg_value &= ~CCM_PLL_CFG_BYPASS;
|
|
reg_value &= ~(CCM_PLL_CFG_FACTOR_K | CCM_PLL_CFG_FACTOR_M |
|
|
CCM_PLL_CFG_FACTOR_N);
|
|
reg_value |= (25 << CCM_PLL_CFG_FACTOR_N_SHIFT);
|
|
reg_value |= CCM_PLL6_CFG_SATA_CLKEN;
|
|
reg_value |= CCM_PLL_CFG_ENABLE;
|
|
ccm_write_4(sc, CCM_PLL6_CFG, reg_value);
|
|
sc->pll6_enabled = 1;
|
|
}
|
|
|
|
static unsigned int
|
|
a10_clk_pll6_get_rate(void)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t k, n, reg_value;
|
|
|
|
sc = a10_ccm_sc;
|
|
reg_value = ccm_read_4(sc, CCM_PLL6_CFG);
|
|
n = ((reg_value & CCM_PLL_CFG_FACTOR_N) >> CCM_PLL_CFG_FACTOR_N_SHIFT);
|
|
k = ((reg_value & CCM_PLL_CFG_FACTOR_K) >> CCM_PLL_CFG_FACTOR_K_SHIFT) +
|
|
1;
|
|
|
|
return ((CCM_CLK_REF_FREQ * n * k) / 2);
|
|
}
|
|
|
|
static int
|
|
a10_clk_pll2_set_rate(unsigned int freq)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
unsigned int prediv, postdiv, n;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
reg_value = ccm_read_4(sc, CCM_PLL2_CFG);
|
|
reg_value &= ~(CCM_PLL2_CFG_PREDIV | CCM_PLL2_CFG_POSTDIV |
|
|
CCM_PLL_CFG_FACTOR_N);
|
|
|
|
/*
|
|
* Audio Codec needs PLL2 to be either 24576000 Hz or 22579200 Hz
|
|
*
|
|
* PLL2 output frequency is 24MHz * n / prediv / postdiv.
|
|
* To get as close as possible to the desired rate, we use a
|
|
* pre-divider of 21 and a post-divider of 4. With these values,
|
|
* a multiplier of 86 or 79 gets us close to the target rates.
|
|
*/
|
|
prediv = 21;
|
|
postdiv = 4;
|
|
|
|
switch (freq) {
|
|
case 24576000:
|
|
n = 86;
|
|
reg_value |= CCM_PLL_CFG_ENABLE;
|
|
break;
|
|
case 22579200:
|
|
n = 79;
|
|
reg_value |= CCM_PLL_CFG_ENABLE;
|
|
break;
|
|
case 0:
|
|
n = 1;
|
|
reg_value &= ~CCM_PLL_CFG_ENABLE;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
reg_value |= (prediv << CCM_PLL2_CFG_PREDIV_SHIFT);
|
|
reg_value |= (postdiv << CCM_PLL2_CFG_POSTDIV_SHIFT);
|
|
reg_value |= (n << CCM_PLL_CFG_FACTOR_N_SHIFT);
|
|
ccm_write_4(sc, CCM_PLL2_CFG, reg_value);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
a10_clk_pll3_set_rate(unsigned int freq)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
int m;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
if (freq == 0) {
|
|
/* Disable PLL3 */
|
|
ccm_write_4(sc, CCM_PLL3_CFG, 0);
|
|
return (0);
|
|
}
|
|
|
|
m = freq / TCON_RATE_HZ(TCON_PLLREF_SINGLE);
|
|
|
|
reg_value = CCM_PLL_CFG_ENABLE | CCM_PLL3_CFG_MODE_SEL_INT | m;
|
|
ccm_write_4(sc, CCM_PLL3_CFG, reg_value);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static unsigned int
|
|
a10_clk_pll5x_get_rate(void)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t k, n, p, reg_value;
|
|
|
|
sc = a10_ccm_sc;
|
|
reg_value = ccm_read_4(sc, CCM_PLL5_CFG);
|
|
n = ((reg_value & CCM_PLL_CFG_FACTOR_N) >> CCM_PLL_CFG_FACTOR_N_SHIFT);
|
|
k = ((reg_value & CCM_PLL_CFG_FACTOR_K) >> CCM_PLL_CFG_FACTOR_K_SHIFT) +
|
|
1;
|
|
p = ((reg_value & CCM_PLL5_CFG_OUT_EXT_DIV_P) >> CCM_PLL5_CFG_OUT_EXT_DIV_P_SHIFT);
|
|
|
|
return ((CCM_CLK_REF_FREQ * n * k) >> p);
|
|
}
|
|
|
|
int
|
|
a10_clk_ahci_activate(void)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
a10_clk_pll6_enable();
|
|
|
|
/* Gating AHB clock for SATA */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
|
|
reg_value |= CCM_AHB_GATING_SATA;
|
|
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
|
|
DELAY(1000);
|
|
|
|
ccm_write_4(sc, CCM_SATA_CLK, CCM_PLL_CFG_ENABLE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_mmc_activate(int devid)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
a10_clk_pll6_enable();
|
|
|
|
/* Gating AHB clock for SD/MMC */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
|
|
reg_value |= CCM_AHB_GATING_SDMMC0 << devid;
|
|
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_mmc_cfg(int devid, int freq)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t clksrc, m, n, ophase, phase, reg_value;
|
|
unsigned int pll_freq;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
freq /= 1000;
|
|
if (freq <= 400) {
|
|
pll_freq = CCM_CLK_REF_FREQ / 1000;
|
|
clksrc = CCM_SD_CLK_SRC_SEL_OSC24M;
|
|
ophase = 0;
|
|
phase = 0;
|
|
n = 2;
|
|
} else if (freq <= 25000) {
|
|
pll_freq = a10_clk_pll6_get_rate() / 1000;
|
|
clksrc = CCM_SD_CLK_SRC_SEL_PLL6;
|
|
ophase = 0;
|
|
phase = 5;
|
|
n = 2;
|
|
} else if (freq <= 50000) {
|
|
pll_freq = a10_clk_pll6_get_rate() / 1000;
|
|
clksrc = CCM_SD_CLK_SRC_SEL_PLL6;
|
|
ophase = 3;
|
|
phase = 5;
|
|
n = 0;
|
|
} else
|
|
return (EINVAL);
|
|
m = ((pll_freq / (1 << n)) / (freq)) - 1;
|
|
reg_value = ccm_read_4(sc, CCM_MMC0_SCLK_CFG + (devid * 4));
|
|
reg_value &= ~CCM_SD_CLK_SRC_SEL;
|
|
reg_value |= (clksrc << CCM_SD_CLK_SRC_SEL_SHIFT);
|
|
reg_value &= ~CCM_SD_CLK_PHASE_CTR;
|
|
reg_value |= (phase << CCM_SD_CLK_PHASE_CTR_SHIFT);
|
|
reg_value &= ~CCM_SD_CLK_DIV_RATIO_N;
|
|
reg_value |= (n << CCM_SD_CLK_DIV_RATIO_N_SHIFT);
|
|
reg_value &= ~CCM_SD_CLK_OPHASE_CTR;
|
|
reg_value |= (ophase << CCM_SD_CLK_OPHASE_CTR_SHIFT);
|
|
reg_value &= ~CCM_SD_CLK_DIV_RATIO_M;
|
|
reg_value |= m;
|
|
reg_value |= CCM_PLL_CFG_ENABLE;
|
|
ccm_write_4(sc, CCM_MMC0_SCLK_CFG + (devid * 4), reg_value);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_i2c_activate(int devid)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
a10_clk_pll6_enable();
|
|
|
|
/* Gating APB clock for I2C/TWI */
|
|
reg_value = ccm_read_4(sc, CCM_APB1_GATING);
|
|
if (devid == 4)
|
|
reg_value |= CCM_APB1_GATING_TWI << 15;
|
|
else
|
|
reg_value |= CCM_APB1_GATING_TWI << devid;
|
|
ccm_write_4(sc, CCM_APB1_GATING, reg_value);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_dmac_activate(void)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
/* Gating AHB clock for DMA controller */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
|
|
reg_value |= CCM_AHB_GATING_DMA;
|
|
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_codec_activate(unsigned int freq)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
a10_clk_pll2_set_rate(freq);
|
|
|
|
/* Gating APB clock for ADDA */
|
|
reg_value = ccm_read_4(sc, CCM_APB0_GATING);
|
|
reg_value |= CCM_APB0_GATING_ADDA;
|
|
ccm_write_4(sc, CCM_APB0_GATING, reg_value);
|
|
|
|
/* Enable audio codec clock */
|
|
reg_value = ccm_read_4(sc, CCM_AUDIO_CODEC_CLK);
|
|
reg_value |= CCM_AUDIO_CODEC_ENABLE;
|
|
ccm_write_4(sc, CCM_AUDIO_CODEC_CLK, reg_value);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
calc_tcon_pll(int f_ref, int f_out, int *pm, int *pn)
|
|
{
|
|
int best, m, n, f_cur, diff;
|
|
|
|
best = TCON_PLL_WORST;
|
|
for (n = TCON_PLL_N_MIN; n <= TCON_PLL_N_MAX; n++) {
|
|
for (m = TCON_PLL_M_MIN; m <= TCON_PLL_M_MAX; m++) {
|
|
f_cur = (m * f_ref) / n;
|
|
diff = f_out - f_cur;
|
|
if (diff > 0 && diff < best) {
|
|
best = diff;
|
|
*pm = m;
|
|
*pn = n;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
a10_clk_debe_activate(void)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
int pll_rate, clk_div;
|
|
uint32_t reg_value;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
/* Leave reset */
|
|
reg_value = ccm_read_4(sc, CCM_BE0_SCLK);
|
|
reg_value |= CCM_BE_CLK_RESET;
|
|
ccm_write_4(sc, CCM_BE0_SCLK, reg_value);
|
|
|
|
pll_rate = a10_clk_pll5x_get_rate();
|
|
|
|
clk_div = howmany(pll_rate, DEBE_DEFAULT_RATE);
|
|
|
|
/* Set BE0 source to PLL5 (DDR external peripheral clock) */
|
|
reg_value = CCM_BE_CLK_RESET;
|
|
reg_value |= (CCM_BE_CLK_SRC_SEL_PLL5 << CCM_BE_CLK_SRC_SEL_SHIFT);
|
|
reg_value |= (clk_div - 1);
|
|
ccm_write_4(sc, CCM_BE0_SCLK, reg_value);
|
|
|
|
/* Gating AHB clock for BE0 */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING1);
|
|
reg_value |= CCM_AHB_GATING_DE_BE0;
|
|
ccm_write_4(sc, CCM_AHB_GATING1, reg_value);
|
|
|
|
/* Enable DRAM clock to BE0 */
|
|
reg_value = ccm_read_4(sc, CCM_DRAM_CLK);
|
|
reg_value |= CCM_DRAM_CLK_BE0_CLK_ENABLE;
|
|
ccm_write_4(sc, CCM_DRAM_CLK, reg_value);
|
|
|
|
/* Enable BE0 clock */
|
|
reg_value = ccm_read_4(sc, CCM_BE0_SCLK);
|
|
reg_value |= CCM_BE_CLK_SCLK_GATING;
|
|
ccm_write_4(sc, CCM_BE0_SCLK, reg_value);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_lcd_activate(void)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
/* Clear LCD0 reset */
|
|
reg_value = ccm_read_4(sc, CCM_LCD0_CH0_CLK);
|
|
reg_value |= CCM_LCD_CH0_RESET;
|
|
ccm_write_4(sc, CCM_LCD0_CH0_CLK, reg_value);
|
|
|
|
/* Gating AHB clock for LCD0 */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING1);
|
|
reg_value |= CCM_AHB_GATING_LCD0;
|
|
ccm_write_4(sc, CCM_AHB_GATING1, reg_value);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_tcon_activate(unsigned int freq)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
int m, n, m2, n2, f_single, f_double, dbl, src_sel;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
m = n = m2 = n2 = 0;
|
|
dbl = 0;
|
|
|
|
calc_tcon_pll(TCON_PLLREF_SINGLE, TCON_RATE_KHZ(freq), &m, &n);
|
|
calc_tcon_pll(TCON_PLLREF_DOUBLE, TCON_RATE_KHZ(freq), &m2, &n2);
|
|
|
|
f_single = n ? (m * TCON_PLLREF_SINGLE) / n : 0;
|
|
f_double = n2 ? (m2 * TCON_PLLREF_DOUBLE) / n2 : 0;
|
|
|
|
if (f_double > f_single) {
|
|
dbl = 1;
|
|
m = m2;
|
|
n = n2;
|
|
}
|
|
src_sel = dbl ? CCM_LCD_CH1_SRC_SEL_PLL3_2X : CCM_LCD_CH1_SRC_SEL_PLL3;
|
|
|
|
if (n == 0 || m == 0)
|
|
return (EINVAL);
|
|
|
|
/* Set PLL3 to the closest possible rate */
|
|
a10_clk_pll3_set_rate(TCON_RATE_HZ(m * TCON_PLLREF_SINGLE));
|
|
|
|
/* Enable LCD0 CH1 clock */
|
|
ccm_write_4(sc, CCM_LCD0_CH1_CLK,
|
|
CCM_LCD_CH1_SCLK2_GATING | CCM_LCD_CH1_SCLK1_GATING |
|
|
(src_sel << CCM_LCD_CH1_SRC_SEL_SHIFT) | (n - 1));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_tcon_get_config(int *pdiv, int *pdbl)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
int src;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
reg_value = ccm_read_4(sc, CCM_LCD0_CH1_CLK);
|
|
|
|
*pdiv = (reg_value & CCM_LCD_CH1_CLK_DIV_RATIO_M) + 1;
|
|
|
|
src = (reg_value & CCM_LCD_CH1_SRC_SEL) >> CCM_LCD_CH1_SRC_SEL_SHIFT;
|
|
switch (src) {
|
|
case CCM_LCD_CH1_SRC_SEL_PLL3:
|
|
case CCM_LCD_CH1_SRC_SEL_PLL7:
|
|
*pdbl = 0;
|
|
break;
|
|
case CCM_LCD_CH1_SRC_SEL_PLL3_2X:
|
|
case CCM_LCD_CH1_SRC_SEL_PLL7_2X:
|
|
*pdbl = 1;
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
a10_clk_hdmi_activate(void)
|
|
{
|
|
struct a10_ccm_softc *sc;
|
|
uint32_t reg_value;
|
|
int error;
|
|
|
|
sc = a10_ccm_sc;
|
|
if (sc == NULL)
|
|
return (ENXIO);
|
|
|
|
/* Set PLL3 to 297MHz */
|
|
error = a10_clk_pll3_set_rate(HDMI_DEFAULT_RATE);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* Enable HDMI clock, source PLL3 */
|
|
reg_value = ccm_read_4(sc, CCM_HDMI_CLK);
|
|
reg_value |= CCM_HDMI_CLK_SCLK_GATING;
|
|
reg_value &= ~CCM_HDMI_CLK_SRC_SEL;
|
|
reg_value |= (CCM_HDMI_CLK_SRC_SEL_PLL3 << CCM_HDMI_CLK_SRC_SEL_SHIFT);
|
|
ccm_write_4(sc, CCM_HDMI_CLK, reg_value);
|
|
|
|
/* Gating AHB clock for HDMI */
|
|
reg_value = ccm_read_4(sc, CCM_AHB_GATING1);
|
|
reg_value |= CCM_AHB_GATING_HDMI;
|
|
ccm_write_4(sc, CCM_AHB_GATING1, reg_value);
|
|
|
|
return (0);
|
|
}
|