9bf40ede4a
if_xname, if_dname, and if_dunit. if_xname is the name of the interface and if_dname/unit are the driver name and instance. This change paves the way for interface renaming and enhanced pseudo device creation and configuration symantics. Approved By: re (in principle) Reviewed By: njl, imp Tested On: i386, amd64, sparc64 Obtained From: NetBSD (if_xname)
3592 lines
94 KiB
C
3592 lines
94 KiB
C
/*
|
|
* Copyright (c) 2001 Wind River Systems
|
|
* Copyright (c) 1997, 1998, 1999, 2001
|
|
* Bill Paul <wpaul@windriver.com>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
|
|
*
|
|
* The Broadcom BCM5700 is based on technology originally developed by
|
|
* Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
|
|
* MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
|
|
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
|
|
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
|
|
* frames, highly configurable RX filtering, and 16 RX and TX queues
|
|
* (which, along with RX filter rules, can be used for QOS applications).
|
|
* Other features, such as TCP segmentation, may be available as part
|
|
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
|
|
* firmware images can be stored in hardware and need not be compiled
|
|
* into the driver.
|
|
*
|
|
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
|
|
* function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
|
|
*
|
|
* The BCM5701 is a single-chip solution incorporating both the BCM5700
|
|
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
|
|
* does not support external SSRAM.
|
|
*
|
|
* Broadcom also produces a variation of the BCM5700 under the "Altima"
|
|
* brand name, which is functionally similar but lacks PCI-X support.
|
|
*
|
|
* Without external SSRAM, you can only have at most 4 TX rings,
|
|
* and the use of the mini RX ring is disabled. This seems to imply
|
|
* that these features are simply not available on the BCM5701. As a
|
|
* result, this driver does not implement any support for the mini RX
|
|
* ring.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
|
|
#include <machine/clock.h> /* for DELAY */
|
|
#include <machine/bus_memio.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include "miidevs.h"
|
|
#include <dev/mii/brgphyreg.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <dev/bge/if_bgereg.h>
|
|
|
|
#define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
|
|
|
|
MODULE_DEPEND(bge, pci, 1, 1, 1);
|
|
MODULE_DEPEND(bge, ether, 1, 1, 1);
|
|
MODULE_DEPEND(bge, miibus, 1, 1, 1);
|
|
|
|
/* "controller miibus0" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names. Note: the
|
|
* spec seems to indicate that the hardware still has Alteon's vendor
|
|
* ID burned into it, though it will always be overriden by the vendor
|
|
* ID in the EEPROM. Just to be safe, we cover all possibilities.
|
|
*/
|
|
#define BGE_DEVDESC_MAX 64 /* Maximum device description length */
|
|
|
|
static struct bge_type bge_devs[] = {
|
|
{ ALT_VENDORID, ALT_DEVICEID_BCM5700,
|
|
"Broadcom BCM5700 Gigabit Ethernet" },
|
|
{ ALT_VENDORID, ALT_DEVICEID_BCM5701,
|
|
"Broadcom BCM5701 Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700,
|
|
"Broadcom BCM5700 Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701,
|
|
"Broadcom BCM5701 Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702,
|
|
"Broadcom BCM5702 Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702X,
|
|
"Broadcom BCM5702X Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703,
|
|
"Broadcom BCM5703 Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703X,
|
|
"Broadcom BCM5703X Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704C,
|
|
"Broadcom BCM5704C Dual Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704S,
|
|
"Broadcom BCM5704S Dual Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705,
|
|
"Broadcom BCM5705 Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M,
|
|
"Broadcom BCM5705M Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT,
|
|
"Broadcom BCM5705M Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5782,
|
|
"Broadcom BCM5782 Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5788,
|
|
"Broadcom BCM5788 Gigabit Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5901,
|
|
"Broadcom BCM5901 Fast Ethernet" },
|
|
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2,
|
|
"Broadcom BCM5901A2 Fast Ethernet" },
|
|
{ SK_VENDORID, SK_DEVICEID_ALTIMA,
|
|
"SysKonnect Gigabit Ethernet" },
|
|
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000,
|
|
"Altima AC1000 Gigabit Ethernet" },
|
|
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100,
|
|
"Altima AC9100 Gigabit Ethernet" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static int bge_probe (device_t);
|
|
static int bge_attach (device_t);
|
|
static int bge_detach (device_t);
|
|
static void bge_release_resources
|
|
(struct bge_softc *);
|
|
static void bge_dma_map_addr (void *, bus_dma_segment_t *, int, int);
|
|
static void bge_dma_map_tx_desc (void *, bus_dma_segment_t *, int,
|
|
bus_size_t, int);
|
|
static int bge_dma_alloc (device_t);
|
|
static void bge_dma_free (struct bge_softc *);
|
|
|
|
static void bge_txeof (struct bge_softc *);
|
|
static void bge_rxeof (struct bge_softc *);
|
|
|
|
static void bge_tick (void *);
|
|
static void bge_stats_update (struct bge_softc *);
|
|
static void bge_stats_update_regs
|
|
(struct bge_softc *);
|
|
static int bge_encap (struct bge_softc *, struct mbuf *,
|
|
u_int32_t *);
|
|
|
|
static void bge_intr (void *);
|
|
static void bge_start (struct ifnet *);
|
|
static int bge_ioctl (struct ifnet *, u_long, caddr_t);
|
|
static void bge_init (void *);
|
|
static void bge_stop (struct bge_softc *);
|
|
static void bge_watchdog (struct ifnet *);
|
|
static void bge_shutdown (device_t);
|
|
static int bge_ifmedia_upd (struct ifnet *);
|
|
static void bge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
|
|
|
|
static u_int8_t bge_eeprom_getbyte (struct bge_softc *, int, u_int8_t *);
|
|
static int bge_read_eeprom (struct bge_softc *, caddr_t, int, int);
|
|
|
|
static u_int32_t bge_crc (caddr_t);
|
|
static void bge_setmulti (struct bge_softc *);
|
|
|
|
static void bge_handle_events (struct bge_softc *);
|
|
static int bge_alloc_jumbo_mem (struct bge_softc *);
|
|
static void bge_free_jumbo_mem (struct bge_softc *);
|
|
static void *bge_jalloc (struct bge_softc *);
|
|
static void bge_jfree (void *, void *);
|
|
static int bge_newbuf_std (struct bge_softc *, int, struct mbuf *);
|
|
static int bge_newbuf_jumbo (struct bge_softc *, int, struct mbuf *);
|
|
static int bge_init_rx_ring_std (struct bge_softc *);
|
|
static void bge_free_rx_ring_std (struct bge_softc *);
|
|
static int bge_init_rx_ring_jumbo (struct bge_softc *);
|
|
static void bge_free_rx_ring_jumbo (struct bge_softc *);
|
|
static void bge_free_tx_ring (struct bge_softc *);
|
|
static int bge_init_tx_ring (struct bge_softc *);
|
|
|
|
static int bge_chipinit (struct bge_softc *);
|
|
static int bge_blockinit (struct bge_softc *);
|
|
|
|
#ifdef notdef
|
|
static u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
|
|
static void bge_vpd_read_res (struct bge_softc *, struct vpd_res *, int);
|
|
static void bge_vpd_read (struct bge_softc *);
|
|
#endif
|
|
|
|
static u_int32_t bge_readmem_ind
|
|
(struct bge_softc *, int);
|
|
static void bge_writemem_ind (struct bge_softc *, int, int);
|
|
#ifdef notdef
|
|
static u_int32_t bge_readreg_ind
|
|
(struct bge_softc *, int);
|
|
#endif
|
|
static void bge_writereg_ind (struct bge_softc *, int, int);
|
|
|
|
static int bge_miibus_readreg (device_t, int, int);
|
|
static int bge_miibus_writereg (device_t, int, int, int);
|
|
static void bge_miibus_statchg (device_t);
|
|
|
|
static void bge_reset (struct bge_softc *);
|
|
|
|
static device_method_t bge_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, bge_probe),
|
|
DEVMETHOD(device_attach, bge_attach),
|
|
DEVMETHOD(device_detach, bge_detach),
|
|
DEVMETHOD(device_shutdown, bge_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, bge_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, bge_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, bge_miibus_statchg),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t bge_driver = {
|
|
"bge",
|
|
bge_methods,
|
|
sizeof(struct bge_softc)
|
|
};
|
|
|
|
static devclass_t bge_devclass;
|
|
|
|
DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
static u_int32_t
|
|
bge_readmem_ind(sc, off)
|
|
struct bge_softc *sc;
|
|
int off;
|
|
{
|
|
device_t dev;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
|
|
return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
|
|
}
|
|
|
|
static void
|
|
bge_writemem_ind(sc, off, val)
|
|
struct bge_softc *sc;
|
|
int off, val;
|
|
{
|
|
device_t dev;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
|
|
pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef notdef
|
|
static u_int32_t
|
|
bge_readreg_ind(sc, off)
|
|
struct bge_softc *sc;
|
|
int off;
|
|
{
|
|
device_t dev;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
|
|
return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
bge_writereg_ind(sc, off, val)
|
|
struct bge_softc *sc;
|
|
int off, val;
|
|
{
|
|
device_t dev;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
|
|
pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Map a single buffer address.
|
|
*/
|
|
|
|
static void
|
|
bge_dma_map_addr(arg, segs, nseg, error)
|
|
void *arg;
|
|
bus_dma_segment_t *segs;
|
|
int nseg;
|
|
int error;
|
|
{
|
|
struct bge_dmamap_arg *ctx;
|
|
|
|
if (error)
|
|
return;
|
|
|
|
ctx = arg;
|
|
|
|
if (nseg > ctx->bge_maxsegs) {
|
|
ctx->bge_maxsegs = 0;
|
|
return;
|
|
}
|
|
|
|
ctx->bge_busaddr = segs->ds_addr;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Map an mbuf chain into an TX ring.
|
|
*/
|
|
|
|
static void
|
|
bge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
|
|
void *arg;
|
|
bus_dma_segment_t *segs;
|
|
int nseg;
|
|
bus_size_t mapsize;
|
|
int error;
|
|
{
|
|
struct bge_dmamap_arg *ctx;
|
|
struct bge_tx_bd *d = NULL;
|
|
int i = 0, idx;
|
|
|
|
if (error)
|
|
return;
|
|
|
|
ctx = arg;
|
|
|
|
/* Signal error to caller if there's too many segments */
|
|
if (nseg > ctx->bge_maxsegs) {
|
|
ctx->bge_maxsegs = 0;
|
|
return;
|
|
}
|
|
|
|
idx = ctx->bge_idx;
|
|
while(1) {
|
|
d = &ctx->bge_ring[idx];
|
|
d->bge_addr.bge_addr_lo =
|
|
htole32(BGE_ADDR_LO(segs[i].ds_addr));
|
|
d->bge_addr.bge_addr_hi =
|
|
htole32(BGE_ADDR_HI(segs[i].ds_addr));
|
|
d->bge_len = htole16(segs[i].ds_len);
|
|
d->bge_flags = htole16(ctx->bge_flags);
|
|
i++;
|
|
if (i == nseg)
|
|
break;
|
|
BGE_INC(idx, BGE_TX_RING_CNT);
|
|
}
|
|
|
|
d->bge_flags |= htole16(BGE_TXBDFLAG_END);
|
|
ctx->bge_maxsegs = nseg;
|
|
ctx->bge_idx = idx;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
#ifdef notdef
|
|
static u_int8_t
|
|
bge_vpd_readbyte(sc, addr)
|
|
struct bge_softc *sc;
|
|
int addr;
|
|
{
|
|
int i;
|
|
device_t dev;
|
|
u_int32_t val;
|
|
|
|
dev = sc->bge_dev;
|
|
pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
|
|
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
|
|
DELAY(10);
|
|
if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
|
|
break;
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("bge%d: VPD read timed out\n", sc->bge_unit);
|
|
return(0);
|
|
}
|
|
|
|
val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
|
|
|
|
return((val >> ((addr % 4) * 8)) & 0xFF);
|
|
}
|
|
|
|
static void
|
|
bge_vpd_read_res(sc, res, addr)
|
|
struct bge_softc *sc;
|
|
struct vpd_res *res;
|
|
int addr;
|
|
{
|
|
int i;
|
|
u_int8_t *ptr;
|
|
|
|
ptr = (u_int8_t *)res;
|
|
for (i = 0; i < sizeof(struct vpd_res); i++)
|
|
ptr[i] = bge_vpd_readbyte(sc, i + addr);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
bge_vpd_read(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int pos = 0, i;
|
|
struct vpd_res res;
|
|
|
|
if (sc->bge_vpd_prodname != NULL)
|
|
free(sc->bge_vpd_prodname, M_DEVBUF);
|
|
if (sc->bge_vpd_readonly != NULL)
|
|
free(sc->bge_vpd_readonly, M_DEVBUF);
|
|
sc->bge_vpd_prodname = NULL;
|
|
sc->bge_vpd_readonly = NULL;
|
|
|
|
bge_vpd_read_res(sc, &res, pos);
|
|
|
|
if (res.vr_id != VPD_RES_ID) {
|
|
printf("bge%d: bad VPD resource id: expected %x got %x\n",
|
|
sc->bge_unit, VPD_RES_ID, res.vr_id);
|
|
return;
|
|
}
|
|
|
|
pos += sizeof(res);
|
|
sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
|
|
for (i = 0; i < res.vr_len; i++)
|
|
sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
|
|
sc->bge_vpd_prodname[i] = '\0';
|
|
pos += i;
|
|
|
|
bge_vpd_read_res(sc, &res, pos);
|
|
|
|
if (res.vr_id != VPD_RES_READ) {
|
|
printf("bge%d: bad VPD resource id: expected %x got %x\n",
|
|
sc->bge_unit, VPD_RES_READ, res.vr_id);
|
|
return;
|
|
}
|
|
|
|
pos += sizeof(res);
|
|
sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
|
|
for (i = 0; i < res.vr_len + 1; i++)
|
|
sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Read a byte of data stored in the EEPROM at address 'addr.' The
|
|
* BCM570x supports both the traditional bitbang interface and an
|
|
* auto access interface for reading the EEPROM. We use the auto
|
|
* access method.
|
|
*/
|
|
static u_int8_t
|
|
bge_eeprom_getbyte(sc, addr, dest)
|
|
struct bge_softc *sc;
|
|
int addr;
|
|
u_int8_t *dest;
|
|
{
|
|
int i;
|
|
u_int32_t byte = 0;
|
|
|
|
/*
|
|
* Enable use of auto EEPROM access so we can avoid
|
|
* having to use the bitbang method.
|
|
*/
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
|
|
|
|
/* Reset the EEPROM, load the clock period. */
|
|
CSR_WRITE_4(sc, BGE_EE_ADDR,
|
|
BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
|
|
DELAY(20);
|
|
|
|
/* Issue the read EEPROM command. */
|
|
CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
|
|
|
|
/* Wait for completion */
|
|
for(i = 0; i < BGE_TIMEOUT * 10; i++) {
|
|
DELAY(10);
|
|
if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
|
|
break;
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("bge%d: eeprom read timed out\n", sc->bge_unit);
|
|
return(0);
|
|
}
|
|
|
|
/* Get result. */
|
|
byte = CSR_READ_4(sc, BGE_EE_DATA);
|
|
|
|
*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of bytes from the EEPROM.
|
|
*/
|
|
static int
|
|
bge_read_eeprom(sc, dest, off, cnt)
|
|
struct bge_softc *sc;
|
|
caddr_t dest;
|
|
int off;
|
|
int cnt;
|
|
{
|
|
int err = 0, i;
|
|
u_int8_t byte = 0;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
err = bge_eeprom_getbyte(sc, off + i, &byte);
|
|
if (err)
|
|
break;
|
|
*(dest + i) = byte;
|
|
}
|
|
|
|
return(err ? 1 : 0);
|
|
}
|
|
|
|
static int
|
|
bge_miibus_readreg(dev, phy, reg)
|
|
device_t dev;
|
|
int phy, reg;
|
|
{
|
|
struct bge_softc *sc;
|
|
u_int32_t val, autopoll;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/*
|
|
* Broadcom's own driver always assumes the internal
|
|
* PHY is at GMII address 1. On some chips, the PHY responds
|
|
* to accesses at all addresses, which could cause us to
|
|
* bogusly attach the PHY 32 times at probe type. Always
|
|
* restricting the lookup to address 1 is simpler than
|
|
* trying to figure out which chips revisions should be
|
|
* special-cased.
|
|
*/
|
|
if (phy != 1)
|
|
return(0);
|
|
|
|
/* Reading with autopolling on may trigger PCI errors */
|
|
autopoll = CSR_READ_4(sc, BGE_MI_MODE);
|
|
if (autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
|
|
DELAY(40);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
|
|
BGE_MIPHY(phy)|BGE_MIREG(reg));
|
|
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
val = CSR_READ_4(sc, BGE_MI_COMM);
|
|
if (!(val & BGE_MICOMM_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("bge%d: PHY read timed out\n", sc->bge_unit);
|
|
val = 0;
|
|
goto done;
|
|
}
|
|
|
|
val = CSR_READ_4(sc, BGE_MI_COMM);
|
|
|
|
done:
|
|
if (autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
|
|
DELAY(40);
|
|
}
|
|
|
|
if (val & BGE_MICOMM_READFAIL)
|
|
return(0);
|
|
|
|
return(val & 0xFFFF);
|
|
}
|
|
|
|
static int
|
|
bge_miibus_writereg(dev, phy, reg, val)
|
|
device_t dev;
|
|
int phy, reg, val;
|
|
{
|
|
struct bge_softc *sc;
|
|
u_int32_t autopoll;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/* Reading with autopolling on may trigger PCI errors */
|
|
autopoll = CSR_READ_4(sc, BGE_MI_MODE);
|
|
if (autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
|
|
DELAY(40);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
|
|
BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
|
|
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
|
|
DELAY(40);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("bge%d: PHY read timed out\n", sc->bge_unit);
|
|
return(0);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
bge_miibus_statchg(dev)
|
|
device_t dev;
|
|
{
|
|
struct bge_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = device_get_softc(dev);
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
|
|
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
|
|
} else {
|
|
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
|
|
}
|
|
|
|
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
|
|
} else {
|
|
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Handle events that have triggered interrupts.
|
|
*/
|
|
static void
|
|
bge_handle_events(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Memory management for jumbo frames.
|
|
*/
|
|
|
|
static int
|
|
bge_alloc_jumbo_mem(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
caddr_t ptr;
|
|
register int i, error;
|
|
struct bge_jpool_entry *entry;
|
|
|
|
/* Create tag for jumbo buffer block */
|
|
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
|
|
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, BGE_JMEM, 1, BGE_JMEM, 0, NULL, NULL,
|
|
&sc->bge_cdata.bge_jumbo_tag);
|
|
|
|
if (error) {
|
|
printf("bge%d: could not allocate jumbo dma tag\n",
|
|
sc->bge_unit);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Allocate DMA'able memory for jumbo buffer block */
|
|
|
|
error = bus_dmamem_alloc(sc->bge_cdata.bge_jumbo_tag,
|
|
(void **)&sc->bge_ldata.bge_jumbo_buf, BUS_DMA_NOWAIT,
|
|
&sc->bge_cdata.bge_jumbo_map);
|
|
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
SLIST_INIT(&sc->bge_jfree_listhead);
|
|
SLIST_INIT(&sc->bge_jinuse_listhead);
|
|
|
|
/*
|
|
* Now divide it up into 9K pieces and save the addresses
|
|
* in an array.
|
|
*/
|
|
ptr = sc->bge_ldata.bge_jumbo_buf;
|
|
for (i = 0; i < BGE_JSLOTS; i++) {
|
|
sc->bge_cdata.bge_jslots[i] = ptr;
|
|
ptr += BGE_JLEN;
|
|
entry = malloc(sizeof(struct bge_jpool_entry),
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (entry == NULL) {
|
|
bge_free_jumbo_mem(sc);
|
|
sc->bge_ldata.bge_jumbo_buf = NULL;
|
|
printf("bge%d: no memory for jumbo "
|
|
"buffer queue!\n", sc->bge_unit);
|
|
return(ENOBUFS);
|
|
}
|
|
entry->slot = i;
|
|
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
|
|
entry, jpool_entries);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
bge_free_jumbo_mem(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
struct bge_jpool_entry *entry;
|
|
|
|
for (i = 0; i < BGE_JSLOTS; i++) {
|
|
entry = SLIST_FIRST(&sc->bge_jfree_listhead);
|
|
SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
|
|
free(entry, M_DEVBUF);
|
|
}
|
|
|
|
/* Destroy jumbo buffer block */
|
|
|
|
if (sc->bge_ldata.bge_rx_jumbo_ring)
|
|
bus_dmamem_free(sc->bge_cdata.bge_jumbo_tag,
|
|
sc->bge_ldata.bge_jumbo_buf,
|
|
sc->bge_cdata.bge_jumbo_map);
|
|
|
|
if (sc->bge_cdata.bge_rx_jumbo_ring_map)
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_jumbo_tag,
|
|
sc->bge_cdata.bge_jumbo_map);
|
|
|
|
if (sc->bge_cdata.bge_jumbo_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_jumbo_tag);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Allocate a jumbo buffer.
|
|
*/
|
|
static void *
|
|
bge_jalloc(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct bge_jpool_entry *entry;
|
|
|
|
entry = SLIST_FIRST(&sc->bge_jfree_listhead);
|
|
|
|
if (entry == NULL) {
|
|
printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
|
|
return(NULL);
|
|
}
|
|
|
|
SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
|
|
SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
|
|
return(sc->bge_cdata.bge_jslots[entry->slot]);
|
|
}
|
|
|
|
/*
|
|
* Release a jumbo buffer.
|
|
*/
|
|
static void
|
|
bge_jfree(buf, args)
|
|
void *buf;
|
|
void *args;
|
|
{
|
|
struct bge_jpool_entry *entry;
|
|
struct bge_softc *sc;
|
|
int i;
|
|
|
|
/* Extract the softc struct pointer. */
|
|
sc = (struct bge_softc *)args;
|
|
|
|
if (sc == NULL)
|
|
panic("bge_jfree: can't find softc pointer!");
|
|
|
|
/* calculate the slot this buffer belongs to */
|
|
|
|
i = ((vm_offset_t)buf
|
|
- (vm_offset_t)sc->bge_ldata.bge_jumbo_buf) / BGE_JLEN;
|
|
|
|
if ((i < 0) || (i >= BGE_JSLOTS))
|
|
panic("bge_jfree: asked to free buffer that we don't manage!");
|
|
|
|
entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
|
|
if (entry == NULL)
|
|
panic("bge_jfree: buffer not in use!");
|
|
entry->slot = i;
|
|
SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
|
|
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Intialize a standard receive ring descriptor.
|
|
*/
|
|
static int
|
|
bge_newbuf_std(sc, i, m)
|
|
struct bge_softc *sc;
|
|
int i;
|
|
struct mbuf *m;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
struct bge_rx_bd *r;
|
|
struct bge_dmamap_arg ctx;
|
|
int error;
|
|
|
|
if (m == NULL) {
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
m_freem(m_new);
|
|
return(ENOBUFS);
|
|
}
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
} else {
|
|
m_new = m;
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
m_new->m_data = m_new->m_ext.ext_buf;
|
|
}
|
|
|
|
if (!sc->bge_rx_alignment_bug)
|
|
m_adj(m_new, ETHER_ALIGN);
|
|
sc->bge_cdata.bge_rx_std_chain[i] = m_new;
|
|
r = &sc->bge_ldata.bge_rx_std_ring[i];
|
|
ctx.bge_maxsegs = 1;
|
|
ctx.sc = sc;
|
|
error = bus_dmamap_load(sc->bge_cdata.bge_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *),
|
|
m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
|
|
if (error || ctx.bge_maxsegs == 0) {
|
|
if (m == NULL)
|
|
m_freem(m_new);
|
|
return(ENOMEM);
|
|
}
|
|
r->bge_addr.bge_addr_lo = htole32(BGE_ADDR_LO(ctx.bge_busaddr));
|
|
r->bge_addr.bge_addr_hi = htole32(BGE_ADDR_HI(ctx.bge_busaddr));
|
|
r->bge_flags = htole16(BGE_RXBDFLAG_END);
|
|
r->bge_len = htole16(m_new->m_len);
|
|
r->bge_idx = htole16(i);
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[i],
|
|
BUS_DMASYNC_PREREAD);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Initialize a jumbo receive ring descriptor. This allocates
|
|
* a jumbo buffer from the pool managed internally by the driver.
|
|
*/
|
|
static int
|
|
bge_newbuf_jumbo(sc, i, m)
|
|
struct bge_softc *sc;
|
|
int i;
|
|
struct mbuf *m;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
struct bge_rx_bd *r;
|
|
struct bge_dmamap_arg ctx;
|
|
int error;
|
|
|
|
if (m == NULL) {
|
|
caddr_t *buf = NULL;
|
|
|
|
/* Allocate the mbuf. */
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
/* Allocate the jumbo buffer */
|
|
buf = bge_jalloc(sc);
|
|
if (buf == NULL) {
|
|
m_freem(m_new);
|
|
printf("bge%d: jumbo allocation failed "
|
|
"-- packet dropped!\n", sc->bge_unit);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
/* Attach the buffer to the mbuf. */
|
|
m_new->m_data = (void *) buf;
|
|
m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
|
|
MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree,
|
|
(struct bge_softc *)sc, 0, EXT_NET_DRV);
|
|
} else {
|
|
m_new = m;
|
|
m_new->m_data = m_new->m_ext.ext_buf;
|
|
m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
|
|
}
|
|
|
|
if (!sc->bge_rx_alignment_bug)
|
|
m_adj(m_new, ETHER_ALIGN);
|
|
/* Set up the descriptor. */
|
|
sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
|
|
r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
|
|
ctx.bge_maxsegs = 1;
|
|
ctx.sc = sc;
|
|
error = bus_dmamap_load(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[i], mtod(m_new, void *),
|
|
m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
|
|
if (error || ctx.bge_maxsegs == 0) {
|
|
if (m == NULL)
|
|
m_freem(m_new);
|
|
return(ENOMEM);
|
|
}
|
|
r->bge_addr.bge_addr_lo = htole32(BGE_ADDR_LO(ctx.bge_busaddr));
|
|
r->bge_addr.bge_addr_hi = htole32(BGE_ADDR_HI(ctx.bge_busaddr));
|
|
r->bge_flags = htole16(BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING);
|
|
r->bge_len = htole16(m_new->m_len);
|
|
r->bge_idx = htole16(i);
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_mtag,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[i],
|
|
BUS_DMASYNC_PREREAD);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
|
|
* that's 1MB or memory, which is a lot. For now, we fill only the first
|
|
* 256 ring entries and hope that our CPU is fast enough to keep up with
|
|
* the NIC.
|
|
*/
|
|
static int
|
|
bge_init_rx_ring_std(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BGE_SSLOTS; i++) {
|
|
if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
|
|
return(ENOBUFS);
|
|
};
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->bge_std = i - 1;
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
bge_free_rx_ring_std(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
|
|
m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
|
|
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
|
|
bus_dmamap_unload(sc->bge_cdata.bge_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[i]);
|
|
}
|
|
bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
|
|
sizeof(struct bge_rx_bd));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
bge_init_rx_ring_jumbo(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
struct bge_rcb *rcb;
|
|
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
|
|
return(ENOBUFS);
|
|
};
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->bge_jumbo = i - 1;
|
|
|
|
rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
|
|
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
|
|
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
bge_free_rx_ring_jumbo(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
|
|
m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
|
|
sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
|
|
bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
|
|
}
|
|
bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
|
|
sizeof(struct bge_rx_bd));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
bge_free_tx_ring(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
if (sc->bge_ldata.bge_tx_ring == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < BGE_TX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
|
|
m_freem(sc->bge_cdata.bge_tx_chain[i]);
|
|
sc->bge_cdata.bge_tx_chain[i] = NULL;
|
|
bus_dmamap_unload(sc->bge_cdata.bge_mtag,
|
|
sc->bge_cdata.bge_tx_dmamap[i]);
|
|
}
|
|
bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
|
|
sizeof(struct bge_tx_bd));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
bge_init_tx_ring(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
sc->bge_txcnt = 0;
|
|
sc->bge_tx_saved_considx = 0;
|
|
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
|
|
/* 5700 b2 errata */
|
|
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
|
|
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
|
|
/* 5700 b2 errata */
|
|
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
|
|
|
|
return(0);
|
|
}
|
|
|
|
#define BGE_POLY 0xEDB88320
|
|
|
|
static u_int32_t
|
|
bge_crc(addr)
|
|
caddr_t addr;
|
|
{
|
|
u_int32_t idx, bit, data, crc;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = 0xFFFFFFFF; /* initial value */
|
|
|
|
for (idx = 0; idx < 6; idx++) {
|
|
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
|
|
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
|
|
}
|
|
|
|
return(crc & 0x7F);
|
|
}
|
|
|
|
static void
|
|
bge_setmulti(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
u_int32_t hashes[4] = { 0, 0, 0, 0 };
|
|
int h, i;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
for (i = 0; i < 4; i++)
|
|
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
|
|
return;
|
|
}
|
|
|
|
/* First, zot all the existing filters. */
|
|
for (i = 0; i < 4; i++)
|
|
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
|
|
|
|
/* Now program new ones. */
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
|
|
}
|
|
|
|
for (i = 0; i < 4; i++)
|
|
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Do endian, PCI and DMA initialization. Also check the on-board ROM
|
|
* self-test results.
|
|
*/
|
|
static int
|
|
bge_chipinit(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
u_int32_t dma_rw_ctl;
|
|
|
|
/* Set endianness before we access any non-PCI registers. */
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
|
|
BGE_BIGENDIAN_INIT, 4);
|
|
#else
|
|
pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
|
|
BGE_LITTLEENDIAN_INIT, 4);
|
|
#endif
|
|
|
|
/*
|
|
* Check the 'ROM failed' bit on the RX CPU to see if
|
|
* self-tests passed.
|
|
*/
|
|
if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
|
|
printf("bge%d: RX CPU self-diagnostics failed!\n",
|
|
sc->bge_unit);
|
|
return(ENODEV);
|
|
}
|
|
|
|
/* Clear the MAC control register */
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
|
|
|
|
/*
|
|
* Clear the MAC statistics block in the NIC's
|
|
* internal memory.
|
|
*/
|
|
for (i = BGE_STATS_BLOCK;
|
|
i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
|
|
BGE_MEMWIN_WRITE(sc, i, 0);
|
|
|
|
for (i = BGE_STATUS_BLOCK;
|
|
i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
|
|
BGE_MEMWIN_WRITE(sc, i, 0);
|
|
|
|
/* Set up the PCI DMA control register. */
|
|
if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
|
|
BGE_PCISTATE_PCI_BUSMODE) {
|
|
/* Conventional PCI bus */
|
|
dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
|
|
(0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
|
|
(0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
|
|
(0x0F);
|
|
} else {
|
|
/* PCI-X bus */
|
|
/*
|
|
* The 5704 uses a different encoding of read/write
|
|
* watermarks.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
|
|
dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
|
|
(0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
|
|
(0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
|
|
else
|
|
dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
|
|
(0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
|
|
(0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
|
|
(0x0F);
|
|
|
|
/*
|
|
* 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
|
|
* for hardware bugs.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5704) {
|
|
u_int32_t tmp;
|
|
|
|
tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
|
|
if (tmp == 0x6 || tmp == 0x7)
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
|
|
}
|
|
}
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5705)
|
|
dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
|
|
pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
|
|
|
|
/*
|
|
* Set up general mode register.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
|
|
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
|
|
BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
|
|
BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
|
|
|
|
/*
|
|
* Disable memory write invalidate. Apparently it is not supported
|
|
* properly by these devices.
|
|
*/
|
|
PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
|
|
|
|
#ifdef __brokenalpha__
|
|
/*
|
|
* Must insure that we do not cross an 8K (bytes) boundary
|
|
* for DMA reads. Our highest limit is 1K bytes. This is a
|
|
* restriction on some ALPHA platforms with early revision
|
|
* 21174 PCI chipsets, such as the AlphaPC 164lx
|
|
*/
|
|
PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
|
|
BGE_PCI_READ_BNDRY_1024BYTES, 4);
|
|
#endif
|
|
|
|
/* Set the timer prescaler (always 66Mhz) */
|
|
CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
bge_blockinit(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct bge_rcb *rcb;
|
|
volatile struct bge_rcb *vrcb;
|
|
int i;
|
|
|
|
/*
|
|
* Initialize the memory window pointer register so that
|
|
* we can access the first 32K of internal NIC RAM. This will
|
|
* allow us to set up the TX send ring RCBs and the RX return
|
|
* ring RCBs, plus other things which live in NIC memory.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
|
|
|
|
/* Note: the BCM5704 has a smaller mbuf space than other chips. */
|
|
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
|
|
/* Configure mbuf memory pool */
|
|
if (sc->bge_extram) {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
|
|
BGE_EXT_SSRAM);
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
|
|
else
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
|
|
} else {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
|
|
BGE_BUFFPOOL_1);
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
|
|
else
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
|
|
}
|
|
|
|
/* Configure DMA resource pool */
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
|
|
BGE_DMA_DESCRIPTORS);
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
|
|
}
|
|
|
|
/* Configure mbuf pool watermarks */
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
|
|
} else {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
|
|
}
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
|
|
|
|
/* Configure DMA resource watermarks */
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
|
|
|
|
/* Enable buffer manager */
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MODE,
|
|
BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
|
|
|
|
/* Poll for buffer manager start indication */
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("bge%d: buffer manager failed to start\n",
|
|
sc->bge_unit);
|
|
return(ENXIO);
|
|
}
|
|
}
|
|
|
|
/* Enable flow-through queues */
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
|
|
|
|
/* Wait until queue initialization is complete */
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("bge%d: flow-through queue init failed\n",
|
|
sc->bge_unit);
|
|
return(ENXIO);
|
|
}
|
|
|
|
/* Initialize the standard RX ring control block */
|
|
rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
|
|
rcb->bge_hostaddr.bge_addr_lo =
|
|
BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
|
|
rcb->bge_hostaddr.bge_addr_hi =
|
|
BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
|
|
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
|
|
else
|
|
rcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
|
|
if (sc->bge_extram)
|
|
rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
|
|
else
|
|
rcb->bge_nicaddr = BGE_STD_RX_RINGS;
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
|
|
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
|
|
|
|
/*
|
|
* Initialize the jumbo RX ring control block
|
|
* We set the 'ring disabled' bit in the flags
|
|
* field until we're actually ready to start
|
|
* using this ring (i.e. once we set the MTU
|
|
* high enough to require it).
|
|
*/
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
|
|
rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
|
|
|
|
rcb->bge_hostaddr.bge_addr_lo =
|
|
BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
|
|
rcb->bge_hostaddr.bge_addr_hi =
|
|
BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map,
|
|
BUS_DMASYNC_PREREAD);
|
|
rcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
|
|
BGE_RCB_FLAG_RING_DISABLED);
|
|
if (sc->bge_extram)
|
|
rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
|
|
else
|
|
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
|
|
rcb->bge_hostaddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
|
|
rcb->bge_hostaddr.bge_addr_lo);
|
|
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
|
|
rcb->bge_maxlen_flags);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
|
|
|
|
/* Set up dummy disabled mini ring RCB */
|
|
rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
|
|
rcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
|
|
CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
|
|
rcb->bge_maxlen_flags);
|
|
}
|
|
|
|
/*
|
|
* Set the BD ring replentish thresholds. The recommended
|
|
* values are 1/8th the number of descriptors allocated to
|
|
* each ring.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
|
|
CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
|
|
|
|
/*
|
|
* Disable all unused send rings by setting the 'ring disabled'
|
|
* bit in the flags field of all the TX send ring control blocks.
|
|
* These are located in NIC memory.
|
|
*/
|
|
vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
|
|
BGE_SEND_RING_RCB);
|
|
for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
|
|
vrcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
|
|
vrcb->bge_nicaddr = 0;
|
|
vrcb++;
|
|
}
|
|
|
|
/* Configure TX RCB 0 (we use only the first ring) */
|
|
vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
|
|
BGE_SEND_RING_RCB);
|
|
vrcb->bge_hostaddr.bge_addr_lo =
|
|
htole32(BGE_ADDR_LO(sc->bge_ldata.bge_tx_ring_paddr));
|
|
vrcb->bge_hostaddr.bge_addr_hi =
|
|
htole32(BGE_ADDR_HI(sc->bge_ldata.bge_tx_ring_paddr));
|
|
vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
|
|
vrcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
|
|
|
|
/* Disable all unused RX return rings */
|
|
vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
|
|
BGE_RX_RETURN_RING_RCB);
|
|
for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
|
|
vrcb->bge_hostaddr.bge_addr_hi = 0;
|
|
vrcb->bge_hostaddr.bge_addr_lo = 0;
|
|
vrcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
|
|
BGE_RCB_FLAG_RING_DISABLED);
|
|
vrcb->bge_nicaddr = 0;
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
|
|
(i * (sizeof(u_int64_t))), 0);
|
|
vrcb++;
|
|
}
|
|
|
|
/* Initialize RX ring indexes */
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
|
|
|
|
/*
|
|
* Set up RX return ring 0
|
|
* Note that the NIC address for RX return rings is 0x00000000.
|
|
* The return rings live entirely within the host, so the
|
|
* nicaddr field in the RCB isn't used.
|
|
*/
|
|
vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
|
|
BGE_RX_RETURN_RING_RCB);
|
|
vrcb->bge_hostaddr.bge_addr_lo =
|
|
BGE_ADDR_LO(sc->bge_ldata.bge_rx_return_ring_paddr);
|
|
vrcb->bge_hostaddr.bge_addr_hi =
|
|
BGE_ADDR_HI(sc->bge_ldata.bge_rx_return_ring_paddr);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREWRITE);
|
|
vrcb->bge_nicaddr = 0x00000000;
|
|
vrcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
|
|
|
|
/* Set random backoff seed for TX */
|
|
CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
|
|
sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
|
|
sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
|
|
sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
|
|
BGE_TX_BACKOFF_SEED_MASK);
|
|
|
|
/* Set inter-packet gap */
|
|
CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
|
|
|
|
/*
|
|
* Specify which ring to use for packets that don't match
|
|
* any RX rules.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
|
|
|
|
/*
|
|
* Configure number of RX lists. One interrupt distribution
|
|
* list, sixteen active lists, one bad frames class.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
|
|
|
|
/* Inialize RX list placement stats mask. */
|
|
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
|
|
CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
|
|
|
|
/* Disable host coalescing until we get it set up */
|
|
CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
|
|
|
|
/* Poll to make sure it's shut down. */
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("bge%d: host coalescing engine failed to idle\n",
|
|
sc->bge_unit);
|
|
return(ENXIO);
|
|
}
|
|
|
|
/* Set up host coalescing defaults */
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
|
|
}
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
|
|
|
|
/* Set up address of statistics block */
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
|
|
BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
|
|
BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
|
|
}
|
|
|
|
/* Set up address of status block */
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
|
|
BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
|
|
BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
|
|
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREWRITE);
|
|
sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
|
|
sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
|
|
|
|
/* Turn on host coalescing state machine */
|
|
CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
|
|
|
|
/* Turn on RX BD completion state machine and enable attentions */
|
|
CSR_WRITE_4(sc, BGE_RBDC_MODE,
|
|
BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
|
|
|
|
/* Turn on RX list placement state machine */
|
|
CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
|
|
|
|
/* Turn on RX list selector state machine. */
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
|
|
CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
|
|
|
|
/* Turn on DMA, clear stats */
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
|
|
BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
|
|
BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
|
|
BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
|
|
(sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
|
|
|
|
/* Set misc. local control, enable interrupts on attentions */
|
|
CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
|
|
|
|
#ifdef notdef
|
|
/* Assert GPIO pins for PHY reset */
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
|
|
BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
|
|
BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
|
|
#endif
|
|
|
|
/* Turn on DMA completion state machine */
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
|
|
CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
|
|
|
|
/* Turn on write DMA state machine */
|
|
CSR_WRITE_4(sc, BGE_WDMA_MODE,
|
|
BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
|
|
|
|
/* Turn on read DMA state machine */
|
|
CSR_WRITE_4(sc, BGE_RDMA_MODE,
|
|
BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
|
|
|
|
/* Turn on RX data completion state machine */
|
|
CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
|
|
|
|
/* Turn on RX BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
|
|
/* Turn on RX data and RX BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
|
|
|
|
/* Turn on Mbuf cluster free state machine */
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
|
|
CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
|
|
|
|
/* Turn on send BD completion state machine */
|
|
CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
|
|
|
|
/* Turn on send data completion state machine */
|
|
CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
|
|
|
|
/* Turn on send data initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
|
|
|
|
/* Turn on send BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
|
|
|
|
/* Turn on send BD selector state machine */
|
|
CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
|
|
|
|
CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
|
|
CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
|
|
BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
|
|
|
|
/* ack/clear link change events */
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
|
|
BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
|
|
BGE_MACSTAT_LINK_CHANGED);
|
|
CSR_WRITE_4(sc, BGE_MI_STS, 0);
|
|
|
|
/* Enable PHY auto polling (for MII/GMII only) */
|
|
if (sc->bge_tbi) {
|
|
CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
|
|
} else {
|
|
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
|
|
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
|
|
BGE_EVTENB_MI_INTERRUPT);
|
|
}
|
|
|
|
/* Enable link state change attentions. */
|
|
BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
|
|
* against our list and return its name if we find a match. Note
|
|
* that since the Broadcom controller contains VPD support, we
|
|
* can get the device name string from the controller itself instead
|
|
* of the compiled-in string. This is a little slow, but it guarantees
|
|
* we'll always announce the right product name.
|
|
*/
|
|
static int
|
|
bge_probe(dev)
|
|
device_t dev;
|
|
{
|
|
struct bge_type *t;
|
|
struct bge_softc *sc;
|
|
char *descbuf;
|
|
|
|
t = bge_devs;
|
|
|
|
sc = device_get_softc(dev);
|
|
bzero(sc, sizeof(struct bge_softc));
|
|
sc->bge_unit = device_get_unit(dev);
|
|
sc->bge_dev = dev;
|
|
|
|
while(t->bge_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->bge_vid) &&
|
|
(pci_get_device(dev) == t->bge_did)) {
|
|
#ifdef notdef
|
|
bge_vpd_read(sc);
|
|
device_set_desc(dev, sc->bge_vpd_prodname);
|
|
#endif
|
|
descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
|
|
if (descbuf == NULL)
|
|
return(ENOMEM);
|
|
snprintf(descbuf, BGE_DEVDESC_MAX,
|
|
"%s, ASIC rev. %#04x", t->bge_name,
|
|
pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
|
|
device_set_desc_copy(dev, descbuf);
|
|
if (pci_get_subvendor(dev) == DELL_VENDORID)
|
|
sc->bge_no_3_led = 1;
|
|
free(descbuf, M_TEMP);
|
|
return(0);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return(ENXIO);
|
|
}
|
|
|
|
static void
|
|
bge_dma_free(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
|
|
/* Destroy DMA maps for RX buffers */
|
|
|
|
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_std_dmamap[i])
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[i]);
|
|
}
|
|
|
|
/* Destroy DMA maps for jumbo RX buffers */
|
|
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
|
|
}
|
|
|
|
/* Destroy DMA maps for TX buffers */
|
|
|
|
for (i = 0; i < BGE_TX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_tx_dmamap[i])
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
|
|
sc->bge_cdata.bge_tx_dmamap[i]);
|
|
}
|
|
|
|
if (sc->bge_cdata.bge_mtag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
|
|
|
|
|
|
/* Destroy standard RX ring */
|
|
|
|
if (sc->bge_ldata.bge_rx_std_ring)
|
|
bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_ldata.bge_rx_std_ring,
|
|
sc->bge_cdata.bge_rx_std_ring_map);
|
|
|
|
if (sc->bge_cdata.bge_rx_std_ring_map) {
|
|
bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map);
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map);
|
|
}
|
|
|
|
if (sc->bge_cdata.bge_rx_std_ring_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
|
|
|
|
/* Destroy jumbo RX ring */
|
|
|
|
if (sc->bge_ldata.bge_rx_jumbo_ring)
|
|
bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_ldata.bge_rx_jumbo_ring,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map);
|
|
|
|
if (sc->bge_cdata.bge_rx_jumbo_ring_map) {
|
|
bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map);
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map);
|
|
}
|
|
|
|
if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
|
|
|
|
/* Destroy RX return ring */
|
|
|
|
if (sc->bge_ldata.bge_rx_return_ring)
|
|
bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
sc->bge_ldata.bge_rx_return_ring,
|
|
sc->bge_cdata.bge_rx_return_ring_map);
|
|
|
|
if (sc->bge_cdata.bge_rx_return_ring_map) {
|
|
bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
sc->bge_cdata.bge_rx_return_ring_map);
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
sc->bge_cdata.bge_rx_return_ring_map);
|
|
}
|
|
|
|
if (sc->bge_cdata.bge_rx_return_ring_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
|
|
|
|
/* Destroy TX ring */
|
|
|
|
if (sc->bge_ldata.bge_tx_ring)
|
|
bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
|
|
sc->bge_ldata.bge_tx_ring,
|
|
sc->bge_cdata.bge_tx_ring_map);
|
|
|
|
if (sc->bge_cdata.bge_tx_ring_map) {
|
|
bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
|
|
sc->bge_cdata.bge_tx_ring_map);
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_tx_ring_tag,
|
|
sc->bge_cdata.bge_tx_ring_map);
|
|
}
|
|
|
|
if (sc->bge_cdata.bge_tx_ring_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
|
|
|
|
/* Destroy status block */
|
|
|
|
if (sc->bge_ldata.bge_status_block)
|
|
bus_dmamem_free(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_ldata.bge_status_block,
|
|
sc->bge_cdata.bge_status_map);
|
|
|
|
if (sc->bge_cdata.bge_status_map) {
|
|
bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map);
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map);
|
|
}
|
|
|
|
if (sc->bge_cdata.bge_status_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
|
|
|
|
/* Destroy statistics block */
|
|
|
|
if (sc->bge_ldata.bge_stats)
|
|
bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
|
|
sc->bge_ldata.bge_stats,
|
|
sc->bge_cdata.bge_stats_map);
|
|
|
|
if (sc->bge_cdata.bge_stats_map) {
|
|
bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
|
|
sc->bge_cdata.bge_stats_map);
|
|
bus_dmamap_destroy(sc->bge_cdata.bge_stats_tag,
|
|
sc->bge_cdata.bge_stats_map);
|
|
}
|
|
|
|
if (sc->bge_cdata.bge_stats_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
|
|
|
|
/* Destroy the parent tag */
|
|
|
|
if (sc->bge_cdata.bge_parent_tag)
|
|
bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
bge_dma_alloc(dev)
|
|
device_t dev;
|
|
{
|
|
struct bge_softc *sc;
|
|
int nseg, i, error;
|
|
struct bge_dmamap_arg ctx;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/*
|
|
* Allocate the parent bus DMA tag appropriate for PCI.
|
|
*/
|
|
#define BGE_NSEG_NEW 32
|
|
error = bus_dma_tag_create(NULL, /* parent */
|
|
PAGE_SIZE, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR_32BIT,/* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MAXBSIZE, BGE_NSEG_NEW, /* maxsize, nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
|
|
BUS_DMA_ALLOCNOW, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->bge_cdata.bge_parent_tag);
|
|
|
|
/*
|
|
* Create tag for RX mbufs.
|
|
*/
|
|
nseg = 32;
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, ETHER_ALIGN,
|
|
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, MCLBYTES * nseg, nseg, MCLBYTES, 0, NULL, NULL,
|
|
&sc->bge_cdata.bge_mtag);
|
|
|
|
if (error) {
|
|
device_printf(dev, "could not allocate dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Create DMA maps for RX buffers */
|
|
|
|
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
|
|
error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
|
|
&sc->bge_cdata.bge_rx_std_dmamap[i]);
|
|
if (error) {
|
|
device_printf(dev, "can't create DMA map for RX\n");
|
|
return(ENOMEM);
|
|
}
|
|
}
|
|
|
|
/* Create DMA maps for TX buffers */
|
|
|
|
for (i = 0; i < BGE_TX_RING_CNT; i++) {
|
|
error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
|
|
&sc->bge_cdata.bge_tx_dmamap[i]);
|
|
if (error) {
|
|
device_printf(dev, "can't create DMA map for RX\n");
|
|
return(ENOMEM);
|
|
}
|
|
}
|
|
|
|
/* Create tag for standard RX ring */
|
|
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
|
|
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
|
|
NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
|
|
|
|
if (error) {
|
|
device_printf(dev, "could not allocate dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Allocate DMA'able memory for standard RX ring */
|
|
|
|
error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
(void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
|
|
&sc->bge_cdata.bge_rx_std_ring_map);
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
|
|
|
|
/* Load the address of the standard RX ring */
|
|
|
|
ctx.bge_maxsegs = 1;
|
|
ctx.sc = sc;
|
|
|
|
error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
|
|
BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
|
|
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
|
|
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
|
|
|
|
/*
|
|
* Create tag for jumbo mbufs.
|
|
* This is really a bit of a kludge. We allocate a special
|
|
* jumbo buffer pool which (thanks to the way our DMA
|
|
* memory allocation works) will consist of contiguous
|
|
* pages. This means that even though a jumbo buffer might
|
|
* be larger than a page size, we don't really need to
|
|
* map it into more than one DMA segment. However, the
|
|
* default mbuf tag will result in multi-segment mappings,
|
|
* so we have to create a special jumbo mbuf tag that
|
|
* lets us get away with mapping the jumbo buffers as
|
|
* a single segment. I think eventually the driver should
|
|
* be changed so that it uses ordinary mbufs and cluster
|
|
* buffers, i.e. jumbo frames can span multiple DMA
|
|
* descriptors. But that's a project for another day.
|
|
*/
|
|
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
|
|
ETHER_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, MCLBYTES * nseg, nseg, BGE_JLEN, 0, NULL, NULL,
|
|
&sc->bge_cdata.bge_mtag_jumbo);
|
|
|
|
if (error) {
|
|
device_printf(dev, "could not allocate dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Create tag for jumbo RX ring */
|
|
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
|
|
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
|
|
NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
|
|
|
|
if (error) {
|
|
device_printf(dev, "could not allocate dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Allocate DMA'able memory for jumbo RX ring */
|
|
|
|
error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
(void **)&sc->bge_ldata.bge_rx_jumbo_ring, BUS_DMA_NOWAIT,
|
|
&sc->bge_cdata.bge_rx_jumbo_ring_map);
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
bzero((char *)sc->bge_ldata.bge_rx_jumbo_ring,
|
|
BGE_JUMBO_RX_RING_SZ);
|
|
|
|
/* Load the address of the jumbo RX ring */
|
|
|
|
ctx.bge_maxsegs = 1;
|
|
ctx.sc = sc;
|
|
|
|
error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map,
|
|
sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
|
|
bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
|
|
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
|
|
|
|
/* Create DMA maps for jumbo RX buffers */
|
|
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
|
|
0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
|
|
if (error) {
|
|
device_printf(dev,
|
|
"can't create DMA map for RX\n");
|
|
return(ENOMEM);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* Create tag for RX return ring */
|
|
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
|
|
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
|
|
NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
|
|
|
|
if (error) {
|
|
device_printf(dev, "could not allocate dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Allocate DMA'able memory for RX return ring */
|
|
|
|
error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
(void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
|
|
&sc->bge_cdata.bge_rx_return_ring_map);
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
bzero((char *)sc->bge_ldata.bge_rx_return_ring,
|
|
BGE_RX_RTN_RING_SZ(sc));
|
|
|
|
/* Load the address of the RX return ring */
|
|
|
|
ctx.bge_maxsegs = 1;
|
|
ctx.sc = sc;
|
|
|
|
error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
sc->bge_cdata.bge_rx_return_ring_map,
|
|
sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
|
|
bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
|
|
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
|
|
|
|
/* Create tag for TX ring */
|
|
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
|
|
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
|
|
&sc->bge_cdata.bge_tx_ring_tag);
|
|
|
|
if (error) {
|
|
device_printf(dev, "could not allocate dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Allocate DMA'able memory for TX ring */
|
|
|
|
error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
|
|
(void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
|
|
&sc->bge_cdata.bge_tx_ring_map);
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
|
|
|
|
/* Load the address of the TX ring */
|
|
|
|
ctx.bge_maxsegs = 1;
|
|
ctx.sc = sc;
|
|
|
|
error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
|
|
sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
|
|
BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
|
|
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
|
|
|
|
/* Create tag for status block */
|
|
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
|
|
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0,
|
|
NULL, NULL, &sc->bge_cdata.bge_status_tag);
|
|
|
|
if (error) {
|
|
device_printf(dev, "could not allocate dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Allocate DMA'able memory for status block */
|
|
|
|
error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
|
|
(void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
|
|
&sc->bge_cdata.bge_status_map);
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
|
|
|
|
/* Load the address of the status block */
|
|
|
|
ctx.sc = sc;
|
|
ctx.bge_maxsegs = 1;
|
|
|
|
error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
|
|
BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
|
|
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
|
|
|
|
/* Create tag for statistics block */
|
|
|
|
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
|
|
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
|
|
&sc->bge_cdata.bge_stats_tag);
|
|
|
|
if (error) {
|
|
device_printf(dev, "could not allocate dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Allocate DMA'able memory for statistics block */
|
|
|
|
error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
|
|
(void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
|
|
&sc->bge_cdata.bge_stats_map);
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
|
|
|
|
/* Load the address of the statstics block */
|
|
|
|
ctx.sc = sc;
|
|
ctx.bge_maxsegs = 1;
|
|
|
|
error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
|
|
sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
|
|
BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
|
|
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
bge_attach(dev)
|
|
device_t dev;
|
|
{
|
|
int s;
|
|
struct ifnet *ifp;
|
|
struct bge_softc *sc;
|
|
u_int32_t hwcfg = 0;
|
|
u_int32_t mac_addr = 0;
|
|
int unit, error = 0, rid;
|
|
|
|
s = splimp();
|
|
|
|
sc = device_get_softc(dev);
|
|
unit = device_get_unit(dev);
|
|
sc->bge_dev = dev;
|
|
sc->bge_unit = unit;
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
|
|
rid = BGE_PCI_BAR0;
|
|
sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
|
|
0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
|
|
|
|
if (sc->bge_res == NULL) {
|
|
printf ("bge%d: couldn't map memory\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
sc->bge_btag = rman_get_bustag(sc->bge_res);
|
|
sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
|
|
sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
|
|
|
|
/* Allocate interrupt */
|
|
rid = 0;
|
|
|
|
sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->bge_irq == NULL) {
|
|
printf("bge%d: couldn't map interrupt\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
|
|
bge_intr, sc, &sc->bge_intrhand);
|
|
|
|
if (error) {
|
|
bge_release_resources(sc);
|
|
printf("bge%d: couldn't set up irq\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
sc->bge_unit = unit;
|
|
|
|
/* Try to reset the chip. */
|
|
bge_reset(sc);
|
|
|
|
if (bge_chipinit(sc)) {
|
|
printf("bge%d: chip initialization failed\n", sc->bge_unit);
|
|
bge_release_resources(sc);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
mac_addr = bge_readmem_ind(sc, 0x0c14);
|
|
if ((mac_addr >> 16) == 0x484b) {
|
|
sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8);
|
|
sc->arpcom.ac_enaddr[1] = (u_char)mac_addr;
|
|
mac_addr = bge_readmem_ind(sc, 0x0c18);
|
|
sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24);
|
|
sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16);
|
|
sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8);
|
|
sc->arpcom.ac_enaddr[5] = (u_char)mac_addr;
|
|
} else if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
|
|
BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
|
|
printf("bge%d: failed to read station address\n", unit);
|
|
bge_release_resources(sc);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* A Broadcom chip was detected. Inform the world.
|
|
*/
|
|
printf("bge%d: Ethernet address: %6D\n", unit,
|
|
sc->arpcom.ac_enaddr, ":");
|
|
|
|
/* Save ASIC rev. */
|
|
|
|
sc->bge_chipid =
|
|
pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
|
|
BGE_PCIMISCCTL_ASICREV;
|
|
sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
|
|
sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
|
|
|
|
/* 5705 limits RX return ring to 512 entries. */
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
|
|
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
|
|
else
|
|
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
|
|
|
|
if (bge_dma_alloc(dev)) {
|
|
printf ("bge%d: failed to allocate DMA resources\n",
|
|
sc->bge_unit);
|
|
bge_release_resources(sc);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Try to allocate memory for jumbo buffers.
|
|
* The 5705 does not appear to support jumbo frames.
|
|
*/
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
|
|
if (bge_alloc_jumbo_mem(sc)) {
|
|
printf("bge%d: jumbo buffer allocation "
|
|
"failed\n", sc->bge_unit);
|
|
bge_release_resources(sc);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Set default tuneable values. */
|
|
sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
|
|
sc->bge_rx_coal_ticks = 150;
|
|
sc->bge_tx_coal_ticks = 150;
|
|
sc->bge_rx_max_coal_bds = 64;
|
|
sc->bge_tx_max_coal_bds = 128;
|
|
|
|
/* Set up ifnet structure */
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = bge_ioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = bge_start;
|
|
ifp->if_watchdog = bge_watchdog;
|
|
ifp->if_init = bge_init;
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1;
|
|
ifp->if_hwassist = BGE_CSUM_FEATURES;
|
|
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
|
|
IFCAP_VLAN_MTU;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
/*
|
|
* Figure out what sort of media we have by checking the
|
|
* hardware config word in the first 32k of NIC internal memory,
|
|
* or fall back to examining the EEPROM if necessary.
|
|
* Note: on some BCM5700 cards, this value appears to be unset.
|
|
* If that's the case, we have to rely on identifying the NIC
|
|
* by its PCI subsystem ID, as we do below for the SysKonnect
|
|
* SK-9D41.
|
|
*/
|
|
if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
|
|
hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
|
|
else {
|
|
bge_read_eeprom(sc, (caddr_t)&hwcfg,
|
|
BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
|
|
hwcfg = ntohl(hwcfg);
|
|
}
|
|
|
|
if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
|
|
sc->bge_tbi = 1;
|
|
|
|
/* The SysKonnect SK-9D41 is a 1000baseSX card. */
|
|
if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
|
|
sc->bge_tbi = 1;
|
|
|
|
if (sc->bge_tbi) {
|
|
ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
|
|
bge_ifmedia_upd, bge_ifmedia_sts);
|
|
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
|
|
ifmedia_add(&sc->bge_ifmedia,
|
|
IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
|
|
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
|
|
} else {
|
|
/*
|
|
* Do transceiver setup.
|
|
*/
|
|
if (mii_phy_probe(dev, &sc->bge_miibus,
|
|
bge_ifmedia_upd, bge_ifmedia_sts)) {
|
|
printf("bge%d: MII without any PHY!\n", sc->bge_unit);
|
|
bge_release_resources(sc);
|
|
bge_free_jumbo_mem(sc);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When using the BCM5701 in PCI-X mode, data corruption has
|
|
* been observed in the first few bytes of some received packets.
|
|
* Aligning the packet buffer in memory eliminates the corruption.
|
|
* Unfortunately, this misaligns the packet payloads. On platforms
|
|
* which do not support unaligned accesses, we will realign the
|
|
* payloads by copying the received packets.
|
|
*/
|
|
switch (sc->bge_chipid) {
|
|
case BGE_CHIPID_BCM5701_A0:
|
|
case BGE_CHIPID_BCM5701_B0:
|
|
case BGE_CHIPID_BCM5701_B2:
|
|
case BGE_CHIPID_BCM5701_B5:
|
|
/* If in PCI-X mode, work around the alignment bug. */
|
|
if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
|
|
(BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
|
|
BGE_PCISTATE_PCI_BUSSPEED)
|
|
sc->bge_rx_alignment_bug = 1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, sc->arpcom.ac_enaddr);
|
|
callout_handle_init(&sc->bge_stat_ch);
|
|
|
|
fail:
|
|
splx(s);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static int
|
|
bge_detach(dev)
|
|
device_t dev;
|
|
{
|
|
struct bge_softc *sc;
|
|
struct ifnet *ifp;
|
|
int s;
|
|
|
|
s = splimp();
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
ether_ifdetach(ifp);
|
|
bge_stop(sc);
|
|
bge_reset(sc);
|
|
|
|
if (sc->bge_tbi) {
|
|
ifmedia_removeall(&sc->bge_ifmedia);
|
|
} else {
|
|
bus_generic_detach(dev);
|
|
device_delete_child(dev, sc->bge_miibus);
|
|
}
|
|
|
|
bge_release_resources(sc);
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
|
|
bge_free_jumbo_mem(sc);
|
|
|
|
splx(s);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
bge_release_resources(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
device_t dev;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
if (sc->bge_vpd_prodname != NULL)
|
|
free(sc->bge_vpd_prodname, M_DEVBUF);
|
|
|
|
if (sc->bge_vpd_readonly != NULL)
|
|
free(sc->bge_vpd_readonly, M_DEVBUF);
|
|
|
|
if (sc->bge_intrhand != NULL)
|
|
bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
|
|
|
|
if (sc->bge_irq != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
|
|
|
|
if (sc->bge_res != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
BGE_PCI_BAR0, sc->bge_res);
|
|
|
|
bge_dma_free(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
bge_reset(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
device_t dev;
|
|
u_int32_t cachesize, command, pcistate;
|
|
int i, val = 0;
|
|
|
|
dev = sc->bge_dev;
|
|
|
|
/* Save some important PCI state. */
|
|
cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
|
|
command = pci_read_config(dev, BGE_PCI_CMD, 4);
|
|
pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
|
|
|
|
pci_write_config(dev, BGE_PCI_MISC_CTL,
|
|
BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
|
|
BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
|
|
|
|
/* Issue global reset */
|
|
bge_writereg_ind(sc, BGE_MISC_CFG,
|
|
BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
|
|
|
|
DELAY(1000);
|
|
|
|
/* Reset some of the PCI state that got zapped by reset */
|
|
pci_write_config(dev, BGE_PCI_MISC_CTL,
|
|
BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
|
|
BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
|
|
pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
|
|
pci_write_config(dev, BGE_PCI_CMD, command, 4);
|
|
bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
|
|
|
|
/*
|
|
* Prevent PXE restart: write a magic number to the
|
|
* general communications memory at 0xB50.
|
|
*/
|
|
bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
|
|
/*
|
|
* Poll the value location we just wrote until
|
|
* we see the 1's complement of the magic number.
|
|
* This indicates that the firmware initialization
|
|
* is complete.
|
|
*/
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
|
|
if (val == ~BGE_MAGIC_NUMBER)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* XXX Wait for the value of the PCISTATE register to
|
|
* return to its original pre-reset state. This is a
|
|
* fairly good indicator of reset completion. If we don't
|
|
* wait for the reset to fully complete, trying to read
|
|
* from the device's non-PCI registers may yield garbage
|
|
* results.
|
|
*/
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
/* Enable memory arbiter. */
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
|
|
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
|
|
|
|
/* Fix up byte swapping */
|
|
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
|
|
BGE_MODECTL_BYTESWAP_DATA);
|
|
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
|
|
|
|
DELAY(10000);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Frame reception handling. This is called if there's a frame
|
|
* on the receive return list.
|
|
*
|
|
* Note: we have to be able to handle two possibilities here:
|
|
* 1) the frame is from the jumbo recieve ring
|
|
* 2) the frame is from the standard receive ring
|
|
*/
|
|
|
|
static void
|
|
bge_rxeof(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int stdcnt = 0, jumbocnt = 0;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD);
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
}
|
|
|
|
while(sc->bge_rx_saved_considx !=
|
|
sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
|
|
struct bge_rx_bd *cur_rx;
|
|
u_int32_t rxidx;
|
|
struct ether_header *eh;
|
|
struct mbuf *m = NULL;
|
|
u_int16_t vlan_tag = 0;
|
|
int have_tag = 0;
|
|
|
|
cur_rx =
|
|
&sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
|
|
|
|
rxidx = cur_rx->bge_idx;
|
|
BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
|
|
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
|
|
have_tag = 1;
|
|
vlan_tag = cur_rx->bge_vlan_tag;
|
|
}
|
|
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
|
|
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx],
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
|
|
sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]);
|
|
m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
|
|
sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
|
|
jumbocnt++;
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
|
|
continue;
|
|
}
|
|
if (bge_newbuf_jumbo(sc,
|
|
sc->bge_jumbo, NULL) == ENOBUFS) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
|
|
continue;
|
|
}
|
|
} else {
|
|
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[rxidx],
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->bge_cdata.bge_mtag,
|
|
sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
|
|
m = sc->bge_cdata.bge_rx_std_chain[rxidx];
|
|
sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
|
|
stdcnt++;
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_std(sc, sc->bge_std, m);
|
|
continue;
|
|
}
|
|
if (bge_newbuf_std(sc, sc->bge_std,
|
|
NULL) == ENOBUFS) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_std(sc, sc->bge_std, m);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
#ifndef __i386__
|
|
/*
|
|
* The i386 allows unaligned accesses, but for other
|
|
* platforms we must make sure the payload is aligned.
|
|
*/
|
|
if (sc->bge_rx_alignment_bug) {
|
|
bcopy(m->m_data, m->m_data + ETHER_ALIGN,
|
|
cur_rx->bge_len);
|
|
m->m_data += ETHER_ALIGN;
|
|
}
|
|
#endif
|
|
eh = mtod(m, struct ether_header *);
|
|
m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
#if 0 /* currently broken for some packets, possibly related to TCP options */
|
|
if (ifp->if_hwassist) {
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
|
|
m->m_pkthdr.csum_data =
|
|
cur_rx->bge_tcp_udp_csum;
|
|
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If we received a packet with a vlan tag,
|
|
* attach that information to the packet.
|
|
*/
|
|
if (have_tag)
|
|
VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
|
|
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
|
|
sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
|
|
sc->bge_cdata.bge_rx_std_ring_map,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_PREWRITE);
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
|
|
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
|
|
sc->bge_cdata.bge_rx_jumbo_ring_map,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
|
|
if (stdcnt)
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
|
|
if (jumbocnt)
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
bge_txeof(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct bge_tx_bd *cur_tx = NULL;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/*
|
|
* Go through our tx ring and free mbufs for those
|
|
* frames that have been sent.
|
|
*/
|
|
while (sc->bge_tx_saved_considx !=
|
|
sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
|
|
u_int32_t idx = 0;
|
|
|
|
idx = sc->bge_tx_saved_considx;
|
|
cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
|
|
if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
|
|
ifp->if_opackets++;
|
|
if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
|
|
m_freem(sc->bge_cdata.bge_tx_chain[idx]);
|
|
sc->bge_cdata.bge_tx_chain[idx] = NULL;
|
|
bus_dmamap_unload(sc->bge_cdata.bge_mtag,
|
|
sc->bge_cdata.bge_tx_dmamap[idx]);
|
|
}
|
|
sc->bge_txcnt--;
|
|
BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
if (cur_tx != NULL)
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
bge_intr(xsc)
|
|
void *xsc;
|
|
{
|
|
struct bge_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int32_t statusword;
|
|
u_int32_t status;
|
|
|
|
sc = xsc;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTWRITE);
|
|
|
|
statusword =
|
|
atomic_readandclear_32(&sc->bge_ldata.bge_status_block->bge_status);
|
|
|
|
#ifdef notdef
|
|
/* Avoid this for now -- checking this register is expensive. */
|
|
/* Make sure this is really our interrupt. */
|
|
if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
|
|
return;
|
|
#endif
|
|
/* Ack interrupt and stop others from occuring. */
|
|
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
|
|
|
|
/*
|
|
* Process link state changes.
|
|
* Grrr. The link status word in the status block does
|
|
* not work correctly on the BCM5700 rev AX and BX chips,
|
|
* according to all avaibable information. Hence, we have
|
|
* to enable MII interrupts in order to properly obtain
|
|
* async link changes. Unfortunately, this also means that
|
|
* we have to read the MAC status register to detect link
|
|
* changes, thereby adding an additional register access to
|
|
* the interrupt handler.
|
|
*/
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
|
|
|
|
status = CSR_READ_4(sc, BGE_MAC_STS);
|
|
if (status & BGE_MACSTAT_MI_INTERRUPT) {
|
|
sc->bge_link = 0;
|
|
untimeout(bge_tick, sc, sc->bge_stat_ch);
|
|
bge_tick(sc);
|
|
/* Clear the interrupt */
|
|
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
|
|
BGE_EVTENB_MI_INTERRUPT);
|
|
bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
|
|
bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
|
|
BRGPHY_INTRS);
|
|
}
|
|
} else {
|
|
if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) {
|
|
/*
|
|
* Sometimes PCS encoding errors are detected in
|
|
* TBI mode (on fiber NICs), and for some reason
|
|
* the chip will signal them as link changes.
|
|
* If we get a link change event, but the 'PCS
|
|
* encoding error' bit in the MAC status register
|
|
* is set, don't bother doing a link check.
|
|
* This avoids spurious "gigabit link up" messages
|
|
* that sometimes appear on fiber NICs during
|
|
* periods of heavy traffic. (There should be no
|
|
* effect on copper NICs.)
|
|
*/
|
|
status = CSR_READ_4(sc, BGE_MAC_STS);
|
|
if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR|
|
|
BGE_MACSTAT_MI_COMPLETE))) {
|
|
sc->bge_link = 0;
|
|
untimeout(bge_tick, sc, sc->bge_stat_ch);
|
|
bge_tick(sc);
|
|
}
|
|
/* Clear the interrupt */
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
|
|
BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
|
|
BGE_MACSTAT_LINK_CHANGED);
|
|
|
|
/* Force flush the status block cached by PCI bridge */
|
|
CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
|
|
}
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
/* Check RX return ring producer/consumer */
|
|
bge_rxeof(sc);
|
|
|
|
/* Check TX ring producer/consumer */
|
|
bge_txeof(sc);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
|
|
sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREWRITE);
|
|
|
|
bge_handle_events(sc);
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
|
|
|
|
if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
|
|
bge_start(ifp);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
bge_tick(xsc)
|
|
void *xsc;
|
|
{
|
|
struct bge_softc *sc;
|
|
struct mii_data *mii = NULL;
|
|
struct ifmedia *ifm = NULL;
|
|
struct ifnet *ifp;
|
|
int s;
|
|
|
|
sc = xsc;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
s = splimp();
|
|
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
|
|
bge_stats_update_regs(sc);
|
|
else
|
|
bge_stats_update(sc);
|
|
sc->bge_stat_ch = timeout(bge_tick, sc, hz);
|
|
if (sc->bge_link) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
if (sc->bge_tbi) {
|
|
ifm = &sc->bge_ifmedia;
|
|
if (CSR_READ_4(sc, BGE_MAC_STS) &
|
|
BGE_MACSTAT_TBI_PCS_SYNCHED) {
|
|
sc->bge_link++;
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
|
|
printf("bge%d: gigabit link up\n", sc->bge_unit);
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
bge_start(ifp);
|
|
}
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
mii_tick(mii);
|
|
|
|
if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
sc->bge_link++;
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
|
|
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
|
|
printf("bge%d: gigabit link up\n",
|
|
sc->bge_unit);
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
bge_start(ifp);
|
|
}
|
|
|
|
splx(s);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
bge_stats_update_regs(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
struct bge_mac_stats_regs stats;
|
|
u_int32_t *s;
|
|
int i;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
s = (u_int32_t *)&stats;
|
|
for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
|
|
*s = CSR_READ_4(sc, BGE_RX_STATS + i);
|
|
s++;
|
|
}
|
|
|
|
ifp->if_collisions +=
|
|
(stats.dot3StatsSingleCollisionFrames +
|
|
stats.dot3StatsMultipleCollisionFrames +
|
|
stats.dot3StatsExcessiveCollisions +
|
|
stats.dot3StatsLateCollisions) -
|
|
ifp->if_collisions;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
bge_stats_update(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
struct bge_stats *stats;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
stats = (struct bge_stats *)(sc->bge_vhandle +
|
|
BGE_MEMWIN_START + BGE_STATS_BLOCK);
|
|
|
|
ifp->if_collisions +=
|
|
(stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
|
|
stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
|
|
stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
|
|
stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
|
|
ifp->if_collisions;
|
|
|
|
#ifdef notdef
|
|
ifp->if_collisions +=
|
|
(sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
|
|
sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
|
|
sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
|
|
sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
|
|
ifp->if_collisions;
|
|
#endif
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
|
|
* pointers to descriptors.
|
|
*/
|
|
static int
|
|
bge_encap(sc, m_head, txidx)
|
|
struct bge_softc *sc;
|
|
struct mbuf *m_head;
|
|
u_int32_t *txidx;
|
|
{
|
|
struct bge_tx_bd *f = NULL;
|
|
u_int16_t csum_flags = 0;
|
|
struct m_tag *mtag;
|
|
struct bge_dmamap_arg ctx;
|
|
bus_dmamap_t map;
|
|
int error;
|
|
|
|
|
|
if (m_head->m_pkthdr.csum_flags) {
|
|
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
|
|
csum_flags |= BGE_TXBDFLAG_IP_CSUM;
|
|
if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
|
|
csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
|
|
if (m_head->m_flags & M_LASTFRAG)
|
|
csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
|
|
else if (m_head->m_flags & M_FRAG)
|
|
csum_flags |= BGE_TXBDFLAG_IP_FRAG;
|
|
}
|
|
|
|
mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
|
|
|
|
ctx.sc = sc;
|
|
ctx.bge_idx = *txidx;
|
|
ctx.bge_ring = sc->bge_ldata.bge_tx_ring;
|
|
ctx.bge_flags = csum_flags;
|
|
/*
|
|
* Sanity check: avoid coming within 16 descriptors
|
|
* of the end of the ring.
|
|
*/
|
|
ctx.bge_maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - 16;
|
|
|
|
map = sc->bge_cdata.bge_tx_dmamap[*txidx];
|
|
error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
|
|
m_head, bge_dma_map_tx_desc, &ctx, BUS_DMA_NOWAIT);
|
|
|
|
if (error || ctx.bge_maxsegs == 0 /*||
|
|
ctx.bge_idx == sc->bge_tx_saved_considx*/)
|
|
return (ENOBUFS);
|
|
|
|
/*
|
|
* Insure that the map for this transmission
|
|
* is placed at the array index of the last descriptor
|
|
* in this chain.
|
|
*/
|
|
sc->bge_cdata.bge_tx_dmamap[*txidx] =
|
|
sc->bge_cdata.bge_tx_dmamap[ctx.bge_idx];
|
|
sc->bge_cdata.bge_tx_dmamap[ctx.bge_idx] = map;
|
|
sc->bge_cdata.bge_tx_chain[ctx.bge_idx] = m_head;
|
|
sc->bge_txcnt += ctx.bge_maxsegs;
|
|
f = &sc->bge_ldata.bge_tx_ring[*txidx];
|
|
if (mtag != NULL) {
|
|
f->bge_flags |= htole16(BGE_TXBDFLAG_VLAN_TAG);
|
|
f->bge_vlan_tag = htole16(VLAN_TAG_VALUE(mtag));
|
|
} else {
|
|
f->bge_vlan_tag = 0;
|
|
}
|
|
|
|
BGE_INC(ctx.bge_idx, BGE_TX_RING_CNT);
|
|
*txidx = ctx.bge_idx;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit descriptors.
|
|
*/
|
|
static void
|
|
bge_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct bge_softc *sc;
|
|
struct mbuf *m_head = NULL;
|
|
u_int32_t prodidx = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
|
|
return;
|
|
|
|
prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
|
|
|
|
while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
|
|
IF_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/*
|
|
* XXX
|
|
* safety overkill. If this is a fragmented packet chain
|
|
* with delayed TCP/UDP checksums, then only encapsulate
|
|
* it if we have enough descriptors to handle the entire
|
|
* chain at once.
|
|
* (paranoia -- may not actually be needed)
|
|
*/
|
|
if (m_head->m_flags & M_FIRSTFRAG &&
|
|
m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
|
|
if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
|
|
m_head->m_pkthdr.csum_data + 16) {
|
|
IF_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (bge_encap(sc, m_head, &prodidx)) {
|
|
IF_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
/* Transmit */
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
|
|
/* 5700 b2 errata */
|
|
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
bge_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct bge_softc *sc = xsc;
|
|
struct ifnet *ifp;
|
|
u_int16_t *m;
|
|
int s;
|
|
|
|
s = splimp();
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/* Cancel pending I/O and flush buffers. */
|
|
bge_stop(sc);
|
|
bge_reset(sc);
|
|
bge_chipinit(sc);
|
|
|
|
/*
|
|
* Init the various state machines, ring
|
|
* control blocks and firmware.
|
|
*/
|
|
if (bge_blockinit(sc)) {
|
|
printf("bge%d: initialization failure\n", sc->bge_unit);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Specify MTU. */
|
|
CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
|
|
ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
|
|
|
|
/* Load our MAC address. */
|
|
m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
|
|
CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
|
|
CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
|
|
|
|
/* Enable or disable promiscuous mode as needed. */
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
|
|
} else {
|
|
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
|
|
}
|
|
|
|
/* Program multicast filter. */
|
|
bge_setmulti(sc);
|
|
|
|
/* Init RX ring. */
|
|
bge_init_rx_ring_std(sc);
|
|
|
|
/*
|
|
* Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
|
|
* memory to insure that the chip has in fact read the first
|
|
* entry of the ring.
|
|
*/
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
|
|
u_int32_t v, i;
|
|
for (i = 0; i < 10; i++) {
|
|
DELAY(20);
|
|
v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
|
|
if (v == (MCLBYTES - ETHER_ALIGN))
|
|
break;
|
|
}
|
|
if (i == 10)
|
|
printf ("bge%d: 5705 A0 chip failed to load RX ring\n",
|
|
sc->bge_unit);
|
|
}
|
|
|
|
/* Init jumbo RX ring. */
|
|
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
|
|
bge_init_rx_ring_jumbo(sc);
|
|
|
|
/* Init our RX return ring index */
|
|
sc->bge_rx_saved_considx = 0;
|
|
|
|
/* Init TX ring. */
|
|
bge_init_tx_ring(sc);
|
|
|
|
/* Turn on transmitter */
|
|
BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
|
|
|
|
/* Turn on receiver */
|
|
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
|
|
|
|
/* Tell firmware we're alive. */
|
|
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
|
|
/* Enable host interrupts. */
|
|
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
|
|
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
|
|
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
|
|
|
|
bge_ifmedia_upd(ifp);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
splx(s);
|
|
|
|
sc->bge_stat_ch = timeout(bge_tick, sc, hz);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
bge_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct bge_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = ifp->if_softc;
|
|
ifm = &sc->bge_ifmedia;
|
|
|
|
/* If this is a 1000baseX NIC, enable the TBI port. */
|
|
if (sc->bge_tbi) {
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return(EINVAL);
|
|
switch(IFM_SUBTYPE(ifm->ifm_media)) {
|
|
case IFM_AUTO:
|
|
break;
|
|
case IFM_1000_SX:
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE,
|
|
BGE_MACMODE_HALF_DUPLEX);
|
|
} else {
|
|
BGE_SETBIT(sc, BGE_MAC_MODE,
|
|
BGE_MACMODE_HALF_DUPLEX);
|
|
}
|
|
break;
|
|
default:
|
|
return(EINVAL);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
sc->bge_link = 0;
|
|
if (mii->mii_instance) {
|
|
struct mii_softc *miisc;
|
|
for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
|
|
miisc = LIST_NEXT(miisc, mii_list))
|
|
mii_phy_reset(miisc);
|
|
}
|
|
mii_mediachg(mii);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
bge_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct bge_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (sc->bge_tbi) {
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
if (CSR_READ_4(sc, BGE_MAC_STS) &
|
|
BGE_MACSTAT_TBI_PCS_SYNCHED)
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
ifmr->ifm_active |= IFM_1000_SX;
|
|
if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
return;
|
|
}
|
|
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
bge_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int s, mask, error = 0;
|
|
struct mii_data *mii;
|
|
|
|
s = splimp();
|
|
|
|
switch(command) {
|
|
case SIOCSIFMTU:
|
|
/* Disallow jumbo frames on 5705. */
|
|
if ((sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
|
|
ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
|
|
error = EINVAL;
|
|
else {
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
bge_init(sc);
|
|
}
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
/*
|
|
* If only the state of the PROMISC flag changed,
|
|
* then just use the 'set promisc mode' command
|
|
* instead of reinitializing the entire NIC. Doing
|
|
* a full re-init means reloading the firmware and
|
|
* waiting for it to start up, which may take a
|
|
* second or two.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING &&
|
|
ifp->if_flags & IFF_PROMISC &&
|
|
!(sc->bge_if_flags & IFF_PROMISC)) {
|
|
BGE_SETBIT(sc, BGE_RX_MODE,
|
|
BGE_RXMODE_RX_PROMISC);
|
|
} else if (ifp->if_flags & IFF_RUNNING &&
|
|
!(ifp->if_flags & IFF_PROMISC) &&
|
|
sc->bge_if_flags & IFF_PROMISC) {
|
|
BGE_CLRBIT(sc, BGE_RX_MODE,
|
|
BGE_RXMODE_RX_PROMISC);
|
|
} else
|
|
bge_init(sc);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
bge_stop(sc);
|
|
}
|
|
}
|
|
sc->bge_if_flags = ifp->if_flags;
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
bge_setmulti(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
if (sc->bge_tbi) {
|
|
error = ifmedia_ioctl(ifp, ifr,
|
|
&sc->bge_ifmedia, command);
|
|
} else {
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr,
|
|
&mii->mii_media, command);
|
|
}
|
|
break;
|
|
case SIOCSIFCAP:
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
if (mask & IFCAP_HWCSUM) {
|
|
if (IFCAP_HWCSUM & ifp->if_capenable)
|
|
ifp->if_capenable &= ~IFCAP_HWCSUM;
|
|
else
|
|
ifp->if_capenable |= IFCAP_HWCSUM;
|
|
}
|
|
error = 0;
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
(void)splx(s);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static void
|
|
bge_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct bge_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
|
|
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
bge_init(sc);
|
|
|
|
ifp->if_oerrors++;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void
|
|
bge_stop(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmedia_entry *ifm;
|
|
struct mii_data *mii = NULL;
|
|
int mtmp, itmp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
if (!sc->bge_tbi)
|
|
mii = device_get_softc(sc->bge_miibus);
|
|
|
|
untimeout(bge_tick, sc, sc->bge_stat_ch);
|
|
|
|
/*
|
|
* Disable all of the receiver blocks
|
|
*/
|
|
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
|
|
BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
|
|
|
|
/*
|
|
* Disable all of the transmit blocks
|
|
*/
|
|
BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
|
|
BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
|
|
|
|
/*
|
|
* Shut down all of the memory managers and related
|
|
* state machines.
|
|
*/
|
|
BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
|
|
BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
|
|
BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
|
|
BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
|
|
}
|
|
|
|
/* Disable host interrupts. */
|
|
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
|
|
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
|
|
|
|
/*
|
|
* Tell firmware we're shutting down.
|
|
*/
|
|
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
|
|
/* Free the RX lists. */
|
|
bge_free_rx_ring_std(sc);
|
|
|
|
/* Free jumbo RX list. */
|
|
if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
|
|
bge_free_rx_ring_jumbo(sc);
|
|
|
|
/* Free TX buffers. */
|
|
bge_free_tx_ring(sc);
|
|
|
|
/*
|
|
* Isolate/power down the PHY, but leave the media selection
|
|
* unchanged so that things will be put back to normal when
|
|
* we bring the interface back up.
|
|
*/
|
|
if (!sc->bge_tbi) {
|
|
itmp = ifp->if_flags;
|
|
ifp->if_flags |= IFF_UP;
|
|
ifm = mii->mii_media.ifm_cur;
|
|
mtmp = ifm->ifm_media;
|
|
ifm->ifm_media = IFM_ETHER|IFM_NONE;
|
|
mii_mediachg(mii);
|
|
ifm->ifm_media = mtmp;
|
|
ifp->if_flags = itmp;
|
|
}
|
|
|
|
sc->bge_link = 0;
|
|
|
|
sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static void
|
|
bge_shutdown(dev)
|
|
device_t dev;
|
|
{
|
|
struct bge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
bge_stop(sc);
|
|
bge_reset(sc);
|
|
|
|
return;
|
|
}
|