8801 lines
259 KiB
C
8801 lines
259 KiB
C
/* Build expressions with type checking for C compiler.
|
||
Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
|
||
/* This file is part of the C front end.
|
||
It contains routines to build C expressions given their operands,
|
||
including computing the types of the result, C-specific error checks,
|
||
and some optimization. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "langhooks.h"
|
||
#include "c-tree.h"
|
||
#include "tm_p.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "expr.h"
|
||
#include "toplev.h"
|
||
#include "intl.h"
|
||
#include "ggc.h"
|
||
#include "target.h"
|
||
#include "tree-iterator.h"
|
||
#include "tree-gimple.h"
|
||
#include "tree-flow.h"
|
||
|
||
/* Possible cases of implicit bad conversions. Used to select
|
||
diagnostic messages in convert_for_assignment. */
|
||
enum impl_conv {
|
||
ic_argpass,
|
||
ic_argpass_nonproto,
|
||
ic_assign,
|
||
ic_init,
|
||
ic_return
|
||
};
|
||
|
||
/* The level of nesting inside "__alignof__". */
|
||
int in_alignof;
|
||
|
||
/* The level of nesting inside "sizeof". */
|
||
int in_sizeof;
|
||
|
||
/* The level of nesting inside "typeof". */
|
||
int in_typeof;
|
||
|
||
struct c_label_context_se *label_context_stack_se;
|
||
struct c_label_context_vm *label_context_stack_vm;
|
||
|
||
/* Nonzero if we've already printed a "missing braces around initializer"
|
||
message within this initializer. */
|
||
static int missing_braces_mentioned;
|
||
|
||
static int require_constant_value;
|
||
static int require_constant_elements;
|
||
|
||
static bool null_pointer_constant_p (tree);
|
||
static tree qualify_type (tree, tree);
|
||
static int tagged_types_tu_compatible_p (tree, tree);
|
||
static int comp_target_types (tree, tree);
|
||
static int function_types_compatible_p (tree, tree);
|
||
static int type_lists_compatible_p (tree, tree);
|
||
static tree decl_constant_value_for_broken_optimization (tree);
|
||
static tree lookup_field (tree, tree);
|
||
static tree convert_arguments (tree, tree, tree, tree);
|
||
static tree pointer_diff (tree, tree);
|
||
static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
|
||
int);
|
||
static tree valid_compound_expr_initializer (tree, tree);
|
||
static void push_string (const char *);
|
||
static void push_member_name (tree);
|
||
static int spelling_length (void);
|
||
static char *print_spelling (char *);
|
||
static void warning_init (const char *);
|
||
static tree digest_init (tree, tree, bool, int);
|
||
static void output_init_element (tree, bool, tree, tree, int);
|
||
static void output_pending_init_elements (int);
|
||
static int set_designator (int);
|
||
static void push_range_stack (tree);
|
||
static void add_pending_init (tree, tree);
|
||
static void set_nonincremental_init (void);
|
||
static void set_nonincremental_init_from_string (tree);
|
||
static tree find_init_member (tree);
|
||
static void readonly_error (tree, enum lvalue_use);
|
||
static int lvalue_or_else (tree, enum lvalue_use);
|
||
static int lvalue_p (tree);
|
||
static void record_maybe_used_decl (tree);
|
||
static int comptypes_internal (tree, tree);
|
||
|
||
/* Return true if EXP is a null pointer constant, false otherwise. */
|
||
|
||
static bool
|
||
null_pointer_constant_p (tree expr)
|
||
{
|
||
/* This should really operate on c_expr structures, but they aren't
|
||
yet available everywhere required. */
|
||
tree type = TREE_TYPE (expr);
|
||
return (TREE_CODE (expr) == INTEGER_CST
|
||
&& !TREE_CONSTANT_OVERFLOW (expr)
|
||
&& integer_zerop (expr)
|
||
&& (INTEGRAL_TYPE_P (type)
|
||
|| (TREE_CODE (type) == POINTER_TYPE
|
||
&& VOID_TYPE_P (TREE_TYPE (type))
|
||
&& TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
|
||
}
|
||
/* This is a cache to hold if two types are compatible or not. */
|
||
|
||
struct tagged_tu_seen_cache {
|
||
const struct tagged_tu_seen_cache * next;
|
||
tree t1;
|
||
tree t2;
|
||
/* The return value of tagged_types_tu_compatible_p if we had seen
|
||
these two types already. */
|
||
int val;
|
||
};
|
||
|
||
static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
|
||
static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
|
||
|
||
/* Do `exp = require_complete_type (exp);' to make sure exp
|
||
does not have an incomplete type. (That includes void types.) */
|
||
|
||
tree
|
||
require_complete_type (tree value)
|
||
{
|
||
tree type = TREE_TYPE (value);
|
||
|
||
if (value == error_mark_node || type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* First, detect a valid value with a complete type. */
|
||
if (COMPLETE_TYPE_P (type))
|
||
return value;
|
||
|
||
c_incomplete_type_error (value, type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Print an error message for invalid use of an incomplete type.
|
||
VALUE is the expression that was used (or 0 if that isn't known)
|
||
and TYPE is the type that was invalid. */
|
||
|
||
void
|
||
c_incomplete_type_error (tree value, tree type)
|
||
{
|
||
const char *type_code_string;
|
||
|
||
/* Avoid duplicate error message. */
|
||
if (TREE_CODE (type) == ERROR_MARK)
|
||
return;
|
||
|
||
if (value != 0 && (TREE_CODE (value) == VAR_DECL
|
||
|| TREE_CODE (value) == PARM_DECL))
|
||
error ("%qD has an incomplete type", value);
|
||
else
|
||
{
|
||
retry:
|
||
/* We must print an error message. Be clever about what it says. */
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case RECORD_TYPE:
|
||
type_code_string = "struct";
|
||
break;
|
||
|
||
case UNION_TYPE:
|
||
type_code_string = "union";
|
||
break;
|
||
|
||
case ENUMERAL_TYPE:
|
||
type_code_string = "enum";
|
||
break;
|
||
|
||
case VOID_TYPE:
|
||
error ("invalid use of void expression");
|
||
return;
|
||
|
||
case ARRAY_TYPE:
|
||
if (TYPE_DOMAIN (type))
|
||
{
|
||
if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
|
||
{
|
||
error ("invalid use of flexible array member");
|
||
return;
|
||
}
|
||
type = TREE_TYPE (type);
|
||
goto retry;
|
||
}
|
||
error ("invalid use of array with unspecified bounds");
|
||
return;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
|
||
error ("invalid use of undefined type %<%s %E%>",
|
||
type_code_string, TYPE_NAME (type));
|
||
else
|
||
/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
|
||
error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
|
||
}
|
||
}
|
||
|
||
/* Given a type, apply default promotions wrt unnamed function
|
||
arguments and return the new type. */
|
||
|
||
tree
|
||
c_type_promotes_to (tree type)
|
||
{
|
||
if (TYPE_MAIN_VARIANT (type) == float_type_node)
|
||
return double_type_node;
|
||
|
||
if (c_promoting_integer_type_p (type))
|
||
{
|
||
/* Preserve unsignedness if not really getting any wider. */
|
||
if (TYPE_UNSIGNED (type)
|
||
&& (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
|
||
return unsigned_type_node;
|
||
return integer_type_node;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Return a variant of TYPE which has all the type qualifiers of LIKE
|
||
as well as those of TYPE. */
|
||
|
||
static tree
|
||
qualify_type (tree type, tree like)
|
||
{
|
||
return c_build_qualified_type (type,
|
||
TYPE_QUALS (type) | TYPE_QUALS (like));
|
||
}
|
||
|
||
/* Return true iff the given tree T is a variable length array. */
|
||
|
||
bool
|
||
c_vla_type_p (tree t)
|
||
{
|
||
if (TREE_CODE (t) == ARRAY_TYPE
|
||
&& C_TYPE_VARIABLE_SIZE (t))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Return the composite type of two compatible types.
|
||
|
||
We assume that comptypes has already been done and returned
|
||
nonzero; if that isn't so, this may crash. In particular, we
|
||
assume that qualifiers match. */
|
||
|
||
tree
|
||
composite_type (tree t1, tree t2)
|
||
{
|
||
enum tree_code code1;
|
||
enum tree_code code2;
|
||
tree attributes;
|
||
|
||
/* Save time if the two types are the same. */
|
||
|
||
if (t1 == t2) return t1;
|
||
|
||
/* If one type is nonsense, use the other. */
|
||
if (t1 == error_mark_node)
|
||
return t2;
|
||
if (t2 == error_mark_node)
|
||
return t1;
|
||
|
||
code1 = TREE_CODE (t1);
|
||
code2 = TREE_CODE (t2);
|
||
|
||
/* Merge the attributes. */
|
||
attributes = targetm.merge_type_attributes (t1, t2);
|
||
|
||
/* If one is an enumerated type and the other is the compatible
|
||
integer type, the composite type might be either of the two
|
||
(DR#013 question 3). For consistency, use the enumerated type as
|
||
the composite type. */
|
||
|
||
if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
|
||
return t1;
|
||
if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
|
||
return t2;
|
||
|
||
gcc_assert (code1 == code2);
|
||
|
||
switch (code1)
|
||
{
|
||
case POINTER_TYPE:
|
||
/* For two pointers, do this recursively on the target type. */
|
||
{
|
||
tree pointed_to_1 = TREE_TYPE (t1);
|
||
tree pointed_to_2 = TREE_TYPE (t2);
|
||
tree target = composite_type (pointed_to_1, pointed_to_2);
|
||
t1 = build_pointer_type (target);
|
||
t1 = build_type_attribute_variant (t1, attributes);
|
||
return qualify_type (t1, t2);
|
||
}
|
||
|
||
case ARRAY_TYPE:
|
||
{
|
||
tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
|
||
int quals;
|
||
tree unqual_elt;
|
||
tree d1 = TYPE_DOMAIN (t1);
|
||
tree d2 = TYPE_DOMAIN (t2);
|
||
bool d1_variable, d2_variable;
|
||
bool d1_zero, d2_zero;
|
||
|
||
/* We should not have any type quals on arrays at all. */
|
||
gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
|
||
|
||
d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
|
||
d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
|
||
|
||
d1_variable = (!d1_zero
|
||
&& (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
|
||
|| TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
|
||
d2_variable = (!d2_zero
|
||
&& (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
|
||
|| TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
|
||
d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
|
||
d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
|
||
|
||
/* Save space: see if the result is identical to one of the args. */
|
||
if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
|
||
&& (d2_variable || d2_zero || !d1_variable))
|
||
return build_type_attribute_variant (t1, attributes);
|
||
if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
|
||
&& (d1_variable || d1_zero || !d2_variable))
|
||
return build_type_attribute_variant (t2, attributes);
|
||
|
||
if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
|
||
return build_type_attribute_variant (t1, attributes);
|
||
if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
|
||
return build_type_attribute_variant (t2, attributes);
|
||
|
||
/* Merge the element types, and have a size if either arg has
|
||
one. We may have qualifiers on the element types. To set
|
||
up TYPE_MAIN_VARIANT correctly, we need to form the
|
||
composite of the unqualified types and add the qualifiers
|
||
back at the end. */
|
||
quals = TYPE_QUALS (strip_array_types (elt));
|
||
unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
|
||
t1 = build_array_type (unqual_elt,
|
||
TYPE_DOMAIN ((TYPE_DOMAIN (t1)
|
||
&& (d2_variable
|
||
|| d2_zero
|
||
|| !d1_variable))
|
||
? t1
|
||
: t2));
|
||
t1 = c_build_qualified_type (t1, quals);
|
||
return build_type_attribute_variant (t1, attributes);
|
||
}
|
||
|
||
case ENUMERAL_TYPE:
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
if (attributes != NULL)
|
||
{
|
||
/* Try harder not to create a new aggregate type. */
|
||
if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
|
||
return t1;
|
||
if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
|
||
return t2;
|
||
}
|
||
return build_type_attribute_variant (t1, attributes);
|
||
|
||
case FUNCTION_TYPE:
|
||
/* Function types: prefer the one that specified arg types.
|
||
If both do, merge the arg types. Also merge the return types. */
|
||
{
|
||
tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
|
||
tree p1 = TYPE_ARG_TYPES (t1);
|
||
tree p2 = TYPE_ARG_TYPES (t2);
|
||
int len;
|
||
tree newargs, n;
|
||
int i;
|
||
|
||
/* Save space: see if the result is identical to one of the args. */
|
||
if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
|
||
return build_type_attribute_variant (t1, attributes);
|
||
if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
|
||
return build_type_attribute_variant (t2, attributes);
|
||
|
||
/* Simple way if one arg fails to specify argument types. */
|
||
if (TYPE_ARG_TYPES (t1) == 0)
|
||
{
|
||
t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
|
||
t1 = build_type_attribute_variant (t1, attributes);
|
||
return qualify_type (t1, t2);
|
||
}
|
||
if (TYPE_ARG_TYPES (t2) == 0)
|
||
{
|
||
t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
|
||
t1 = build_type_attribute_variant (t1, attributes);
|
||
return qualify_type (t1, t2);
|
||
}
|
||
|
||
/* If both args specify argument types, we must merge the two
|
||
lists, argument by argument. */
|
||
/* Tell global_bindings_p to return false so that variable_size
|
||
doesn't die on VLAs in parameter types. */
|
||
c_override_global_bindings_to_false = true;
|
||
|
||
len = list_length (p1);
|
||
newargs = 0;
|
||
|
||
for (i = 0; i < len; i++)
|
||
newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
|
||
|
||
n = newargs;
|
||
|
||
for (; p1;
|
||
p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
|
||
{
|
||
/* A null type means arg type is not specified.
|
||
Take whatever the other function type has. */
|
||
if (TREE_VALUE (p1) == 0)
|
||
{
|
||
TREE_VALUE (n) = TREE_VALUE (p2);
|
||
goto parm_done;
|
||
}
|
||
if (TREE_VALUE (p2) == 0)
|
||
{
|
||
TREE_VALUE (n) = TREE_VALUE (p1);
|
||
goto parm_done;
|
||
}
|
||
|
||
/* Given wait (union {union wait *u; int *i} *)
|
||
and wait (union wait *),
|
||
prefer union wait * as type of parm. */
|
||
if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
|
||
&& TREE_VALUE (p1) != TREE_VALUE (p2))
|
||
{
|
||
tree memb;
|
||
tree mv2 = TREE_VALUE (p2);
|
||
if (mv2 && mv2 != error_mark_node
|
||
&& TREE_CODE (mv2) != ARRAY_TYPE)
|
||
mv2 = TYPE_MAIN_VARIANT (mv2);
|
||
for (memb = TYPE_FIELDS (TREE_VALUE (p1));
|
||
memb; memb = TREE_CHAIN (memb))
|
||
{
|
||
tree mv3 = TREE_TYPE (memb);
|
||
if (mv3 && mv3 != error_mark_node
|
||
&& TREE_CODE (mv3) != ARRAY_TYPE)
|
||
mv3 = TYPE_MAIN_VARIANT (mv3);
|
||
if (comptypes (mv3, mv2))
|
||
{
|
||
TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
|
||
TREE_VALUE (p2));
|
||
if (pedantic)
|
||
pedwarn ("function types not truly compatible in ISO C");
|
||
goto parm_done;
|
||
}
|
||
}
|
||
}
|
||
if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
|
||
&& TREE_VALUE (p2) != TREE_VALUE (p1))
|
||
{
|
||
tree memb;
|
||
tree mv1 = TREE_VALUE (p1);
|
||
if (mv1 && mv1 != error_mark_node
|
||
&& TREE_CODE (mv1) != ARRAY_TYPE)
|
||
mv1 = TYPE_MAIN_VARIANT (mv1);
|
||
for (memb = TYPE_FIELDS (TREE_VALUE (p2));
|
||
memb; memb = TREE_CHAIN (memb))
|
||
{
|
||
tree mv3 = TREE_TYPE (memb);
|
||
if (mv3 && mv3 != error_mark_node
|
||
&& TREE_CODE (mv3) != ARRAY_TYPE)
|
||
mv3 = TYPE_MAIN_VARIANT (mv3);
|
||
if (comptypes (mv3, mv1))
|
||
{
|
||
TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
|
||
TREE_VALUE (p1));
|
||
if (pedantic)
|
||
pedwarn ("function types not truly compatible in ISO C");
|
||
goto parm_done;
|
||
}
|
||
}
|
||
}
|
||
TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
|
||
parm_done: ;
|
||
}
|
||
|
||
c_override_global_bindings_to_false = false;
|
||
t1 = build_function_type (valtype, newargs);
|
||
t1 = qualify_type (t1, t2);
|
||
/* ... falls through ... */
|
||
}
|
||
|
||
default:
|
||
return build_type_attribute_variant (t1, attributes);
|
||
}
|
||
|
||
}
|
||
|
||
/* Return the type of a conditional expression between pointers to
|
||
possibly differently qualified versions of compatible types.
|
||
|
||
We assume that comp_target_types has already been done and returned
|
||
nonzero; if that isn't so, this may crash. */
|
||
|
||
static tree
|
||
common_pointer_type (tree t1, tree t2)
|
||
{
|
||
tree attributes;
|
||
tree pointed_to_1, mv1;
|
||
tree pointed_to_2, mv2;
|
||
tree target;
|
||
|
||
/* Save time if the two types are the same. */
|
||
|
||
if (t1 == t2) return t1;
|
||
|
||
/* If one type is nonsense, use the other. */
|
||
if (t1 == error_mark_node)
|
||
return t2;
|
||
if (t2 == error_mark_node)
|
||
return t1;
|
||
|
||
gcc_assert (TREE_CODE (t1) == POINTER_TYPE
|
||
&& TREE_CODE (t2) == POINTER_TYPE);
|
||
|
||
/* Merge the attributes. */
|
||
attributes = targetm.merge_type_attributes (t1, t2);
|
||
|
||
/* Find the composite type of the target types, and combine the
|
||
qualifiers of the two types' targets. Do not lose qualifiers on
|
||
array element types by taking the TYPE_MAIN_VARIANT. */
|
||
mv1 = pointed_to_1 = TREE_TYPE (t1);
|
||
mv2 = pointed_to_2 = TREE_TYPE (t2);
|
||
if (TREE_CODE (mv1) != ARRAY_TYPE)
|
||
mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
|
||
if (TREE_CODE (mv2) != ARRAY_TYPE)
|
||
mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
|
||
target = composite_type (mv1, mv2);
|
||
t1 = build_pointer_type (c_build_qualified_type
|
||
(target,
|
||
TYPE_QUALS (pointed_to_1) |
|
||
TYPE_QUALS (pointed_to_2)));
|
||
return build_type_attribute_variant (t1, attributes);
|
||
}
|
||
|
||
/* Return the common type for two arithmetic types under the usual
|
||
arithmetic conversions. The default conversions have already been
|
||
applied, and enumerated types converted to their compatible integer
|
||
types. The resulting type is unqualified and has no attributes.
|
||
|
||
This is the type for the result of most arithmetic operations
|
||
if the operands have the given two types. */
|
||
|
||
static tree
|
||
c_common_type (tree t1, tree t2)
|
||
{
|
||
enum tree_code code1;
|
||
enum tree_code code2;
|
||
|
||
/* If one type is nonsense, use the other. */
|
||
if (t1 == error_mark_node)
|
||
return t2;
|
||
if (t2 == error_mark_node)
|
||
return t1;
|
||
|
||
if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
|
||
t1 = TYPE_MAIN_VARIANT (t1);
|
||
|
||
if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
|
||
t2 = TYPE_MAIN_VARIANT (t2);
|
||
|
||
if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
|
||
t1 = build_type_attribute_variant (t1, NULL_TREE);
|
||
|
||
if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
|
||
t2 = build_type_attribute_variant (t2, NULL_TREE);
|
||
|
||
/* Save time if the two types are the same. */
|
||
|
||
if (t1 == t2) return t1;
|
||
|
||
code1 = TREE_CODE (t1);
|
||
code2 = TREE_CODE (t2);
|
||
|
||
gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
|
||
|| code1 == REAL_TYPE || code1 == INTEGER_TYPE);
|
||
gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
|
||
|| code2 == REAL_TYPE || code2 == INTEGER_TYPE);
|
||
|
||
/* When one operand is a decimal float type, the other operand cannot be
|
||
a generic float type or a complex type. We also disallow vector types
|
||
here. */
|
||
if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
|
||
&& !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
|
||
{
|
||
if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
|
||
{
|
||
error ("can%'t mix operands of decimal float and vector types");
|
||
return error_mark_node;
|
||
}
|
||
if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
|
||
{
|
||
error ("can%'t mix operands of decimal float and complex types");
|
||
return error_mark_node;
|
||
}
|
||
if (code1 == REAL_TYPE && code2 == REAL_TYPE)
|
||
{
|
||
error ("can%'t mix operands of decimal float and other float types");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* If one type is a vector type, return that type. (How the usual
|
||
arithmetic conversions apply to the vector types extension is not
|
||
precisely specified.) */
|
||
if (code1 == VECTOR_TYPE)
|
||
return t1;
|
||
|
||
if (code2 == VECTOR_TYPE)
|
||
return t2;
|
||
|
||
/* If one type is complex, form the common type of the non-complex
|
||
components, then make that complex. Use T1 or T2 if it is the
|
||
required type. */
|
||
if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
|
||
{
|
||
tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
|
||
tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
|
||
tree subtype = c_common_type (subtype1, subtype2);
|
||
|
||
if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
|
||
return t1;
|
||
else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
|
||
return t2;
|
||
else
|
||
return build_complex_type (subtype);
|
||
}
|
||
|
||
/* If only one is real, use it as the result. */
|
||
|
||
if (code1 == REAL_TYPE && code2 != REAL_TYPE)
|
||
return t1;
|
||
|
||
if (code2 == REAL_TYPE && code1 != REAL_TYPE)
|
||
return t2;
|
||
|
||
/* If both are real and either are decimal floating point types, use
|
||
the decimal floating point type with the greater precision. */
|
||
|
||
if (code1 == REAL_TYPE && code2 == REAL_TYPE)
|
||
{
|
||
if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
|
||
|| TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
|
||
return dfloat128_type_node;
|
||
else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
|
||
|| TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
|
||
return dfloat64_type_node;
|
||
else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
|
||
|| TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
|
||
return dfloat32_type_node;
|
||
}
|
||
|
||
/* Both real or both integers; use the one with greater precision. */
|
||
|
||
if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
|
||
return t1;
|
||
else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
|
||
return t2;
|
||
|
||
/* Same precision. Prefer long longs to longs to ints when the
|
||
same precision, following the C99 rules on integer type rank
|
||
(which are equivalent to the C90 rules for C90 types). */
|
||
|
||
if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
|
||
|| TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
|
||
return long_long_unsigned_type_node;
|
||
|
||
if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
|
||
|| TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
|
||
{
|
||
if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
|
||
return long_long_unsigned_type_node;
|
||
else
|
||
return long_long_integer_type_node;
|
||
}
|
||
|
||
if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
|
||
|| TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
|
||
return long_unsigned_type_node;
|
||
|
||
if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
|
||
|| TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
|
||
{
|
||
/* But preserve unsignedness from the other type,
|
||
since long cannot hold all the values of an unsigned int. */
|
||
if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
|
||
return long_unsigned_type_node;
|
||
else
|
||
return long_integer_type_node;
|
||
}
|
||
|
||
/* Likewise, prefer long double to double even if same size. */
|
||
if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
|
||
|| TYPE_MAIN_VARIANT (t2) == long_double_type_node)
|
||
return long_double_type_node;
|
||
|
||
/* Otherwise prefer the unsigned one. */
|
||
|
||
if (TYPE_UNSIGNED (t1))
|
||
return t1;
|
||
else
|
||
return t2;
|
||
}
|
||
|
||
/* Wrapper around c_common_type that is used by c-common.c and other
|
||
front end optimizations that remove promotions. ENUMERAL_TYPEs
|
||
are allowed here and are converted to their compatible integer types.
|
||
BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
|
||
preferably a non-Boolean type as the common type. */
|
||
tree
|
||
common_type (tree t1, tree t2)
|
||
{
|
||
if (TREE_CODE (t1) == ENUMERAL_TYPE)
|
||
t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
|
||
if (TREE_CODE (t2) == ENUMERAL_TYPE)
|
||
t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
|
||
|
||
/* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
|
||
if (TREE_CODE (t1) == BOOLEAN_TYPE
|
||
&& TREE_CODE (t2) == BOOLEAN_TYPE)
|
||
return boolean_type_node;
|
||
|
||
/* If either type is BOOLEAN_TYPE, then return the other. */
|
||
if (TREE_CODE (t1) == BOOLEAN_TYPE)
|
||
return t2;
|
||
if (TREE_CODE (t2) == BOOLEAN_TYPE)
|
||
return t1;
|
||
|
||
return c_common_type (t1, t2);
|
||
}
|
||
|
||
/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
|
||
or various other operations. Return 2 if they are compatible
|
||
but a warning may be needed if you use them together. */
|
||
|
||
int
|
||
comptypes (tree type1, tree type2)
|
||
{
|
||
const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
|
||
int val;
|
||
|
||
val = comptypes_internal (type1, type2);
|
||
free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
|
||
or various other operations. Return 2 if they are compatible
|
||
but a warning may be needed if you use them together. This
|
||
differs from comptypes, in that we don't free the seen types. */
|
||
|
||
static int
|
||
comptypes_internal (tree type1, tree type2)
|
||
{
|
||
tree t1 = type1;
|
||
tree t2 = type2;
|
||
int attrval, val;
|
||
|
||
/* Suppress errors caused by previously reported errors. */
|
||
|
||
if (t1 == t2 || !t1 || !t2
|
||
|| TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
|
||
return 1;
|
||
|
||
/* If either type is the internal version of sizetype, return the
|
||
language version. */
|
||
if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
|
||
&& TYPE_ORIG_SIZE_TYPE (t1))
|
||
t1 = TYPE_ORIG_SIZE_TYPE (t1);
|
||
|
||
if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
|
||
&& TYPE_ORIG_SIZE_TYPE (t2))
|
||
t2 = TYPE_ORIG_SIZE_TYPE (t2);
|
||
|
||
|
||
/* Enumerated types are compatible with integer types, but this is
|
||
not transitive: two enumerated types in the same translation unit
|
||
are compatible with each other only if they are the same type. */
|
||
|
||
if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
|
||
t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
|
||
else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
|
||
t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
|
||
|
||
if (t1 == t2)
|
||
return 1;
|
||
|
||
/* Different classes of types can't be compatible. */
|
||
|
||
if (TREE_CODE (t1) != TREE_CODE (t2))
|
||
return 0;
|
||
|
||
/* Qualifiers must match. C99 6.7.3p9 */
|
||
|
||
if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
|
||
return 0;
|
||
|
||
/* Allow for two different type nodes which have essentially the same
|
||
definition. Note that we already checked for equality of the type
|
||
qualifiers (just above). */
|
||
|
||
if (TREE_CODE (t1) != ARRAY_TYPE
|
||
&& TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
|
||
return 1;
|
||
|
||
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
|
||
if (!(attrval = targetm.comp_type_attributes (t1, t2)))
|
||
return 0;
|
||
|
||
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
|
||
val = 0;
|
||
|
||
switch (TREE_CODE (t1))
|
||
{
|
||
case POINTER_TYPE:
|
||
/* Do not remove mode or aliasing information. */
|
||
if (TYPE_MODE (t1) != TYPE_MODE (t2)
|
||
|| TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
|
||
break;
|
||
val = (TREE_TYPE (t1) == TREE_TYPE (t2)
|
||
? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
|
||
break;
|
||
|
||
case FUNCTION_TYPE:
|
||
val = function_types_compatible_p (t1, t2);
|
||
break;
|
||
|
||
case ARRAY_TYPE:
|
||
{
|
||
tree d1 = TYPE_DOMAIN (t1);
|
||
tree d2 = TYPE_DOMAIN (t2);
|
||
bool d1_variable, d2_variable;
|
||
bool d1_zero, d2_zero;
|
||
val = 1;
|
||
|
||
/* Target types must match incl. qualifiers. */
|
||
if (TREE_TYPE (t1) != TREE_TYPE (t2)
|
||
&& 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
|
||
return 0;
|
||
|
||
/* Sizes must match unless one is missing or variable. */
|
||
if (d1 == 0 || d2 == 0 || d1 == d2)
|
||
break;
|
||
|
||
d1_zero = !TYPE_MAX_VALUE (d1);
|
||
d2_zero = !TYPE_MAX_VALUE (d2);
|
||
|
||
d1_variable = (!d1_zero
|
||
&& (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
|
||
|| TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
|
||
d2_variable = (!d2_zero
|
||
&& (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
|
||
|| TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
|
||
d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
|
||
d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
|
||
|
||
if (d1_variable || d2_variable)
|
||
break;
|
||
if (d1_zero && d2_zero)
|
||
break;
|
||
if (d1_zero || d2_zero
|
||
|| !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
|
||
|| !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
|
||
val = 0;
|
||
|
||
break;
|
||
}
|
||
|
||
case ENUMERAL_TYPE:
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
if (val != 1 && !same_translation_unit_p (t1, t2))
|
||
{
|
||
tree a1 = TYPE_ATTRIBUTES (t1);
|
||
tree a2 = TYPE_ATTRIBUTES (t2);
|
||
|
||
if (! attribute_list_contained (a1, a2)
|
||
&& ! attribute_list_contained (a2, a1))
|
||
break;
|
||
|
||
if (attrval != 2)
|
||
return tagged_types_tu_compatible_p (t1, t2);
|
||
val = tagged_types_tu_compatible_p (t1, t2);
|
||
}
|
||
break;
|
||
|
||
case VECTOR_TYPE:
|
||
val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
|
||
&& comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return attrval == 2 && val == 1 ? 2 : val;
|
||
}
|
||
|
||
/* Return 1 if TTL and TTR are pointers to types that are equivalent,
|
||
ignoring their qualifiers. */
|
||
|
||
static int
|
||
comp_target_types (tree ttl, tree ttr)
|
||
{
|
||
int val;
|
||
tree mvl, mvr;
|
||
|
||
/* Do not lose qualifiers on element types of array types that are
|
||
pointer targets by taking their TYPE_MAIN_VARIANT. */
|
||
mvl = TREE_TYPE (ttl);
|
||
mvr = TREE_TYPE (ttr);
|
||
if (TREE_CODE (mvl) != ARRAY_TYPE)
|
||
mvl = TYPE_MAIN_VARIANT (mvl);
|
||
if (TREE_CODE (mvr) != ARRAY_TYPE)
|
||
mvr = TYPE_MAIN_VARIANT (mvr);
|
||
val = comptypes (mvl, mvr);
|
||
|
||
if (val == 2 && pedantic)
|
||
pedwarn ("types are not quite compatible");
|
||
return val;
|
||
}
|
||
|
||
/* Subroutines of `comptypes'. */
|
||
|
||
/* Determine whether two trees derive from the same translation unit.
|
||
If the CONTEXT chain ends in a null, that tree's context is still
|
||
being parsed, so if two trees have context chains ending in null,
|
||
they're in the same translation unit. */
|
||
int
|
||
same_translation_unit_p (tree t1, tree t2)
|
||
{
|
||
while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
|
||
switch (TREE_CODE_CLASS (TREE_CODE (t1)))
|
||
{
|
||
case tcc_declaration:
|
||
t1 = DECL_CONTEXT (t1); break;
|
||
case tcc_type:
|
||
t1 = TYPE_CONTEXT (t1); break;
|
||
case tcc_exceptional:
|
||
t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
|
||
default: gcc_unreachable ();
|
||
}
|
||
|
||
while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
|
||
switch (TREE_CODE_CLASS (TREE_CODE (t2)))
|
||
{
|
||
case tcc_declaration:
|
||
t2 = DECL_CONTEXT (t2); break;
|
||
case tcc_type:
|
||
t2 = TYPE_CONTEXT (t2); break;
|
||
case tcc_exceptional:
|
||
t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
|
||
default: gcc_unreachable ();
|
||
}
|
||
|
||
return t1 == t2;
|
||
}
|
||
|
||
/* Allocate the seen two types, assuming that they are compatible. */
|
||
|
||
static struct tagged_tu_seen_cache *
|
||
alloc_tagged_tu_seen_cache (tree t1, tree t2)
|
||
{
|
||
struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
|
||
tu->next = tagged_tu_seen_base;
|
||
tu->t1 = t1;
|
||
tu->t2 = t2;
|
||
|
||
tagged_tu_seen_base = tu;
|
||
|
||
/* The C standard says that two structures in different translation
|
||
units are compatible with each other only if the types of their
|
||
fields are compatible (among other things). We assume that they
|
||
are compatible until proven otherwise when building the cache.
|
||
An example where this can occur is:
|
||
struct a
|
||
{
|
||
struct a *next;
|
||
};
|
||
If we are comparing this against a similar struct in another TU,
|
||
and did not assume they were compatible, we end up with an infinite
|
||
loop. */
|
||
tu->val = 1;
|
||
return tu;
|
||
}
|
||
|
||
/* Free the seen types until we get to TU_TIL. */
|
||
|
||
static void
|
||
free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
|
||
{
|
||
const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
|
||
while (tu != tu_til)
|
||
{
|
||
struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
|
||
tu = tu1->next;
|
||
free (tu1);
|
||
}
|
||
tagged_tu_seen_base = tu_til;
|
||
}
|
||
|
||
/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
|
||
compatible. If the two types are not the same (which has been
|
||
checked earlier), this can only happen when multiple translation
|
||
units are being compiled. See C99 6.2.7 paragraph 1 for the exact
|
||
rules. */
|
||
|
||
static int
|
||
tagged_types_tu_compatible_p (tree t1, tree t2)
|
||
{
|
||
tree s1, s2;
|
||
bool needs_warning = false;
|
||
|
||
/* We have to verify that the tags of the types are the same. This
|
||
is harder than it looks because this may be a typedef, so we have
|
||
to go look at the original type. It may even be a typedef of a
|
||
typedef...
|
||
In the case of compiler-created builtin structs the TYPE_DECL
|
||
may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
|
||
while (TYPE_NAME (t1)
|
||
&& TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
|
||
&& DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
|
||
t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
|
||
|
||
while (TYPE_NAME (t2)
|
||
&& TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
|
||
&& DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
|
||
t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
|
||
|
||
/* C90 didn't have the requirement that the two tags be the same. */
|
||
if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
|
||
return 0;
|
||
|
||
/* C90 didn't say what happened if one or both of the types were
|
||
incomplete; we choose to follow C99 rules here, which is that they
|
||
are compatible. */
|
||
if (TYPE_SIZE (t1) == NULL
|
||
|| TYPE_SIZE (t2) == NULL)
|
||
return 1;
|
||
|
||
{
|
||
const struct tagged_tu_seen_cache * tts_i;
|
||
for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
|
||
if (tts_i->t1 == t1 && tts_i->t2 == t2)
|
||
return tts_i->val;
|
||
}
|
||
|
||
switch (TREE_CODE (t1))
|
||
{
|
||
case ENUMERAL_TYPE:
|
||
{
|
||
struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
|
||
/* Speed up the case where the type values are in the same order. */
|
||
tree tv1 = TYPE_VALUES (t1);
|
||
tree tv2 = TYPE_VALUES (t2);
|
||
|
||
if (tv1 == tv2)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
|
||
{
|
||
if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
|
||
break;
|
||
if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
|
||
{
|
||
tu->val = 0;
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if (tv1 == NULL_TREE && tv2 == NULL_TREE)
|
||
{
|
||
return 1;
|
||
}
|
||
if (tv1 == NULL_TREE || tv2 == NULL_TREE)
|
||
{
|
||
tu->val = 0;
|
||
return 0;
|
||
}
|
||
|
||
if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
|
||
{
|
||
tu->val = 0;
|
||
return 0;
|
||
}
|
||
|
||
for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
|
||
{
|
||
s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
|
||
if (s2 == NULL
|
||
|| simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
|
||
{
|
||
tu->val = 0;
|
||
return 0;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
case UNION_TYPE:
|
||
{
|
||
struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
|
||
if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
|
||
{
|
||
tu->val = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* Speed up the common case where the fields are in the same order. */
|
||
for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
|
||
s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
|
||
{
|
||
int result;
|
||
|
||
|
||
if (DECL_NAME (s1) == NULL
|
||
|| DECL_NAME (s1) != DECL_NAME (s2))
|
||
break;
|
||
result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
|
||
if (result == 0)
|
||
{
|
||
tu->val = 0;
|
||
return 0;
|
||
}
|
||
if (result == 2)
|
||
needs_warning = true;
|
||
|
||
if (TREE_CODE (s1) == FIELD_DECL
|
||
&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
|
||
DECL_FIELD_BIT_OFFSET (s2)) != 1)
|
||
{
|
||
tu->val = 0;
|
||
return 0;
|
||
}
|
||
}
|
||
if (!s1 && !s2)
|
||
{
|
||
tu->val = needs_warning ? 2 : 1;
|
||
return tu->val;
|
||
}
|
||
|
||
for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
|
||
{
|
||
bool ok = false;
|
||
|
||
if (DECL_NAME (s1) != NULL)
|
||
for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
|
||
if (DECL_NAME (s1) == DECL_NAME (s2))
|
||
{
|
||
int result;
|
||
result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
|
||
if (result == 0)
|
||
{
|
||
tu->val = 0;
|
||
return 0;
|
||
}
|
||
if (result == 2)
|
||
needs_warning = true;
|
||
|
||
if (TREE_CODE (s1) == FIELD_DECL
|
||
&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
|
||
DECL_FIELD_BIT_OFFSET (s2)) != 1)
|
||
break;
|
||
|
||
ok = true;
|
||
break;
|
||
}
|
||
if (!ok)
|
||
{
|
||
tu->val = 0;
|
||
return 0;
|
||
}
|
||
}
|
||
tu->val = needs_warning ? 2 : 10;
|
||
return tu->val;
|
||
}
|
||
|
||
case RECORD_TYPE:
|
||
{
|
||
struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
|
||
|
||
for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
|
||
s1 && s2;
|
||
s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
|
||
{
|
||
int result;
|
||
if (TREE_CODE (s1) != TREE_CODE (s2)
|
||
|| DECL_NAME (s1) != DECL_NAME (s2))
|
||
break;
|
||
result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
|
||
if (result == 0)
|
||
break;
|
||
if (result == 2)
|
||
needs_warning = true;
|
||
|
||
if (TREE_CODE (s1) == FIELD_DECL
|
||
&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
|
||
DECL_FIELD_BIT_OFFSET (s2)) != 1)
|
||
break;
|
||
}
|
||
if (s1 && s2)
|
||
tu->val = 0;
|
||
else
|
||
tu->val = needs_warning ? 2 : 1;
|
||
return tu->val;
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Return 1 if two function types F1 and F2 are compatible.
|
||
If either type specifies no argument types,
|
||
the other must specify a fixed number of self-promoting arg types.
|
||
Otherwise, if one type specifies only the number of arguments,
|
||
the other must specify that number of self-promoting arg types.
|
||
Otherwise, the argument types must match. */
|
||
|
||
static int
|
||
function_types_compatible_p (tree f1, tree f2)
|
||
{
|
||
tree args1, args2;
|
||
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
|
||
int val = 1;
|
||
int val1;
|
||
tree ret1, ret2;
|
||
|
||
ret1 = TREE_TYPE (f1);
|
||
ret2 = TREE_TYPE (f2);
|
||
|
||
/* 'volatile' qualifiers on a function's return type used to mean
|
||
the function is noreturn. */
|
||
if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
|
||
pedwarn ("function return types not compatible due to %<volatile%>");
|
||
if (TYPE_VOLATILE (ret1))
|
||
ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
|
||
TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
|
||
if (TYPE_VOLATILE (ret2))
|
||
ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
|
||
TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
|
||
val = comptypes_internal (ret1, ret2);
|
||
if (val == 0)
|
||
return 0;
|
||
|
||
args1 = TYPE_ARG_TYPES (f1);
|
||
args2 = TYPE_ARG_TYPES (f2);
|
||
|
||
/* An unspecified parmlist matches any specified parmlist
|
||
whose argument types don't need default promotions. */
|
||
|
||
if (args1 == 0)
|
||
{
|
||
if (!self_promoting_args_p (args2))
|
||
return 0;
|
||
/* If one of these types comes from a non-prototype fn definition,
|
||
compare that with the other type's arglist.
|
||
If they don't match, ask for a warning (but no error). */
|
||
if (TYPE_ACTUAL_ARG_TYPES (f1)
|
||
&& 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
|
||
val = 2;
|
||
return val;
|
||
}
|
||
if (args2 == 0)
|
||
{
|
||
if (!self_promoting_args_p (args1))
|
||
return 0;
|
||
if (TYPE_ACTUAL_ARG_TYPES (f2)
|
||
&& 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
|
||
val = 2;
|
||
return val;
|
||
}
|
||
|
||
/* Both types have argument lists: compare them and propagate results. */
|
||
val1 = type_lists_compatible_p (args1, args2);
|
||
return val1 != 1 ? val1 : val;
|
||
}
|
||
|
||
/* Check two lists of types for compatibility,
|
||
returning 0 for incompatible, 1 for compatible,
|
||
or 2 for compatible with warning. */
|
||
|
||
static int
|
||
type_lists_compatible_p (tree args1, tree args2)
|
||
{
|
||
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
|
||
int val = 1;
|
||
int newval = 0;
|
||
|
||
while (1)
|
||
{
|
||
tree a1, mv1, a2, mv2;
|
||
if (args1 == 0 && args2 == 0)
|
||
return val;
|
||
/* If one list is shorter than the other,
|
||
they fail to match. */
|
||
if (args1 == 0 || args2 == 0)
|
||
return 0;
|
||
mv1 = a1 = TREE_VALUE (args1);
|
||
mv2 = a2 = TREE_VALUE (args2);
|
||
if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
|
||
mv1 = TYPE_MAIN_VARIANT (mv1);
|
||
if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
|
||
mv2 = TYPE_MAIN_VARIANT (mv2);
|
||
/* A null pointer instead of a type
|
||
means there is supposed to be an argument
|
||
but nothing is specified about what type it has.
|
||
So match anything that self-promotes. */
|
||
if (a1 == 0)
|
||
{
|
||
if (c_type_promotes_to (a2) != a2)
|
||
return 0;
|
||
}
|
||
else if (a2 == 0)
|
||
{
|
||
if (c_type_promotes_to (a1) != a1)
|
||
return 0;
|
||
}
|
||
/* If one of the lists has an error marker, ignore this arg. */
|
||
else if (TREE_CODE (a1) == ERROR_MARK
|
||
|| TREE_CODE (a2) == ERROR_MARK)
|
||
;
|
||
else if (!(newval = comptypes_internal (mv1, mv2)))
|
||
{
|
||
/* Allow wait (union {union wait *u; int *i} *)
|
||
and wait (union wait *) to be compatible. */
|
||
if (TREE_CODE (a1) == UNION_TYPE
|
||
&& (TYPE_NAME (a1) == 0
|
||
|| TYPE_TRANSPARENT_UNION (a1))
|
||
&& TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
|
||
&& tree_int_cst_equal (TYPE_SIZE (a1),
|
||
TYPE_SIZE (a2)))
|
||
{
|
||
tree memb;
|
||
for (memb = TYPE_FIELDS (a1);
|
||
memb; memb = TREE_CHAIN (memb))
|
||
{
|
||
tree mv3 = TREE_TYPE (memb);
|
||
if (mv3 && mv3 != error_mark_node
|
||
&& TREE_CODE (mv3) != ARRAY_TYPE)
|
||
mv3 = TYPE_MAIN_VARIANT (mv3);
|
||
if (comptypes_internal (mv3, mv2))
|
||
break;
|
||
}
|
||
if (memb == 0)
|
||
return 0;
|
||
}
|
||
else if (TREE_CODE (a2) == UNION_TYPE
|
||
&& (TYPE_NAME (a2) == 0
|
||
|| TYPE_TRANSPARENT_UNION (a2))
|
||
&& TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
|
||
&& tree_int_cst_equal (TYPE_SIZE (a2),
|
||
TYPE_SIZE (a1)))
|
||
{
|
||
tree memb;
|
||
for (memb = TYPE_FIELDS (a2);
|
||
memb; memb = TREE_CHAIN (memb))
|
||
{
|
||
tree mv3 = TREE_TYPE (memb);
|
||
if (mv3 && mv3 != error_mark_node
|
||
&& TREE_CODE (mv3) != ARRAY_TYPE)
|
||
mv3 = TYPE_MAIN_VARIANT (mv3);
|
||
if (comptypes_internal (mv3, mv1))
|
||
break;
|
||
}
|
||
if (memb == 0)
|
||
return 0;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* comptypes said ok, but record if it said to warn. */
|
||
if (newval > val)
|
||
val = newval;
|
||
|
||
args1 = TREE_CHAIN (args1);
|
||
args2 = TREE_CHAIN (args2);
|
||
}
|
||
}
|
||
|
||
/* Compute the size to increment a pointer by. */
|
||
|
||
static tree
|
||
c_size_in_bytes (tree type)
|
||
{
|
||
enum tree_code code = TREE_CODE (type);
|
||
|
||
if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
|
||
return size_one_node;
|
||
|
||
if (!COMPLETE_OR_VOID_TYPE_P (type))
|
||
{
|
||
error ("arithmetic on pointer to an incomplete type");
|
||
return size_one_node;
|
||
}
|
||
|
||
/* Convert in case a char is more than one unit. */
|
||
return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
|
||
size_int (TYPE_PRECISION (char_type_node)
|
||
/ BITS_PER_UNIT));
|
||
}
|
||
|
||
/* Return either DECL or its known constant value (if it has one). */
|
||
|
||
tree
|
||
decl_constant_value (tree decl)
|
||
{
|
||
if (/* Don't change a variable array bound or initial value to a constant
|
||
in a place where a variable is invalid. Note that DECL_INITIAL
|
||
isn't valid for a PARM_DECL. */
|
||
current_function_decl != 0
|
||
&& TREE_CODE (decl) != PARM_DECL
|
||
&& !TREE_THIS_VOLATILE (decl)
|
||
&& TREE_READONLY (decl)
|
||
&& DECL_INITIAL (decl) != 0
|
||
&& TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
|
||
/* This is invalid if initial value is not constant.
|
||
If it has either a function call, a memory reference,
|
||
or a variable, then re-evaluating it could give different results. */
|
||
&& TREE_CONSTANT (DECL_INITIAL (decl))
|
||
/* Check for cases where this is sub-optimal, even though valid. */
|
||
&& TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
|
||
return DECL_INITIAL (decl);
|
||
return decl;
|
||
}
|
||
|
||
/* Return either DECL or its known constant value (if it has one), but
|
||
return DECL if pedantic or DECL has mode BLKmode. This is for
|
||
bug-compatibility with the old behavior of decl_constant_value
|
||
(before GCC 3.0); every use of this function is a bug and it should
|
||
be removed before GCC 3.1. It is not appropriate to use pedantic
|
||
in a way that affects optimization, and BLKmode is probably not the
|
||
right test for avoiding misoptimizations either. */
|
||
|
||
static tree
|
||
decl_constant_value_for_broken_optimization (tree decl)
|
||
{
|
||
tree ret;
|
||
|
||
if (pedantic || DECL_MODE (decl) == BLKmode)
|
||
return decl;
|
||
|
||
ret = decl_constant_value (decl);
|
||
/* Avoid unwanted tree sharing between the initializer and current
|
||
function's body where the tree can be modified e.g. by the
|
||
gimplifier. */
|
||
if (ret != decl && TREE_STATIC (decl))
|
||
ret = unshare_expr (ret);
|
||
return ret;
|
||
}
|
||
|
||
/* Convert the array expression EXP to a pointer. */
|
||
static tree
|
||
array_to_pointer_conversion (tree exp)
|
||
{
|
||
tree orig_exp = exp;
|
||
tree type = TREE_TYPE (exp);
|
||
tree adr;
|
||
tree restype = TREE_TYPE (type);
|
||
tree ptrtype;
|
||
|
||
gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
|
||
|
||
STRIP_TYPE_NOPS (exp);
|
||
|
||
if (TREE_NO_WARNING (orig_exp))
|
||
TREE_NO_WARNING (exp) = 1;
|
||
|
||
ptrtype = build_pointer_type (restype);
|
||
|
||
if (TREE_CODE (exp) == INDIRECT_REF)
|
||
return convert (ptrtype, TREE_OPERAND (exp, 0));
|
||
|
||
if (TREE_CODE (exp) == VAR_DECL)
|
||
{
|
||
/* We are making an ADDR_EXPR of ptrtype. This is a valid
|
||
ADDR_EXPR because it's the best way of representing what
|
||
happens in C when we take the address of an array and place
|
||
it in a pointer to the element type. */
|
||
adr = build1 (ADDR_EXPR, ptrtype, exp);
|
||
if (!c_mark_addressable (exp))
|
||
return error_mark_node;
|
||
TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
|
||
return adr;
|
||
}
|
||
|
||
/* This way is better for a COMPONENT_REF since it can
|
||
simplify the offset for a component. */
|
||
adr = build_unary_op (ADDR_EXPR, exp, 1);
|
||
return convert (ptrtype, adr);
|
||
}
|
||
|
||
/* Convert the function expression EXP to a pointer. */
|
||
static tree
|
||
function_to_pointer_conversion (tree exp)
|
||
{
|
||
tree orig_exp = exp;
|
||
|
||
gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
|
||
|
||
STRIP_TYPE_NOPS (exp);
|
||
|
||
if (TREE_NO_WARNING (orig_exp))
|
||
TREE_NO_WARNING (exp) = 1;
|
||
|
||
return build_unary_op (ADDR_EXPR, exp, 0);
|
||
}
|
||
|
||
/* Perform the default conversion of arrays and functions to pointers.
|
||
Return the result of converting EXP. For any other expression, just
|
||
return EXP after removing NOPs. */
|
||
|
||
struct c_expr
|
||
default_function_array_conversion (struct c_expr exp)
|
||
{
|
||
tree orig_exp = exp.value;
|
||
tree type = TREE_TYPE (exp.value);
|
||
enum tree_code code = TREE_CODE (type);
|
||
|
||
switch (code)
|
||
{
|
||
case ARRAY_TYPE:
|
||
{
|
||
bool not_lvalue = false;
|
||
bool lvalue_array_p;
|
||
|
||
while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
|
||
|| TREE_CODE (exp.value) == NOP_EXPR
|
||
|| TREE_CODE (exp.value) == CONVERT_EXPR)
|
||
&& TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
|
||
{
|
||
if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
|
||
not_lvalue = true;
|
||
exp.value = TREE_OPERAND (exp.value, 0);
|
||
}
|
||
|
||
if (TREE_NO_WARNING (orig_exp))
|
||
TREE_NO_WARNING (exp.value) = 1;
|
||
|
||
lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
|
||
if (!flag_isoc99 && !lvalue_array_p)
|
||
{
|
||
/* Before C99, non-lvalue arrays do not decay to pointers.
|
||
Normally, using such an array would be invalid; but it can
|
||
be used correctly inside sizeof or as a statement expression.
|
||
Thus, do not give an error here; an error will result later. */
|
||
return exp;
|
||
}
|
||
|
||
exp.value = array_to_pointer_conversion (exp.value);
|
||
}
|
||
break;
|
||
case FUNCTION_TYPE:
|
||
exp.value = function_to_pointer_conversion (exp.value);
|
||
break;
|
||
default:
|
||
STRIP_TYPE_NOPS (exp.value);
|
||
if (TREE_NO_WARNING (orig_exp))
|
||
TREE_NO_WARNING (exp.value) = 1;
|
||
break;
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
|
||
/* EXP is an expression of integer type. Apply the integer promotions
|
||
to it and return the promoted value. */
|
||
|
||
tree
|
||
perform_integral_promotions (tree exp)
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
enum tree_code code = TREE_CODE (type);
|
||
|
||
gcc_assert (INTEGRAL_TYPE_P (type));
|
||
|
||
/* Normally convert enums to int,
|
||
but convert wide enums to something wider. */
|
||
if (code == ENUMERAL_TYPE)
|
||
{
|
||
type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
|
||
TYPE_PRECISION (integer_type_node)),
|
||
((TYPE_PRECISION (type)
|
||
>= TYPE_PRECISION (integer_type_node))
|
||
&& TYPE_UNSIGNED (type)));
|
||
|
||
return convert (type, exp);
|
||
}
|
||
|
||
/* ??? This should no longer be needed now bit-fields have their
|
||
proper types. */
|
||
if (TREE_CODE (exp) == COMPONENT_REF
|
||
&& DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
|
||
/* If it's thinner than an int, promote it like a
|
||
c_promoting_integer_type_p, otherwise leave it alone. */
|
||
&& 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
|
||
TYPE_PRECISION (integer_type_node)))
|
||
return convert (integer_type_node, exp);
|
||
|
||
if (c_promoting_integer_type_p (type))
|
||
{
|
||
/* Preserve unsignedness if not really getting any wider. */
|
||
if (TYPE_UNSIGNED (type)
|
||
&& TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
|
||
return convert (unsigned_type_node, exp);
|
||
|
||
return convert (integer_type_node, exp);
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
|
||
/* Perform default promotions for C data used in expressions.
|
||
Enumeral types or short or char are converted to int.
|
||
In addition, manifest constants symbols are replaced by their values. */
|
||
|
||
tree
|
||
default_conversion (tree exp)
|
||
{
|
||
tree orig_exp;
|
||
tree type = TREE_TYPE (exp);
|
||
enum tree_code code = TREE_CODE (type);
|
||
|
||
/* Functions and arrays have been converted during parsing. */
|
||
gcc_assert (code != FUNCTION_TYPE);
|
||
if (code == ARRAY_TYPE)
|
||
return exp;
|
||
|
||
/* Constants can be used directly unless they're not loadable. */
|
||
if (TREE_CODE (exp) == CONST_DECL)
|
||
exp = DECL_INITIAL (exp);
|
||
|
||
/* Replace a nonvolatile const static variable with its value unless
|
||
it is an array, in which case we must be sure that taking the
|
||
address of the array produces consistent results. */
|
||
else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
|
||
{
|
||
exp = decl_constant_value_for_broken_optimization (exp);
|
||
type = TREE_TYPE (exp);
|
||
}
|
||
|
||
/* Strip no-op conversions. */
|
||
orig_exp = exp;
|
||
STRIP_TYPE_NOPS (exp);
|
||
|
||
if (TREE_NO_WARNING (orig_exp))
|
||
TREE_NO_WARNING (exp) = 1;
|
||
|
||
if (INTEGRAL_TYPE_P (type))
|
||
return perform_integral_promotions (exp);
|
||
|
||
if (code == VOID_TYPE)
|
||
{
|
||
error ("void value not ignored as it ought to be");
|
||
return error_mark_node;
|
||
}
|
||
return exp;
|
||
}
|
||
|
||
/* Look up COMPONENT in a structure or union DECL.
|
||
|
||
If the component name is not found, returns NULL_TREE. Otherwise,
|
||
the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
|
||
stepping down the chain to the component, which is in the last
|
||
TREE_VALUE of the list. Normally the list is of length one, but if
|
||
the component is embedded within (nested) anonymous structures or
|
||
unions, the list steps down the chain to the component. */
|
||
|
||
static tree
|
||
lookup_field (tree decl, tree component)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
tree field;
|
||
|
||
/* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
|
||
to the field elements. Use a binary search on this array to quickly
|
||
find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
|
||
will always be set for structures which have many elements. */
|
||
|
||
if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
|
||
{
|
||
int bot, top, half;
|
||
tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
|
||
|
||
field = TYPE_FIELDS (type);
|
||
bot = 0;
|
||
top = TYPE_LANG_SPECIFIC (type)->s->len;
|
||
while (top - bot > 1)
|
||
{
|
||
half = (top - bot + 1) >> 1;
|
||
field = field_array[bot+half];
|
||
|
||
if (DECL_NAME (field) == NULL_TREE)
|
||
{
|
||
/* Step through all anon unions in linear fashion. */
|
||
while (DECL_NAME (field_array[bot]) == NULL_TREE)
|
||
{
|
||
field = field_array[bot++];
|
||
if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
|
||
|| TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
|
||
{
|
||
tree anon = lookup_field (field, component);
|
||
|
||
if (anon)
|
||
return tree_cons (NULL_TREE, field, anon);
|
||
}
|
||
}
|
||
|
||
/* Entire record is only anon unions. */
|
||
if (bot > top)
|
||
return NULL_TREE;
|
||
|
||
/* Restart the binary search, with new lower bound. */
|
||
continue;
|
||
}
|
||
|
||
if (DECL_NAME (field) == component)
|
||
break;
|
||
if (DECL_NAME (field) < component)
|
||
bot += half;
|
||
else
|
||
top = bot + half;
|
||
}
|
||
|
||
if (DECL_NAME (field_array[bot]) == component)
|
||
field = field_array[bot];
|
||
else if (DECL_NAME (field) != component)
|
||
return NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
if (DECL_NAME (field) == NULL_TREE
|
||
&& (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
|
||
|| TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
|
||
{
|
||
tree anon = lookup_field (field, component);
|
||
|
||
if (anon)
|
||
return tree_cons (NULL_TREE, field, anon);
|
||
}
|
||
|
||
if (DECL_NAME (field) == component)
|
||
break;
|
||
}
|
||
|
||
if (field == NULL_TREE)
|
||
return NULL_TREE;
|
||
}
|
||
|
||
return tree_cons (NULL_TREE, field, NULL_TREE);
|
||
}
|
||
|
||
/* Make an expression to refer to the COMPONENT field of
|
||
structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
|
||
|
||
tree
|
||
build_component_ref (tree datum, tree component)
|
||
{
|
||
tree type = TREE_TYPE (datum);
|
||
enum tree_code code = TREE_CODE (type);
|
||
tree field = NULL;
|
||
tree ref;
|
||
|
||
if (!objc_is_public (datum, component))
|
||
return error_mark_node;
|
||
|
||
/* See if there is a field or component with name COMPONENT. */
|
||
|
||
if (code == RECORD_TYPE || code == UNION_TYPE)
|
||
{
|
||
if (!COMPLETE_TYPE_P (type))
|
||
{
|
||
c_incomplete_type_error (NULL_TREE, type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
field = lookup_field (datum, component);
|
||
|
||
if (!field)
|
||
{
|
||
error ("%qT has no member named %qE", type, component);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Chain the COMPONENT_REFs if necessary down to the FIELD.
|
||
This might be better solved in future the way the C++ front
|
||
end does it - by giving the anonymous entities each a
|
||
separate name and type, and then have build_component_ref
|
||
recursively call itself. We can't do that here. */
|
||
do
|
||
{
|
||
tree subdatum = TREE_VALUE (field);
|
||
int quals;
|
||
tree subtype;
|
||
|
||
if (TREE_TYPE (subdatum) == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
|
||
quals |= TYPE_QUALS (TREE_TYPE (datum));
|
||
subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
|
||
|
||
ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
|
||
NULL_TREE);
|
||
if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
|
||
TREE_READONLY (ref) = 1;
|
||
if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
|
||
TREE_THIS_VOLATILE (ref) = 1;
|
||
|
||
if (TREE_DEPRECATED (subdatum))
|
||
warn_deprecated_use (subdatum);
|
||
|
||
datum = ref;
|
||
|
||
field = TREE_CHAIN (field);
|
||
}
|
||
while (field);
|
||
|
||
return ref;
|
||
}
|
||
else if (code != ERROR_MARK)
|
||
error ("request for member %qE in something not a structure or union",
|
||
component);
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Given an expression PTR for a pointer, return an expression
|
||
for the value pointed to.
|
||
ERRORSTRING is the name of the operator to appear in error messages. */
|
||
|
||
tree
|
||
build_indirect_ref (tree ptr, const char *errorstring)
|
||
{
|
||
tree pointer = default_conversion (ptr);
|
||
tree type = TREE_TYPE (pointer);
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
{
|
||
if (TREE_CODE (pointer) == ADDR_EXPR
|
||
&& (TREE_TYPE (TREE_OPERAND (pointer, 0))
|
||
== TREE_TYPE (type)))
|
||
return TREE_OPERAND (pointer, 0);
|
||
else
|
||
{
|
||
tree t = TREE_TYPE (type);
|
||
tree ref;
|
||
|
||
ref = build1 (INDIRECT_REF, t, pointer);
|
||
|
||
if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
|
||
{
|
||
error ("dereferencing pointer to incomplete type");
|
||
return error_mark_node;
|
||
}
|
||
if (VOID_TYPE_P (t) && skip_evaluation == 0)
|
||
warning (0, "dereferencing %<void *%> pointer");
|
||
|
||
/* We *must* set TREE_READONLY when dereferencing a pointer to const,
|
||
so that we get the proper error message if the result is used
|
||
to assign to. Also, &* is supposed to be a no-op.
|
||
And ANSI C seems to specify that the type of the result
|
||
should be the const type. */
|
||
/* A de-reference of a pointer to const is not a const. It is valid
|
||
to change it via some other pointer. */
|
||
TREE_READONLY (ref) = TYPE_READONLY (t);
|
||
TREE_SIDE_EFFECTS (ref)
|
||
= TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
|
||
TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
|
||
return ref;
|
||
}
|
||
}
|
||
else if (TREE_CODE (pointer) != ERROR_MARK)
|
||
error ("invalid type argument of %qs", errorstring);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* This handles expressions of the form "a[i]", which denotes
|
||
an array reference.
|
||
|
||
This is logically equivalent in C to *(a+i), but we may do it differently.
|
||
If A is a variable or a member, we generate a primitive ARRAY_REF.
|
||
This avoids forcing the array out of registers, and can work on
|
||
arrays that are not lvalues (for example, members of structures returned
|
||
by functions). */
|
||
|
||
tree
|
||
build_array_ref (tree array, tree index)
|
||
{
|
||
bool swapped = false;
|
||
if (TREE_TYPE (array) == error_mark_node
|
||
|| TREE_TYPE (index) == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
|
||
&& TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
|
||
{
|
||
tree temp;
|
||
if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
|
||
&& TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
|
||
{
|
||
error ("subscripted value is neither array nor pointer");
|
||
return error_mark_node;
|
||
}
|
||
temp = array;
|
||
array = index;
|
||
index = temp;
|
||
swapped = true;
|
||
}
|
||
|
||
if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
|
||
{
|
||
error ("array subscript is not an integer");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
|
||
{
|
||
error ("subscripted value is pointer to function");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* ??? Existing practice has been to warn only when the char
|
||
index is syntactically the index, not for char[array]. */
|
||
if (!swapped)
|
||
warn_array_subscript_with_type_char (index);
|
||
|
||
/* Apply default promotions *after* noticing character types. */
|
||
index = default_conversion (index);
|
||
|
||
gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
|
||
|
||
if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
|
||
{
|
||
tree rval, type;
|
||
|
||
/* An array that is indexed by a non-constant
|
||
cannot be stored in a register; we must be able to do
|
||
address arithmetic on its address.
|
||
Likewise an array of elements of variable size. */
|
||
if (TREE_CODE (index) != INTEGER_CST
|
||
|| (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
|
||
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
|
||
{
|
||
if (!c_mark_addressable (array))
|
||
return error_mark_node;
|
||
}
|
||
/* An array that is indexed by a constant value which is not within
|
||
the array bounds cannot be stored in a register either; because we
|
||
would get a crash in store_bit_field/extract_bit_field when trying
|
||
to access a non-existent part of the register. */
|
||
if (TREE_CODE (index) == INTEGER_CST
|
||
&& TYPE_DOMAIN (TREE_TYPE (array))
|
||
&& !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
|
||
{
|
||
if (!c_mark_addressable (array))
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (pedantic)
|
||
{
|
||
tree foo = array;
|
||
while (TREE_CODE (foo) == COMPONENT_REF)
|
||
foo = TREE_OPERAND (foo, 0);
|
||
if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
|
||
pedwarn ("ISO C forbids subscripting %<register%> array");
|
||
else if (!flag_isoc99 && !lvalue_p (foo))
|
||
pedwarn ("ISO C90 forbids subscripting non-lvalue array");
|
||
}
|
||
|
||
type = TREE_TYPE (TREE_TYPE (array));
|
||
if (TREE_CODE (type) != ARRAY_TYPE)
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
|
||
/* Array ref is const/volatile if the array elements are
|
||
or if the array is. */
|
||
TREE_READONLY (rval)
|
||
|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
|
||
| TREE_READONLY (array));
|
||
TREE_SIDE_EFFECTS (rval)
|
||
|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
|
||
| TREE_SIDE_EFFECTS (array));
|
||
TREE_THIS_VOLATILE (rval)
|
||
|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
|
||
/* This was added by rms on 16 Nov 91.
|
||
It fixes vol struct foo *a; a->elts[1]
|
||
in an inline function.
|
||
Hope it doesn't break something else. */
|
||
| TREE_THIS_VOLATILE (array));
|
||
return require_complete_type (fold (rval));
|
||
}
|
||
else
|
||
{
|
||
tree ar = default_conversion (array);
|
||
|
||
if (ar == error_mark_node)
|
||
return ar;
|
||
|
||
gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
|
||
gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
|
||
|
||
return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
|
||
"array indexing");
|
||
}
|
||
}
|
||
|
||
/* Build an external reference to identifier ID. FUN indicates
|
||
whether this will be used for a function call. LOC is the source
|
||
location of the identifier. */
|
||
tree
|
||
build_external_ref (tree id, int fun, location_t loc)
|
||
{
|
||
tree ref;
|
||
tree decl = lookup_name (id);
|
||
|
||
/* In Objective-C, an instance variable (ivar) may be preferred to
|
||
whatever lookup_name() found. */
|
||
decl = objc_lookup_ivar (decl, id);
|
||
|
||
if (decl && decl != error_mark_node)
|
||
ref = decl;
|
||
else if (fun)
|
||
/* Implicit function declaration. */
|
||
ref = implicitly_declare (id);
|
||
else if (decl == error_mark_node)
|
||
/* Don't complain about something that's already been
|
||
complained about. */
|
||
return error_mark_node;
|
||
else
|
||
{
|
||
undeclared_variable (id, loc);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_TYPE (ref) == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (TREE_DEPRECATED (ref))
|
||
warn_deprecated_use (ref);
|
||
|
||
if (!skip_evaluation)
|
||
assemble_external (ref);
|
||
TREE_USED (ref) = 1;
|
||
|
||
if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
|
||
{
|
||
if (!in_sizeof && !in_typeof)
|
||
C_DECL_USED (ref) = 1;
|
||
else if (DECL_INITIAL (ref) == 0
|
||
&& DECL_EXTERNAL (ref)
|
||
&& !TREE_PUBLIC (ref))
|
||
record_maybe_used_decl (ref);
|
||
}
|
||
|
||
if (TREE_CODE (ref) == CONST_DECL)
|
||
{
|
||
used_types_insert (TREE_TYPE (ref));
|
||
ref = DECL_INITIAL (ref);
|
||
TREE_CONSTANT (ref) = 1;
|
||
TREE_INVARIANT (ref) = 1;
|
||
}
|
||
else if (current_function_decl != 0
|
||
&& !DECL_FILE_SCOPE_P (current_function_decl)
|
||
&& (TREE_CODE (ref) == VAR_DECL
|
||
|| TREE_CODE (ref) == PARM_DECL
|
||
|| TREE_CODE (ref) == FUNCTION_DECL))
|
||
{
|
||
tree context = decl_function_context (ref);
|
||
|
||
if (context != 0 && context != current_function_decl)
|
||
DECL_NONLOCAL (ref) = 1;
|
||
}
|
||
|
||
return ref;
|
||
}
|
||
|
||
/* Record details of decls possibly used inside sizeof or typeof. */
|
||
struct maybe_used_decl
|
||
{
|
||
/* The decl. */
|
||
tree decl;
|
||
/* The level seen at (in_sizeof + in_typeof). */
|
||
int level;
|
||
/* The next one at this level or above, or NULL. */
|
||
struct maybe_used_decl *next;
|
||
};
|
||
|
||
static struct maybe_used_decl *maybe_used_decls;
|
||
|
||
/* Record that DECL, an undefined static function reference seen
|
||
inside sizeof or typeof, might be used if the operand of sizeof is
|
||
a VLA type or the operand of typeof is a variably modified
|
||
type. */
|
||
|
||
static void
|
||
record_maybe_used_decl (tree decl)
|
||
{
|
||
struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
|
||
t->decl = decl;
|
||
t->level = in_sizeof + in_typeof;
|
||
t->next = maybe_used_decls;
|
||
maybe_used_decls = t;
|
||
}
|
||
|
||
/* Pop the stack of decls possibly used inside sizeof or typeof. If
|
||
USED is false, just discard them. If it is true, mark them used
|
||
(if no longer inside sizeof or typeof) or move them to the next
|
||
level up (if still inside sizeof or typeof). */
|
||
|
||
void
|
||
pop_maybe_used (bool used)
|
||
{
|
||
struct maybe_used_decl *p = maybe_used_decls;
|
||
int cur_level = in_sizeof + in_typeof;
|
||
while (p && p->level > cur_level)
|
||
{
|
||
if (used)
|
||
{
|
||
if (cur_level == 0)
|
||
C_DECL_USED (p->decl) = 1;
|
||
else
|
||
p->level = cur_level;
|
||
}
|
||
p = p->next;
|
||
}
|
||
if (!used || cur_level == 0)
|
||
maybe_used_decls = p;
|
||
}
|
||
|
||
/* Return the result of sizeof applied to EXPR. */
|
||
|
||
struct c_expr
|
||
c_expr_sizeof_expr (struct c_expr expr)
|
||
{
|
||
struct c_expr ret;
|
||
if (expr.value == error_mark_node)
|
||
{
|
||
ret.value = error_mark_node;
|
||
ret.original_code = ERROR_MARK;
|
||
pop_maybe_used (false);
|
||
}
|
||
else
|
||
{
|
||
ret.value = c_sizeof (TREE_TYPE (expr.value));
|
||
ret.original_code = ERROR_MARK;
|
||
if (c_vla_type_p (TREE_TYPE (expr.value)))
|
||
{
|
||
/* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
|
||
ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
|
||
}
|
||
pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Return the result of sizeof applied to T, a structure for the type
|
||
name passed to sizeof (rather than the type itself). */
|
||
|
||
struct c_expr
|
||
c_expr_sizeof_type (struct c_type_name *t)
|
||
{
|
||
tree type;
|
||
struct c_expr ret;
|
||
type = groktypename (t);
|
||
ret.value = c_sizeof (type);
|
||
ret.original_code = ERROR_MARK;
|
||
pop_maybe_used (type != error_mark_node
|
||
? C_TYPE_VARIABLE_SIZE (type) : false);
|
||
return ret;
|
||
}
|
||
|
||
/* Build a function call to function FUNCTION with parameters PARAMS.
|
||
PARAMS is a list--a chain of TREE_LIST nodes--in which the
|
||
TREE_VALUE of each node is a parameter-expression.
|
||
FUNCTION's data type may be a function type or a pointer-to-function. */
|
||
|
||
tree
|
||
build_function_call (tree function, tree params)
|
||
{
|
||
tree fntype, fundecl = 0;
|
||
tree coerced_params;
|
||
tree name = NULL_TREE, result;
|
||
tree tem;
|
||
|
||
/* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
|
||
STRIP_TYPE_NOPS (function);
|
||
|
||
/* Convert anything with function type to a pointer-to-function. */
|
||
if (TREE_CODE (function) == FUNCTION_DECL)
|
||
{
|
||
/* Implement type-directed function overloading for builtins.
|
||
resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
|
||
handle all the type checking. The result is a complete expression
|
||
that implements this function call. */
|
||
tem = resolve_overloaded_builtin (function, params);
|
||
if (tem)
|
||
return tem;
|
||
|
||
name = DECL_NAME (function);
|
||
fundecl = function;
|
||
}
|
||
if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
|
||
function = function_to_pointer_conversion (function);
|
||
|
||
/* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
|
||
expressions, like those used for ObjC messenger dispatches. */
|
||
function = objc_rewrite_function_call (function, params);
|
||
|
||
fntype = TREE_TYPE (function);
|
||
|
||
if (TREE_CODE (fntype) == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
if (!(TREE_CODE (fntype) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
|
||
{
|
||
error ("called object %qE is not a function", function);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (fundecl && TREE_THIS_VOLATILE (fundecl))
|
||
current_function_returns_abnormally = 1;
|
||
|
||
/* fntype now gets the type of function pointed to. */
|
||
fntype = TREE_TYPE (fntype);
|
||
|
||
/* Check that the function is called through a compatible prototype.
|
||
If it is not, replace the call by a trap, wrapped up in a compound
|
||
expression if necessary. This has the nice side-effect to prevent
|
||
the tree-inliner from generating invalid assignment trees which may
|
||
blow up in the RTL expander later. */
|
||
if ((TREE_CODE (function) == NOP_EXPR
|
||
|| TREE_CODE (function) == CONVERT_EXPR)
|
||
&& TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
|
||
&& TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
|
||
&& !comptypes (fntype, TREE_TYPE (tem)))
|
||
{
|
||
tree return_type = TREE_TYPE (fntype);
|
||
tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
|
||
NULL_TREE);
|
||
|
||
/* This situation leads to run-time undefined behavior. We can't,
|
||
therefore, simply error unless we can prove that all possible
|
||
executions of the program must execute the code. */
|
||
warning (0, "function called through a non-compatible type");
|
||
|
||
/* We can, however, treat "undefined" any way we please.
|
||
Call abort to encourage the user to fix the program. */
|
||
inform ("if this code is reached, the program will abort");
|
||
|
||
if (VOID_TYPE_P (return_type))
|
||
return trap;
|
||
else
|
||
{
|
||
tree rhs;
|
||
|
||
if (AGGREGATE_TYPE_P (return_type))
|
||
rhs = build_compound_literal (return_type,
|
||
build_constructor (return_type, 0));
|
||
else
|
||
rhs = fold_convert (return_type, integer_zero_node);
|
||
|
||
return build2 (COMPOUND_EXPR, return_type, trap, rhs);
|
||
}
|
||
}
|
||
|
||
/* Convert the parameters to the types declared in the
|
||
function prototype, or apply default promotions. */
|
||
|
||
coerced_params
|
||
= convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
|
||
|
||
if (coerced_params == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Check that the arguments to the function are valid. */
|
||
|
||
check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
|
||
TYPE_ARG_TYPES (fntype));
|
||
|
||
if (require_constant_value)
|
||
{
|
||
result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
|
||
function, coerced_params, NULL_TREE);
|
||
|
||
if (TREE_CONSTANT (result)
|
||
&& (name == NULL_TREE
|
||
|| strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
|
||
pedwarn_init ("initializer element is not constant");
|
||
}
|
||
else
|
||
result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
|
||
function, coerced_params, NULL_TREE);
|
||
|
||
if (VOID_TYPE_P (TREE_TYPE (result)))
|
||
return result;
|
||
return require_complete_type (result);
|
||
}
|
||
|
||
/* Convert the argument expressions in the list VALUES
|
||
to the types in the list TYPELIST. The result is a list of converted
|
||
argument expressions, unless there are too few arguments in which
|
||
case it is error_mark_node.
|
||
|
||
If TYPELIST is exhausted, or when an element has NULL as its type,
|
||
perform the default conversions.
|
||
|
||
PARMLIST is the chain of parm decls for the function being called.
|
||
It may be 0, if that info is not available.
|
||
It is used only for generating error messages.
|
||
|
||
FUNCTION is a tree for the called function. It is used only for
|
||
error messages, where it is formatted with %qE.
|
||
|
||
This is also where warnings about wrong number of args are generated.
|
||
|
||
Both VALUES and the returned value are chains of TREE_LIST nodes
|
||
with the elements of the list in the TREE_VALUE slots of those nodes. */
|
||
|
||
static tree
|
||
convert_arguments (tree typelist, tree values, tree function, tree fundecl)
|
||
{
|
||
tree typetail, valtail;
|
||
tree result = NULL;
|
||
int parmnum;
|
||
tree selector;
|
||
|
||
/* Change pointer to function to the function itself for
|
||
diagnostics. */
|
||
if (TREE_CODE (function) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
|
||
function = TREE_OPERAND (function, 0);
|
||
|
||
/* Handle an ObjC selector specially for diagnostics. */
|
||
selector = objc_message_selector ();
|
||
|
||
/* Scan the given expressions and types, producing individual
|
||
converted arguments and pushing them on RESULT in reverse order. */
|
||
|
||
for (valtail = values, typetail = typelist, parmnum = 0;
|
||
valtail;
|
||
valtail = TREE_CHAIN (valtail), parmnum++)
|
||
{
|
||
tree type = typetail ? TREE_VALUE (typetail) : 0;
|
||
tree val = TREE_VALUE (valtail);
|
||
tree rname = function;
|
||
int argnum = parmnum + 1;
|
||
const char *invalid_func_diag;
|
||
|
||
if (type == void_type_node)
|
||
{
|
||
error ("too many arguments to function %qE", function);
|
||
break;
|
||
}
|
||
|
||
if (selector && argnum > 2)
|
||
{
|
||
rname = selector;
|
||
argnum -= 2;
|
||
}
|
||
|
||
STRIP_TYPE_NOPS (val);
|
||
|
||
val = require_complete_type (val);
|
||
|
||
if (type != 0)
|
||
{
|
||
/* Formal parm type is specified by a function prototype. */
|
||
tree parmval;
|
||
|
||
if (type == error_mark_node || !COMPLETE_TYPE_P (type))
|
||
{
|
||
error ("type of formal parameter %d is incomplete", parmnum + 1);
|
||
parmval = val;
|
||
}
|
||
else
|
||
{
|
||
/* Optionally warn about conversions that
|
||
differ from the default conversions. */
|
||
if (warn_conversion || warn_traditional)
|
||
{
|
||
unsigned int formal_prec = TYPE_PRECISION (type);
|
||
|
||
if (INTEGRAL_TYPE_P (type)
|
||
&& TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
|
||
warning (0, "passing argument %d of %qE as integer "
|
||
"rather than floating due to prototype",
|
||
argnum, rname);
|
||
if (INTEGRAL_TYPE_P (type)
|
||
&& TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
|
||
warning (0, "passing argument %d of %qE as integer "
|
||
"rather than complex due to prototype",
|
||
argnum, rname);
|
||
else if (TREE_CODE (type) == COMPLEX_TYPE
|
||
&& TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
|
||
warning (0, "passing argument %d of %qE as complex "
|
||
"rather than floating due to prototype",
|
||
argnum, rname);
|
||
else if (TREE_CODE (type) == REAL_TYPE
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (val)))
|
||
warning (0, "passing argument %d of %qE as floating "
|
||
"rather than integer due to prototype",
|
||
argnum, rname);
|
||
else if (TREE_CODE (type) == COMPLEX_TYPE
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (val)))
|
||
warning (0, "passing argument %d of %qE as complex "
|
||
"rather than integer due to prototype",
|
||
argnum, rname);
|
||
else if (TREE_CODE (type) == REAL_TYPE
|
||
&& TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
|
||
warning (0, "passing argument %d of %qE as floating "
|
||
"rather than complex due to prototype",
|
||
argnum, rname);
|
||
/* ??? At some point, messages should be written about
|
||
conversions between complex types, but that's too messy
|
||
to do now. */
|
||
else if (TREE_CODE (type) == REAL_TYPE
|
||
&& TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
|
||
{
|
||
/* Warn if any argument is passed as `float',
|
||
since without a prototype it would be `double'. */
|
||
if (formal_prec == TYPE_PRECISION (float_type_node)
|
||
&& type != dfloat32_type_node)
|
||
warning (0, "passing argument %d of %qE as %<float%> "
|
||
"rather than %<double%> due to prototype",
|
||
argnum, rname);
|
||
|
||
/* Warn if mismatch between argument and prototype
|
||
for decimal float types. Warn of conversions with
|
||
binary float types and of precision narrowing due to
|
||
prototype. */
|
||
else if (type != TREE_TYPE (val)
|
||
&& (type == dfloat32_type_node
|
||
|| type == dfloat64_type_node
|
||
|| type == dfloat128_type_node
|
||
|| TREE_TYPE (val) == dfloat32_type_node
|
||
|| TREE_TYPE (val) == dfloat64_type_node
|
||
|| TREE_TYPE (val) == dfloat128_type_node)
|
||
&& (formal_prec
|
||
<= TYPE_PRECISION (TREE_TYPE (val))
|
||
|| (type == dfloat128_type_node
|
||
&& (TREE_TYPE (val)
|
||
!= dfloat64_type_node
|
||
&& (TREE_TYPE (val)
|
||
!= dfloat32_type_node)))
|
||
|| (type == dfloat64_type_node
|
||
&& (TREE_TYPE (val)
|
||
!= dfloat32_type_node))))
|
||
warning (0, "passing argument %d of %qE as %qT "
|
||
"rather than %qT due to prototype",
|
||
argnum, rname, type, TREE_TYPE (val));
|
||
|
||
}
|
||
/* Detect integer changing in width or signedness.
|
||
These warnings are only activated with
|
||
-Wconversion, not with -Wtraditional. */
|
||
else if (warn_conversion && INTEGRAL_TYPE_P (type)
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (val)))
|
||
{
|
||
tree would_have_been = default_conversion (val);
|
||
tree type1 = TREE_TYPE (would_have_been);
|
||
|
||
if (TREE_CODE (type) == ENUMERAL_TYPE
|
||
&& (TYPE_MAIN_VARIANT (type)
|
||
== TYPE_MAIN_VARIANT (TREE_TYPE (val))))
|
||
/* No warning if function asks for enum
|
||
and the actual arg is that enum type. */
|
||
;
|
||
else if (formal_prec != TYPE_PRECISION (type1))
|
||
warning (OPT_Wconversion, "passing argument %d of %qE "
|
||
"with different width due to prototype",
|
||
argnum, rname);
|
||
else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
|
||
;
|
||
/* Don't complain if the formal parameter type
|
||
is an enum, because we can't tell now whether
|
||
the value was an enum--even the same enum. */
|
||
else if (TREE_CODE (type) == ENUMERAL_TYPE)
|
||
;
|
||
else if (TREE_CODE (val) == INTEGER_CST
|
||
&& int_fits_type_p (val, type))
|
||
/* Change in signedness doesn't matter
|
||
if a constant value is unaffected. */
|
||
;
|
||
/* If the value is extended from a narrower
|
||
unsigned type, it doesn't matter whether we
|
||
pass it as signed or unsigned; the value
|
||
certainly is the same either way. */
|
||
else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
|
||
&& TYPE_UNSIGNED (TREE_TYPE (val)))
|
||
;
|
||
else if (TYPE_UNSIGNED (type))
|
||
warning (OPT_Wconversion, "passing argument %d of %qE "
|
||
"as unsigned due to prototype",
|
||
argnum, rname);
|
||
else
|
||
warning (OPT_Wconversion, "passing argument %d of %qE "
|
||
"as signed due to prototype", argnum, rname);
|
||
}
|
||
}
|
||
|
||
parmval = convert_for_assignment (type, val, ic_argpass,
|
||
fundecl, function,
|
||
parmnum + 1);
|
||
|
||
if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
|
||
&& INTEGRAL_TYPE_P (type)
|
||
&& (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
|
||
parmval = default_conversion (parmval);
|
||
}
|
||
result = tree_cons (NULL_TREE, parmval, result);
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
|
||
&& (TYPE_PRECISION (TREE_TYPE (val))
|
||
< TYPE_PRECISION (double_type_node))
|
||
&& !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
|
||
/* Convert `float' to `double'. */
|
||
result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
|
||
else if ((invalid_func_diag =
|
||
targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
|
||
{
|
||
error (invalid_func_diag);
|
||
return error_mark_node;
|
||
}
|
||
else
|
||
/* Convert `short' and `char' to full-size `int'. */
|
||
result = tree_cons (NULL_TREE, default_conversion (val), result);
|
||
|
||
if (typetail)
|
||
typetail = TREE_CHAIN (typetail);
|
||
}
|
||
|
||
if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
|
||
{
|
||
error ("too few arguments to function %qE", function);
|
||
return error_mark_node;
|
||
}
|
||
|
||
return nreverse (result);
|
||
}
|
||
|
||
/* This is the entry point used by the parser to build unary operators
|
||
in the input. CODE, a tree_code, specifies the unary operator, and
|
||
ARG is the operand. For unary plus, the C parser currently uses
|
||
CONVERT_EXPR for code. */
|
||
|
||
struct c_expr
|
||
parser_build_unary_op (enum tree_code code, struct c_expr arg)
|
||
{
|
||
struct c_expr result;
|
||
|
||
result.original_code = ERROR_MARK;
|
||
result.value = build_unary_op (code, arg.value, 0);
|
||
overflow_warning (result.value);
|
||
return result;
|
||
}
|
||
|
||
/* This is the entry point used by the parser to build binary operators
|
||
in the input. CODE, a tree_code, specifies the binary operator, and
|
||
ARG1 and ARG2 are the operands. In addition to constructing the
|
||
expression, we check for operands that were written with other binary
|
||
operators in a way that is likely to confuse the user. */
|
||
|
||
struct c_expr
|
||
parser_build_binary_op (enum tree_code code, struct c_expr arg1,
|
||
struct c_expr arg2)
|
||
{
|
||
struct c_expr result;
|
||
|
||
enum tree_code code1 = arg1.original_code;
|
||
enum tree_code code2 = arg2.original_code;
|
||
|
||
result.value = build_binary_op (code, arg1.value, arg2.value, 1);
|
||
result.original_code = code;
|
||
|
||
if (TREE_CODE (result.value) == ERROR_MARK)
|
||
return result;
|
||
|
||
/* Check for cases such as x+y<<z which users are likely
|
||
to misinterpret. */
|
||
if (warn_parentheses)
|
||
{
|
||
if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
|
||
{
|
||
if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
|
||
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
|
||
warning (OPT_Wparentheses,
|
||
"suggest parentheses around + or - inside shift");
|
||
}
|
||
|
||
if (code == TRUTH_ORIF_EXPR)
|
||
{
|
||
if (code1 == TRUTH_ANDIF_EXPR
|
||
|| code2 == TRUTH_ANDIF_EXPR)
|
||
warning (OPT_Wparentheses,
|
||
"suggest parentheses around && within ||");
|
||
}
|
||
|
||
if (code == BIT_IOR_EXPR)
|
||
{
|
||
if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
|
||
|| code1 == PLUS_EXPR || code1 == MINUS_EXPR
|
||
|| code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
|
||
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
|
||
warning (OPT_Wparentheses,
|
||
"suggest parentheses around arithmetic in operand of |");
|
||
/* Check cases like x|y==z */
|
||
if (TREE_CODE_CLASS (code1) == tcc_comparison
|
||
|| TREE_CODE_CLASS (code2) == tcc_comparison)
|
||
warning (OPT_Wparentheses,
|
||
"suggest parentheses around comparison in operand of |");
|
||
}
|
||
|
||
if (code == BIT_XOR_EXPR)
|
||
{
|
||
if (code1 == BIT_AND_EXPR
|
||
|| code1 == PLUS_EXPR || code1 == MINUS_EXPR
|
||
|| code2 == BIT_AND_EXPR
|
||
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
|
||
warning (OPT_Wparentheses,
|
||
"suggest parentheses around arithmetic in operand of ^");
|
||
/* Check cases like x^y==z */
|
||
if (TREE_CODE_CLASS (code1) == tcc_comparison
|
||
|| TREE_CODE_CLASS (code2) == tcc_comparison)
|
||
warning (OPT_Wparentheses,
|
||
"suggest parentheses around comparison in operand of ^");
|
||
}
|
||
|
||
if (code == BIT_AND_EXPR)
|
||
{
|
||
if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
|
||
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
|
||
warning (OPT_Wparentheses,
|
||
"suggest parentheses around + or - in operand of &");
|
||
/* Check cases like x&y==z */
|
||
if (TREE_CODE_CLASS (code1) == tcc_comparison
|
||
|| TREE_CODE_CLASS (code2) == tcc_comparison)
|
||
warning (OPT_Wparentheses,
|
||
"suggest parentheses around comparison in operand of &");
|
||
}
|
||
/* Similarly, check for cases like 1<=i<=10 that are probably errors. */
|
||
if (TREE_CODE_CLASS (code) == tcc_comparison
|
||
&& (TREE_CODE_CLASS (code1) == tcc_comparison
|
||
|| TREE_CODE_CLASS (code2) == tcc_comparison))
|
||
warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
|
||
"have their mathematical meaning");
|
||
|
||
}
|
||
|
||
/* Warn about comparisons against string literals, with the exception
|
||
of testing for equality or inequality of a string literal with NULL. */
|
||
if (code == EQ_EXPR || code == NE_EXPR)
|
||
{
|
||
if ((code1 == STRING_CST && !integer_zerop (arg2.value))
|
||
|| (code2 == STRING_CST && !integer_zerop (arg1.value)))
|
||
warning (OPT_Waddress,
|
||
"comparison with string literal results in unspecified behaviour");
|
||
}
|
||
else if (TREE_CODE_CLASS (code) == tcc_comparison
|
||
&& (code1 == STRING_CST || code2 == STRING_CST))
|
||
warning (OPT_Waddress,
|
||
"comparison with string literal results in unspecified behaviour");
|
||
|
||
overflow_warning (result.value);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Return a tree for the difference of pointers OP0 and OP1.
|
||
The resulting tree has type int. */
|
||
|
||
static tree
|
||
pointer_diff (tree op0, tree op1)
|
||
{
|
||
tree restype = ptrdiff_type_node;
|
||
|
||
tree target_type = TREE_TYPE (TREE_TYPE (op0));
|
||
tree con0, con1, lit0, lit1;
|
||
tree orig_op1 = op1;
|
||
|
||
if (pedantic || warn_pointer_arith)
|
||
{
|
||
if (TREE_CODE (target_type) == VOID_TYPE)
|
||
pedwarn ("pointer of type %<void *%> used in subtraction");
|
||
if (TREE_CODE (target_type) == FUNCTION_TYPE)
|
||
pedwarn ("pointer to a function used in subtraction");
|
||
}
|
||
|
||
/* If the conversion to ptrdiff_type does anything like widening or
|
||
converting a partial to an integral mode, we get a convert_expression
|
||
that is in the way to do any simplifications.
|
||
(fold-const.c doesn't know that the extra bits won't be needed.
|
||
split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
|
||
different mode in place.)
|
||
So first try to find a common term here 'by hand'; we want to cover
|
||
at least the cases that occur in legal static initializers. */
|
||
if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
|
||
&& (TYPE_PRECISION (TREE_TYPE (op0))
|
||
== TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
|
||
con0 = TREE_OPERAND (op0, 0);
|
||
else
|
||
con0 = op0;
|
||
if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
|
||
&& (TYPE_PRECISION (TREE_TYPE (op1))
|
||
== TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
|
||
con1 = TREE_OPERAND (op1, 0);
|
||
else
|
||
con1 = op1;
|
||
|
||
if (TREE_CODE (con0) == PLUS_EXPR)
|
||
{
|
||
lit0 = TREE_OPERAND (con0, 1);
|
||
con0 = TREE_OPERAND (con0, 0);
|
||
}
|
||
else
|
||
lit0 = integer_zero_node;
|
||
|
||
if (TREE_CODE (con1) == PLUS_EXPR)
|
||
{
|
||
lit1 = TREE_OPERAND (con1, 1);
|
||
con1 = TREE_OPERAND (con1, 0);
|
||
}
|
||
else
|
||
lit1 = integer_zero_node;
|
||
|
||
if (operand_equal_p (con0, con1, 0))
|
||
{
|
||
op0 = lit0;
|
||
op1 = lit1;
|
||
}
|
||
|
||
|
||
/* First do the subtraction as integers;
|
||
then drop through to build the divide operator.
|
||
Do not do default conversions on the minus operator
|
||
in case restype is a short type. */
|
||
|
||
op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
|
||
convert (restype, op1), 0);
|
||
/* This generates an error if op1 is pointer to incomplete type. */
|
||
if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
|
||
error ("arithmetic on pointer to an incomplete type");
|
||
|
||
/* This generates an error if op0 is pointer to incomplete type. */
|
||
op1 = c_size_in_bytes (target_type);
|
||
|
||
/* Divide by the size, in easiest possible way. */
|
||
return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
|
||
}
|
||
|
||
/* Construct and perhaps optimize a tree representation
|
||
for a unary operation. CODE, a tree_code, specifies the operation
|
||
and XARG is the operand.
|
||
For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
|
||
the default promotions (such as from short to int).
|
||
For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
|
||
allows non-lvalues; this is only used to handle conversion of non-lvalue
|
||
arrays to pointers in C99. */
|
||
|
||
tree
|
||
build_unary_op (enum tree_code code, tree xarg, int flag)
|
||
{
|
||
/* No default_conversion here. It causes trouble for ADDR_EXPR. */
|
||
tree arg = xarg;
|
||
tree argtype = 0;
|
||
enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
|
||
tree val;
|
||
int noconvert = flag;
|
||
const char *invalid_op_diag;
|
||
|
||
if (typecode == ERROR_MARK)
|
||
return error_mark_node;
|
||
if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
|
||
typecode = INTEGER_TYPE;
|
||
|
||
if ((invalid_op_diag
|
||
= targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
|
||
{
|
||
error (invalid_op_diag);
|
||
return error_mark_node;
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case CONVERT_EXPR:
|
||
/* This is used for unary plus, because a CONVERT_EXPR
|
||
is enough to prevent anybody from looking inside for
|
||
associativity, but won't generate any code. */
|
||
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
|
||
|| typecode == COMPLEX_TYPE
|
||
|| typecode == VECTOR_TYPE))
|
||
{
|
||
error ("wrong type argument to unary plus");
|
||
return error_mark_node;
|
||
}
|
||
else if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
arg = non_lvalue (arg);
|
||
break;
|
||
|
||
case NEGATE_EXPR:
|
||
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
|
||
|| typecode == COMPLEX_TYPE
|
||
|| typecode == VECTOR_TYPE))
|
||
{
|
||
error ("wrong type argument to unary minus");
|
||
return error_mark_node;
|
||
}
|
||
else if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
break;
|
||
|
||
case BIT_NOT_EXPR:
|
||
if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
|
||
{
|
||
if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
}
|
||
else if (typecode == COMPLEX_TYPE)
|
||
{
|
||
code = CONJ_EXPR;
|
||
if (pedantic)
|
||
pedwarn ("ISO C does not support %<~%> for complex conjugation");
|
||
if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
}
|
||
else
|
||
{
|
||
error ("wrong type argument to bit-complement");
|
||
return error_mark_node;
|
||
}
|
||
break;
|
||
|
||
case ABS_EXPR:
|
||
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
|
||
{
|
||
error ("wrong type argument to abs");
|
||
return error_mark_node;
|
||
}
|
||
else if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
break;
|
||
|
||
case CONJ_EXPR:
|
||
/* Conjugating a real value is a no-op, but allow it anyway. */
|
||
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
|
||
|| typecode == COMPLEX_TYPE))
|
||
{
|
||
error ("wrong type argument to conjugation");
|
||
return error_mark_node;
|
||
}
|
||
else if (!noconvert)
|
||
arg = default_conversion (arg);
|
||
break;
|
||
|
||
case TRUTH_NOT_EXPR:
|
||
if (typecode != INTEGER_TYPE
|
||
&& typecode != REAL_TYPE && typecode != POINTER_TYPE
|
||
&& typecode != COMPLEX_TYPE)
|
||
{
|
||
error ("wrong type argument to unary exclamation mark");
|
||
return error_mark_node;
|
||
}
|
||
arg = c_objc_common_truthvalue_conversion (arg);
|
||
return invert_truthvalue (arg);
|
||
|
||
case REALPART_EXPR:
|
||
if (TREE_CODE (arg) == COMPLEX_CST)
|
||
return TREE_REALPART (arg);
|
||
else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
|
||
return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
|
||
else
|
||
return arg;
|
||
|
||
case IMAGPART_EXPR:
|
||
if (TREE_CODE (arg) == COMPLEX_CST)
|
||
return TREE_IMAGPART (arg);
|
||
else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
|
||
return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
|
||
else
|
||
return convert (TREE_TYPE (arg), integer_zero_node);
|
||
|
||
case PREINCREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
|
||
/* Increment or decrement the real part of the value,
|
||
and don't change the imaginary part. */
|
||
if (typecode == COMPLEX_TYPE)
|
||
{
|
||
tree real, imag;
|
||
|
||
if (pedantic)
|
||
pedwarn ("ISO C does not support %<++%> and %<--%>"
|
||
" on complex types");
|
||
|
||
arg = stabilize_reference (arg);
|
||
real = build_unary_op (REALPART_EXPR, arg, 1);
|
||
imag = build_unary_op (IMAGPART_EXPR, arg, 1);
|
||
return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
|
||
build_unary_op (code, real, 1), imag);
|
||
}
|
||
|
||
/* Report invalid types. */
|
||
|
||
if (typecode != POINTER_TYPE
|
||
&& typecode != INTEGER_TYPE && typecode != REAL_TYPE)
|
||
{
|
||
if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
|
||
error ("wrong type argument to increment");
|
||
else
|
||
error ("wrong type argument to decrement");
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
{
|
||
tree inc;
|
||
tree result_type = TREE_TYPE (arg);
|
||
|
||
arg = get_unwidened (arg, 0);
|
||
argtype = TREE_TYPE (arg);
|
||
|
||
/* Compute the increment. */
|
||
|
||
if (typecode == POINTER_TYPE)
|
||
{
|
||
/* If pointer target is an undefined struct,
|
||
we just cannot know how to do the arithmetic. */
|
||
if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
|
||
{
|
||
if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
|
||
error ("increment of pointer to unknown structure");
|
||
else
|
||
error ("decrement of pointer to unknown structure");
|
||
}
|
||
else if ((pedantic || warn_pointer_arith)
|
||
&& (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
|
||
{
|
||
if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
|
||
pedwarn ("wrong type argument to increment");
|
||
else
|
||
pedwarn ("wrong type argument to decrement");
|
||
}
|
||
|
||
inc = c_size_in_bytes (TREE_TYPE (result_type));
|
||
}
|
||
else
|
||
inc = integer_one_node;
|
||
|
||
inc = convert (argtype, inc);
|
||
|
||
/* Complain about anything else that is not a true lvalue. */
|
||
if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
|
||
|| code == POSTINCREMENT_EXPR)
|
||
? lv_increment
|
||
: lv_decrement)))
|
||
return error_mark_node;
|
||
|
||
/* Report a read-only lvalue. */
|
||
if (TREE_READONLY (arg))
|
||
{
|
||
readonly_error (arg,
|
||
((code == PREINCREMENT_EXPR
|
||
|| code == POSTINCREMENT_EXPR)
|
||
? lv_increment : lv_decrement));
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
|
||
val = boolean_increment (code, arg);
|
||
else
|
||
val = build2 (code, TREE_TYPE (arg), arg, inc);
|
||
TREE_SIDE_EFFECTS (val) = 1;
|
||
val = convert (result_type, val);
|
||
if (TREE_CODE (val) != code)
|
||
TREE_NO_WARNING (val) = 1;
|
||
return val;
|
||
}
|
||
|
||
case ADDR_EXPR:
|
||
/* Note that this operation never does default_conversion. */
|
||
|
||
/* Let &* cancel out to simplify resulting code. */
|
||
if (TREE_CODE (arg) == INDIRECT_REF)
|
||
{
|
||
/* Don't let this be an lvalue. */
|
||
if (lvalue_p (TREE_OPERAND (arg, 0)))
|
||
return non_lvalue (TREE_OPERAND (arg, 0));
|
||
return TREE_OPERAND (arg, 0);
|
||
}
|
||
|
||
/* For &x[y], return x+y */
|
||
if (TREE_CODE (arg) == ARRAY_REF)
|
||
{
|
||
tree op0 = TREE_OPERAND (arg, 0);
|
||
if (!c_mark_addressable (op0))
|
||
return error_mark_node;
|
||
return build_binary_op (PLUS_EXPR,
|
||
(TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
|
||
? array_to_pointer_conversion (op0)
|
||
: op0),
|
||
TREE_OPERAND (arg, 1), 1);
|
||
}
|
||
|
||
/* Anything not already handled and not a true memory reference
|
||
or a non-lvalue array is an error. */
|
||
else if (typecode != FUNCTION_TYPE && !flag
|
||
&& !lvalue_or_else (arg, lv_addressof))
|
||
return error_mark_node;
|
||
|
||
/* Ordinary case; arg is a COMPONENT_REF or a decl. */
|
||
argtype = TREE_TYPE (arg);
|
||
|
||
/* If the lvalue is const or volatile, merge that into the type
|
||
to which the address will point. Note that you can't get a
|
||
restricted pointer by taking the address of something, so we
|
||
only have to deal with `const' and `volatile' here. */
|
||
if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
|
||
&& (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
|
||
argtype = c_build_type_variant (argtype,
|
||
TREE_READONLY (arg),
|
||
TREE_THIS_VOLATILE (arg));
|
||
|
||
if (!c_mark_addressable (arg))
|
||
return error_mark_node;
|
||
|
||
gcc_assert (TREE_CODE (arg) != COMPONENT_REF
|
||
|| !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
|
||
|
||
argtype = build_pointer_type (argtype);
|
||
|
||
/* ??? Cope with user tricks that amount to offsetof. Delete this
|
||
when we have proper support for integer constant expressions. */
|
||
val = get_base_address (arg);
|
||
if (val && TREE_CODE (val) == INDIRECT_REF
|
||
&& TREE_CONSTANT (TREE_OPERAND (val, 0)))
|
||
{
|
||
tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
|
||
|
||
op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
|
||
return fold_build2 (PLUS_EXPR, argtype, op0, op1);
|
||
}
|
||
|
||
val = build1 (ADDR_EXPR, argtype, arg);
|
||
|
||
return val;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (argtype == 0)
|
||
argtype = TREE_TYPE (arg);
|
||
return require_constant_value ? fold_build1_initializer (code, argtype, arg)
|
||
: fold_build1 (code, argtype, arg);
|
||
}
|
||
|
||
/* Return nonzero if REF is an lvalue valid for this language.
|
||
Lvalues can be assigned, unless their type has TYPE_READONLY.
|
||
Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
|
||
|
||
static int
|
||
lvalue_p (tree ref)
|
||
{
|
||
enum tree_code code = TREE_CODE (ref);
|
||
|
||
switch (code)
|
||
{
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
case COMPONENT_REF:
|
||
return lvalue_p (TREE_OPERAND (ref, 0));
|
||
|
||
case COMPOUND_LITERAL_EXPR:
|
||
case STRING_CST:
|
||
return 1;
|
||
|
||
case INDIRECT_REF:
|
||
case ARRAY_REF:
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
case ERROR_MARK:
|
||
return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
|
||
&& TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
|
||
|
||
case BIND_EXPR:
|
||
return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Give an error for storing in something that is 'const'. */
|
||
|
||
static void
|
||
readonly_error (tree arg, enum lvalue_use use)
|
||
{
|
||
gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
|
||
|| use == lv_asm);
|
||
/* Using this macro rather than (for example) arrays of messages
|
||
ensures that all the format strings are checked at compile
|
||
time. */
|
||
#define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
|
||
: (use == lv_increment ? (I) \
|
||
: (use == lv_decrement ? (D) : (AS))))
|
||
if (TREE_CODE (arg) == COMPONENT_REF)
|
||
{
|
||
if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
|
||
readonly_error (TREE_OPERAND (arg, 0), use);
|
||
else
|
||
error (READONLY_MSG (G_("assignment of read-only member %qD"),
|
||
G_("increment of read-only member %qD"),
|
||
G_("decrement of read-only member %qD"),
|
||
G_("read-only member %qD used as %<asm%> output")),
|
||
TREE_OPERAND (arg, 1));
|
||
}
|
||
else if (TREE_CODE (arg) == VAR_DECL)
|
||
error (READONLY_MSG (G_("assignment of read-only variable %qD"),
|
||
G_("increment of read-only variable %qD"),
|
||
G_("decrement of read-only variable %qD"),
|
||
G_("read-only variable %qD used as %<asm%> output")),
|
||
arg);
|
||
else
|
||
error (READONLY_MSG (G_("assignment of read-only location"),
|
||
G_("increment of read-only location"),
|
||
G_("decrement of read-only location"),
|
||
G_("read-only location used as %<asm%> output")));
|
||
}
|
||
|
||
|
||
/* Return nonzero if REF is an lvalue valid for this language;
|
||
otherwise, print an error message and return zero. USE says
|
||
how the lvalue is being used and so selects the error message. */
|
||
|
||
static int
|
||
lvalue_or_else (tree ref, enum lvalue_use use)
|
||
{
|
||
int win = lvalue_p (ref);
|
||
|
||
if (!win)
|
||
lvalue_error (use);
|
||
|
||
return win;
|
||
}
|
||
|
||
/* Mark EXP saying that we need to be able to take the
|
||
address of it; it should not be allocated in a register.
|
||
Returns true if successful. */
|
||
|
||
bool
|
||
c_mark_addressable (tree exp)
|
||
{
|
||
tree x = exp;
|
||
|
||
while (1)
|
||
switch (TREE_CODE (x))
|
||
{
|
||
case COMPONENT_REF:
|
||
if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
|
||
{
|
||
error
|
||
("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
|
||
return false;
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case ADDR_EXPR:
|
||
case ARRAY_REF:
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
x = TREE_OPERAND (x, 0);
|
||
break;
|
||
|
||
case COMPOUND_LITERAL_EXPR:
|
||
case CONSTRUCTOR:
|
||
TREE_ADDRESSABLE (x) = 1;
|
||
return true;
|
||
|
||
case VAR_DECL:
|
||
case CONST_DECL:
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
if (C_DECL_REGISTER (x)
|
||
&& DECL_NONLOCAL (x))
|
||
{
|
||
if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
|
||
{
|
||
error
|
||
("global register variable %qD used in nested function", x);
|
||
return false;
|
||
}
|
||
pedwarn ("register variable %qD used in nested function", x);
|
||
}
|
||
else if (C_DECL_REGISTER (x))
|
||
{
|
||
if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
|
||
error ("address of global register variable %qD requested", x);
|
||
else
|
||
error ("address of register variable %qD requested", x);
|
||
return false;
|
||
}
|
||
|
||
/* drops in */
|
||
case FUNCTION_DECL:
|
||
TREE_ADDRESSABLE (x) = 1;
|
||
/* drops out */
|
||
default:
|
||
return true;
|
||
}
|
||
}
|
||
|
||
/* Build and return a conditional expression IFEXP ? OP1 : OP2. */
|
||
|
||
tree
|
||
build_conditional_expr (tree ifexp, tree op1, tree op2)
|
||
{
|
||
tree type1;
|
||
tree type2;
|
||
enum tree_code code1;
|
||
enum tree_code code2;
|
||
tree result_type = NULL;
|
||
tree orig_op1 = op1, orig_op2 = op2;
|
||
|
||
/* Promote both alternatives. */
|
||
|
||
if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
|
||
op1 = default_conversion (op1);
|
||
if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
|
||
op2 = default_conversion (op2);
|
||
|
||
if (TREE_CODE (ifexp) == ERROR_MARK
|
||
|| TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
|
||
|| TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
type1 = TREE_TYPE (op1);
|
||
code1 = TREE_CODE (type1);
|
||
type2 = TREE_TYPE (op2);
|
||
code2 = TREE_CODE (type2);
|
||
|
||
/* C90 does not permit non-lvalue arrays in conditional expressions.
|
||
In C99 they will be pointers by now. */
|
||
if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
|
||
{
|
||
error ("non-lvalue array in conditional expression");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Quickly detect the usual case where op1 and op2 have the same type
|
||
after promotion. */
|
||
if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
|
||
{
|
||
if (type1 == type2)
|
||
result_type = type1;
|
||
else
|
||
result_type = TYPE_MAIN_VARIANT (type1);
|
||
}
|
||
else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
|
||
|| code1 == COMPLEX_TYPE)
|
||
&& (code2 == INTEGER_TYPE || code2 == REAL_TYPE
|
||
|| code2 == COMPLEX_TYPE))
|
||
{
|
||
result_type = c_common_type (type1, type2);
|
||
|
||
/* If -Wsign-compare, warn here if type1 and type2 have
|
||
different signedness. We'll promote the signed to unsigned
|
||
and later code won't know it used to be different.
|
||
Do this check on the original types, so that explicit casts
|
||
will be considered, but default promotions won't. */
|
||
if (warn_sign_compare && !skip_evaluation)
|
||
{
|
||
int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
|
||
int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
|
||
|
||
if (unsigned_op1 ^ unsigned_op2)
|
||
{
|
||
bool ovf;
|
||
|
||
/* Do not warn if the result type is signed, since the
|
||
signed type will only be chosen if it can represent
|
||
all the values of the unsigned type. */
|
||
if (!TYPE_UNSIGNED (result_type))
|
||
/* OK */;
|
||
/* Do not warn if the signed quantity is an unsuffixed
|
||
integer literal (or some static constant expression
|
||
involving such literals) and it is non-negative. */
|
||
else if ((unsigned_op2
|
||
&& tree_expr_nonnegative_warnv_p (op1, &ovf))
|
||
|| (unsigned_op1
|
||
&& tree_expr_nonnegative_warnv_p (op2, &ovf)))
|
||
/* OK */;
|
||
else
|
||
warning (0, "signed and unsigned type in conditional expression");
|
||
}
|
||
}
|
||
}
|
||
else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
|
||
{
|
||
if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
|
||
pedwarn ("ISO C forbids conditional expr with only one void side");
|
||
result_type = void_type_node;
|
||
}
|
||
else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
|
||
{
|
||
if (comp_target_types (type1, type2))
|
||
result_type = common_pointer_type (type1, type2);
|
||
else if (null_pointer_constant_p (orig_op1))
|
||
result_type = qualify_type (type2, type1);
|
||
else if (null_pointer_constant_p (orig_op2))
|
||
result_type = qualify_type (type1, type2);
|
||
else if (VOID_TYPE_P (TREE_TYPE (type1)))
|
||
{
|
||
if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
|
||
pedwarn ("ISO C forbids conditional expr between "
|
||
"%<void *%> and function pointer");
|
||
result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
|
||
TREE_TYPE (type2)));
|
||
}
|
||
else if (VOID_TYPE_P (TREE_TYPE (type2)))
|
||
{
|
||
if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
|
||
pedwarn ("ISO C forbids conditional expr between "
|
||
"%<void *%> and function pointer");
|
||
result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
|
||
TREE_TYPE (type1)));
|
||
}
|
||
else
|
||
{
|
||
pedwarn ("pointer type mismatch in conditional expression");
|
||
result_type = build_pointer_type (void_type_node);
|
||
}
|
||
}
|
||
else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
|
||
{
|
||
if (!null_pointer_constant_p (orig_op2))
|
||
pedwarn ("pointer/integer type mismatch in conditional expression");
|
||
else
|
||
{
|
||
op2 = null_pointer_node;
|
||
}
|
||
result_type = type1;
|
||
}
|
||
else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
if (!null_pointer_constant_p (orig_op1))
|
||
pedwarn ("pointer/integer type mismatch in conditional expression");
|
||
else
|
||
{
|
||
op1 = null_pointer_node;
|
||
}
|
||
result_type = type2;
|
||
}
|
||
|
||
if (!result_type)
|
||
{
|
||
if (flag_cond_mismatch)
|
||
result_type = void_type_node;
|
||
else
|
||
{
|
||
error ("type mismatch in conditional expression");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Merge const and volatile flags of the incoming types. */
|
||
result_type
|
||
= build_type_variant (result_type,
|
||
TREE_READONLY (op1) || TREE_READONLY (op2),
|
||
TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
|
||
|
||
if (result_type != TREE_TYPE (op1))
|
||
op1 = convert_and_check (result_type, op1);
|
||
if (result_type != TREE_TYPE (op2))
|
||
op2 = convert_and_check (result_type, op2);
|
||
|
||
return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
|
||
}
|
||
|
||
/* Return a compound expression that performs two expressions and
|
||
returns the value of the second of them. */
|
||
|
||
tree
|
||
build_compound_expr (tree expr1, tree expr2)
|
||
{
|
||
if (!TREE_SIDE_EFFECTS (expr1))
|
||
{
|
||
/* The left-hand operand of a comma expression is like an expression
|
||
statement: with -Wextra or -Wunused, we should warn if it doesn't have
|
||
any side-effects, unless it was explicitly cast to (void). */
|
||
if (warn_unused_value)
|
||
{
|
||
if (VOID_TYPE_P (TREE_TYPE (expr1))
|
||
&& (TREE_CODE (expr1) == NOP_EXPR
|
||
|| TREE_CODE (expr1) == CONVERT_EXPR))
|
||
; /* (void) a, b */
|
||
else if (VOID_TYPE_P (TREE_TYPE (expr1))
|
||
&& TREE_CODE (expr1) == COMPOUND_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
|
||
|| TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
|
||
; /* (void) a, (void) b, c */
|
||
else
|
||
warning (0, "left-hand operand of comma expression has no effect");
|
||
}
|
||
}
|
||
|
||
/* With -Wunused, we should also warn if the left-hand operand does have
|
||
side-effects, but computes a value which is not used. For example, in
|
||
`foo() + bar(), baz()' the result of the `+' operator is not used,
|
||
so we should issue a warning. */
|
||
else if (warn_unused_value)
|
||
warn_if_unused_value (expr1, input_location);
|
||
|
||
if (expr2 == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
|
||
}
|
||
|
||
/* Build an expression representing a cast to type TYPE of expression EXPR. */
|
||
|
||
tree
|
||
build_c_cast (tree type, tree expr)
|
||
{
|
||
tree value = expr;
|
||
|
||
if (type == error_mark_node || expr == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
|
||
only in <protocol> qualifications. But when constructing cast expressions,
|
||
the protocols do matter and must be kept around. */
|
||
if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
|
||
return build1 (NOP_EXPR, type, expr);
|
||
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
error ("cast specifies array type");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
error ("cast specifies function type");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
|
||
{
|
||
if (pedantic)
|
||
{
|
||
if (TREE_CODE (type) == RECORD_TYPE
|
||
|| TREE_CODE (type) == UNION_TYPE)
|
||
pedwarn ("ISO C forbids casting nonscalar to the same type");
|
||
}
|
||
}
|
||
else if (TREE_CODE (type) == UNION_TYPE)
|
||
{
|
||
tree field;
|
||
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
|
||
TYPE_MAIN_VARIANT (TREE_TYPE (value))))
|
||
break;
|
||
|
||
if (field)
|
||
{
|
||
tree t;
|
||
|
||
if (pedantic)
|
||
pedwarn ("ISO C forbids casts to union type");
|
||
t = digest_init (type,
|
||
build_constructor_single (type, field, value),
|
||
true, 0);
|
||
TREE_CONSTANT (t) = TREE_CONSTANT (value);
|
||
TREE_INVARIANT (t) = TREE_INVARIANT (value);
|
||
return t;
|
||
}
|
||
error ("cast to union type from type not present in union");
|
||
return error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
tree otype, ovalue;
|
||
|
||
if (type == void_type_node)
|
||
return build1 (CONVERT_EXPR, type, value);
|
||
|
||
otype = TREE_TYPE (value);
|
||
|
||
/* Optionally warn about potentially worrisome casts. */
|
||
|
||
if (warn_cast_qual
|
||
&& TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (otype) == POINTER_TYPE)
|
||
{
|
||
tree in_type = type;
|
||
tree in_otype = otype;
|
||
int added = 0;
|
||
int discarded = 0;
|
||
|
||
/* Check that the qualifiers on IN_TYPE are a superset of
|
||
the qualifiers of IN_OTYPE. The outermost level of
|
||
POINTER_TYPE nodes is uninteresting and we stop as soon
|
||
as we hit a non-POINTER_TYPE node on either type. */
|
||
do
|
||
{
|
||
in_otype = TREE_TYPE (in_otype);
|
||
in_type = TREE_TYPE (in_type);
|
||
|
||
/* GNU C allows cv-qualified function types. 'const'
|
||
means the function is very pure, 'volatile' means it
|
||
can't return. We need to warn when such qualifiers
|
||
are added, not when they're taken away. */
|
||
if (TREE_CODE (in_otype) == FUNCTION_TYPE
|
||
&& TREE_CODE (in_type) == FUNCTION_TYPE)
|
||
added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
|
||
else
|
||
discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
|
||
}
|
||
while (TREE_CODE (in_type) == POINTER_TYPE
|
||
&& TREE_CODE (in_otype) == POINTER_TYPE);
|
||
|
||
if (added)
|
||
warning (0, "cast adds new qualifiers to function type");
|
||
|
||
if (discarded)
|
||
/* There are qualifiers present in IN_OTYPE that are not
|
||
present in IN_TYPE. */
|
||
warning (0, "cast discards qualifiers from pointer target type");
|
||
}
|
||
|
||
/* Warn about possible alignment problems. */
|
||
if (STRICT_ALIGNMENT
|
||
&& TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (otype) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
|
||
&& TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
|
||
/* Don't warn about opaque types, where the actual alignment
|
||
restriction is unknown. */
|
||
&& !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
|
||
&& TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
|
||
&& TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
|
||
warning (OPT_Wcast_align,
|
||
"cast increases required alignment of target type");
|
||
|
||
if (TREE_CODE (type) == INTEGER_TYPE
|
||
&& TREE_CODE (otype) == POINTER_TYPE
|
||
&& TYPE_PRECISION (type) != TYPE_PRECISION (otype))
|
||
/* Unlike conversion of integers to pointers, where the
|
||
warning is disabled for converting constants because
|
||
of cases such as SIG_*, warn about converting constant
|
||
pointers to integers. In some cases it may cause unwanted
|
||
sign extension, and a warning is appropriate. */
|
||
warning (OPT_Wpointer_to_int_cast,
|
||
"cast from pointer to integer of different size");
|
||
|
||
if (TREE_CODE (value) == CALL_EXPR
|
||
&& TREE_CODE (type) != TREE_CODE (otype))
|
||
warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
|
||
"to non-matching type %qT", otype, type);
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (otype) == INTEGER_TYPE
|
||
&& TYPE_PRECISION (type) != TYPE_PRECISION (otype)
|
||
/* Don't warn about converting any constant. */
|
||
&& !TREE_CONSTANT (value))
|
||
warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
|
||
"of different size");
|
||
|
||
strict_aliasing_warning (otype, type, expr);
|
||
|
||
/* If pedantic, warn for conversions between function and object
|
||
pointer types, except for converting a null pointer constant
|
||
to function pointer type. */
|
||
if (pedantic
|
||
&& TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (otype) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
|
||
&& TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
|
||
pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
|
||
|
||
if (pedantic
|
||
&& TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (otype) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
|
||
&& TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
|
||
&& !null_pointer_constant_p (value))
|
||
pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
|
||
|
||
ovalue = value;
|
||
value = convert (type, value);
|
||
|
||
/* Ignore any integer overflow caused by the cast. */
|
||
if (TREE_CODE (value) == INTEGER_CST)
|
||
{
|
||
if (CONSTANT_CLASS_P (ovalue)
|
||
&& (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
|
||
{
|
||
/* Avoid clobbering a shared constant. */
|
||
value = copy_node (value);
|
||
TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
|
||
TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
|
||
}
|
||
else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
|
||
/* Reset VALUE's overflow flags, ensuring constant sharing. */
|
||
value = build_int_cst_wide (TREE_TYPE (value),
|
||
TREE_INT_CST_LOW (value),
|
||
TREE_INT_CST_HIGH (value));
|
||
}
|
||
}
|
||
|
||
/* Don't let a cast be an lvalue. */
|
||
if (value == expr)
|
||
value = non_lvalue (value);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Interpret a cast of expression EXPR to type TYPE. */
|
||
tree
|
||
c_cast_expr (struct c_type_name *type_name, tree expr)
|
||
{
|
||
tree type;
|
||
int saved_wsp = warn_strict_prototypes;
|
||
|
||
/* This avoids warnings about unprototyped casts on
|
||
integers. E.g. "#define SIG_DFL (void(*)())0". */
|
||
if (TREE_CODE (expr) == INTEGER_CST)
|
||
warn_strict_prototypes = 0;
|
||
type = groktypename (type_name);
|
||
warn_strict_prototypes = saved_wsp;
|
||
|
||
return build_c_cast (type, expr);
|
||
}
|
||
|
||
/* Build an assignment expression of lvalue LHS from value RHS.
|
||
MODIFYCODE is the code for a binary operator that we use
|
||
to combine the old value of LHS with RHS to get the new value.
|
||
Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
|
||
|
||
tree
|
||
build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
|
||
{
|
||
tree result;
|
||
tree newrhs;
|
||
tree lhstype = TREE_TYPE (lhs);
|
||
tree olhstype = lhstype;
|
||
|
||
/* Types that aren't fully specified cannot be used in assignments. */
|
||
lhs = require_complete_type (lhs);
|
||
|
||
/* Avoid duplicate error messages from operands that had errors. */
|
||
if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
if (!lvalue_or_else (lhs, lv_assign))
|
||
return error_mark_node;
|
||
|
||
STRIP_TYPE_NOPS (rhs);
|
||
|
||
newrhs = rhs;
|
||
|
||
/* If a binary op has been requested, combine the old LHS value with the RHS
|
||
producing the value we should actually store into the LHS. */
|
||
|
||
if (modifycode != NOP_EXPR)
|
||
{
|
||
lhs = stabilize_reference (lhs);
|
||
newrhs = build_binary_op (modifycode, lhs, rhs, 1);
|
||
}
|
||
|
||
/* Give an error for storing in something that is 'const'. */
|
||
|
||
if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
|
||
|| ((TREE_CODE (lhstype) == RECORD_TYPE
|
||
|| TREE_CODE (lhstype) == UNION_TYPE)
|
||
&& C_TYPE_FIELDS_READONLY (lhstype)))
|
||
{
|
||
readonly_error (lhs, lv_assign);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* If storing into a structure or union member,
|
||
it has probably been given type `int'.
|
||
Compute the type that would go with
|
||
the actual amount of storage the member occupies. */
|
||
|
||
if (TREE_CODE (lhs) == COMPONENT_REF
|
||
&& (TREE_CODE (lhstype) == INTEGER_TYPE
|
||
|| TREE_CODE (lhstype) == BOOLEAN_TYPE
|
||
|| TREE_CODE (lhstype) == REAL_TYPE
|
||
|| TREE_CODE (lhstype) == ENUMERAL_TYPE))
|
||
lhstype = TREE_TYPE (get_unwidened (lhs, 0));
|
||
|
||
/* If storing in a field that is in actuality a short or narrower than one,
|
||
we must store in the field in its actual type. */
|
||
|
||
if (lhstype != TREE_TYPE (lhs))
|
||
{
|
||
lhs = copy_node (lhs);
|
||
TREE_TYPE (lhs) = lhstype;
|
||
}
|
||
|
||
/* Convert new value to destination type. */
|
||
|
||
newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
|
||
NULL_TREE, NULL_TREE, 0);
|
||
if (TREE_CODE (newrhs) == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
/* Emit ObjC write barrier, if necessary. */
|
||
if (c_dialect_objc () && flag_objc_gc)
|
||
{
|
||
result = objc_generate_write_barrier (lhs, modifycode, newrhs);
|
||
if (result)
|
||
return result;
|
||
}
|
||
|
||
/* Scan operands. */
|
||
|
||
result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
|
||
TREE_SIDE_EFFECTS (result) = 1;
|
||
|
||
/* If we got the LHS in a different type for storing in,
|
||
convert the result back to the nominal type of LHS
|
||
so that the value we return always has the same type
|
||
as the LHS argument. */
|
||
|
||
if (olhstype == TREE_TYPE (result))
|
||
return result;
|
||
return convert_for_assignment (olhstype, result, ic_assign,
|
||
NULL_TREE, NULL_TREE, 0);
|
||
}
|
||
|
||
/* Convert value RHS to type TYPE as preparation for an assignment
|
||
to an lvalue of type TYPE.
|
||
The real work of conversion is done by `convert'.
|
||
The purpose of this function is to generate error messages
|
||
for assignments that are not allowed in C.
|
||
ERRTYPE says whether it is argument passing, assignment,
|
||
initialization or return.
|
||
|
||
FUNCTION is a tree for the function being called.
|
||
PARMNUM is the number of the argument, for printing in error messages. */
|
||
|
||
static tree
|
||
convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
|
||
tree fundecl, tree function, int parmnum)
|
||
{
|
||
enum tree_code codel = TREE_CODE (type);
|
||
tree rhstype;
|
||
enum tree_code coder;
|
||
tree rname = NULL_TREE;
|
||
bool objc_ok = false;
|
||
|
||
if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
|
||
{
|
||
tree selector;
|
||
/* Change pointer to function to the function itself for
|
||
diagnostics. */
|
||
if (TREE_CODE (function) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
|
||
function = TREE_OPERAND (function, 0);
|
||
|
||
/* Handle an ObjC selector specially for diagnostics. */
|
||
selector = objc_message_selector ();
|
||
rname = function;
|
||
if (selector && parmnum > 2)
|
||
{
|
||
rname = selector;
|
||
parmnum -= 2;
|
||
}
|
||
}
|
||
|
||
/* This macro is used to emit diagnostics to ensure that all format
|
||
strings are complete sentences, visible to gettext and checked at
|
||
compile time. */
|
||
#define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
|
||
do { \
|
||
switch (errtype) \
|
||
{ \
|
||
case ic_argpass: \
|
||
pedwarn (AR, parmnum, rname); \
|
||
break; \
|
||
case ic_argpass_nonproto: \
|
||
warning (0, AR, parmnum, rname); \
|
||
break; \
|
||
case ic_assign: \
|
||
pedwarn (AS); \
|
||
break; \
|
||
case ic_init: \
|
||
pedwarn (IN); \
|
||
break; \
|
||
case ic_return: \
|
||
pedwarn (RE); \
|
||
break; \
|
||
default: \
|
||
gcc_unreachable (); \
|
||
} \
|
||
} while (0)
|
||
|
||
STRIP_TYPE_NOPS (rhs);
|
||
|
||
if (optimize && TREE_CODE (rhs) == VAR_DECL
|
||
&& TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
|
||
rhs = decl_constant_value_for_broken_optimization (rhs);
|
||
|
||
rhstype = TREE_TYPE (rhs);
|
||
coder = TREE_CODE (rhstype);
|
||
|
||
if (coder == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
if (c_dialect_objc ())
|
||
{
|
||
int parmno;
|
||
|
||
switch (errtype)
|
||
{
|
||
case ic_return:
|
||
parmno = 0;
|
||
break;
|
||
|
||
case ic_assign:
|
||
parmno = -1;
|
||
break;
|
||
|
||
case ic_init:
|
||
parmno = -2;
|
||
break;
|
||
|
||
default:
|
||
parmno = parmnum;
|
||
break;
|
||
}
|
||
|
||
objc_ok = objc_compare_types (type, rhstype, parmno, rname);
|
||
}
|
||
|
||
if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
|
||
{
|
||
overflow_warning (rhs);
|
||
return rhs;
|
||
}
|
||
|
||
if (coder == VOID_TYPE)
|
||
{
|
||
/* Except for passing an argument to an unprototyped function,
|
||
this is a constraint violation. When passing an argument to
|
||
an unprototyped function, it is compile-time undefined;
|
||
making it a constraint in that case was rejected in
|
||
DR#252. */
|
||
error ("void value not ignored as it ought to be");
|
||
return error_mark_node;
|
||
}
|
||
/* A type converts to a reference to it.
|
||
This code doesn't fully support references, it's just for the
|
||
special case of va_start and va_copy. */
|
||
if (codel == REFERENCE_TYPE
|
||
&& comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
|
||
{
|
||
if (!lvalue_p (rhs))
|
||
{
|
||
error ("cannot pass rvalue to reference parameter");
|
||
return error_mark_node;
|
||
}
|
||
if (!c_mark_addressable (rhs))
|
||
return error_mark_node;
|
||
rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
|
||
|
||
/* We already know that these two types are compatible, but they
|
||
may not be exactly identical. In fact, `TREE_TYPE (type)' is
|
||
likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
|
||
likely to be va_list, a typedef to __builtin_va_list, which
|
||
is different enough that it will cause problems later. */
|
||
if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
|
||
rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
|
||
|
||
rhs = build1 (NOP_EXPR, type, rhs);
|
||
return rhs;
|
||
}
|
||
/* Some types can interconvert without explicit casts. */
|
||
else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
|
||
&& vector_types_convertible_p (type, TREE_TYPE (rhs)))
|
||
return convert (type, rhs);
|
||
/* Arithmetic types all interconvert, and enum is treated like int. */
|
||
else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
|
||
|| codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
|
||
|| codel == BOOLEAN_TYPE)
|
||
&& (coder == INTEGER_TYPE || coder == REAL_TYPE
|
||
|| coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
|
||
|| coder == BOOLEAN_TYPE))
|
||
return convert_and_check (type, rhs);
|
||
|
||
/* Aggregates in different TUs might need conversion. */
|
||
if ((codel == RECORD_TYPE || codel == UNION_TYPE)
|
||
&& codel == coder
|
||
&& comptypes (type, rhstype))
|
||
return convert_and_check (type, rhs);
|
||
|
||
/* Conversion to a transparent union from its member types.
|
||
This applies only to function arguments. */
|
||
if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
|
||
&& (errtype == ic_argpass || errtype == ic_argpass_nonproto))
|
||
{
|
||
tree memb, marginal_memb = NULL_TREE;
|
||
|
||
for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
|
||
{
|
||
tree memb_type = TREE_TYPE (memb);
|
||
|
||
if (comptypes (TYPE_MAIN_VARIANT (memb_type),
|
||
TYPE_MAIN_VARIANT (rhstype)))
|
||
break;
|
||
|
||
if (TREE_CODE (memb_type) != POINTER_TYPE)
|
||
continue;
|
||
|
||
if (coder == POINTER_TYPE)
|
||
{
|
||
tree ttl = TREE_TYPE (memb_type);
|
||
tree ttr = TREE_TYPE (rhstype);
|
||
|
||
/* Any non-function converts to a [const][volatile] void *
|
||
and vice versa; otherwise, targets must be the same.
|
||
Meanwhile, the lhs target must have all the qualifiers of
|
||
the rhs. */
|
||
if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
|
||
|| comp_target_types (memb_type, rhstype))
|
||
{
|
||
/* If this type won't generate any warnings, use it. */
|
||
if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
|
||
|| ((TREE_CODE (ttr) == FUNCTION_TYPE
|
||
&& TREE_CODE (ttl) == FUNCTION_TYPE)
|
||
? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
|
||
== TYPE_QUALS (ttr))
|
||
: ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
|
||
== TYPE_QUALS (ttl))))
|
||
break;
|
||
|
||
/* Keep looking for a better type, but remember this one. */
|
||
if (!marginal_memb)
|
||
marginal_memb = memb;
|
||
}
|
||
}
|
||
|
||
/* Can convert integer zero to any pointer type. */
|
||
if (null_pointer_constant_p (rhs))
|
||
{
|
||
rhs = null_pointer_node;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (memb || marginal_memb)
|
||
{
|
||
if (!memb)
|
||
{
|
||
/* We have only a marginally acceptable member type;
|
||
it needs a warning. */
|
||
tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
|
||
tree ttr = TREE_TYPE (rhstype);
|
||
|
||
/* Const and volatile mean something different for function
|
||
types, so the usual warnings are not appropriate. */
|
||
if (TREE_CODE (ttr) == FUNCTION_TYPE
|
||
&& TREE_CODE (ttl) == FUNCTION_TYPE)
|
||
{
|
||
/* Because const and volatile on functions are
|
||
restrictions that say the function will not do
|
||
certain things, it is okay to use a const or volatile
|
||
function where an ordinary one is wanted, but not
|
||
vice-versa. */
|
||
if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
|
||
WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
|
||
"makes qualified function "
|
||
"pointer from unqualified"),
|
||
G_("assignment makes qualified "
|
||
"function pointer from "
|
||
"unqualified"),
|
||
G_("initialization makes qualified "
|
||
"function pointer from "
|
||
"unqualified"),
|
||
G_("return makes qualified function "
|
||
"pointer from unqualified"));
|
||
}
|
||
else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
|
||
WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
|
||
"qualifiers from pointer target type"),
|
||
G_("assignment discards qualifiers "
|
||
"from pointer target type"),
|
||
G_("initialization discards qualifiers "
|
||
"from pointer target type"),
|
||
G_("return discards qualifiers from "
|
||
"pointer target type"));
|
||
|
||
memb = marginal_memb;
|
||
}
|
||
|
||
if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
|
||
pedwarn ("ISO C prohibits argument conversion to union type");
|
||
|
||
return build_constructor_single (type, memb, rhs);
|
||
}
|
||
}
|
||
|
||
/* Conversions among pointers */
|
||
else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
|
||
&& (coder == codel))
|
||
{
|
||
tree ttl = TREE_TYPE (type);
|
||
tree ttr = TREE_TYPE (rhstype);
|
||
tree mvl = ttl;
|
||
tree mvr = ttr;
|
||
bool is_opaque_pointer;
|
||
int target_cmp = 0; /* Cache comp_target_types () result. */
|
||
|
||
if (TREE_CODE (mvl) != ARRAY_TYPE)
|
||
mvl = TYPE_MAIN_VARIANT (mvl);
|
||
if (TREE_CODE (mvr) != ARRAY_TYPE)
|
||
mvr = TYPE_MAIN_VARIANT (mvr);
|
||
/* Opaque pointers are treated like void pointers. */
|
||
is_opaque_pointer = (targetm.vector_opaque_p (type)
|
||
|| targetm.vector_opaque_p (rhstype))
|
||
&& TREE_CODE (ttl) == VECTOR_TYPE
|
||
&& TREE_CODE (ttr) == VECTOR_TYPE;
|
||
|
||
/* C++ does not allow the implicit conversion void* -> T*. However,
|
||
for the purpose of reducing the number of false positives, we
|
||
tolerate the special case of
|
||
|
||
int *p = NULL;
|
||
|
||
where NULL is typically defined in C to be '(void *) 0'. */
|
||
if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
|
||
warning (OPT_Wc___compat, "request for implicit conversion from "
|
||
"%qT to %qT not permitted in C++", rhstype, type);
|
||
|
||
/* Check if the right-hand side has a format attribute but the
|
||
left-hand side doesn't. */
|
||
if (warn_missing_format_attribute
|
||
&& check_missing_format_attribute (type, rhstype))
|
||
{
|
||
switch (errtype)
|
||
{
|
||
case ic_argpass:
|
||
case ic_argpass_nonproto:
|
||
warning (OPT_Wmissing_format_attribute,
|
||
"argument %d of %qE might be "
|
||
"a candidate for a format attribute",
|
||
parmnum, rname);
|
||
break;
|
||
case ic_assign:
|
||
warning (OPT_Wmissing_format_attribute,
|
||
"assignment left-hand side might be "
|
||
"a candidate for a format attribute");
|
||
break;
|
||
case ic_init:
|
||
warning (OPT_Wmissing_format_attribute,
|
||
"initialization left-hand side might be "
|
||
"a candidate for a format attribute");
|
||
break;
|
||
case ic_return:
|
||
warning (OPT_Wmissing_format_attribute,
|
||
"return type might be "
|
||
"a candidate for a format attribute");
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Any non-function converts to a [const][volatile] void *
|
||
and vice versa; otherwise, targets must be the same.
|
||
Meanwhile, the lhs target must have all the qualifiers of the rhs. */
|
||
if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
|
||
|| (target_cmp = comp_target_types (type, rhstype))
|
||
|| is_opaque_pointer
|
||
|| (c_common_unsigned_type (mvl)
|
||
== c_common_unsigned_type (mvr)))
|
||
{
|
||
if (pedantic
|
||
&& ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
|
||
||
|
||
(VOID_TYPE_P (ttr)
|
||
&& !null_pointer_constant_p (rhs)
|
||
&& TREE_CODE (ttl) == FUNCTION_TYPE)))
|
||
WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
|
||
"%qE between function pointer "
|
||
"and %<void *%>"),
|
||
G_("ISO C forbids assignment between "
|
||
"function pointer and %<void *%>"),
|
||
G_("ISO C forbids initialization between "
|
||
"function pointer and %<void *%>"),
|
||
G_("ISO C forbids return between function "
|
||
"pointer and %<void *%>"));
|
||
/* Const and volatile mean something different for function types,
|
||
so the usual warnings are not appropriate. */
|
||
else if (TREE_CODE (ttr) != FUNCTION_TYPE
|
||
&& TREE_CODE (ttl) != FUNCTION_TYPE)
|
||
{
|
||
if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
|
||
{
|
||
/* Types differing only by the presence of the 'volatile'
|
||
qualifier are acceptable if the 'volatile' has been added
|
||
in by the Objective-C EH machinery. */
|
||
if (!objc_type_quals_match (ttl, ttr))
|
||
WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
|
||
"qualifiers from pointer target type"),
|
||
G_("assignment discards qualifiers "
|
||
"from pointer target type"),
|
||
G_("initialization discards qualifiers "
|
||
"from pointer target type"),
|
||
G_("return discards qualifiers from "
|
||
"pointer target type"));
|
||
}
|
||
/* If this is not a case of ignoring a mismatch in signedness,
|
||
no warning. */
|
||
else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
|
||
|| target_cmp)
|
||
;
|
||
/* If there is a mismatch, do warn. */
|
||
else if (warn_pointer_sign)
|
||
WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
|
||
"%d of %qE differ in signedness"),
|
||
G_("pointer targets in assignment "
|
||
"differ in signedness"),
|
||
G_("pointer targets in initialization "
|
||
"differ in signedness"),
|
||
G_("pointer targets in return differ "
|
||
"in signedness"));
|
||
}
|
||
else if (TREE_CODE (ttl) == FUNCTION_TYPE
|
||
&& TREE_CODE (ttr) == FUNCTION_TYPE)
|
||
{
|
||
/* Because const and volatile on functions are restrictions
|
||
that say the function will not do certain things,
|
||
it is okay to use a const or volatile function
|
||
where an ordinary one is wanted, but not vice-versa. */
|
||
if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
|
||
WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
|
||
"qualified function pointer "
|
||
"from unqualified"),
|
||
G_("assignment makes qualified function "
|
||
"pointer from unqualified"),
|
||
G_("initialization makes qualified "
|
||
"function pointer from unqualified"),
|
||
G_("return makes qualified function "
|
||
"pointer from unqualified"));
|
||
}
|
||
}
|
||
else
|
||
/* Avoid warning about the volatile ObjC EH puts on decls. */
|
||
if (!objc_ok)
|
||
WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
|
||
"incompatible pointer type"),
|
||
G_("assignment from incompatible pointer type"),
|
||
G_("initialization from incompatible "
|
||
"pointer type"),
|
||
G_("return from incompatible pointer type"));
|
||
|
||
return convert (type, rhs);
|
||
}
|
||
else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
|
||
{
|
||
/* ??? This should not be an error when inlining calls to
|
||
unprototyped functions. */
|
||
error ("invalid use of non-lvalue array");
|
||
return error_mark_node;
|
||
}
|
||
else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
|
||
{
|
||
/* An explicit constant 0 can convert to a pointer,
|
||
or one that results from arithmetic, even including
|
||
a cast to integer type. */
|
||
if (!null_pointer_constant_p (rhs))
|
||
WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
|
||
"pointer from integer without a cast"),
|
||
G_("assignment makes pointer from integer "
|
||
"without a cast"),
|
||
G_("initialization makes pointer from "
|
||
"integer without a cast"),
|
||
G_("return makes pointer from integer "
|
||
"without a cast"));
|
||
|
||
return convert (type, rhs);
|
||
}
|
||
else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
|
||
{
|
||
WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
|
||
"from pointer without a cast"),
|
||
G_("assignment makes integer from pointer "
|
||
"without a cast"),
|
||
G_("initialization makes integer from pointer "
|
||
"without a cast"),
|
||
G_("return makes integer from pointer "
|
||
"without a cast"));
|
||
return convert (type, rhs);
|
||
}
|
||
else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
|
||
return convert (type, rhs);
|
||
|
||
switch (errtype)
|
||
{
|
||
case ic_argpass:
|
||
case ic_argpass_nonproto:
|
||
/* ??? This should not be an error when inlining calls to
|
||
unprototyped functions. */
|
||
error ("incompatible type for argument %d of %qE", parmnum, rname);
|
||
break;
|
||
case ic_assign:
|
||
error ("incompatible types in assignment");
|
||
break;
|
||
case ic_init:
|
||
error ("incompatible types in initialization");
|
||
break;
|
||
case ic_return:
|
||
error ("incompatible types in return");
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Convert VALUE for assignment into inlined parameter PARM. ARGNUM
|
||
is used for error and warning reporting and indicates which argument
|
||
is being processed. */
|
||
|
||
tree
|
||
c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
|
||
{
|
||
tree ret, type;
|
||
|
||
/* If FN was prototyped at the call site, the value has been converted
|
||
already in convert_arguments.
|
||
However, we might see a prototype now that was not in place when
|
||
the function call was seen, so check that the VALUE actually matches
|
||
PARM before taking an early exit. */
|
||
if (!value
|
||
|| (TYPE_ARG_TYPES (TREE_TYPE (fn))
|
||
&& (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
|
||
== TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
|
||
return value;
|
||
|
||
type = TREE_TYPE (parm);
|
||
ret = convert_for_assignment (type, value,
|
||
ic_argpass_nonproto, fn,
|
||
fn, argnum);
|
||
if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
|
||
&& INTEGRAL_TYPE_P (type)
|
||
&& (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
|
||
ret = default_conversion (ret);
|
||
return ret;
|
||
}
|
||
|
||
/* If VALUE is a compound expr all of whose expressions are constant, then
|
||
return its value. Otherwise, return error_mark_node.
|
||
|
||
This is for handling COMPOUND_EXPRs as initializer elements
|
||
which is allowed with a warning when -pedantic is specified. */
|
||
|
||
static tree
|
||
valid_compound_expr_initializer (tree value, tree endtype)
|
||
{
|
||
if (TREE_CODE (value) == COMPOUND_EXPR)
|
||
{
|
||
if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
|
||
== error_mark_node)
|
||
return error_mark_node;
|
||
return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
|
||
endtype);
|
||
}
|
||
else if (!initializer_constant_valid_p (value, endtype))
|
||
return error_mark_node;
|
||
else
|
||
return value;
|
||
}
|
||
|
||
/* Perform appropriate conversions on the initial value of a variable,
|
||
store it in the declaration DECL,
|
||
and print any error messages that are appropriate.
|
||
If the init is invalid, store an ERROR_MARK. */
|
||
|
||
void
|
||
store_init_value (tree decl, tree init)
|
||
{
|
||
tree value, type;
|
||
|
||
/* If variable's type was invalidly declared, just ignore it. */
|
||
|
||
type = TREE_TYPE (decl);
|
||
if (TREE_CODE (type) == ERROR_MARK)
|
||
return;
|
||
|
||
/* Digest the specified initializer into an expression. */
|
||
|
||
value = digest_init (type, init, true, TREE_STATIC (decl));
|
||
|
||
/* Store the expression if valid; else report error. */
|
||
|
||
if (!in_system_header
|
||
&& AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
|
||
warning (OPT_Wtraditional, "traditional C rejects automatic "
|
||
"aggregate initialization");
|
||
|
||
DECL_INITIAL (decl) = value;
|
||
|
||
/* ANSI wants warnings about out-of-range constant initializers. */
|
||
STRIP_TYPE_NOPS (value);
|
||
constant_expression_warning (value);
|
||
|
||
/* Check if we need to set array size from compound literal size. */
|
||
if (TREE_CODE (type) == ARRAY_TYPE
|
||
&& TYPE_DOMAIN (type) == 0
|
||
&& value != error_mark_node)
|
||
{
|
||
tree inside_init = init;
|
||
|
||
STRIP_TYPE_NOPS (inside_init);
|
||
inside_init = fold (inside_init);
|
||
|
||
if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
|
||
{
|
||
tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
|
||
|
||
if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
|
||
{
|
||
/* For int foo[] = (int [3]){1}; we need to set array size
|
||
now since later on array initializer will be just the
|
||
brace enclosed list of the compound literal. */
|
||
type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
|
||
TREE_TYPE (decl) = type;
|
||
TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
|
||
layout_type (type);
|
||
layout_decl (cldecl, 0);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Methods for storing and printing names for error messages. */
|
||
|
||
/* Implement a spelling stack that allows components of a name to be pushed
|
||
and popped. Each element on the stack is this structure. */
|
||
|
||
struct spelling
|
||
{
|
||
int kind;
|
||
union
|
||
{
|
||
unsigned HOST_WIDE_INT i;
|
||
const char *s;
|
||
} u;
|
||
};
|
||
|
||
#define SPELLING_STRING 1
|
||
#define SPELLING_MEMBER 2
|
||
#define SPELLING_BOUNDS 3
|
||
|
||
static struct spelling *spelling; /* Next stack element (unused). */
|
||
static struct spelling *spelling_base; /* Spelling stack base. */
|
||
static int spelling_size; /* Size of the spelling stack. */
|
||
|
||
/* Macros to save and restore the spelling stack around push_... functions.
|
||
Alternative to SAVE_SPELLING_STACK. */
|
||
|
||
#define SPELLING_DEPTH() (spelling - spelling_base)
|
||
#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
|
||
|
||
/* Push an element on the spelling stack with type KIND and assign VALUE
|
||
to MEMBER. */
|
||
|
||
#define PUSH_SPELLING(KIND, VALUE, MEMBER) \
|
||
{ \
|
||
int depth = SPELLING_DEPTH (); \
|
||
\
|
||
if (depth >= spelling_size) \
|
||
{ \
|
||
spelling_size += 10; \
|
||
spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
|
||
spelling_size); \
|
||
RESTORE_SPELLING_DEPTH (depth); \
|
||
} \
|
||
\
|
||
spelling->kind = (KIND); \
|
||
spelling->MEMBER = (VALUE); \
|
||
spelling++; \
|
||
}
|
||
|
||
/* Push STRING on the stack. Printed literally. */
|
||
|
||
static void
|
||
push_string (const char *string)
|
||
{
|
||
PUSH_SPELLING (SPELLING_STRING, string, u.s);
|
||
}
|
||
|
||
/* Push a member name on the stack. Printed as '.' STRING. */
|
||
|
||
static void
|
||
push_member_name (tree decl)
|
||
{
|
||
const char *const string
|
||
= DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
|
||
PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
|
||
}
|
||
|
||
/* Push an array bounds on the stack. Printed as [BOUNDS]. */
|
||
|
||
static void
|
||
push_array_bounds (unsigned HOST_WIDE_INT bounds)
|
||
{
|
||
PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
|
||
}
|
||
|
||
/* Compute the maximum size in bytes of the printed spelling. */
|
||
|
||
static int
|
||
spelling_length (void)
|
||
{
|
||
int size = 0;
|
||
struct spelling *p;
|
||
|
||
for (p = spelling_base; p < spelling; p++)
|
||
{
|
||
if (p->kind == SPELLING_BOUNDS)
|
||
size += 25;
|
||
else
|
||
size += strlen (p->u.s) + 1;
|
||
}
|
||
|
||
return size;
|
||
}
|
||
|
||
/* Print the spelling to BUFFER and return it. */
|
||
|
||
static char *
|
||
print_spelling (char *buffer)
|
||
{
|
||
char *d = buffer;
|
||
struct spelling *p;
|
||
|
||
for (p = spelling_base; p < spelling; p++)
|
||
if (p->kind == SPELLING_BOUNDS)
|
||
{
|
||
sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
|
||
d += strlen (d);
|
||
}
|
||
else
|
||
{
|
||
const char *s;
|
||
if (p->kind == SPELLING_MEMBER)
|
||
*d++ = '.';
|
||
for (s = p->u.s; (*d = *s++); d++)
|
||
;
|
||
}
|
||
*d++ = '\0';
|
||
return buffer;
|
||
}
|
||
|
||
/* Issue an error message for a bad initializer component.
|
||
MSGID identifies the message.
|
||
The component name is taken from the spelling stack. */
|
||
|
||
void
|
||
error_init (const char *msgid)
|
||
{
|
||
char *ofwhat;
|
||
|
||
error ("%s", _(msgid));
|
||
ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
|
||
if (*ofwhat)
|
||
error ("(near initialization for %qs)", ofwhat);
|
||
}
|
||
|
||
/* Issue a pedantic warning for a bad initializer component.
|
||
MSGID identifies the message.
|
||
The component name is taken from the spelling stack. */
|
||
|
||
void
|
||
pedwarn_init (const char *msgid)
|
||
{
|
||
char *ofwhat;
|
||
|
||
pedwarn ("%s", _(msgid));
|
||
ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
|
||
if (*ofwhat)
|
||
pedwarn ("(near initialization for %qs)", ofwhat);
|
||
}
|
||
|
||
/* Issue a warning for a bad initializer component.
|
||
MSGID identifies the message.
|
||
The component name is taken from the spelling stack. */
|
||
|
||
static void
|
||
warning_init (const char *msgid)
|
||
{
|
||
char *ofwhat;
|
||
|
||
warning (0, "%s", _(msgid));
|
||
ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
|
||
if (*ofwhat)
|
||
warning (0, "(near initialization for %qs)", ofwhat);
|
||
}
|
||
|
||
/* If TYPE is an array type and EXPR is a parenthesized string
|
||
constant, warn if pedantic that EXPR is being used to initialize an
|
||
object of type TYPE. */
|
||
|
||
void
|
||
maybe_warn_string_init (tree type, struct c_expr expr)
|
||
{
|
||
if (pedantic
|
||
&& TREE_CODE (type) == ARRAY_TYPE
|
||
&& TREE_CODE (expr.value) == STRING_CST
|
||
&& expr.original_code != STRING_CST)
|
||
pedwarn_init ("array initialized from parenthesized string constant");
|
||
}
|
||
|
||
/* Digest the parser output INIT as an initializer for type TYPE.
|
||
Return a C expression of type TYPE to represent the initial value.
|
||
|
||
If INIT is a string constant, STRICT_STRING is true if it is
|
||
unparenthesized or we should not warn here for it being parenthesized.
|
||
For other types of INIT, STRICT_STRING is not used.
|
||
|
||
REQUIRE_CONSTANT requests an error if non-constant initializers or
|
||
elements are seen. */
|
||
|
||
static tree
|
||
digest_init (tree type, tree init, bool strict_string, int require_constant)
|
||
{
|
||
enum tree_code code = TREE_CODE (type);
|
||
tree inside_init = init;
|
||
|
||
if (type == error_mark_node
|
||
|| !init
|
||
|| init == error_mark_node
|
||
|| TREE_TYPE (init) == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
STRIP_TYPE_NOPS (inside_init);
|
||
|
||
inside_init = fold (inside_init);
|
||
|
||
/* Initialization of an array of chars from a string constant
|
||
optionally enclosed in braces. */
|
||
|
||
if (code == ARRAY_TYPE && inside_init
|
||
&& TREE_CODE (inside_init) == STRING_CST)
|
||
{
|
||
tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
|
||
/* Note that an array could be both an array of character type
|
||
and an array of wchar_t if wchar_t is signed char or unsigned
|
||
char. */
|
||
bool char_array = (typ1 == char_type_node
|
||
|| typ1 == signed_char_type_node
|
||
|| typ1 == unsigned_char_type_node);
|
||
bool wchar_array = !!comptypes (typ1, wchar_type_node);
|
||
if (char_array || wchar_array)
|
||
{
|
||
struct c_expr expr;
|
||
bool char_string;
|
||
expr.value = inside_init;
|
||
expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
|
||
maybe_warn_string_init (type, expr);
|
||
|
||
char_string
|
||
= (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
|
||
== char_type_node);
|
||
|
||
if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
|
||
TYPE_MAIN_VARIANT (type)))
|
||
return inside_init;
|
||
|
||
if (!wchar_array && !char_string)
|
||
{
|
||
error_init ("char-array initialized from wide string");
|
||
return error_mark_node;
|
||
}
|
||
if (char_string && !char_array)
|
||
{
|
||
error_init ("wchar_t-array initialized from non-wide string");
|
||
return error_mark_node;
|
||
}
|
||
|
||
TREE_TYPE (inside_init) = type;
|
||
if (TYPE_DOMAIN (type) != 0
|
||
&& TYPE_SIZE (type) != 0
|
||
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
|
||
/* Subtract 1 (or sizeof (wchar_t))
|
||
because it's ok to ignore the terminating null char
|
||
that is counted in the length of the constant. */
|
||
&& 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
|
||
TREE_STRING_LENGTH (inside_init)
|
||
- ((TYPE_PRECISION (typ1)
|
||
!= TYPE_PRECISION (char_type_node))
|
||
? (TYPE_PRECISION (wchar_type_node)
|
||
/ BITS_PER_UNIT)
|
||
: 1)))
|
||
pedwarn_init ("initializer-string for array of chars is too long");
|
||
|
||
return inside_init;
|
||
}
|
||
else if (INTEGRAL_TYPE_P (typ1))
|
||
{
|
||
error_init ("array of inappropriate type initialized "
|
||
"from string constant");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Build a VECTOR_CST from a *constant* vector constructor. If the
|
||
vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
|
||
below and handle as a constructor. */
|
||
if (code == VECTOR_TYPE
|
||
&& TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
|
||
&& vector_types_convertible_p (TREE_TYPE (inside_init), type)
|
||
&& TREE_CONSTANT (inside_init))
|
||
{
|
||
if (TREE_CODE (inside_init) == VECTOR_CST
|
||
&& comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
|
||
TYPE_MAIN_VARIANT (type)))
|
||
return inside_init;
|
||
|
||
if (TREE_CODE (inside_init) == CONSTRUCTOR)
|
||
{
|
||
unsigned HOST_WIDE_INT ix;
|
||
tree value;
|
||
bool constant_p = true;
|
||
|
||
/* Iterate through elements and check if all constructor
|
||
elements are *_CSTs. */
|
||
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
|
||
if (!CONSTANT_CLASS_P (value))
|
||
{
|
||
constant_p = false;
|
||
break;
|
||
}
|
||
|
||
if (constant_p)
|
||
return build_vector_from_ctor (type,
|
||
CONSTRUCTOR_ELTS (inside_init));
|
||
}
|
||
}
|
||
|
||
/* Any type can be initialized
|
||
from an expression of the same type, optionally with braces. */
|
||
|
||
if (inside_init && TREE_TYPE (inside_init) != 0
|
||
&& (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
|
||
TYPE_MAIN_VARIANT (type))
|
||
|| (code == ARRAY_TYPE
|
||
&& comptypes (TREE_TYPE (inside_init), type))
|
||
|| (code == VECTOR_TYPE
|
||
&& comptypes (TREE_TYPE (inside_init), type))
|
||
|| (code == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
|
||
&& comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
|
||
TREE_TYPE (type)))))
|
||
{
|
||
if (code == POINTER_TYPE)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
|
||
{
|
||
if (TREE_CODE (inside_init) == STRING_CST
|
||
|| TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
|
||
inside_init = array_to_pointer_conversion (inside_init);
|
||
else
|
||
{
|
||
error_init ("invalid use of non-lvalue array");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (code == VECTOR_TYPE)
|
||
/* Although the types are compatible, we may require a
|
||
conversion. */
|
||
inside_init = convert (type, inside_init);
|
||
|
||
if (require_constant
|
||
&& (code == VECTOR_TYPE || !flag_isoc99)
|
||
&& TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
|
||
{
|
||
/* As an extension, allow initializing objects with static storage
|
||
duration with compound literals (which are then treated just as
|
||
the brace enclosed list they contain). Also allow this for
|
||
vectors, as we can only assign them with compound literals. */
|
||
tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
|
||
inside_init = DECL_INITIAL (decl);
|
||
}
|
||
|
||
if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
|
||
&& TREE_CODE (inside_init) != CONSTRUCTOR)
|
||
{
|
||
error_init ("array initialized from non-constant array expression");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (optimize && TREE_CODE (inside_init) == VAR_DECL)
|
||
inside_init = decl_constant_value_for_broken_optimization (inside_init);
|
||
|
||
/* Compound expressions can only occur here if -pedantic or
|
||
-pedantic-errors is specified. In the later case, we always want
|
||
an error. In the former case, we simply want a warning. */
|
||
if (require_constant && pedantic
|
||
&& TREE_CODE (inside_init) == COMPOUND_EXPR)
|
||
{
|
||
inside_init
|
||
= valid_compound_expr_initializer (inside_init,
|
||
TREE_TYPE (inside_init));
|
||
if (inside_init == error_mark_node)
|
||
error_init ("initializer element is not constant");
|
||
else
|
||
pedwarn_init ("initializer element is not constant");
|
||
if (flag_pedantic_errors)
|
||
inside_init = error_mark_node;
|
||
}
|
||
else if (require_constant
|
||
&& !initializer_constant_valid_p (inside_init,
|
||
TREE_TYPE (inside_init)))
|
||
{
|
||
error_init ("initializer element is not constant");
|
||
inside_init = error_mark_node;
|
||
}
|
||
|
||
/* Added to enable additional -Wmissing-format-attribute warnings. */
|
||
if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
|
||
inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
|
||
NULL_TREE, 0);
|
||
return inside_init;
|
||
}
|
||
|
||
/* Handle scalar types, including conversions. */
|
||
|
||
if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
|
||
|| code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
|
||
|| code == VECTOR_TYPE)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
|
||
&& (TREE_CODE (init) == STRING_CST
|
||
|| TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
|
||
init = array_to_pointer_conversion (init);
|
||
inside_init
|
||
= convert_for_assignment (type, init, ic_init,
|
||
NULL_TREE, NULL_TREE, 0);
|
||
|
||
/* Check to see if we have already given an error message. */
|
||
if (inside_init == error_mark_node)
|
||
;
|
||
else if (require_constant && !TREE_CONSTANT (inside_init))
|
||
{
|
||
error_init ("initializer element is not constant");
|
||
inside_init = error_mark_node;
|
||
}
|
||
else if (require_constant
|
||
&& !initializer_constant_valid_p (inside_init,
|
||
TREE_TYPE (inside_init)))
|
||
{
|
||
error_init ("initializer element is not computable at load time");
|
||
inside_init = error_mark_node;
|
||
}
|
||
|
||
return inside_init;
|
||
}
|
||
|
||
/* Come here only for records and arrays. */
|
||
|
||
if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
||
{
|
||
error_init ("variable-sized object may not be initialized");
|
||
return error_mark_node;
|
||
}
|
||
|
||
error_init ("invalid initializer");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Handle initializers that use braces. */
|
||
|
||
/* Type of object we are accumulating a constructor for.
|
||
This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
|
||
static tree constructor_type;
|
||
|
||
/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
|
||
left to fill. */
|
||
static tree constructor_fields;
|
||
|
||
/* For an ARRAY_TYPE, this is the specified index
|
||
at which to store the next element we get. */
|
||
static tree constructor_index;
|
||
|
||
/* For an ARRAY_TYPE, this is the maximum index. */
|
||
static tree constructor_max_index;
|
||
|
||
/* For a RECORD_TYPE, this is the first field not yet written out. */
|
||
static tree constructor_unfilled_fields;
|
||
|
||
/* For an ARRAY_TYPE, this is the index of the first element
|
||
not yet written out. */
|
||
static tree constructor_unfilled_index;
|
||
|
||
/* In a RECORD_TYPE, the byte index of the next consecutive field.
|
||
This is so we can generate gaps between fields, when appropriate. */
|
||
static tree constructor_bit_index;
|
||
|
||
/* If we are saving up the elements rather than allocating them,
|
||
this is the list of elements so far (in reverse order,
|
||
most recent first). */
|
||
static VEC(constructor_elt,gc) *constructor_elements;
|
||
|
||
/* 1 if constructor should be incrementally stored into a constructor chain,
|
||
0 if all the elements should be kept in AVL tree. */
|
||
static int constructor_incremental;
|
||
|
||
/* 1 if so far this constructor's elements are all compile-time constants. */
|
||
static int constructor_constant;
|
||
|
||
/* 1 if so far this constructor's elements are all valid address constants. */
|
||
static int constructor_simple;
|
||
|
||
/* 1 if this constructor is erroneous so far. */
|
||
static int constructor_erroneous;
|
||
|
||
/* Structure for managing pending initializer elements, organized as an
|
||
AVL tree. */
|
||
|
||
struct init_node
|
||
{
|
||
struct init_node *left, *right;
|
||
struct init_node *parent;
|
||
int balance;
|
||
tree purpose;
|
||
tree value;
|
||
};
|
||
|
||
/* Tree of pending elements at this constructor level.
|
||
These are elements encountered out of order
|
||
which belong at places we haven't reached yet in actually
|
||
writing the output.
|
||
Will never hold tree nodes across GC runs. */
|
||
static struct init_node *constructor_pending_elts;
|
||
|
||
/* The SPELLING_DEPTH of this constructor. */
|
||
static int constructor_depth;
|
||
|
||
/* DECL node for which an initializer is being read.
|
||
0 means we are reading a constructor expression
|
||
such as (struct foo) {...}. */
|
||
static tree constructor_decl;
|
||
|
||
/* Nonzero if this is an initializer for a top-level decl. */
|
||
static int constructor_top_level;
|
||
|
||
/* Nonzero if there were any member designators in this initializer. */
|
||
static int constructor_designated;
|
||
|
||
/* Nesting depth of designator list. */
|
||
static int designator_depth;
|
||
|
||
/* Nonzero if there were diagnosed errors in this designator list. */
|
||
static int designator_erroneous;
|
||
|
||
|
||
/* This stack has a level for each implicit or explicit level of
|
||
structuring in the initializer, including the outermost one. It
|
||
saves the values of most of the variables above. */
|
||
|
||
struct constructor_range_stack;
|
||
|
||
struct constructor_stack
|
||
{
|
||
struct constructor_stack *next;
|
||
tree type;
|
||
tree fields;
|
||
tree index;
|
||
tree max_index;
|
||
tree unfilled_index;
|
||
tree unfilled_fields;
|
||
tree bit_index;
|
||
VEC(constructor_elt,gc) *elements;
|
||
struct init_node *pending_elts;
|
||
int offset;
|
||
int depth;
|
||
/* If value nonzero, this value should replace the entire
|
||
constructor at this level. */
|
||
struct c_expr replacement_value;
|
||
struct constructor_range_stack *range_stack;
|
||
char constant;
|
||
char simple;
|
||
char implicit;
|
||
char erroneous;
|
||
char outer;
|
||
char incremental;
|
||
char designated;
|
||
};
|
||
|
||
static struct constructor_stack *constructor_stack;
|
||
|
||
/* This stack represents designators from some range designator up to
|
||
the last designator in the list. */
|
||
|
||
struct constructor_range_stack
|
||
{
|
||
struct constructor_range_stack *next, *prev;
|
||
struct constructor_stack *stack;
|
||
tree range_start;
|
||
tree index;
|
||
tree range_end;
|
||
tree fields;
|
||
};
|
||
|
||
static struct constructor_range_stack *constructor_range_stack;
|
||
|
||
/* This stack records separate initializers that are nested.
|
||
Nested initializers can't happen in ANSI C, but GNU C allows them
|
||
in cases like { ... (struct foo) { ... } ... }. */
|
||
|
||
struct initializer_stack
|
||
{
|
||
struct initializer_stack *next;
|
||
tree decl;
|
||
struct constructor_stack *constructor_stack;
|
||
struct constructor_range_stack *constructor_range_stack;
|
||
VEC(constructor_elt,gc) *elements;
|
||
struct spelling *spelling;
|
||
struct spelling *spelling_base;
|
||
int spelling_size;
|
||
char top_level;
|
||
char require_constant_value;
|
||
char require_constant_elements;
|
||
};
|
||
|
||
static struct initializer_stack *initializer_stack;
|
||
|
||
/* Prepare to parse and output the initializer for variable DECL. */
|
||
|
||
void
|
||
start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
|
||
{
|
||
const char *locus;
|
||
struct initializer_stack *p = XNEW (struct initializer_stack);
|
||
|
||
p->decl = constructor_decl;
|
||
p->require_constant_value = require_constant_value;
|
||
p->require_constant_elements = require_constant_elements;
|
||
p->constructor_stack = constructor_stack;
|
||
p->constructor_range_stack = constructor_range_stack;
|
||
p->elements = constructor_elements;
|
||
p->spelling = spelling;
|
||
p->spelling_base = spelling_base;
|
||
p->spelling_size = spelling_size;
|
||
p->top_level = constructor_top_level;
|
||
p->next = initializer_stack;
|
||
initializer_stack = p;
|
||
|
||
constructor_decl = decl;
|
||
constructor_designated = 0;
|
||
constructor_top_level = top_level;
|
||
|
||
if (decl != 0 && decl != error_mark_node)
|
||
{
|
||
require_constant_value = TREE_STATIC (decl);
|
||
require_constant_elements
|
||
= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
|
||
/* For a scalar, you can always use any value to initialize,
|
||
even within braces. */
|
||
&& (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
|
||
|| TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
|
||
|| TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
|
||
locus = IDENTIFIER_POINTER (DECL_NAME (decl));
|
||
}
|
||
else
|
||
{
|
||
require_constant_value = 0;
|
||
require_constant_elements = 0;
|
||
locus = "(anonymous)";
|
||
}
|
||
|
||
constructor_stack = 0;
|
||
constructor_range_stack = 0;
|
||
|
||
missing_braces_mentioned = 0;
|
||
|
||
spelling_base = 0;
|
||
spelling_size = 0;
|
||
RESTORE_SPELLING_DEPTH (0);
|
||
|
||
if (locus)
|
||
push_string (locus);
|
||
}
|
||
|
||
void
|
||
finish_init (void)
|
||
{
|
||
struct initializer_stack *p = initializer_stack;
|
||
|
||
/* Free the whole constructor stack of this initializer. */
|
||
while (constructor_stack)
|
||
{
|
||
struct constructor_stack *q = constructor_stack;
|
||
constructor_stack = q->next;
|
||
free (q);
|
||
}
|
||
|
||
gcc_assert (!constructor_range_stack);
|
||
|
||
/* Pop back to the data of the outer initializer (if any). */
|
||
free (spelling_base);
|
||
|
||
constructor_decl = p->decl;
|
||
require_constant_value = p->require_constant_value;
|
||
require_constant_elements = p->require_constant_elements;
|
||
constructor_stack = p->constructor_stack;
|
||
constructor_range_stack = p->constructor_range_stack;
|
||
constructor_elements = p->elements;
|
||
spelling = p->spelling;
|
||
spelling_base = p->spelling_base;
|
||
spelling_size = p->spelling_size;
|
||
constructor_top_level = p->top_level;
|
||
initializer_stack = p->next;
|
||
free (p);
|
||
}
|
||
|
||
/* Call here when we see the initializer is surrounded by braces.
|
||
This is instead of a call to push_init_level;
|
||
it is matched by a call to pop_init_level.
|
||
|
||
TYPE is the type to initialize, for a constructor expression.
|
||
For an initializer for a decl, TYPE is zero. */
|
||
|
||
void
|
||
really_start_incremental_init (tree type)
|
||
{
|
||
struct constructor_stack *p = XNEW (struct constructor_stack);
|
||
|
||
if (type == 0)
|
||
type = TREE_TYPE (constructor_decl);
|
||
|
||
if (targetm.vector_opaque_p (type))
|
||
error ("opaque vector types cannot be initialized");
|
||
|
||
p->type = constructor_type;
|
||
p->fields = constructor_fields;
|
||
p->index = constructor_index;
|
||
p->max_index = constructor_max_index;
|
||
p->unfilled_index = constructor_unfilled_index;
|
||
p->unfilled_fields = constructor_unfilled_fields;
|
||
p->bit_index = constructor_bit_index;
|
||
p->elements = constructor_elements;
|
||
p->constant = constructor_constant;
|
||
p->simple = constructor_simple;
|
||
p->erroneous = constructor_erroneous;
|
||
p->pending_elts = constructor_pending_elts;
|
||
p->depth = constructor_depth;
|
||
p->replacement_value.value = 0;
|
||
p->replacement_value.original_code = ERROR_MARK;
|
||
p->implicit = 0;
|
||
p->range_stack = 0;
|
||
p->outer = 0;
|
||
p->incremental = constructor_incremental;
|
||
p->designated = constructor_designated;
|
||
p->next = 0;
|
||
constructor_stack = p;
|
||
|
||
constructor_constant = 1;
|
||
constructor_simple = 1;
|
||
constructor_depth = SPELLING_DEPTH ();
|
||
constructor_elements = 0;
|
||
constructor_pending_elts = 0;
|
||
constructor_type = type;
|
||
constructor_incremental = 1;
|
||
constructor_designated = 0;
|
||
designator_depth = 0;
|
||
designator_erroneous = 0;
|
||
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
constructor_fields = TYPE_FIELDS (constructor_type);
|
||
/* Skip any nameless bit fields at the beginning. */
|
||
while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
|
||
&& DECL_NAME (constructor_fields) == 0)
|
||
constructor_fields = TREE_CHAIN (constructor_fields);
|
||
|
||
constructor_unfilled_fields = constructor_fields;
|
||
constructor_bit_index = bitsize_zero_node;
|
||
}
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
if (TYPE_DOMAIN (constructor_type))
|
||
{
|
||
constructor_max_index
|
||
= TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
|
||
|
||
/* Detect non-empty initializations of zero-length arrays. */
|
||
if (constructor_max_index == NULL_TREE
|
||
&& TYPE_SIZE (constructor_type))
|
||
constructor_max_index = build_int_cst (NULL_TREE, -1);
|
||
|
||
/* constructor_max_index needs to be an INTEGER_CST. Attempts
|
||
to initialize VLAs will cause a proper error; avoid tree
|
||
checking errors as well by setting a safe value. */
|
||
if (constructor_max_index
|
||
&& TREE_CODE (constructor_max_index) != INTEGER_CST)
|
||
constructor_max_index = build_int_cst (NULL_TREE, -1);
|
||
|
||
constructor_index
|
||
= convert (bitsizetype,
|
||
TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
|
||
}
|
||
else
|
||
{
|
||
constructor_index = bitsize_zero_node;
|
||
constructor_max_index = NULL_TREE;
|
||
}
|
||
|
||
constructor_unfilled_index = constructor_index;
|
||
}
|
||
else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
|
||
{
|
||
/* Vectors are like simple fixed-size arrays. */
|
||
constructor_max_index =
|
||
build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
|
||
constructor_index = bitsize_zero_node;
|
||
constructor_unfilled_index = constructor_index;
|
||
}
|
||
else
|
||
{
|
||
/* Handle the case of int x = {5}; */
|
||
constructor_fields = constructor_type;
|
||
constructor_unfilled_fields = constructor_type;
|
||
}
|
||
}
|
||
|
||
/* Push down into a subobject, for initialization.
|
||
If this is for an explicit set of braces, IMPLICIT is 0.
|
||
If it is because the next element belongs at a lower level,
|
||
IMPLICIT is 1 (or 2 if the push is because of designator list). */
|
||
|
||
void
|
||
push_init_level (int implicit)
|
||
{
|
||
struct constructor_stack *p;
|
||
tree value = NULL_TREE;
|
||
|
||
/* If we've exhausted any levels that didn't have braces,
|
||
pop them now. If implicit == 1, this will have been done in
|
||
process_init_element; do not repeat it here because in the case
|
||
of excess initializers for an empty aggregate this leads to an
|
||
infinite cycle of popping a level and immediately recreating
|
||
it. */
|
||
if (implicit != 1)
|
||
{
|
||
while (constructor_stack->implicit)
|
||
{
|
||
if ((TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
&& constructor_fields == 0)
|
||
process_init_element (pop_init_level (1));
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
&& constructor_max_index
|
||
&& tree_int_cst_lt (constructor_max_index,
|
||
constructor_index))
|
||
process_init_element (pop_init_level (1));
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Unless this is an explicit brace, we need to preserve previous
|
||
content if any. */
|
||
if (implicit)
|
||
{
|
||
if ((TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
&& constructor_fields)
|
||
value = find_init_member (constructor_fields);
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
value = find_init_member (constructor_index);
|
||
}
|
||
|
||
p = XNEW (struct constructor_stack);
|
||
p->type = constructor_type;
|
||
p->fields = constructor_fields;
|
||
p->index = constructor_index;
|
||
p->max_index = constructor_max_index;
|
||
p->unfilled_index = constructor_unfilled_index;
|
||
p->unfilled_fields = constructor_unfilled_fields;
|
||
p->bit_index = constructor_bit_index;
|
||
p->elements = constructor_elements;
|
||
p->constant = constructor_constant;
|
||
p->simple = constructor_simple;
|
||
p->erroneous = constructor_erroneous;
|
||
p->pending_elts = constructor_pending_elts;
|
||
p->depth = constructor_depth;
|
||
p->replacement_value.value = 0;
|
||
p->replacement_value.original_code = ERROR_MARK;
|
||
p->implicit = implicit;
|
||
p->outer = 0;
|
||
p->incremental = constructor_incremental;
|
||
p->designated = constructor_designated;
|
||
p->next = constructor_stack;
|
||
p->range_stack = 0;
|
||
constructor_stack = p;
|
||
|
||
constructor_constant = 1;
|
||
constructor_simple = 1;
|
||
constructor_depth = SPELLING_DEPTH ();
|
||
constructor_elements = 0;
|
||
constructor_incremental = 1;
|
||
constructor_designated = 0;
|
||
constructor_pending_elts = 0;
|
||
if (!implicit)
|
||
{
|
||
p->range_stack = constructor_range_stack;
|
||
constructor_range_stack = 0;
|
||
designator_depth = 0;
|
||
designator_erroneous = 0;
|
||
}
|
||
|
||
/* Don't die if an entire brace-pair level is superfluous
|
||
in the containing level. */
|
||
if (constructor_type == 0)
|
||
;
|
||
else if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
/* Don't die if there are extra init elts at the end. */
|
||
if (constructor_fields == 0)
|
||
constructor_type = 0;
|
||
else
|
||
{
|
||
constructor_type = TREE_TYPE (constructor_fields);
|
||
push_member_name (constructor_fields);
|
||
constructor_depth++;
|
||
}
|
||
}
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
constructor_type = TREE_TYPE (constructor_type);
|
||
push_array_bounds (tree_low_cst (constructor_index, 1));
|
||
constructor_depth++;
|
||
}
|
||
|
||
if (constructor_type == 0)
|
||
{
|
||
error_init ("extra brace group at end of initializer");
|
||
constructor_fields = 0;
|
||
constructor_unfilled_fields = 0;
|
||
return;
|
||
}
|
||
|
||
if (value && TREE_CODE (value) == CONSTRUCTOR)
|
||
{
|
||
constructor_constant = TREE_CONSTANT (value);
|
||
constructor_simple = TREE_STATIC (value);
|
||
constructor_elements = CONSTRUCTOR_ELTS (value);
|
||
if (!VEC_empty (constructor_elt, constructor_elements)
|
||
&& (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == ARRAY_TYPE))
|
||
set_nonincremental_init ();
|
||
}
|
||
|
||
if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
|
||
{
|
||
missing_braces_mentioned = 1;
|
||
warning_init ("missing braces around initializer");
|
||
}
|
||
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
constructor_fields = TYPE_FIELDS (constructor_type);
|
||
/* Skip any nameless bit fields at the beginning. */
|
||
while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
|
||
&& DECL_NAME (constructor_fields) == 0)
|
||
constructor_fields = TREE_CHAIN (constructor_fields);
|
||
|
||
constructor_unfilled_fields = constructor_fields;
|
||
constructor_bit_index = bitsize_zero_node;
|
||
}
|
||
else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
|
||
{
|
||
/* Vectors are like simple fixed-size arrays. */
|
||
constructor_max_index =
|
||
build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
|
||
constructor_index = convert (bitsizetype, integer_zero_node);
|
||
constructor_unfilled_index = constructor_index;
|
||
}
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
if (TYPE_DOMAIN (constructor_type))
|
||
{
|
||
constructor_max_index
|
||
= TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
|
||
|
||
/* Detect non-empty initializations of zero-length arrays. */
|
||
if (constructor_max_index == NULL_TREE
|
||
&& TYPE_SIZE (constructor_type))
|
||
constructor_max_index = build_int_cst (NULL_TREE, -1);
|
||
|
||
/* constructor_max_index needs to be an INTEGER_CST. Attempts
|
||
to initialize VLAs will cause a proper error; avoid tree
|
||
checking errors as well by setting a safe value. */
|
||
if (constructor_max_index
|
||
&& TREE_CODE (constructor_max_index) != INTEGER_CST)
|
||
constructor_max_index = build_int_cst (NULL_TREE, -1);
|
||
|
||
constructor_index
|
||
= convert (bitsizetype,
|
||
TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
|
||
}
|
||
else
|
||
constructor_index = bitsize_zero_node;
|
||
|
||
constructor_unfilled_index = constructor_index;
|
||
if (value && TREE_CODE (value) == STRING_CST)
|
||
{
|
||
/* We need to split the char/wchar array into individual
|
||
characters, so that we don't have to special case it
|
||
everywhere. */
|
||
set_nonincremental_init_from_string (value);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (constructor_type != error_mark_node)
|
||
warning_init ("braces around scalar initializer");
|
||
constructor_fields = constructor_type;
|
||
constructor_unfilled_fields = constructor_type;
|
||
}
|
||
}
|
||
|
||
/* At the end of an implicit or explicit brace level,
|
||
finish up that level of constructor. If a single expression
|
||
with redundant braces initialized that level, return the
|
||
c_expr structure for that expression. Otherwise, the original_code
|
||
element is set to ERROR_MARK.
|
||
If we were outputting the elements as they are read, return 0 as the value
|
||
from inner levels (process_init_element ignores that),
|
||
but return error_mark_node as the value from the outermost level
|
||
(that's what we want to put in DECL_INITIAL).
|
||
Otherwise, return a CONSTRUCTOR expression as the value. */
|
||
|
||
struct c_expr
|
||
pop_init_level (int implicit)
|
||
{
|
||
struct constructor_stack *p;
|
||
struct c_expr ret;
|
||
ret.value = 0;
|
||
ret.original_code = ERROR_MARK;
|
||
|
||
if (implicit == 0)
|
||
{
|
||
/* When we come to an explicit close brace,
|
||
pop any inner levels that didn't have explicit braces. */
|
||
while (constructor_stack->implicit)
|
||
process_init_element (pop_init_level (1));
|
||
|
||
gcc_assert (!constructor_range_stack);
|
||
}
|
||
|
||
/* Now output all pending elements. */
|
||
constructor_incremental = 1;
|
||
output_pending_init_elements (1);
|
||
|
||
p = constructor_stack;
|
||
|
||
/* Error for initializing a flexible array member, or a zero-length
|
||
array member in an inappropriate context. */
|
||
if (constructor_type && constructor_fields
|
||
&& TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
&& TYPE_DOMAIN (constructor_type)
|
||
&& !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
|
||
{
|
||
/* Silently discard empty initializations. The parser will
|
||
already have pedwarned for empty brackets. */
|
||
if (integer_zerop (constructor_unfilled_index))
|
||
constructor_type = NULL_TREE;
|
||
else
|
||
{
|
||
gcc_assert (!TYPE_SIZE (constructor_type));
|
||
|
||
if (constructor_depth > 2)
|
||
error_init ("initialization of flexible array member in a nested context");
|
||
else if (pedantic)
|
||
pedwarn_init ("initialization of a flexible array member");
|
||
|
||
/* We have already issued an error message for the existence
|
||
of a flexible array member not at the end of the structure.
|
||
Discard the initializer so that we do not die later. */
|
||
if (TREE_CHAIN (constructor_fields) != NULL_TREE)
|
||
constructor_type = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Warn when some struct elements are implicitly initialized to zero. */
|
||
if (warn_missing_field_initializers
|
||
&& constructor_type
|
||
&& TREE_CODE (constructor_type) == RECORD_TYPE
|
||
&& constructor_unfilled_fields)
|
||
{
|
||
/* Do not warn for flexible array members or zero-length arrays. */
|
||
while (constructor_unfilled_fields
|
||
&& (!DECL_SIZE (constructor_unfilled_fields)
|
||
|| integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
|
||
constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
|
||
|
||
/* Do not warn if this level of the initializer uses member
|
||
designators; it is likely to be deliberate. */
|
||
if (constructor_unfilled_fields && !constructor_designated)
|
||
{
|
||
push_member_name (constructor_unfilled_fields);
|
||
warning_init ("missing initializer");
|
||
RESTORE_SPELLING_DEPTH (constructor_depth);
|
||
}
|
||
}
|
||
|
||
/* Pad out the end of the structure. */
|
||
if (p->replacement_value.value)
|
||
/* If this closes a superfluous brace pair,
|
||
just pass out the element between them. */
|
||
ret = p->replacement_value;
|
||
else if (constructor_type == 0)
|
||
;
|
||
else if (TREE_CODE (constructor_type) != RECORD_TYPE
|
||
&& TREE_CODE (constructor_type) != UNION_TYPE
|
||
&& TREE_CODE (constructor_type) != ARRAY_TYPE
|
||
&& TREE_CODE (constructor_type) != VECTOR_TYPE)
|
||
{
|
||
/* A nonincremental scalar initializer--just return
|
||
the element, after verifying there is just one. */
|
||
if (VEC_empty (constructor_elt,constructor_elements))
|
||
{
|
||
if (!constructor_erroneous)
|
||
error_init ("empty scalar initializer");
|
||
ret.value = error_mark_node;
|
||
}
|
||
else if (VEC_length (constructor_elt,constructor_elements) != 1)
|
||
{
|
||
error_init ("extra elements in scalar initializer");
|
||
ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
|
||
}
|
||
else
|
||
ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
|
||
}
|
||
else
|
||
{
|
||
if (constructor_erroneous)
|
||
ret.value = error_mark_node;
|
||
else
|
||
{
|
||
ret.value = build_constructor (constructor_type,
|
||
constructor_elements);
|
||
if (constructor_constant)
|
||
TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
|
||
if (constructor_constant && constructor_simple)
|
||
TREE_STATIC (ret.value) = 1;
|
||
}
|
||
}
|
||
|
||
constructor_type = p->type;
|
||
constructor_fields = p->fields;
|
||
constructor_index = p->index;
|
||
constructor_max_index = p->max_index;
|
||
constructor_unfilled_index = p->unfilled_index;
|
||
constructor_unfilled_fields = p->unfilled_fields;
|
||
constructor_bit_index = p->bit_index;
|
||
constructor_elements = p->elements;
|
||
constructor_constant = p->constant;
|
||
constructor_simple = p->simple;
|
||
constructor_erroneous = p->erroneous;
|
||
constructor_incremental = p->incremental;
|
||
constructor_designated = p->designated;
|
||
constructor_pending_elts = p->pending_elts;
|
||
constructor_depth = p->depth;
|
||
if (!p->implicit)
|
||
constructor_range_stack = p->range_stack;
|
||
RESTORE_SPELLING_DEPTH (constructor_depth);
|
||
|
||
constructor_stack = p->next;
|
||
free (p);
|
||
|
||
if (ret.value == 0 && constructor_stack == 0)
|
||
ret.value = error_mark_node;
|
||
return ret;
|
||
}
|
||
|
||
/* Common handling for both array range and field name designators.
|
||
ARRAY argument is nonzero for array ranges. Returns zero for success. */
|
||
|
||
static int
|
||
set_designator (int array)
|
||
{
|
||
tree subtype;
|
||
enum tree_code subcode;
|
||
|
||
/* Don't die if an entire brace-pair level is superfluous
|
||
in the containing level. */
|
||
if (constructor_type == 0)
|
||
return 1;
|
||
|
||
/* If there were errors in this designator list already, bail out
|
||
silently. */
|
||
if (designator_erroneous)
|
||
return 1;
|
||
|
||
if (!designator_depth)
|
||
{
|
||
gcc_assert (!constructor_range_stack);
|
||
|
||
/* Designator list starts at the level of closest explicit
|
||
braces. */
|
||
while (constructor_stack->implicit)
|
||
process_init_element (pop_init_level (1));
|
||
constructor_designated = 1;
|
||
return 0;
|
||
}
|
||
|
||
switch (TREE_CODE (constructor_type))
|
||
{
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
subtype = TREE_TYPE (constructor_fields);
|
||
if (subtype != error_mark_node)
|
||
subtype = TYPE_MAIN_VARIANT (subtype);
|
||
break;
|
||
case ARRAY_TYPE:
|
||
subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
subcode = TREE_CODE (subtype);
|
||
if (array && subcode != ARRAY_TYPE)
|
||
{
|
||
error_init ("array index in non-array initializer");
|
||
return 1;
|
||
}
|
||
else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
|
||
{
|
||
error_init ("field name not in record or union initializer");
|
||
return 1;
|
||
}
|
||
|
||
constructor_designated = 1;
|
||
push_init_level (2);
|
||
return 0;
|
||
}
|
||
|
||
/* If there are range designators in designator list, push a new designator
|
||
to constructor_range_stack. RANGE_END is end of such stack range or
|
||
NULL_TREE if there is no range designator at this level. */
|
||
|
||
static void
|
||
push_range_stack (tree range_end)
|
||
{
|
||
struct constructor_range_stack *p;
|
||
|
||
p = GGC_NEW (struct constructor_range_stack);
|
||
p->prev = constructor_range_stack;
|
||
p->next = 0;
|
||
p->fields = constructor_fields;
|
||
p->range_start = constructor_index;
|
||
p->index = constructor_index;
|
||
p->stack = constructor_stack;
|
||
p->range_end = range_end;
|
||
if (constructor_range_stack)
|
||
constructor_range_stack->next = p;
|
||
constructor_range_stack = p;
|
||
}
|
||
|
||
/* Within an array initializer, specify the next index to be initialized.
|
||
FIRST is that index. If LAST is nonzero, then initialize a range
|
||
of indices, running from FIRST through LAST. */
|
||
|
||
void
|
||
set_init_index (tree first, tree last)
|
||
{
|
||
if (set_designator (1))
|
||
return;
|
||
|
||
designator_erroneous = 1;
|
||
|
||
if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
|
||
|| (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
|
||
{
|
||
error_init ("array index in initializer not of integer type");
|
||
return;
|
||
}
|
||
|
||
if (TREE_CODE (first) != INTEGER_CST)
|
||
error_init ("nonconstant array index in initializer");
|
||
else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
|
||
error_init ("nonconstant array index in initializer");
|
||
else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
|
||
error_init ("array index in non-array initializer");
|
||
else if (tree_int_cst_sgn (first) == -1)
|
||
error_init ("array index in initializer exceeds array bounds");
|
||
else if (constructor_max_index
|
||
&& tree_int_cst_lt (constructor_max_index, first))
|
||
error_init ("array index in initializer exceeds array bounds");
|
||
else
|
||
{
|
||
constructor_index = convert (bitsizetype, first);
|
||
|
||
if (last)
|
||
{
|
||
if (tree_int_cst_equal (first, last))
|
||
last = 0;
|
||
else if (tree_int_cst_lt (last, first))
|
||
{
|
||
error_init ("empty index range in initializer");
|
||
last = 0;
|
||
}
|
||
else
|
||
{
|
||
last = convert (bitsizetype, last);
|
||
if (constructor_max_index != 0
|
||
&& tree_int_cst_lt (constructor_max_index, last))
|
||
{
|
||
error_init ("array index range in initializer exceeds array bounds");
|
||
last = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
designator_depth++;
|
||
designator_erroneous = 0;
|
||
if (constructor_range_stack || last)
|
||
push_range_stack (last);
|
||
}
|
||
}
|
||
|
||
/* Within a struct initializer, specify the next field to be initialized. */
|
||
|
||
void
|
||
set_init_label (tree fieldname)
|
||
{
|
||
tree tail;
|
||
|
||
if (set_designator (0))
|
||
return;
|
||
|
||
designator_erroneous = 1;
|
||
|
||
if (TREE_CODE (constructor_type) != RECORD_TYPE
|
||
&& TREE_CODE (constructor_type) != UNION_TYPE)
|
||
{
|
||
error_init ("field name not in record or union initializer");
|
||
return;
|
||
}
|
||
|
||
for (tail = TYPE_FIELDS (constructor_type); tail;
|
||
tail = TREE_CHAIN (tail))
|
||
{
|
||
if (DECL_NAME (tail) == fieldname)
|
||
break;
|
||
}
|
||
|
||
if (tail == 0)
|
||
error ("unknown field %qE specified in initializer", fieldname);
|
||
else
|
||
{
|
||
constructor_fields = tail;
|
||
designator_depth++;
|
||
designator_erroneous = 0;
|
||
if (constructor_range_stack)
|
||
push_range_stack (NULL_TREE);
|
||
}
|
||
}
|
||
|
||
/* Add a new initializer to the tree of pending initializers. PURPOSE
|
||
identifies the initializer, either array index or field in a structure.
|
||
VALUE is the value of that index or field. */
|
||
|
||
static void
|
||
add_pending_init (tree purpose, tree value)
|
||
{
|
||
struct init_node *p, **q, *r;
|
||
|
||
q = &constructor_pending_elts;
|
||
p = 0;
|
||
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
while (*q != 0)
|
||
{
|
||
p = *q;
|
||
if (tree_int_cst_lt (purpose, p->purpose))
|
||
q = &p->left;
|
||
else if (tree_int_cst_lt (p->purpose, purpose))
|
||
q = &p->right;
|
||
else
|
||
{
|
||
if (TREE_SIDE_EFFECTS (p->value))
|
||
warning_init ("initialized field with side-effects overwritten");
|
||
else if (warn_override_init)
|
||
warning_init ("initialized field overwritten");
|
||
p->value = value;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tree bitpos;
|
||
|
||
bitpos = bit_position (purpose);
|
||
while (*q != NULL)
|
||
{
|
||
p = *q;
|
||
if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
|
||
q = &p->left;
|
||
else if (p->purpose != purpose)
|
||
q = &p->right;
|
||
else
|
||
{
|
||
if (TREE_SIDE_EFFECTS (p->value))
|
||
warning_init ("initialized field with side-effects overwritten");
|
||
else if (warn_override_init)
|
||
warning_init ("initialized field overwritten");
|
||
p->value = value;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
r = GGC_NEW (struct init_node);
|
||
r->purpose = purpose;
|
||
r->value = value;
|
||
|
||
*q = r;
|
||
r->parent = p;
|
||
r->left = 0;
|
||
r->right = 0;
|
||
r->balance = 0;
|
||
|
||
while (p)
|
||
{
|
||
struct init_node *s;
|
||
|
||
if (r == p->left)
|
||
{
|
||
if (p->balance == 0)
|
||
p->balance = -1;
|
||
else if (p->balance < 0)
|
||
{
|
||
if (r->balance < 0)
|
||
{
|
||
/* L rotation. */
|
||
p->left = r->right;
|
||
if (p->left)
|
||
p->left->parent = p;
|
||
r->right = p;
|
||
|
||
p->balance = 0;
|
||
r->balance = 0;
|
||
|
||
s = p->parent;
|
||
p->parent = r;
|
||
r->parent = s;
|
||
if (s)
|
||
{
|
||
if (s->left == p)
|
||
s->left = r;
|
||
else
|
||
s->right = r;
|
||
}
|
||
else
|
||
constructor_pending_elts = r;
|
||
}
|
||
else
|
||
{
|
||
/* LR rotation. */
|
||
struct init_node *t = r->right;
|
||
|
||
r->right = t->left;
|
||
if (r->right)
|
||
r->right->parent = r;
|
||
t->left = r;
|
||
|
||
p->left = t->right;
|
||
if (p->left)
|
||
p->left->parent = p;
|
||
t->right = p;
|
||
|
||
p->balance = t->balance < 0;
|
||
r->balance = -(t->balance > 0);
|
||
t->balance = 0;
|
||
|
||
s = p->parent;
|
||
p->parent = t;
|
||
r->parent = t;
|
||
t->parent = s;
|
||
if (s)
|
||
{
|
||
if (s->left == p)
|
||
s->left = t;
|
||
else
|
||
s->right = t;
|
||
}
|
||
else
|
||
constructor_pending_elts = t;
|
||
}
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* p->balance == +1; growth of left side balances the node. */
|
||
p->balance = 0;
|
||
break;
|
||
}
|
||
}
|
||
else /* r == p->right */
|
||
{
|
||
if (p->balance == 0)
|
||
/* Growth propagation from right side. */
|
||
p->balance++;
|
||
else if (p->balance > 0)
|
||
{
|
||
if (r->balance > 0)
|
||
{
|
||
/* R rotation. */
|
||
p->right = r->left;
|
||
if (p->right)
|
||
p->right->parent = p;
|
||
r->left = p;
|
||
|
||
p->balance = 0;
|
||
r->balance = 0;
|
||
|
||
s = p->parent;
|
||
p->parent = r;
|
||
r->parent = s;
|
||
if (s)
|
||
{
|
||
if (s->left == p)
|
||
s->left = r;
|
||
else
|
||
s->right = r;
|
||
}
|
||
else
|
||
constructor_pending_elts = r;
|
||
}
|
||
else /* r->balance == -1 */
|
||
{
|
||
/* RL rotation */
|
||
struct init_node *t = r->left;
|
||
|
||
r->left = t->right;
|
||
if (r->left)
|
||
r->left->parent = r;
|
||
t->right = r;
|
||
|
||
p->right = t->left;
|
||
if (p->right)
|
||
p->right->parent = p;
|
||
t->left = p;
|
||
|
||
r->balance = (t->balance < 0);
|
||
p->balance = -(t->balance > 0);
|
||
t->balance = 0;
|
||
|
||
s = p->parent;
|
||
p->parent = t;
|
||
r->parent = t;
|
||
t->parent = s;
|
||
if (s)
|
||
{
|
||
if (s->left == p)
|
||
s->left = t;
|
||
else
|
||
s->right = t;
|
||
}
|
||
else
|
||
constructor_pending_elts = t;
|
||
}
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* p->balance == -1; growth of right side balances the node. */
|
||
p->balance = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
r = p;
|
||
p = p->parent;
|
||
}
|
||
}
|
||
|
||
/* Build AVL tree from a sorted chain. */
|
||
|
||
static void
|
||
set_nonincremental_init (void)
|
||
{
|
||
unsigned HOST_WIDE_INT ix;
|
||
tree index, value;
|
||
|
||
if (TREE_CODE (constructor_type) != RECORD_TYPE
|
||
&& TREE_CODE (constructor_type) != ARRAY_TYPE)
|
||
return;
|
||
|
||
FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
|
||
add_pending_init (index, value);
|
||
constructor_elements = 0;
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE)
|
||
{
|
||
constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
|
||
/* Skip any nameless bit fields at the beginning. */
|
||
while (constructor_unfilled_fields != 0
|
||
&& DECL_C_BIT_FIELD (constructor_unfilled_fields)
|
||
&& DECL_NAME (constructor_unfilled_fields) == 0)
|
||
constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
|
||
|
||
}
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
if (TYPE_DOMAIN (constructor_type))
|
||
constructor_unfilled_index
|
||
= convert (bitsizetype,
|
||
TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
|
||
else
|
||
constructor_unfilled_index = bitsize_zero_node;
|
||
}
|
||
constructor_incremental = 0;
|
||
}
|
||
|
||
/* Build AVL tree from a string constant. */
|
||
|
||
static void
|
||
set_nonincremental_init_from_string (tree str)
|
||
{
|
||
tree value, purpose, type;
|
||
HOST_WIDE_INT val[2];
|
||
const char *p, *end;
|
||
int byte, wchar_bytes, charwidth, bitpos;
|
||
|
||
gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
|
||
|
||
if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
|
||
== TYPE_PRECISION (char_type_node))
|
||
wchar_bytes = 1;
|
||
else
|
||
{
|
||
gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
|
||
== TYPE_PRECISION (wchar_type_node));
|
||
wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
|
||
}
|
||
charwidth = TYPE_PRECISION (char_type_node);
|
||
type = TREE_TYPE (constructor_type);
|
||
p = TREE_STRING_POINTER (str);
|
||
end = p + TREE_STRING_LENGTH (str);
|
||
|
||
for (purpose = bitsize_zero_node;
|
||
p < end && !tree_int_cst_lt (constructor_max_index, purpose);
|
||
purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
|
||
{
|
||
if (wchar_bytes == 1)
|
||
{
|
||
val[1] = (unsigned char) *p++;
|
||
val[0] = 0;
|
||
}
|
||
else
|
||
{
|
||
val[0] = 0;
|
||
val[1] = 0;
|
||
for (byte = 0; byte < wchar_bytes; byte++)
|
||
{
|
||
if (BYTES_BIG_ENDIAN)
|
||
bitpos = (wchar_bytes - byte - 1) * charwidth;
|
||
else
|
||
bitpos = byte * charwidth;
|
||
val[bitpos < HOST_BITS_PER_WIDE_INT]
|
||
|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
|
||
<< (bitpos % HOST_BITS_PER_WIDE_INT);
|
||
}
|
||
}
|
||
|
||
if (!TYPE_UNSIGNED (type))
|
||
{
|
||
bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
|
||
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
|
||
{
|
||
val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
|
||
val[0] = -1;
|
||
}
|
||
}
|
||
else if (bitpos == HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
if (val[1] < 0)
|
||
val[0] = -1;
|
||
}
|
||
else if (val[0] & (((HOST_WIDE_INT) 1)
|
||
<< (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
|
||
val[0] |= ((HOST_WIDE_INT) -1)
|
||
<< (bitpos - HOST_BITS_PER_WIDE_INT);
|
||
}
|
||
|
||
value = build_int_cst_wide (type, val[1], val[0]);
|
||
add_pending_init (purpose, value);
|
||
}
|
||
|
||
constructor_incremental = 0;
|
||
}
|
||
|
||
/* Return value of FIELD in pending initializer or zero if the field was
|
||
not initialized yet. */
|
||
|
||
static tree
|
||
find_init_member (tree field)
|
||
{
|
||
struct init_node *p;
|
||
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
if (constructor_incremental
|
||
&& tree_int_cst_lt (field, constructor_unfilled_index))
|
||
set_nonincremental_init ();
|
||
|
||
p = constructor_pending_elts;
|
||
while (p)
|
||
{
|
||
if (tree_int_cst_lt (field, p->purpose))
|
||
p = p->left;
|
||
else if (tree_int_cst_lt (p->purpose, field))
|
||
p = p->right;
|
||
else
|
||
return p->value;
|
||
}
|
||
}
|
||
else if (TREE_CODE (constructor_type) == RECORD_TYPE)
|
||
{
|
||
tree bitpos = bit_position (field);
|
||
|
||
if (constructor_incremental
|
||
&& (!constructor_unfilled_fields
|
||
|| tree_int_cst_lt (bitpos,
|
||
bit_position (constructor_unfilled_fields))))
|
||
set_nonincremental_init ();
|
||
|
||
p = constructor_pending_elts;
|
||
while (p)
|
||
{
|
||
if (field == p->purpose)
|
||
return p->value;
|
||
else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
|
||
p = p->left;
|
||
else
|
||
p = p->right;
|
||
}
|
||
}
|
||
else if (TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
if (!VEC_empty (constructor_elt, constructor_elements)
|
||
&& (VEC_last (constructor_elt, constructor_elements)->index
|
||
== field))
|
||
return VEC_last (constructor_elt, constructor_elements)->value;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* "Output" the next constructor element.
|
||
At top level, really output it to assembler code now.
|
||
Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
|
||
TYPE is the data type that the containing data type wants here.
|
||
FIELD is the field (a FIELD_DECL) or the index that this element fills.
|
||
If VALUE is a string constant, STRICT_STRING is true if it is
|
||
unparenthesized or we should not warn here for it being parenthesized.
|
||
For other types of VALUE, STRICT_STRING is not used.
|
||
|
||
PENDING if non-nil means output pending elements that belong
|
||
right after this element. (PENDING is normally 1;
|
||
it is 0 while outputting pending elements, to avoid recursion.) */
|
||
|
||
static void
|
||
output_init_element (tree value, bool strict_string, tree type, tree field,
|
||
int pending)
|
||
{
|
||
constructor_elt *celt;
|
||
|
||
if (type == error_mark_node || value == error_mark_node)
|
||
{
|
||
constructor_erroneous = 1;
|
||
return;
|
||
}
|
||
if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
|
||
&& (TREE_CODE (value) == STRING_CST
|
||
|| TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
|
||
&& !(TREE_CODE (value) == STRING_CST
|
||
&& TREE_CODE (type) == ARRAY_TYPE
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (type)))
|
||
&& !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
|
||
TYPE_MAIN_VARIANT (type)))
|
||
value = array_to_pointer_conversion (value);
|
||
|
||
if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
|
||
&& require_constant_value && !flag_isoc99 && pending)
|
||
{
|
||
/* As an extension, allow initializing objects with static storage
|
||
duration with compound literals (which are then treated just as
|
||
the brace enclosed list they contain). */
|
||
tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
|
||
value = DECL_INITIAL (decl);
|
||
}
|
||
|
||
if (value == error_mark_node)
|
||
constructor_erroneous = 1;
|
||
else if (!TREE_CONSTANT (value))
|
||
constructor_constant = 0;
|
||
else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
|
||
|| ((TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
&& DECL_C_BIT_FIELD (field)
|
||
&& TREE_CODE (value) != INTEGER_CST))
|
||
constructor_simple = 0;
|
||
|
||
if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
|
||
{
|
||
if (require_constant_value)
|
||
{
|
||
error_init ("initializer element is not constant");
|
||
value = error_mark_node;
|
||
}
|
||
else if (require_constant_elements)
|
||
pedwarn ("initializer element is not computable at load time");
|
||
}
|
||
|
||
/* If this field is empty (and not at the end of structure),
|
||
don't do anything other than checking the initializer. */
|
||
if (field
|
||
&& (TREE_TYPE (field) == error_mark_node
|
||
|| (COMPLETE_TYPE_P (TREE_TYPE (field))
|
||
&& integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
|
||
&& (TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
|| TREE_CHAIN (field)))))
|
||
return;
|
||
|
||
value = digest_init (type, value, strict_string, require_constant_value);
|
||
if (value == error_mark_node)
|
||
{
|
||
constructor_erroneous = 1;
|
||
return;
|
||
}
|
||
|
||
/* If this element doesn't come next in sequence,
|
||
put it on constructor_pending_elts. */
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
&& (!constructor_incremental
|
||
|| !tree_int_cst_equal (field, constructor_unfilled_index)))
|
||
{
|
||
if (constructor_incremental
|
||
&& tree_int_cst_lt (field, constructor_unfilled_index))
|
||
set_nonincremental_init ();
|
||
|
||
add_pending_init (field, value);
|
||
return;
|
||
}
|
||
else if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
&& (!constructor_incremental
|
||
|| field != constructor_unfilled_fields))
|
||
{
|
||
/* We do this for records but not for unions. In a union,
|
||
no matter which field is specified, it can be initialized
|
||
right away since it starts at the beginning of the union. */
|
||
if (constructor_incremental)
|
||
{
|
||
if (!constructor_unfilled_fields)
|
||
set_nonincremental_init ();
|
||
else
|
||
{
|
||
tree bitpos, unfillpos;
|
||
|
||
bitpos = bit_position (field);
|
||
unfillpos = bit_position (constructor_unfilled_fields);
|
||
|
||
if (tree_int_cst_lt (bitpos, unfillpos))
|
||
set_nonincremental_init ();
|
||
}
|
||
}
|
||
|
||
add_pending_init (field, value);
|
||
return;
|
||
}
|
||
else if (TREE_CODE (constructor_type) == UNION_TYPE
|
||
&& !VEC_empty (constructor_elt, constructor_elements))
|
||
{
|
||
if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
|
||
constructor_elements)->value))
|
||
warning_init ("initialized field with side-effects overwritten");
|
||
else if (warn_override_init)
|
||
warning_init ("initialized field overwritten");
|
||
|
||
/* We can have just one union field set. */
|
||
constructor_elements = 0;
|
||
}
|
||
|
||
/* Otherwise, output this element either to
|
||
constructor_elements or to the assembler file. */
|
||
|
||
celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
|
||
celt->index = field;
|
||
celt->value = value;
|
||
|
||
/* Advance the variable that indicates sequential elements output. */
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
constructor_unfilled_index
|
||
= size_binop (PLUS_EXPR, constructor_unfilled_index,
|
||
bitsize_one_node);
|
||
else if (TREE_CODE (constructor_type) == RECORD_TYPE)
|
||
{
|
||
constructor_unfilled_fields
|
||
= TREE_CHAIN (constructor_unfilled_fields);
|
||
|
||
/* Skip any nameless bit fields. */
|
||
while (constructor_unfilled_fields != 0
|
||
&& DECL_C_BIT_FIELD (constructor_unfilled_fields)
|
||
&& DECL_NAME (constructor_unfilled_fields) == 0)
|
||
constructor_unfilled_fields =
|
||
TREE_CHAIN (constructor_unfilled_fields);
|
||
}
|
||
else if (TREE_CODE (constructor_type) == UNION_TYPE)
|
||
constructor_unfilled_fields = 0;
|
||
|
||
/* Now output any pending elements which have become next. */
|
||
if (pending)
|
||
output_pending_init_elements (0);
|
||
}
|
||
|
||
/* Output any pending elements which have become next.
|
||
As we output elements, constructor_unfilled_{fields,index}
|
||
advances, which may cause other elements to become next;
|
||
if so, they too are output.
|
||
|
||
If ALL is 0, we return when there are
|
||
no more pending elements to output now.
|
||
|
||
If ALL is 1, we output space as necessary so that
|
||
we can output all the pending elements. */
|
||
|
||
static void
|
||
output_pending_init_elements (int all)
|
||
{
|
||
struct init_node *elt = constructor_pending_elts;
|
||
tree next;
|
||
|
||
retry:
|
||
|
||
/* Look through the whole pending tree.
|
||
If we find an element that should be output now,
|
||
output it. Otherwise, set NEXT to the element
|
||
that comes first among those still pending. */
|
||
|
||
next = 0;
|
||
while (elt)
|
||
{
|
||
if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
if (tree_int_cst_equal (elt->purpose,
|
||
constructor_unfilled_index))
|
||
output_init_element (elt->value, true,
|
||
TREE_TYPE (constructor_type),
|
||
constructor_unfilled_index, 0);
|
||
else if (tree_int_cst_lt (constructor_unfilled_index,
|
||
elt->purpose))
|
||
{
|
||
/* Advance to the next smaller node. */
|
||
if (elt->left)
|
||
elt = elt->left;
|
||
else
|
||
{
|
||
/* We have reached the smallest node bigger than the
|
||
current unfilled index. Fill the space first. */
|
||
next = elt->purpose;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Advance to the next bigger node. */
|
||
if (elt->right)
|
||
elt = elt->right;
|
||
else
|
||
{
|
||
/* We have reached the biggest node in a subtree. Find
|
||
the parent of it, which is the next bigger node. */
|
||
while (elt->parent && elt->parent->right == elt)
|
||
elt = elt->parent;
|
||
elt = elt->parent;
|
||
if (elt && tree_int_cst_lt (constructor_unfilled_index,
|
||
elt->purpose))
|
||
{
|
||
next = elt->purpose;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
tree ctor_unfilled_bitpos, elt_bitpos;
|
||
|
||
/* If the current record is complete we are done. */
|
||
if (constructor_unfilled_fields == 0)
|
||
break;
|
||
|
||
ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
|
||
elt_bitpos = bit_position (elt->purpose);
|
||
/* We can't compare fields here because there might be empty
|
||
fields in between. */
|
||
if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
|
||
{
|
||
constructor_unfilled_fields = elt->purpose;
|
||
output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
|
||
elt->purpose, 0);
|
||
}
|
||
else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
|
||
{
|
||
/* Advance to the next smaller node. */
|
||
if (elt->left)
|
||
elt = elt->left;
|
||
else
|
||
{
|
||
/* We have reached the smallest node bigger than the
|
||
current unfilled field. Fill the space first. */
|
||
next = elt->purpose;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Advance to the next bigger node. */
|
||
if (elt->right)
|
||
elt = elt->right;
|
||
else
|
||
{
|
||
/* We have reached the biggest node in a subtree. Find
|
||
the parent of it, which is the next bigger node. */
|
||
while (elt->parent && elt->parent->right == elt)
|
||
elt = elt->parent;
|
||
elt = elt->parent;
|
||
if (elt
|
||
&& (tree_int_cst_lt (ctor_unfilled_bitpos,
|
||
bit_position (elt->purpose))))
|
||
{
|
||
next = elt->purpose;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Ordinarily return, but not if we want to output all
|
||
and there are elements left. */
|
||
if (!(all && next != 0))
|
||
return;
|
||
|
||
/* If it's not incremental, just skip over the gap, so that after
|
||
jumping to retry we will output the next successive element. */
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
constructor_unfilled_fields = next;
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
constructor_unfilled_index = next;
|
||
|
||
/* ELT now points to the node in the pending tree with the next
|
||
initializer to output. */
|
||
goto retry;
|
||
}
|
||
|
||
/* Add one non-braced element to the current constructor level.
|
||
This adjusts the current position within the constructor's type.
|
||
This may also start or terminate implicit levels
|
||
to handle a partly-braced initializer.
|
||
|
||
Once this has found the correct level for the new element,
|
||
it calls output_init_element. */
|
||
|
||
void
|
||
process_init_element (struct c_expr value)
|
||
{
|
||
tree orig_value = value.value;
|
||
int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
|
||
bool strict_string = value.original_code == STRING_CST;
|
||
|
||
designator_depth = 0;
|
||
designator_erroneous = 0;
|
||
|
||
/* Handle superfluous braces around string cst as in
|
||
char x[] = {"foo"}; */
|
||
if (string_flag
|
||
&& constructor_type
|
||
&& TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
|
||
&& integer_zerop (constructor_unfilled_index))
|
||
{
|
||
if (constructor_stack->replacement_value.value)
|
||
error_init ("excess elements in char array initializer");
|
||
constructor_stack->replacement_value = value;
|
||
return;
|
||
}
|
||
|
||
if (constructor_stack->replacement_value.value != 0)
|
||
{
|
||
error_init ("excess elements in struct initializer");
|
||
return;
|
||
}
|
||
|
||
/* Ignore elements of a brace group if it is entirely superfluous
|
||
and has already been diagnosed. */
|
||
if (constructor_type == 0)
|
||
return;
|
||
|
||
/* If we've exhausted any levels that didn't have braces,
|
||
pop them now. */
|
||
while (constructor_stack->implicit)
|
||
{
|
||
if ((TREE_CODE (constructor_type) == RECORD_TYPE
|
||
|| TREE_CODE (constructor_type) == UNION_TYPE)
|
||
&& constructor_fields == 0)
|
||
process_init_element (pop_init_level (1));
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE
|
||
&& (constructor_max_index == 0
|
||
|| tree_int_cst_lt (constructor_max_index,
|
||
constructor_index)))
|
||
process_init_element (pop_init_level (1));
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
|
||
if (constructor_range_stack)
|
||
{
|
||
/* If value is a compound literal and we'll be just using its
|
||
content, don't put it into a SAVE_EXPR. */
|
||
if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
|
||
|| !require_constant_value
|
||
|| flag_isoc99)
|
||
value.value = save_expr (value.value);
|
||
}
|
||
|
||
while (1)
|
||
{
|
||
if (TREE_CODE (constructor_type) == RECORD_TYPE)
|
||
{
|
||
tree fieldtype;
|
||
enum tree_code fieldcode;
|
||
|
||
if (constructor_fields == 0)
|
||
{
|
||
pedwarn_init ("excess elements in struct initializer");
|
||
break;
|
||
}
|
||
|
||
fieldtype = TREE_TYPE (constructor_fields);
|
||
if (fieldtype != error_mark_node)
|
||
fieldtype = TYPE_MAIN_VARIANT (fieldtype);
|
||
fieldcode = TREE_CODE (fieldtype);
|
||
|
||
/* Error for non-static initialization of a flexible array member. */
|
||
if (fieldcode == ARRAY_TYPE
|
||
&& !require_constant_value
|
||
&& TYPE_SIZE (fieldtype) == NULL_TREE
|
||
&& TREE_CHAIN (constructor_fields) == NULL_TREE)
|
||
{
|
||
error_init ("non-static initialization of a flexible array member");
|
||
break;
|
||
}
|
||
|
||
/* Accept a string constant to initialize a subarray. */
|
||
if (value.value != 0
|
||
&& fieldcode == ARRAY_TYPE
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
|
||
&& string_flag)
|
||
value.value = orig_value;
|
||
/* Otherwise, if we have come to a subaggregate,
|
||
and we don't have an element of its type, push into it. */
|
||
else if (value.value != 0
|
||
&& value.value != error_mark_node
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
|
||
&& (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
|
||
|| fieldcode == UNION_TYPE))
|
||
{
|
||
push_init_level (1);
|
||
continue;
|
||
}
|
||
|
||
if (value.value)
|
||
{
|
||
push_member_name (constructor_fields);
|
||
output_init_element (value.value, strict_string,
|
||
fieldtype, constructor_fields, 1);
|
||
RESTORE_SPELLING_DEPTH (constructor_depth);
|
||
}
|
||
else
|
||
/* Do the bookkeeping for an element that was
|
||
directly output as a constructor. */
|
||
{
|
||
/* For a record, keep track of end position of last field. */
|
||
if (DECL_SIZE (constructor_fields))
|
||
constructor_bit_index
|
||
= size_binop (PLUS_EXPR,
|
||
bit_position (constructor_fields),
|
||
DECL_SIZE (constructor_fields));
|
||
|
||
/* If the current field was the first one not yet written out,
|
||
it isn't now, so update. */
|
||
if (constructor_unfilled_fields == constructor_fields)
|
||
{
|
||
constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
|
||
/* Skip any nameless bit fields. */
|
||
while (constructor_unfilled_fields != 0
|
||
&& DECL_C_BIT_FIELD (constructor_unfilled_fields)
|
||
&& DECL_NAME (constructor_unfilled_fields) == 0)
|
||
constructor_unfilled_fields =
|
||
TREE_CHAIN (constructor_unfilled_fields);
|
||
}
|
||
}
|
||
|
||
constructor_fields = TREE_CHAIN (constructor_fields);
|
||
/* Skip any nameless bit fields at the beginning. */
|
||
while (constructor_fields != 0
|
||
&& DECL_C_BIT_FIELD (constructor_fields)
|
||
&& DECL_NAME (constructor_fields) == 0)
|
||
constructor_fields = TREE_CHAIN (constructor_fields);
|
||
}
|
||
else if (TREE_CODE (constructor_type) == UNION_TYPE)
|
||
{
|
||
tree fieldtype;
|
||
enum tree_code fieldcode;
|
||
|
||
if (constructor_fields == 0)
|
||
{
|
||
pedwarn_init ("excess elements in union initializer");
|
||
break;
|
||
}
|
||
|
||
fieldtype = TREE_TYPE (constructor_fields);
|
||
if (fieldtype != error_mark_node)
|
||
fieldtype = TYPE_MAIN_VARIANT (fieldtype);
|
||
fieldcode = TREE_CODE (fieldtype);
|
||
|
||
/* Warn that traditional C rejects initialization of unions.
|
||
We skip the warning if the value is zero. This is done
|
||
under the assumption that the zero initializer in user
|
||
code appears conditioned on e.g. __STDC__ to avoid
|
||
"missing initializer" warnings and relies on default
|
||
initialization to zero in the traditional C case.
|
||
We also skip the warning if the initializer is designated,
|
||
again on the assumption that this must be conditional on
|
||
__STDC__ anyway (and we've already complained about the
|
||
member-designator already). */
|
||
if (!in_system_header && !constructor_designated
|
||
&& !(value.value && (integer_zerop (value.value)
|
||
|| real_zerop (value.value))))
|
||
warning (OPT_Wtraditional, "traditional C rejects initialization "
|
||
"of unions");
|
||
|
||
/* Accept a string constant to initialize a subarray. */
|
||
if (value.value != 0
|
||
&& fieldcode == ARRAY_TYPE
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
|
||
&& string_flag)
|
||
value.value = orig_value;
|
||
/* Otherwise, if we have come to a subaggregate,
|
||
and we don't have an element of its type, push into it. */
|
||
else if (value.value != 0
|
||
&& value.value != error_mark_node
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
|
||
&& (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
|
||
|| fieldcode == UNION_TYPE))
|
||
{
|
||
push_init_level (1);
|
||
continue;
|
||
}
|
||
|
||
if (value.value)
|
||
{
|
||
push_member_name (constructor_fields);
|
||
output_init_element (value.value, strict_string,
|
||
fieldtype, constructor_fields, 1);
|
||
RESTORE_SPELLING_DEPTH (constructor_depth);
|
||
}
|
||
else
|
||
/* Do the bookkeeping for an element that was
|
||
directly output as a constructor. */
|
||
{
|
||
constructor_bit_index = DECL_SIZE (constructor_fields);
|
||
constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
|
||
}
|
||
|
||
constructor_fields = 0;
|
||
}
|
||
else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
|
||
{
|
||
tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
|
||
enum tree_code eltcode = TREE_CODE (elttype);
|
||
|
||
/* Accept a string constant to initialize a subarray. */
|
||
if (value.value != 0
|
||
&& eltcode == ARRAY_TYPE
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (elttype))
|
||
&& string_flag)
|
||
value.value = orig_value;
|
||
/* Otherwise, if we have come to a subaggregate,
|
||
and we don't have an element of its type, push into it. */
|
||
else if (value.value != 0
|
||
&& value.value != error_mark_node
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
|
||
&& (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
|
||
|| eltcode == UNION_TYPE))
|
||
{
|
||
push_init_level (1);
|
||
continue;
|
||
}
|
||
|
||
if (constructor_max_index != 0
|
||
&& (tree_int_cst_lt (constructor_max_index, constructor_index)
|
||
|| integer_all_onesp (constructor_max_index)))
|
||
{
|
||
pedwarn_init ("excess elements in array initializer");
|
||
break;
|
||
}
|
||
|
||
/* Now output the actual element. */
|
||
if (value.value)
|
||
{
|
||
push_array_bounds (tree_low_cst (constructor_index, 1));
|
||
output_init_element (value.value, strict_string,
|
||
elttype, constructor_index, 1);
|
||
RESTORE_SPELLING_DEPTH (constructor_depth);
|
||
}
|
||
|
||
constructor_index
|
||
= size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
|
||
|
||
if (!value.value)
|
||
/* If we are doing the bookkeeping for an element that was
|
||
directly output as a constructor, we must update
|
||
constructor_unfilled_index. */
|
||
constructor_unfilled_index = constructor_index;
|
||
}
|
||
else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
|
||
{
|
||
tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
|
||
|
||
/* Do a basic check of initializer size. Note that vectors
|
||
always have a fixed size derived from their type. */
|
||
if (tree_int_cst_lt (constructor_max_index, constructor_index))
|
||
{
|
||
pedwarn_init ("excess elements in vector initializer");
|
||
break;
|
||
}
|
||
|
||
/* Now output the actual element. */
|
||
if (value.value)
|
||
output_init_element (value.value, strict_string,
|
||
elttype, constructor_index, 1);
|
||
|
||
constructor_index
|
||
= size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
|
||
|
||
if (!value.value)
|
||
/* If we are doing the bookkeeping for an element that was
|
||
directly output as a constructor, we must update
|
||
constructor_unfilled_index. */
|
||
constructor_unfilled_index = constructor_index;
|
||
}
|
||
|
||
/* Handle the sole element allowed in a braced initializer
|
||
for a scalar variable. */
|
||
else if (constructor_type != error_mark_node
|
||
&& constructor_fields == 0)
|
||
{
|
||
pedwarn_init ("excess elements in scalar initializer");
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
if (value.value)
|
||
output_init_element (value.value, strict_string,
|
||
constructor_type, NULL_TREE, 1);
|
||
constructor_fields = 0;
|
||
}
|
||
|
||
/* Handle range initializers either at this level or anywhere higher
|
||
in the designator stack. */
|
||
if (constructor_range_stack)
|
||
{
|
||
struct constructor_range_stack *p, *range_stack;
|
||
int finish = 0;
|
||
|
||
range_stack = constructor_range_stack;
|
||
constructor_range_stack = 0;
|
||
while (constructor_stack != range_stack->stack)
|
||
{
|
||
gcc_assert (constructor_stack->implicit);
|
||
process_init_element (pop_init_level (1));
|
||
}
|
||
for (p = range_stack;
|
||
!p->range_end || tree_int_cst_equal (p->index, p->range_end);
|
||
p = p->prev)
|
||
{
|
||
gcc_assert (constructor_stack->implicit);
|
||
process_init_element (pop_init_level (1));
|
||
}
|
||
|
||
p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
|
||
if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
|
||
finish = 1;
|
||
|
||
while (1)
|
||
{
|
||
constructor_index = p->index;
|
||
constructor_fields = p->fields;
|
||
if (finish && p->range_end && p->index == p->range_start)
|
||
{
|
||
finish = 0;
|
||
p->prev = 0;
|
||
}
|
||
p = p->next;
|
||
if (!p)
|
||
break;
|
||
push_init_level (2);
|
||
p->stack = constructor_stack;
|
||
if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
|
||
p->index = p->range_start;
|
||
}
|
||
|
||
if (!finish)
|
||
constructor_range_stack = range_stack;
|
||
continue;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
constructor_range_stack = 0;
|
||
}
|
||
|
||
/* Build a complete asm-statement, whose components are a CV_QUALIFIER
|
||
(guaranteed to be 'volatile' or null) and ARGS (represented using
|
||
an ASM_EXPR node). */
|
||
tree
|
||
build_asm_stmt (tree cv_qualifier, tree args)
|
||
{
|
||
if (!ASM_VOLATILE_P (args) && cv_qualifier)
|
||
ASM_VOLATILE_P (args) = 1;
|
||
return add_stmt (args);
|
||
}
|
||
|
||
/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
|
||
some INPUTS, and some CLOBBERS. The latter three may be NULL.
|
||
SIMPLE indicates whether there was anything at all after the
|
||
string in the asm expression -- asm("blah") and asm("blah" : )
|
||
are subtly different. We use a ASM_EXPR node to represent this. */
|
||
tree
|
||
build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
|
||
bool simple)
|
||
{
|
||
tree tail;
|
||
tree args;
|
||
int i;
|
||
const char *constraint;
|
||
const char **oconstraints;
|
||
bool allows_mem, allows_reg, is_inout;
|
||
int ninputs, noutputs;
|
||
|
||
ninputs = list_length (inputs);
|
||
noutputs = list_length (outputs);
|
||
oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
|
||
|
||
string = resolve_asm_operand_names (string, outputs, inputs);
|
||
|
||
/* Remove output conversions that change the type but not the mode. */
|
||
for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
|
||
{
|
||
tree output = TREE_VALUE (tail);
|
||
|
||
/* ??? Really, this should not be here. Users should be using a
|
||
proper lvalue, dammit. But there's a long history of using casts
|
||
in the output operands. In cases like longlong.h, this becomes a
|
||
primitive form of typechecking -- if the cast can be removed, then
|
||
the output operand had a type of the proper width; otherwise we'll
|
||
get an error. Gross, but ... */
|
||
STRIP_NOPS (output);
|
||
|
||
if (!lvalue_or_else (output, lv_asm))
|
||
output = error_mark_node;
|
||
|
||
if (output != error_mark_node
|
||
&& (TREE_READONLY (output)
|
||
|| TYPE_READONLY (TREE_TYPE (output))
|
||
|| ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
|
||
|| TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
|
||
&& C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
|
||
readonly_error (output, lv_asm);
|
||
|
||
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
|
||
oconstraints[i] = constraint;
|
||
|
||
if (parse_output_constraint (&constraint, i, ninputs, noutputs,
|
||
&allows_mem, &allows_reg, &is_inout))
|
||
{
|
||
/* If the operand is going to end up in memory,
|
||
mark it addressable. */
|
||
if (!allows_reg && !c_mark_addressable (output))
|
||
output = error_mark_node;
|
||
}
|
||
else
|
||
output = error_mark_node;
|
||
|
||
TREE_VALUE (tail) = output;
|
||
}
|
||
|
||
for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
|
||
{
|
||
tree input;
|
||
|
||
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
|
||
input = TREE_VALUE (tail);
|
||
|
||
if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
|
||
oconstraints, &allows_mem, &allows_reg))
|
||
{
|
||
/* If the operand is going to end up in memory,
|
||
mark it addressable. */
|
||
if (!allows_reg && allows_mem)
|
||
{
|
||
/* Strip the nops as we allow this case. FIXME, this really
|
||
should be rejected or made deprecated. */
|
||
STRIP_NOPS (input);
|
||
if (!c_mark_addressable (input))
|
||
input = error_mark_node;
|
||
}
|
||
}
|
||
else
|
||
input = error_mark_node;
|
||
|
||
TREE_VALUE (tail) = input;
|
||
}
|
||
|
||
args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
|
||
|
||
/* asm statements without outputs, including simple ones, are treated
|
||
as volatile. */
|
||
ASM_INPUT_P (args) = simple;
|
||
ASM_VOLATILE_P (args) = (noutputs == 0);
|
||
|
||
return args;
|
||
}
|
||
|
||
/* Generate a goto statement to LABEL. */
|
||
|
||
tree
|
||
c_finish_goto_label (tree label)
|
||
{
|
||
tree decl = lookup_label (label);
|
||
if (!decl)
|
||
return NULL_TREE;
|
||
|
||
if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
|
||
{
|
||
error ("jump into statement expression");
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (C_DECL_UNJUMPABLE_VM (decl))
|
||
{
|
||
error ("jump into scope of identifier with variably modified type");
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
|
||
{
|
||
/* No jump from outside this statement expression context, so
|
||
record that there is a jump from within this context. */
|
||
struct c_label_list *nlist;
|
||
nlist = XOBNEW (&parser_obstack, struct c_label_list);
|
||
nlist->next = label_context_stack_se->labels_used;
|
||
nlist->label = decl;
|
||
label_context_stack_se->labels_used = nlist;
|
||
}
|
||
|
||
if (!C_DECL_UNDEFINABLE_VM (decl))
|
||
{
|
||
/* No jump from outside this context context of identifiers with
|
||
variably modified type, so record that there is a jump from
|
||
within this context. */
|
||
struct c_label_list *nlist;
|
||
nlist = XOBNEW (&parser_obstack, struct c_label_list);
|
||
nlist->next = label_context_stack_vm->labels_used;
|
||
nlist->label = decl;
|
||
label_context_stack_vm->labels_used = nlist;
|
||
}
|
||
|
||
TREE_USED (decl) = 1;
|
||
return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
|
||
}
|
||
|
||
/* Generate a computed goto statement to EXPR. */
|
||
|
||
tree
|
||
c_finish_goto_ptr (tree expr)
|
||
{
|
||
if (pedantic)
|
||
pedwarn ("ISO C forbids %<goto *expr;%>");
|
||
expr = convert (ptr_type_node, expr);
|
||
return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
|
||
}
|
||
|
||
/* Generate a C `return' statement. RETVAL is the expression for what
|
||
to return, or a null pointer for `return;' with no value. */
|
||
|
||
tree
|
||
c_finish_return (tree retval)
|
||
{
|
||
tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
|
||
bool no_warning = false;
|
||
|
||
if (TREE_THIS_VOLATILE (current_function_decl))
|
||
warning (0, "function declared %<noreturn%> has a %<return%> statement");
|
||
|
||
if (!retval)
|
||
{
|
||
current_function_returns_null = 1;
|
||
if ((warn_return_type || flag_isoc99)
|
||
&& valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
|
||
{
|
||
pedwarn_c99 ("%<return%> with no value, in "
|
||
"function returning non-void");
|
||
no_warning = true;
|
||
}
|
||
}
|
||
else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
|
||
{
|
||
current_function_returns_null = 1;
|
||
if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
|
||
pedwarn ("%<return%> with a value, in function returning void");
|
||
}
|
||
else
|
||
{
|
||
tree t = convert_for_assignment (valtype, retval, ic_return,
|
||
NULL_TREE, NULL_TREE, 0);
|
||
tree res = DECL_RESULT (current_function_decl);
|
||
tree inner;
|
||
|
||
current_function_returns_value = 1;
|
||
if (t == error_mark_node)
|
||
return NULL_TREE;
|
||
|
||
inner = t = convert (TREE_TYPE (res), t);
|
||
|
||
/* Strip any conversions, additions, and subtractions, and see if
|
||
we are returning the address of a local variable. Warn if so. */
|
||
while (1)
|
||
{
|
||
switch (TREE_CODE (inner))
|
||
{
|
||
case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
|
||
case PLUS_EXPR:
|
||
inner = TREE_OPERAND (inner, 0);
|
||
continue;
|
||
|
||
case MINUS_EXPR:
|
||
/* If the second operand of the MINUS_EXPR has a pointer
|
||
type (or is converted from it), this may be valid, so
|
||
don't give a warning. */
|
||
{
|
||
tree op1 = TREE_OPERAND (inner, 1);
|
||
|
||
while (!POINTER_TYPE_P (TREE_TYPE (op1))
|
||
&& (TREE_CODE (op1) == NOP_EXPR
|
||
|| TREE_CODE (op1) == NON_LVALUE_EXPR
|
||
|| TREE_CODE (op1) == CONVERT_EXPR))
|
||
op1 = TREE_OPERAND (op1, 0);
|
||
|
||
if (POINTER_TYPE_P (TREE_TYPE (op1)))
|
||
break;
|
||
|
||
inner = TREE_OPERAND (inner, 0);
|
||
continue;
|
||
}
|
||
|
||
case ADDR_EXPR:
|
||
inner = TREE_OPERAND (inner, 0);
|
||
|
||
while (REFERENCE_CLASS_P (inner)
|
||
&& TREE_CODE (inner) != INDIRECT_REF)
|
||
inner = TREE_OPERAND (inner, 0);
|
||
|
||
if (DECL_P (inner)
|
||
&& !DECL_EXTERNAL (inner)
|
||
&& !TREE_STATIC (inner)
|
||
&& DECL_CONTEXT (inner) == current_function_decl)
|
||
warning (0, "function returns address of local variable");
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
|
||
}
|
||
|
||
ret_stmt = build_stmt (RETURN_EXPR, retval);
|
||
TREE_NO_WARNING (ret_stmt) |= no_warning;
|
||
return add_stmt (ret_stmt);
|
||
}
|
||
|
||
struct c_switch {
|
||
/* The SWITCH_EXPR being built. */
|
||
tree switch_expr;
|
||
|
||
/* The original type of the testing expression, i.e. before the
|
||
default conversion is applied. */
|
||
tree orig_type;
|
||
|
||
/* A splay-tree mapping the low element of a case range to the high
|
||
element, or NULL_TREE if there is no high element. Used to
|
||
determine whether or not a new case label duplicates an old case
|
||
label. We need a tree, rather than simply a hash table, because
|
||
of the GNU case range extension. */
|
||
splay_tree cases;
|
||
|
||
/* Number of nested statement expressions within this switch
|
||
statement; if nonzero, case and default labels may not
|
||
appear. */
|
||
unsigned int blocked_stmt_expr;
|
||
|
||
/* Scope of outermost declarations of identifiers with variably
|
||
modified type within this switch statement; if nonzero, case and
|
||
default labels may not appear. */
|
||
unsigned int blocked_vm;
|
||
|
||
/* The next node on the stack. */
|
||
struct c_switch *next;
|
||
};
|
||
|
||
/* A stack of the currently active switch statements. The innermost
|
||
switch statement is on the top of the stack. There is no need to
|
||
mark the stack for garbage collection because it is only active
|
||
during the processing of the body of a function, and we never
|
||
collect at that point. */
|
||
|
||
struct c_switch *c_switch_stack;
|
||
|
||
/* Start a C switch statement, testing expression EXP. Return the new
|
||
SWITCH_EXPR. */
|
||
|
||
tree
|
||
c_start_case (tree exp)
|
||
{
|
||
tree orig_type = error_mark_node;
|
||
struct c_switch *cs;
|
||
|
||
if (exp != error_mark_node)
|
||
{
|
||
orig_type = TREE_TYPE (exp);
|
||
|
||
if (!INTEGRAL_TYPE_P (orig_type))
|
||
{
|
||
if (orig_type != error_mark_node)
|
||
{
|
||
error ("switch quantity not an integer");
|
||
orig_type = error_mark_node;
|
||
}
|
||
exp = integer_zero_node;
|
||
}
|
||
else
|
||
{
|
||
tree type = TYPE_MAIN_VARIANT (orig_type);
|
||
|
||
if (!in_system_header
|
||
&& (type == long_integer_type_node
|
||
|| type == long_unsigned_type_node))
|
||
warning (OPT_Wtraditional, "%<long%> switch expression not "
|
||
"converted to %<int%> in ISO C");
|
||
|
||
exp = default_conversion (exp);
|
||
}
|
||
}
|
||
|
||
/* Add this new SWITCH_EXPR to the stack. */
|
||
cs = XNEW (struct c_switch);
|
||
cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
|
||
cs->orig_type = orig_type;
|
||
cs->cases = splay_tree_new (case_compare, NULL, NULL);
|
||
cs->blocked_stmt_expr = 0;
|
||
cs->blocked_vm = 0;
|
||
cs->next = c_switch_stack;
|
||
c_switch_stack = cs;
|
||
|
||
return add_stmt (cs->switch_expr);
|
||
}
|
||
|
||
/* Process a case label. */
|
||
|
||
tree
|
||
do_case (tree low_value, tree high_value)
|
||
{
|
||
tree label = NULL_TREE;
|
||
|
||
if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
|
||
&& !c_switch_stack->blocked_vm)
|
||
{
|
||
label = c_add_case_label (c_switch_stack->cases,
|
||
SWITCH_COND (c_switch_stack->switch_expr),
|
||
c_switch_stack->orig_type,
|
||
low_value, high_value);
|
||
if (label == error_mark_node)
|
||
label = NULL_TREE;
|
||
}
|
||
else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
|
||
{
|
||
if (low_value)
|
||
error ("case label in statement expression not containing "
|
||
"enclosing switch statement");
|
||
else
|
||
error ("%<default%> label in statement expression not containing "
|
||
"enclosing switch statement");
|
||
}
|
||
else if (c_switch_stack && c_switch_stack->blocked_vm)
|
||
{
|
||
if (low_value)
|
||
error ("case label in scope of identifier with variably modified "
|
||
"type not containing enclosing switch statement");
|
||
else
|
||
error ("%<default%> label in scope of identifier with variably "
|
||
"modified type not containing enclosing switch statement");
|
||
}
|
||
else if (low_value)
|
||
error ("case label not within a switch statement");
|
||
else
|
||
error ("%<default%> label not within a switch statement");
|
||
|
||
return label;
|
||
}
|
||
|
||
/* Finish the switch statement. */
|
||
|
||
void
|
||
c_finish_case (tree body)
|
||
{
|
||
struct c_switch *cs = c_switch_stack;
|
||
location_t switch_location;
|
||
|
||
SWITCH_BODY (cs->switch_expr) = body;
|
||
|
||
/* We must not be within a statement expression nested in the switch
|
||
at this point; we might, however, be within the scope of an
|
||
identifier with variably modified type nested in the switch. */
|
||
gcc_assert (!cs->blocked_stmt_expr);
|
||
|
||
/* Emit warnings as needed. */
|
||
if (EXPR_HAS_LOCATION (cs->switch_expr))
|
||
switch_location = EXPR_LOCATION (cs->switch_expr);
|
||
else
|
||
switch_location = input_location;
|
||
c_do_switch_warnings (cs->cases, switch_location,
|
||
TREE_TYPE (cs->switch_expr),
|
||
SWITCH_COND (cs->switch_expr));
|
||
|
||
/* Pop the stack. */
|
||
c_switch_stack = cs->next;
|
||
splay_tree_delete (cs->cases);
|
||
XDELETE (cs);
|
||
}
|
||
|
||
/* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
|
||
THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
|
||
may be null. NESTED_IF is true if THEN_BLOCK contains another IF
|
||
statement, and was not surrounded with parenthesis. */
|
||
|
||
void
|
||
c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
|
||
tree else_block, bool nested_if)
|
||
{
|
||
tree stmt;
|
||
|
||
/* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
|
||
if (warn_parentheses && nested_if && else_block == NULL)
|
||
{
|
||
tree inner_if = then_block;
|
||
|
||
/* We know from the grammar productions that there is an IF nested
|
||
within THEN_BLOCK. Due to labels and c99 conditional declarations,
|
||
it might not be exactly THEN_BLOCK, but should be the last
|
||
non-container statement within. */
|
||
while (1)
|
||
switch (TREE_CODE (inner_if))
|
||
{
|
||
case COND_EXPR:
|
||
goto found;
|
||
case BIND_EXPR:
|
||
inner_if = BIND_EXPR_BODY (inner_if);
|
||
break;
|
||
case STATEMENT_LIST:
|
||
inner_if = expr_last (then_block);
|
||
break;
|
||
case TRY_FINALLY_EXPR:
|
||
case TRY_CATCH_EXPR:
|
||
inner_if = TREE_OPERAND (inner_if, 0);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
found:
|
||
|
||
if (COND_EXPR_ELSE (inner_if))
|
||
warning (OPT_Wparentheses,
|
||
"%Hsuggest explicit braces to avoid ambiguous %<else%>",
|
||
&if_locus);
|
||
}
|
||
|
||
empty_body_warning (then_block, else_block);
|
||
|
||
stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
|
||
SET_EXPR_LOCATION (stmt, if_locus);
|
||
add_stmt (stmt);
|
||
}
|
||
|
||
/* Emit a general-purpose loop construct. START_LOCUS is the location of
|
||
the beginning of the loop. COND is the loop condition. COND_IS_FIRST
|
||
is false for DO loops. INCR is the FOR increment expression. BODY is
|
||
the statement controlled by the loop. BLAB is the break label. CLAB is
|
||
the continue label. Everything is allowed to be NULL. */
|
||
|
||
void
|
||
c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
|
||
tree blab, tree clab, bool cond_is_first)
|
||
{
|
||
tree entry = NULL, exit = NULL, t;
|
||
|
||
/* If the condition is zero don't generate a loop construct. */
|
||
if (cond && integer_zerop (cond))
|
||
{
|
||
if (cond_is_first)
|
||
{
|
||
t = build_and_jump (&blab);
|
||
SET_EXPR_LOCATION (t, start_locus);
|
||
add_stmt (t);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
|
||
|
||
/* If we have an exit condition, then we build an IF with gotos either
|
||
out of the loop, or to the top of it. If there's no exit condition,
|
||
then we just build a jump back to the top. */
|
||
exit = build_and_jump (&LABEL_EXPR_LABEL (top));
|
||
|
||
if (cond && !integer_nonzerop (cond))
|
||
{
|
||
/* Canonicalize the loop condition to the end. This means
|
||
generating a branch to the loop condition. Reuse the
|
||
continue label, if possible. */
|
||
if (cond_is_first)
|
||
{
|
||
if (incr || !clab)
|
||
{
|
||
entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
|
||
t = build_and_jump (&LABEL_EXPR_LABEL (entry));
|
||
}
|
||
else
|
||
t = build1 (GOTO_EXPR, void_type_node, clab);
|
||
SET_EXPR_LOCATION (t, start_locus);
|
||
add_stmt (t);
|
||
}
|
||
|
||
t = build_and_jump (&blab);
|
||
exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
|
||
if (cond_is_first)
|
||
SET_EXPR_LOCATION (exit, start_locus);
|
||
else
|
||
SET_EXPR_LOCATION (exit, input_location);
|
||
}
|
||
|
||
add_stmt (top);
|
||
}
|
||
|
||
if (body)
|
||
add_stmt (body);
|
||
if (clab)
|
||
add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
|
||
if (incr)
|
||
add_stmt (incr);
|
||
if (entry)
|
||
add_stmt (entry);
|
||
if (exit)
|
||
add_stmt (exit);
|
||
if (blab)
|
||
add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
|
||
}
|
||
|
||
tree
|
||
c_finish_bc_stmt (tree *label_p, bool is_break)
|
||
{
|
||
bool skip;
|
||
tree label = *label_p;
|
||
|
||
/* In switch statements break is sometimes stylistically used after
|
||
a return statement. This can lead to spurious warnings about
|
||
control reaching the end of a non-void function when it is
|
||
inlined. Note that we are calling block_may_fallthru with
|
||
language specific tree nodes; this works because
|
||
block_may_fallthru returns true when given something it does not
|
||
understand. */
|
||
skip = !block_may_fallthru (cur_stmt_list);
|
||
|
||
if (!label)
|
||
{
|
||
if (!skip)
|
||
*label_p = label = create_artificial_label ();
|
||
}
|
||
else if (TREE_CODE (label) == LABEL_DECL)
|
||
;
|
||
else switch (TREE_INT_CST_LOW (label))
|
||
{
|
||
case 0:
|
||
if (is_break)
|
||
error ("break statement not within loop or switch");
|
||
else
|
||
error ("continue statement not within a loop");
|
||
return NULL_TREE;
|
||
|
||
case 1:
|
||
gcc_assert (is_break);
|
||
error ("break statement used with OpenMP for loop");
|
||
return NULL_TREE;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (skip)
|
||
return NULL_TREE;
|
||
|
||
return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
|
||
}
|
||
|
||
/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
|
||
|
||
static void
|
||
emit_side_effect_warnings (tree expr)
|
||
{
|
||
if (expr == error_mark_node)
|
||
;
|
||
else if (!TREE_SIDE_EFFECTS (expr))
|
||
{
|
||
if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
|
||
warning (0, "%Hstatement with no effect",
|
||
EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
|
||
}
|
||
else if (warn_unused_value)
|
||
warn_if_unused_value (expr, input_location);
|
||
}
|
||
|
||
/* Process an expression as if it were a complete statement. Emit
|
||
diagnostics, but do not call ADD_STMT. */
|
||
|
||
tree
|
||
c_process_expr_stmt (tree expr)
|
||
{
|
||
if (!expr)
|
||
return NULL_TREE;
|
||
|
||
if (warn_sequence_point)
|
||
verify_sequence_points (expr);
|
||
|
||
if (TREE_TYPE (expr) != error_mark_node
|
||
&& !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
|
||
&& TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
|
||
error ("expression statement has incomplete type");
|
||
|
||
/* If we're not processing a statement expression, warn about unused values.
|
||
Warnings for statement expressions will be emitted later, once we figure
|
||
out which is the result. */
|
||
if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
|
||
&& (extra_warnings || warn_unused_value))
|
||
emit_side_effect_warnings (expr);
|
||
|
||
/* If the expression is not of a type to which we cannot assign a line
|
||
number, wrap the thing in a no-op NOP_EXPR. */
|
||
if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
|
||
expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
|
||
|
||
if (EXPR_P (expr))
|
||
SET_EXPR_LOCATION (expr, input_location);
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Emit an expression as a statement. */
|
||
|
||
tree
|
||
c_finish_expr_stmt (tree expr)
|
||
{
|
||
if (expr)
|
||
return add_stmt (c_process_expr_stmt (expr));
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Do the opposite and emit a statement as an expression. To begin,
|
||
create a new binding level and return it. */
|
||
|
||
tree
|
||
c_begin_stmt_expr (void)
|
||
{
|
||
tree ret;
|
||
struct c_label_context_se *nstack;
|
||
struct c_label_list *glist;
|
||
|
||
/* We must force a BLOCK for this level so that, if it is not expanded
|
||
later, there is a way to turn off the entire subtree of blocks that
|
||
are contained in it. */
|
||
keep_next_level ();
|
||
ret = c_begin_compound_stmt (true);
|
||
if (c_switch_stack)
|
||
{
|
||
c_switch_stack->blocked_stmt_expr++;
|
||
gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
|
||
}
|
||
for (glist = label_context_stack_se->labels_used;
|
||
glist != NULL;
|
||
glist = glist->next)
|
||
{
|
||
C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
|
||
}
|
||
nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
|
||
nstack->labels_def = NULL;
|
||
nstack->labels_used = NULL;
|
||
nstack->next = label_context_stack_se;
|
||
label_context_stack_se = nstack;
|
||
|
||
/* Mark the current statement list as belonging to a statement list. */
|
||
STATEMENT_LIST_STMT_EXPR (ret) = 1;
|
||
|
||
return ret;
|
||
}
|
||
|
||
tree
|
||
c_finish_stmt_expr (tree body)
|
||
{
|
||
tree last, type, tmp, val;
|
||
tree *last_p;
|
||
struct c_label_list *dlist, *glist, *glist_prev = NULL;
|
||
|
||
body = c_end_compound_stmt (body, true);
|
||
if (c_switch_stack)
|
||
{
|
||
gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
|
||
c_switch_stack->blocked_stmt_expr--;
|
||
}
|
||
/* It is no longer possible to jump to labels defined within this
|
||
statement expression. */
|
||
for (dlist = label_context_stack_se->labels_def;
|
||
dlist != NULL;
|
||
dlist = dlist->next)
|
||
{
|
||
C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
|
||
}
|
||
/* It is again possible to define labels with a goto just outside
|
||
this statement expression. */
|
||
for (glist = label_context_stack_se->next->labels_used;
|
||
glist != NULL;
|
||
glist = glist->next)
|
||
{
|
||
C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
|
||
glist_prev = glist;
|
||
}
|
||
if (glist_prev != NULL)
|
||
glist_prev->next = label_context_stack_se->labels_used;
|
||
else
|
||
label_context_stack_se->next->labels_used
|
||
= label_context_stack_se->labels_used;
|
||
label_context_stack_se = label_context_stack_se->next;
|
||
|
||
/* Locate the last statement in BODY. See c_end_compound_stmt
|
||
about always returning a BIND_EXPR. */
|
||
last_p = &BIND_EXPR_BODY (body);
|
||
last = BIND_EXPR_BODY (body);
|
||
|
||
continue_searching:
|
||
if (TREE_CODE (last) == STATEMENT_LIST)
|
||
{
|
||
tree_stmt_iterator i;
|
||
|
||
/* This can happen with degenerate cases like ({ }). No value. */
|
||
if (!TREE_SIDE_EFFECTS (last))
|
||
return body;
|
||
|
||
/* If we're supposed to generate side effects warnings, process
|
||
all of the statements except the last. */
|
||
if (extra_warnings || warn_unused_value)
|
||
{
|
||
for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
|
||
emit_side_effect_warnings (tsi_stmt (i));
|
||
}
|
||
else
|
||
i = tsi_last (last);
|
||
last_p = tsi_stmt_ptr (i);
|
||
last = *last_p;
|
||
}
|
||
|
||
/* If the end of the list is exception related, then the list was split
|
||
by a call to push_cleanup. Continue searching. */
|
||
if (TREE_CODE (last) == TRY_FINALLY_EXPR
|
||
|| TREE_CODE (last) == TRY_CATCH_EXPR)
|
||
{
|
||
last_p = &TREE_OPERAND (last, 0);
|
||
last = *last_p;
|
||
goto continue_searching;
|
||
}
|
||
|
||
/* In the case that the BIND_EXPR is not necessary, return the
|
||
expression out from inside it. */
|
||
if (last == error_mark_node
|
||
|| (last == BIND_EXPR_BODY (body)
|
||
&& BIND_EXPR_VARS (body) == NULL))
|
||
{
|
||
/* Do not warn if the return value of a statement expression is
|
||
unused. */
|
||
if (EXPR_P (last))
|
||
TREE_NO_WARNING (last) = 1;
|
||
return last;
|
||
}
|
||
|
||
/* Extract the type of said expression. */
|
||
type = TREE_TYPE (last);
|
||
|
||
/* If we're not returning a value at all, then the BIND_EXPR that
|
||
we already have is a fine expression to return. */
|
||
if (!type || VOID_TYPE_P (type))
|
||
return body;
|
||
|
||
/* Now that we've located the expression containing the value, it seems
|
||
silly to make voidify_wrapper_expr repeat the process. Create a
|
||
temporary of the appropriate type and stick it in a TARGET_EXPR. */
|
||
tmp = create_tmp_var_raw (type, NULL);
|
||
|
||
/* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
|
||
tree_expr_nonnegative_p giving up immediately. */
|
||
val = last;
|
||
if (TREE_CODE (val) == NOP_EXPR
|
||
&& TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
|
||
val = TREE_OPERAND (val, 0);
|
||
|
||
*last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
|
||
SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
|
||
|
||
return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
|
||
}
|
||
|
||
/* Begin the scope of an identifier of variably modified type, scope
|
||
number SCOPE. Jumping from outside this scope to inside it is not
|
||
permitted. */
|
||
|
||
void
|
||
c_begin_vm_scope (unsigned int scope)
|
||
{
|
||
struct c_label_context_vm *nstack;
|
||
struct c_label_list *glist;
|
||
|
||
gcc_assert (scope > 0);
|
||
|
||
/* At file_scope, we don't have to do any processing. */
|
||
if (label_context_stack_vm == NULL)
|
||
return;
|
||
|
||
if (c_switch_stack && !c_switch_stack->blocked_vm)
|
||
c_switch_stack->blocked_vm = scope;
|
||
for (glist = label_context_stack_vm->labels_used;
|
||
glist != NULL;
|
||
glist = glist->next)
|
||
{
|
||
C_DECL_UNDEFINABLE_VM (glist->label) = 1;
|
||
}
|
||
nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
|
||
nstack->labels_def = NULL;
|
||
nstack->labels_used = NULL;
|
||
nstack->scope = scope;
|
||
nstack->next = label_context_stack_vm;
|
||
label_context_stack_vm = nstack;
|
||
}
|
||
|
||
/* End a scope which may contain identifiers of variably modified
|
||
type, scope number SCOPE. */
|
||
|
||
void
|
||
c_end_vm_scope (unsigned int scope)
|
||
{
|
||
if (label_context_stack_vm == NULL)
|
||
return;
|
||
if (c_switch_stack && c_switch_stack->blocked_vm == scope)
|
||
c_switch_stack->blocked_vm = 0;
|
||
/* We may have a number of nested scopes of identifiers with
|
||
variably modified type, all at this depth. Pop each in turn. */
|
||
while (label_context_stack_vm->scope == scope)
|
||
{
|
||
struct c_label_list *dlist, *glist, *glist_prev = NULL;
|
||
|
||
/* It is no longer possible to jump to labels defined within this
|
||
scope. */
|
||
for (dlist = label_context_stack_vm->labels_def;
|
||
dlist != NULL;
|
||
dlist = dlist->next)
|
||
{
|
||
C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
|
||
}
|
||
/* It is again possible to define labels with a goto just outside
|
||
this scope. */
|
||
for (glist = label_context_stack_vm->next->labels_used;
|
||
glist != NULL;
|
||
glist = glist->next)
|
||
{
|
||
C_DECL_UNDEFINABLE_VM (glist->label) = 0;
|
||
glist_prev = glist;
|
||
}
|
||
if (glist_prev != NULL)
|
||
glist_prev->next = label_context_stack_vm->labels_used;
|
||
else
|
||
label_context_stack_vm->next->labels_used
|
||
= label_context_stack_vm->labels_used;
|
||
label_context_stack_vm = label_context_stack_vm->next;
|
||
}
|
||
}
|
||
|
||
/* Begin and end compound statements. This is as simple as pushing
|
||
and popping new statement lists from the tree. */
|
||
|
||
tree
|
||
c_begin_compound_stmt (bool do_scope)
|
||
{
|
||
tree stmt = push_stmt_list ();
|
||
if (do_scope)
|
||
push_scope ();
|
||
return stmt;
|
||
}
|
||
|
||
tree
|
||
c_end_compound_stmt (tree stmt, bool do_scope)
|
||
{
|
||
tree block = NULL;
|
||
|
||
if (do_scope)
|
||
{
|
||
if (c_dialect_objc ())
|
||
objc_clear_super_receiver ();
|
||
block = pop_scope ();
|
||
}
|
||
|
||
stmt = pop_stmt_list (stmt);
|
||
stmt = c_build_bind_expr (block, stmt);
|
||
|
||
/* If this compound statement is nested immediately inside a statement
|
||
expression, then force a BIND_EXPR to be created. Otherwise we'll
|
||
do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
|
||
STATEMENT_LISTs merge, and thus we can lose track of what statement
|
||
was really last. */
|
||
if (cur_stmt_list
|
||
&& STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
|
||
&& TREE_CODE (stmt) != BIND_EXPR)
|
||
{
|
||
stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
|
||
TREE_SIDE_EFFECTS (stmt) = 1;
|
||
}
|
||
|
||
return stmt;
|
||
}
|
||
|
||
/* Queue a cleanup. CLEANUP is an expression/statement to be executed
|
||
when the current scope is exited. EH_ONLY is true when this is not
|
||
meant to apply to normal control flow transfer. */
|
||
|
||
void
|
||
push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
|
||
{
|
||
enum tree_code code;
|
||
tree stmt, list;
|
||
bool stmt_expr;
|
||
|
||
code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
|
||
stmt = build_stmt (code, NULL, cleanup);
|
||
add_stmt (stmt);
|
||
stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
|
||
list = push_stmt_list ();
|
||
TREE_OPERAND (stmt, 0) = list;
|
||
STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
|
||
}
|
||
|
||
/* Build a binary-operation expression without default conversions.
|
||
CODE is the kind of expression to build.
|
||
This function differs from `build' in several ways:
|
||
the data type of the result is computed and recorded in it,
|
||
warnings are generated if arg data types are invalid,
|
||
special handling for addition and subtraction of pointers is known,
|
||
and some optimization is done (operations on narrow ints
|
||
are done in the narrower type when that gives the same result).
|
||
Constant folding is also done before the result is returned.
|
||
|
||
Note that the operands will never have enumeral types, or function
|
||
or array types, because either they will have the default conversions
|
||
performed or they have both just been converted to some other type in which
|
||
the arithmetic is to be done. */
|
||
|
||
tree
|
||
build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
|
||
int convert_p)
|
||
{
|
||
tree type0, type1;
|
||
enum tree_code code0, code1;
|
||
tree op0, op1;
|
||
const char *invalid_op_diag;
|
||
|
||
/* Expression code to give to the expression when it is built.
|
||
Normally this is CODE, which is what the caller asked for,
|
||
but in some special cases we change it. */
|
||
enum tree_code resultcode = code;
|
||
|
||
/* Data type in which the computation is to be performed.
|
||
In the simplest cases this is the common type of the arguments. */
|
||
tree result_type = NULL;
|
||
|
||
/* Nonzero means operands have already been type-converted
|
||
in whatever way is necessary.
|
||
Zero means they need to be converted to RESULT_TYPE. */
|
||
int converted = 0;
|
||
|
||
/* Nonzero means create the expression with this type, rather than
|
||
RESULT_TYPE. */
|
||
tree build_type = 0;
|
||
|
||
/* Nonzero means after finally constructing the expression
|
||
convert it to this type. */
|
||
tree final_type = 0;
|
||
|
||
/* Nonzero if this is an operation like MIN or MAX which can
|
||
safely be computed in short if both args are promoted shorts.
|
||
Also implies COMMON.
|
||
-1 indicates a bitwise operation; this makes a difference
|
||
in the exact conditions for when it is safe to do the operation
|
||
in a narrower mode. */
|
||
int shorten = 0;
|
||
|
||
/* Nonzero if this is a comparison operation;
|
||
if both args are promoted shorts, compare the original shorts.
|
||
Also implies COMMON. */
|
||
int short_compare = 0;
|
||
|
||
/* Nonzero if this is a right-shift operation, which can be computed on the
|
||
original short and then promoted if the operand is a promoted short. */
|
||
int short_shift = 0;
|
||
|
||
/* Nonzero means set RESULT_TYPE to the common type of the args. */
|
||
int common = 0;
|
||
|
||
/* True means types are compatible as far as ObjC is concerned. */
|
||
bool objc_ok;
|
||
|
||
if (convert_p)
|
||
{
|
||
op0 = default_conversion (orig_op0);
|
||
op1 = default_conversion (orig_op1);
|
||
}
|
||
else
|
||
{
|
||
op0 = orig_op0;
|
||
op1 = orig_op1;
|
||
}
|
||
|
||
type0 = TREE_TYPE (op0);
|
||
type1 = TREE_TYPE (op1);
|
||
|
||
/* The expression codes of the data types of the arguments tell us
|
||
whether the arguments are integers, floating, pointers, etc. */
|
||
code0 = TREE_CODE (type0);
|
||
code1 = TREE_CODE (type1);
|
||
|
||
/* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
|
||
STRIP_TYPE_NOPS (op0);
|
||
STRIP_TYPE_NOPS (op1);
|
||
|
||
/* If an error was already reported for one of the arguments,
|
||
avoid reporting another error. */
|
||
|
||
if (code0 == ERROR_MARK || code1 == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
if ((invalid_op_diag
|
||
= targetm.invalid_binary_op (code, type0, type1)))
|
||
{
|
||
error (invalid_op_diag);
|
||
return error_mark_node;
|
||
}
|
||
|
||
objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
/* Handle the pointer + int case. */
|
||
if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
|
||
return pointer_int_sum (PLUS_EXPR, op0, op1);
|
||
else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
|
||
return pointer_int_sum (PLUS_EXPR, op1, op0);
|
||
else
|
||
common = 1;
|
||
break;
|
||
|
||
case MINUS_EXPR:
|
||
/* Subtraction of two similar pointers.
|
||
We must subtract them as integers, then divide by object size. */
|
||
if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
|
||
&& comp_target_types (type0, type1))
|
||
return pointer_diff (op0, op1);
|
||
/* Handle pointer minus int. Just like pointer plus int. */
|
||
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
|
||
return pointer_int_sum (MINUS_EXPR, op0, op1);
|
||
else
|
||
common = 1;
|
||
break;
|
||
|
||
case MULT_EXPR:
|
||
common = 1;
|
||
break;
|
||
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
/* Floating point division by zero is a legitimate way to obtain
|
||
infinities and NaNs. */
|
||
if (skip_evaluation == 0 && integer_zerop (op1))
|
||
warning (OPT_Wdiv_by_zero, "division by zero");
|
||
|
||
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
|
||
|| code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
|
||
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE
|
||
|| code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
|
||
{
|
||
enum tree_code tcode0 = code0, tcode1 = code1;
|
||
|
||
if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
|
||
tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
|
||
if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
|
||
tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
|
||
|
||
if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
|
||
resultcode = RDIV_EXPR;
|
||
else
|
||
/* Although it would be tempting to shorten always here, that
|
||
loses on some targets, since the modulo instruction is
|
||
undefined if the quotient can't be represented in the
|
||
computation mode. We shorten only if unsigned or if
|
||
dividing by something we know != -1. */
|
||
shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
|
||
|| (TREE_CODE (op1) == INTEGER_CST
|
||
&& !integer_all_onesp (op1)));
|
||
common = 1;
|
||
}
|
||
break;
|
||
|
||
case BIT_AND_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
|
||
shorten = -1;
|
||
else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
|
||
common = 1;
|
||
break;
|
||
|
||
case TRUNC_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
if (skip_evaluation == 0 && integer_zerop (op1))
|
||
warning (OPT_Wdiv_by_zero, "division by zero");
|
||
|
||
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
/* Although it would be tempting to shorten always here, that loses
|
||
on some targets, since the modulo instruction is undefined if the
|
||
quotient can't be represented in the computation mode. We shorten
|
||
only if unsigned or if dividing by something we know != -1. */
|
||
shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
|
||
|| (TREE_CODE (op1) == INTEGER_CST
|
||
&& !integer_all_onesp (op1)));
|
||
common = 1;
|
||
}
|
||
break;
|
||
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
|
||
|| code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
|
||
&& (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
|
||
|| code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
|
||
{
|
||
/* Result of these operations is always an int,
|
||
but that does not mean the operands should be
|
||
converted to ints! */
|
||
result_type = integer_type_node;
|
||
op0 = c_common_truthvalue_conversion (op0);
|
||
op1 = c_common_truthvalue_conversion (op1);
|
||
converted = 1;
|
||
}
|
||
break;
|
||
|
||
/* Shift operations: result has same type as first operand;
|
||
always convert second operand to int.
|
||
Also set SHORT_SHIFT if shifting rightward. */
|
||
|
||
case RSHIFT_EXPR:
|
||
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
|
||
{
|
||
if (tree_int_cst_sgn (op1) < 0)
|
||
warning (0, "right shift count is negative");
|
||
else
|
||
{
|
||
if (!integer_zerop (op1))
|
||
short_shift = 1;
|
||
|
||
if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
|
||
warning (0, "right shift count >= width of type");
|
||
}
|
||
}
|
||
|
||
/* Use the type of the value to be shifted. */
|
||
result_type = type0;
|
||
/* Convert the shift-count to an integer, regardless of size
|
||
of value being shifted. */
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
|
||
op1 = convert (integer_type_node, op1);
|
||
/* Avoid converting op1 to result_type later. */
|
||
converted = 1;
|
||
}
|
||
break;
|
||
|
||
case LSHIFT_EXPR:
|
||
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
|
||
{
|
||
if (tree_int_cst_sgn (op1) < 0)
|
||
warning (0, "left shift count is negative");
|
||
|
||
else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
|
||
warning (0, "left shift count >= width of type");
|
||
}
|
||
|
||
/* Use the type of the value to be shifted. */
|
||
result_type = type0;
|
||
/* Convert the shift-count to an integer, regardless of size
|
||
of value being shifted. */
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
|
||
op1 = convert (integer_type_node, op1);
|
||
/* Avoid converting op1 to result_type later. */
|
||
converted = 1;
|
||
}
|
||
break;
|
||
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
if (code0 == REAL_TYPE || code1 == REAL_TYPE)
|
||
warning (OPT_Wfloat_equal,
|
||
"comparing floating point with == or != is unsafe");
|
||
/* Result of comparison is always int,
|
||
but don't convert the args to int! */
|
||
build_type = integer_type_node;
|
||
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
|
||
|| code0 == COMPLEX_TYPE)
|
||
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE
|
||
|| code1 == COMPLEX_TYPE))
|
||
short_compare = 1;
|
||
else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
|
||
{
|
||
tree tt0 = TREE_TYPE (type0);
|
||
tree tt1 = TREE_TYPE (type1);
|
||
/* Anything compares with void *. void * compares with anything.
|
||
Otherwise, the targets must be compatible
|
||
and both must be object or both incomplete. */
|
||
if (comp_target_types (type0, type1))
|
||
result_type = common_pointer_type (type0, type1);
|
||
else if (VOID_TYPE_P (tt0))
|
||
{
|
||
/* op0 != orig_op0 detects the case of something
|
||
whose value is 0 but which isn't a valid null ptr const. */
|
||
if (pedantic && !null_pointer_constant_p (orig_op0)
|
||
&& TREE_CODE (tt1) == FUNCTION_TYPE)
|
||
pedwarn ("ISO C forbids comparison of %<void *%>"
|
||
" with function pointer");
|
||
}
|
||
else if (VOID_TYPE_P (tt1))
|
||
{
|
||
if (pedantic && !null_pointer_constant_p (orig_op1)
|
||
&& TREE_CODE (tt0) == FUNCTION_TYPE)
|
||
pedwarn ("ISO C forbids comparison of %<void *%>"
|
||
" with function pointer");
|
||
}
|
||
else
|
||
/* Avoid warning about the volatile ObjC EH puts on decls. */
|
||
if (!objc_ok)
|
||
pedwarn ("comparison of distinct pointer types lacks a cast");
|
||
|
||
if (result_type == NULL_TREE)
|
||
result_type = ptr_type_node;
|
||
}
|
||
else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
|
||
{
|
||
if (TREE_CODE (op0) == ADDR_EXPR
|
||
&& DECL_P (TREE_OPERAND (op0, 0))
|
||
&& (TREE_CODE (TREE_OPERAND (op0, 0)) == PARM_DECL
|
||
|| TREE_CODE (TREE_OPERAND (op0, 0)) == LABEL_DECL
|
||
|| !DECL_WEAK (TREE_OPERAND (op0, 0))))
|
||
warning (OPT_Waddress, "the address of %qD will never be NULL",
|
||
TREE_OPERAND (op0, 0));
|
||
result_type = type0;
|
||
}
|
||
else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
|
||
{
|
||
if (TREE_CODE (op1) == ADDR_EXPR
|
||
&& DECL_P (TREE_OPERAND (op1, 0))
|
||
&& (TREE_CODE (TREE_OPERAND (op1, 0)) == PARM_DECL
|
||
|| TREE_CODE (TREE_OPERAND (op1, 0)) == LABEL_DECL
|
||
|| !DECL_WEAK (TREE_OPERAND (op1, 0))))
|
||
warning (OPT_Waddress, "the address of %qD will never be NULL",
|
||
TREE_OPERAND (op1, 0));
|
||
result_type = type1;
|
||
}
|
||
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
result_type = type0;
|
||
pedwarn ("comparison between pointer and integer");
|
||
}
|
||
else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
|
||
{
|
||
result_type = type1;
|
||
pedwarn ("comparison between pointer and integer");
|
||
}
|
||
break;
|
||
|
||
case LE_EXPR:
|
||
case GE_EXPR:
|
||
case LT_EXPR:
|
||
case GT_EXPR:
|
||
build_type = integer_type_node;
|
||
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
|
||
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
|
||
short_compare = 1;
|
||
else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
|
||
{
|
||
if (comp_target_types (type0, type1))
|
||
{
|
||
result_type = common_pointer_type (type0, type1);
|
||
if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
|
||
!= !COMPLETE_TYPE_P (TREE_TYPE (type1)))
|
||
pedwarn ("comparison of complete and incomplete pointers");
|
||
else if (pedantic
|
||
&& TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
|
||
pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
|
||
}
|
||
else
|
||
{
|
||
result_type = ptr_type_node;
|
||
pedwarn ("comparison of distinct pointer types lacks a cast");
|
||
}
|
||
}
|
||
else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
|
||
{
|
||
result_type = type0;
|
||
if (pedantic || extra_warnings)
|
||
pedwarn ("ordered comparison of pointer with integer zero");
|
||
}
|
||
else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
|
||
{
|
||
result_type = type1;
|
||
if (pedantic)
|
||
pedwarn ("ordered comparison of pointer with integer zero");
|
||
}
|
||
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
|
||
{
|
||
result_type = type0;
|
||
pedwarn ("comparison between pointer and integer");
|
||
}
|
||
else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
|
||
{
|
||
result_type = type1;
|
||
pedwarn ("comparison between pointer and integer");
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (code0 == ERROR_MARK || code1 == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
|
||
&& (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
|
||
|| !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
|
||
TREE_TYPE (type1))))
|
||
{
|
||
binary_op_error (code);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
|
||
|| code0 == VECTOR_TYPE)
|
||
&&
|
||
(code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
|
||
|| code1 == VECTOR_TYPE))
|
||
{
|
||
int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
|
||
|
||
if (shorten || common || short_compare)
|
||
result_type = c_common_type (type0, type1);
|
||
|
||
/* For certain operations (which identify themselves by shorten != 0)
|
||
if both args were extended from the same smaller type,
|
||
do the arithmetic in that type and then extend.
|
||
|
||
shorten !=0 and !=1 indicates a bitwise operation.
|
||
For them, this optimization is safe only if
|
||
both args are zero-extended or both are sign-extended.
|
||
Otherwise, we might change the result.
|
||
Eg, (short)-1 | (unsigned short)-1 is (int)-1
|
||
but calculated in (unsigned short) it would be (unsigned short)-1. */
|
||
|
||
if (shorten && none_complex)
|
||
{
|
||
int unsigned0, unsigned1;
|
||
tree arg0, arg1;
|
||
int uns;
|
||
tree type;
|
||
|
||
/* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
|
||
excessive narrowing when we call get_narrower below. For
|
||
example, suppose that OP0 is of unsigned int extended
|
||
from signed char and that RESULT_TYPE is long long int.
|
||
If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
|
||
like
|
||
|
||
(long long int) (unsigned int) signed_char
|
||
|
||
which get_narrower would narrow down to
|
||
|
||
(unsigned int) signed char
|
||
|
||
If we do not cast OP0 first, get_narrower would return
|
||
signed_char, which is inconsistent with the case of the
|
||
explicit cast. */
|
||
op0 = convert (result_type, op0);
|
||
op1 = convert (result_type, op1);
|
||
|
||
arg0 = get_narrower (op0, &unsigned0);
|
||
arg1 = get_narrower (op1, &unsigned1);
|
||
|
||
/* UNS is 1 if the operation to be done is an unsigned one. */
|
||
uns = TYPE_UNSIGNED (result_type);
|
||
|
||
final_type = result_type;
|
||
|
||
/* Handle the case that OP0 (or OP1) does not *contain* a conversion
|
||
but it *requires* conversion to FINAL_TYPE. */
|
||
|
||
if ((TYPE_PRECISION (TREE_TYPE (op0))
|
||
== TYPE_PRECISION (TREE_TYPE (arg0)))
|
||
&& TREE_TYPE (op0) != final_type)
|
||
unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
|
||
if ((TYPE_PRECISION (TREE_TYPE (op1))
|
||
== TYPE_PRECISION (TREE_TYPE (arg1)))
|
||
&& TREE_TYPE (op1) != final_type)
|
||
unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
|
||
|
||
/* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
|
||
|
||
/* For bitwise operations, signedness of nominal type
|
||
does not matter. Consider only how operands were extended. */
|
||
if (shorten == -1)
|
||
uns = unsigned0;
|
||
|
||
/* Note that in all three cases below we refrain from optimizing
|
||
an unsigned operation on sign-extended args.
|
||
That would not be valid. */
|
||
|
||
/* Both args variable: if both extended in same way
|
||
from same width, do it in that width.
|
||
Do it unsigned if args were zero-extended. */
|
||
if ((TYPE_PRECISION (TREE_TYPE (arg0))
|
||
< TYPE_PRECISION (result_type))
|
||
&& (TYPE_PRECISION (TREE_TYPE (arg1))
|
||
== TYPE_PRECISION (TREE_TYPE (arg0)))
|
||
&& unsigned0 == unsigned1
|
||
&& (unsigned0 || !uns))
|
||
result_type
|
||
= c_common_signed_or_unsigned_type
|
||
(unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
|
||
else if (TREE_CODE (arg0) == INTEGER_CST
|
||
&& (unsigned1 || !uns)
|
||
&& (TYPE_PRECISION (TREE_TYPE (arg1))
|
||
< TYPE_PRECISION (result_type))
|
||
&& (type
|
||
= c_common_signed_or_unsigned_type (unsigned1,
|
||
TREE_TYPE (arg1)),
|
||
int_fits_type_p (arg0, type)))
|
||
result_type = type;
|
||
else if (TREE_CODE (arg1) == INTEGER_CST
|
||
&& (unsigned0 || !uns)
|
||
&& (TYPE_PRECISION (TREE_TYPE (arg0))
|
||
< TYPE_PRECISION (result_type))
|
||
&& (type
|
||
= c_common_signed_or_unsigned_type (unsigned0,
|
||
TREE_TYPE (arg0)),
|
||
int_fits_type_p (arg1, type)))
|
||
result_type = type;
|
||
}
|
||
|
||
/* Shifts can be shortened if shifting right. */
|
||
|
||
if (short_shift)
|
||
{
|
||
int unsigned_arg;
|
||
tree arg0 = get_narrower (op0, &unsigned_arg);
|
||
|
||
final_type = result_type;
|
||
|
||
if (arg0 == op0 && final_type == TREE_TYPE (op0))
|
||
unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
|
||
|
||
if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
|
||
/* We can shorten only if the shift count is less than the
|
||
number of bits in the smaller type size. */
|
||
&& compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
|
||
/* We cannot drop an unsigned shift after sign-extension. */
|
||
&& (!TYPE_UNSIGNED (final_type) || unsigned_arg))
|
||
{
|
||
/* Do an unsigned shift if the operand was zero-extended. */
|
||
result_type
|
||
= c_common_signed_or_unsigned_type (unsigned_arg,
|
||
TREE_TYPE (arg0));
|
||
/* Convert value-to-be-shifted to that type. */
|
||
if (TREE_TYPE (op0) != result_type)
|
||
op0 = convert (result_type, op0);
|
||
converted = 1;
|
||
}
|
||
}
|
||
|
||
/* Comparison operations are shortened too but differently.
|
||
They identify themselves by setting short_compare = 1. */
|
||
|
||
if (short_compare)
|
||
{
|
||
/* Don't write &op0, etc., because that would prevent op0
|
||
from being kept in a register.
|
||
Instead, make copies of the our local variables and
|
||
pass the copies by reference, then copy them back afterward. */
|
||
tree xop0 = op0, xop1 = op1, xresult_type = result_type;
|
||
enum tree_code xresultcode = resultcode;
|
||
tree val
|
||
= shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
|
||
|
||
if (val != 0)
|
||
return val;
|
||
|
||
op0 = xop0, op1 = xop1;
|
||
converted = 1;
|
||
resultcode = xresultcode;
|
||
|
||
if (warn_sign_compare && skip_evaluation == 0)
|
||
{
|
||
int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
|
||
int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
|
||
int unsignedp0, unsignedp1;
|
||
tree primop0 = get_narrower (op0, &unsignedp0);
|
||
tree primop1 = get_narrower (op1, &unsignedp1);
|
||
|
||
xop0 = orig_op0;
|
||
xop1 = orig_op1;
|
||
STRIP_TYPE_NOPS (xop0);
|
||
STRIP_TYPE_NOPS (xop1);
|
||
|
||
/* Give warnings for comparisons between signed and unsigned
|
||
quantities that may fail.
|
||
|
||
Do the checking based on the original operand trees, so that
|
||
casts will be considered, but default promotions won't be.
|
||
|
||
Do not warn if the comparison is being done in a signed type,
|
||
since the signed type will only be chosen if it can represent
|
||
all the values of the unsigned type. */
|
||
if (!TYPE_UNSIGNED (result_type))
|
||
/* OK */;
|
||
/* Do not warn if both operands are the same signedness. */
|
||
else if (op0_signed == op1_signed)
|
||
/* OK */;
|
||
else
|
||
{
|
||
tree sop, uop;
|
||
bool ovf;
|
||
|
||
if (op0_signed)
|
||
sop = xop0, uop = xop1;
|
||
else
|
||
sop = xop1, uop = xop0;
|
||
|
||
/* Do not warn if the signed quantity is an
|
||
unsuffixed integer literal (or some static
|
||
constant expression involving such literals or a
|
||
conditional expression involving such literals)
|
||
and it is non-negative. */
|
||
if (tree_expr_nonnegative_warnv_p (sop, &ovf))
|
||
/* OK */;
|
||
/* Do not warn if the comparison is an equality operation,
|
||
the unsigned quantity is an integral constant, and it
|
||
would fit in the result if the result were signed. */
|
||
else if (TREE_CODE (uop) == INTEGER_CST
|
||
&& (resultcode == EQ_EXPR || resultcode == NE_EXPR)
|
||
&& int_fits_type_p
|
||
(uop, c_common_signed_type (result_type)))
|
||
/* OK */;
|
||
/* Do not warn if the unsigned quantity is an enumeration
|
||
constant and its maximum value would fit in the result
|
||
if the result were signed. */
|
||
else if (TREE_CODE (uop) == INTEGER_CST
|
||
&& TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
|
||
&& int_fits_type_p
|
||
(TYPE_MAX_VALUE (TREE_TYPE (uop)),
|
||
c_common_signed_type (result_type)))
|
||
/* OK */;
|
||
else
|
||
warning (0, "comparison between signed and unsigned");
|
||
}
|
||
|
||
/* Warn if two unsigned values are being compared in a size
|
||
larger than their original size, and one (and only one) is the
|
||
result of a `~' operator. This comparison will always fail.
|
||
|
||
Also warn if one operand is a constant, and the constant
|
||
does not have all bits set that are set in the ~ operand
|
||
when it is extended. */
|
||
|
||
if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
|
||
!= (TREE_CODE (primop1) == BIT_NOT_EXPR))
|
||
{
|
||
if (TREE_CODE (primop0) == BIT_NOT_EXPR)
|
||
primop0 = get_narrower (TREE_OPERAND (primop0, 0),
|
||
&unsignedp0);
|
||
else
|
||
primop1 = get_narrower (TREE_OPERAND (primop1, 0),
|
||
&unsignedp1);
|
||
|
||
if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
|
||
{
|
||
tree primop;
|
||
HOST_WIDE_INT constant, mask;
|
||
int unsignedp, bits;
|
||
|
||
if (host_integerp (primop0, 0))
|
||
{
|
||
primop = primop1;
|
||
unsignedp = unsignedp1;
|
||
constant = tree_low_cst (primop0, 0);
|
||
}
|
||
else
|
||
{
|
||
primop = primop0;
|
||
unsignedp = unsignedp0;
|
||
constant = tree_low_cst (primop1, 0);
|
||
}
|
||
|
||
bits = TYPE_PRECISION (TREE_TYPE (primop));
|
||
if (bits < TYPE_PRECISION (result_type)
|
||
&& bits < HOST_BITS_PER_WIDE_INT && unsignedp)
|
||
{
|
||
mask = (~(HOST_WIDE_INT) 0) << bits;
|
||
if ((mask & constant) != mask)
|
||
warning (0, "comparison of promoted ~unsigned with constant");
|
||
}
|
||
}
|
||
else if (unsignedp0 && unsignedp1
|
||
&& (TYPE_PRECISION (TREE_TYPE (primop0))
|
||
< TYPE_PRECISION (result_type))
|
||
&& (TYPE_PRECISION (TREE_TYPE (primop1))
|
||
< TYPE_PRECISION (result_type)))
|
||
warning (0, "comparison of promoted ~unsigned with unsigned");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* At this point, RESULT_TYPE must be nonzero to avoid an error message.
|
||
If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
|
||
Then the expression will be built.
|
||
It will be given type FINAL_TYPE if that is nonzero;
|
||
otherwise, it will be given type RESULT_TYPE. */
|
||
|
||
if (!result_type)
|
||
{
|
||
binary_op_error (code);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (!converted)
|
||
{
|
||
if (TREE_TYPE (op0) != result_type)
|
||
op0 = convert_and_check (result_type, op0);
|
||
if (TREE_TYPE (op1) != result_type)
|
||
op1 = convert_and_check (result_type, op1);
|
||
|
||
/* This can happen if one operand has a vector type, and the other
|
||
has a different type. */
|
||
if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (build_type == NULL_TREE)
|
||
build_type = result_type;
|
||
|
||
{
|
||
/* Treat expressions in initializers specially as they can't trap. */
|
||
tree result = require_constant_value ? fold_build2_initializer (resultcode,
|
||
build_type,
|
||
op0, op1)
|
||
: fold_build2 (resultcode, build_type,
|
||
op0, op1);
|
||
|
||
if (final_type != 0)
|
||
result = convert (final_type, result);
|
||
return result;
|
||
}
|
||
}
|
||
|
||
|
||
/* Convert EXPR to be a truth-value, validating its type for this
|
||
purpose. */
|
||
|
||
tree
|
||
c_objc_common_truthvalue_conversion (tree expr)
|
||
{
|
||
switch (TREE_CODE (TREE_TYPE (expr)))
|
||
{
|
||
case ARRAY_TYPE:
|
||
error ("used array that cannot be converted to pointer where scalar is required");
|
||
return error_mark_node;
|
||
|
||
case RECORD_TYPE:
|
||
error ("used struct type value where scalar is required");
|
||
return error_mark_node;
|
||
|
||
case UNION_TYPE:
|
||
error ("used union type value where scalar is required");
|
||
return error_mark_node;
|
||
|
||
case FUNCTION_TYPE:
|
||
gcc_unreachable ();
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* ??? Should we also give an error for void and vectors rather than
|
||
leaving those to give errors later? */
|
||
return c_common_truthvalue_conversion (expr);
|
||
}
|
||
|
||
|
||
/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
|
||
required. */
|
||
|
||
tree
|
||
c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
|
||
bool *ti ATTRIBUTE_UNUSED, bool *se)
|
||
{
|
||
if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
|
||
{
|
||
tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
|
||
/* Executing a compound literal inside a function reinitializes
|
||
it. */
|
||
if (!TREE_STATIC (decl))
|
||
*se = true;
|
||
return decl;
|
||
}
|
||
else
|
||
return expr;
|
||
}
|
||
|
||
/* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
|
||
|
||
tree
|
||
c_begin_omp_parallel (void)
|
||
{
|
||
tree block;
|
||
|
||
keep_next_level ();
|
||
block = c_begin_compound_stmt (true);
|
||
|
||
return block;
|
||
}
|
||
|
||
tree
|
||
c_finish_omp_parallel (tree clauses, tree block)
|
||
{
|
||
tree stmt;
|
||
|
||
block = c_end_compound_stmt (block, true);
|
||
|
||
stmt = make_node (OMP_PARALLEL);
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
OMP_PARALLEL_CLAUSES (stmt) = clauses;
|
||
OMP_PARALLEL_BODY (stmt) = block;
|
||
|
||
return add_stmt (stmt);
|
||
}
|
||
|
||
/* For all elements of CLAUSES, validate them vs OpenMP constraints.
|
||
Remove any elements from the list that are invalid. */
|
||
|
||
tree
|
||
c_finish_omp_clauses (tree clauses)
|
||
{
|
||
bitmap_head generic_head, firstprivate_head, lastprivate_head;
|
||
tree c, t, *pc = &clauses;
|
||
const char *name;
|
||
|
||
bitmap_obstack_initialize (NULL);
|
||
bitmap_initialize (&generic_head, &bitmap_default_obstack);
|
||
bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
|
||
bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
|
||
|
||
for (pc = &clauses, c = clauses; c ; c = *pc)
|
||
{
|
||
bool remove = false;
|
||
bool need_complete = false;
|
||
bool need_implicitly_determined = false;
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_SHARED:
|
||
name = "shared";
|
||
need_implicitly_determined = true;
|
||
goto check_dup_generic;
|
||
|
||
case OMP_CLAUSE_PRIVATE:
|
||
name = "private";
|
||
need_complete = true;
|
||
need_implicitly_determined = true;
|
||
goto check_dup_generic;
|
||
|
||
case OMP_CLAUSE_REDUCTION:
|
||
name = "reduction";
|
||
need_implicitly_determined = true;
|
||
t = OMP_CLAUSE_DECL (c);
|
||
if (AGGREGATE_TYPE_P (TREE_TYPE (t))
|
||
|| POINTER_TYPE_P (TREE_TYPE (t)))
|
||
{
|
||
error ("%qE has invalid type for %<reduction%>", t);
|
||
remove = true;
|
||
}
|
||
else if (FLOAT_TYPE_P (TREE_TYPE (t)))
|
||
{
|
||
enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
|
||
const char *r_name = NULL;
|
||
|
||
switch (r_code)
|
||
{
|
||
case PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MINUS_EXPR:
|
||
break;
|
||
case BIT_AND_EXPR:
|
||
r_name = "&";
|
||
break;
|
||
case BIT_XOR_EXPR:
|
||
r_name = "^";
|
||
break;
|
||
case BIT_IOR_EXPR:
|
||
r_name = "|";
|
||
break;
|
||
case TRUTH_ANDIF_EXPR:
|
||
r_name = "&&";
|
||
break;
|
||
case TRUTH_ORIF_EXPR:
|
||
r_name = "||";
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
if (r_name)
|
||
{
|
||
error ("%qE has invalid type for %<reduction(%s)%>",
|
||
t, r_name);
|
||
remove = true;
|
||
}
|
||
}
|
||
goto check_dup_generic;
|
||
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
name = "copyprivate";
|
||
goto check_dup_generic;
|
||
|
||
case OMP_CLAUSE_COPYIN:
|
||
name = "copyin";
|
||
t = OMP_CLAUSE_DECL (c);
|
||
if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
|
||
{
|
||
error ("%qE must be %<threadprivate%> for %<copyin%>", t);
|
||
remove = true;
|
||
}
|
||
goto check_dup_generic;
|
||
|
||
check_dup_generic:
|
||
t = OMP_CLAUSE_DECL (c);
|
||
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
||
{
|
||
error ("%qE is not a variable in clause %qs", t, name);
|
||
remove = true;
|
||
}
|
||
else if (bitmap_bit_p (&generic_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&firstprivate_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
|
||
{
|
||
error ("%qE appears more than once in data clauses", t);
|
||
remove = true;
|
||
}
|
||
else
|
||
bitmap_set_bit (&generic_head, DECL_UID (t));
|
||
break;
|
||
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
name = "firstprivate";
|
||
t = OMP_CLAUSE_DECL (c);
|
||
need_complete = true;
|
||
need_implicitly_determined = true;
|
||
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
||
{
|
||
error ("%qE is not a variable in clause %<firstprivate%>", t);
|
||
remove = true;
|
||
}
|
||
else if (bitmap_bit_p (&generic_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
|
||
{
|
||
error ("%qE appears more than once in data clauses", t);
|
||
remove = true;
|
||
}
|
||
else
|
||
bitmap_set_bit (&firstprivate_head, DECL_UID (t));
|
||
break;
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
name = "lastprivate";
|
||
t = OMP_CLAUSE_DECL (c);
|
||
need_complete = true;
|
||
need_implicitly_determined = true;
|
||
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
||
{
|
||
error ("%qE is not a variable in clause %<lastprivate%>", t);
|
||
remove = true;
|
||
}
|
||
else if (bitmap_bit_p (&generic_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
|
||
{
|
||
error ("%qE appears more than once in data clauses", t);
|
||
remove = true;
|
||
}
|
||
else
|
||
bitmap_set_bit (&lastprivate_head, DECL_UID (t));
|
||
break;
|
||
|
||
case OMP_CLAUSE_IF:
|
||
case OMP_CLAUSE_NUM_THREADS:
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
case OMP_CLAUSE_NOWAIT:
|
||
case OMP_CLAUSE_ORDERED:
|
||
case OMP_CLAUSE_DEFAULT:
|
||
pc = &OMP_CLAUSE_CHAIN (c);
|
||
continue;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (!remove)
|
||
{
|
||
t = OMP_CLAUSE_DECL (c);
|
||
|
||
if (need_complete)
|
||
{
|
||
t = require_complete_type (t);
|
||
if (t == error_mark_node)
|
||
remove = true;
|
||
}
|
||
|
||
if (need_implicitly_determined)
|
||
{
|
||
const char *share_name = NULL;
|
||
|
||
if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
|
||
share_name = "threadprivate";
|
||
else switch (c_omp_predetermined_sharing (t))
|
||
{
|
||
case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
|
||
break;
|
||
case OMP_CLAUSE_DEFAULT_SHARED:
|
||
share_name = "shared";
|
||
break;
|
||
case OMP_CLAUSE_DEFAULT_PRIVATE:
|
||
share_name = "private";
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
if (share_name)
|
||
{
|
||
error ("%qE is predetermined %qs for %qs",
|
||
t, share_name, name);
|
||
remove = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (remove)
|
||
*pc = OMP_CLAUSE_CHAIN (c);
|
||
else
|
||
pc = &OMP_CLAUSE_CHAIN (c);
|
||
}
|
||
|
||
bitmap_obstack_release (NULL);
|
||
return clauses;
|
||
}
|