freebsd-nq/module/zfs/range_tree.c
Sara Hartse a887d653b3 Restrict kstats and print real pointers
There are several places where we use zfs_dbgmsg and %p to
print pointers. In the Linux kernel, these values obfuscated
to prevent information leaks which means the pointers aren't
very useful for debugging crash dumps. We decided to restrict
the permissions of dbgmsg (and some other kstats while we were
at it) and print pointers with %px in zfs_dbgmsg as well as
spl_dumpstack

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: John Gallagher <john.gallagher@delphix.com>
Signed-off-by: sara hartse <sara.hartse@delphix.com>
Closes #8467 
Closes #8476
2019-04-04 18:57:06 -07:00

670 lines
18 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013, 2017 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/dnode.h>
#include <sys/zio.h>
#include <sys/range_tree.h>
/*
* Range trees are tree-based data structures that can be used to
* track free space or generally any space allocation information.
* A range tree keeps track of individual segments and automatically
* provides facilities such as adjacent extent merging and extent
* splitting in response to range add/remove requests.
*
* A range tree starts out completely empty, with no segments in it.
* Adding an allocation via range_tree_add to the range tree can either:
* 1) create a new extent
* 2) extend an adjacent extent
* 3) merge two adjacent extents
* Conversely, removing an allocation via range_tree_remove can:
* 1) completely remove an extent
* 2) shorten an extent (if the allocation was near one of its ends)
* 3) split an extent into two extents, in effect punching a hole
*
* A range tree is also capable of 'bridging' gaps when adding
* allocations. This is useful for cases when close proximity of
* allocations is an important detail that needs to be represented
* in the range tree. See range_tree_set_gap(). The default behavior
* is not to bridge gaps (i.e. the maximum allowed gap size is 0).
*
* In order to traverse a range tree, use either the range_tree_walk()
* or range_tree_vacate() functions.
*
* To obtain more accurate information on individual segment
* operations that the range tree performs "under the hood", you can
* specify a set of callbacks by passing a range_tree_ops_t structure
* to the range_tree_create function. Any callbacks that are non-NULL
* are then called at the appropriate times.
*
* The range tree code also supports a special variant of range trees
* that can bridge small gaps between segments. This kind of tree is used
* by the dsl scanning code to group I/Os into mostly sequential chunks to
* optimize disk performance. The code here attempts to do this with as
* little memory and computational overhead as possible. One limitation of
* this implementation is that segments of range trees with gaps can only
* support removing complete segments.
*/
kmem_cache_t *range_seg_cache;
/* Generic ops for managing an AVL tree alongside a range tree */
struct range_tree_ops rt_avl_ops = {
.rtop_create = rt_avl_create,
.rtop_destroy = rt_avl_destroy,
.rtop_add = rt_avl_add,
.rtop_remove = rt_avl_remove,
.rtop_vacate = rt_avl_vacate,
};
void
range_tree_init(void)
{
ASSERT(range_seg_cache == NULL);
range_seg_cache = kmem_cache_create("range_seg_cache",
sizeof (range_seg_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
}
void
range_tree_fini(void)
{
kmem_cache_destroy(range_seg_cache);
range_seg_cache = NULL;
}
void
range_tree_stat_verify(range_tree_t *rt)
{
range_seg_t *rs;
uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
int i;
for (rs = avl_first(&rt->rt_root); rs != NULL;
rs = AVL_NEXT(&rt->rt_root, rs)) {
uint64_t size = rs->rs_end - rs->rs_start;
int idx = highbit64(size) - 1;
hist[idx]++;
ASSERT3U(hist[idx], !=, 0);
}
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
if (hist[i] != rt->rt_histogram[i]) {
zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
i, hist, hist[i], rt->rt_histogram[i]);
}
VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
}
}
static void
range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
{
uint64_t size = rs->rs_end - rs->rs_start;
int idx = highbit64(size) - 1;
ASSERT(size != 0);
ASSERT3U(idx, <,
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
rt->rt_histogram[idx]++;
ASSERT3U(rt->rt_histogram[idx], !=, 0);
}
static void
range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
{
uint64_t size = rs->rs_end - rs->rs_start;
int idx = highbit64(size) - 1;
ASSERT(size != 0);
ASSERT3U(idx, <,
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
ASSERT3U(rt->rt_histogram[idx], !=, 0);
rt->rt_histogram[idx]--;
}
/*
* NOTE: caller is responsible for all locking.
*/
static int
range_tree_seg_compare(const void *x1, const void *x2)
{
const range_seg_t *r1 = (const range_seg_t *)x1;
const range_seg_t *r2 = (const range_seg_t *)x2;
ASSERT3U(r1->rs_start, <=, r1->rs_end);
ASSERT3U(r2->rs_start, <=, r2->rs_end);
return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
}
range_tree_t *
range_tree_create_impl(range_tree_ops_t *ops, void *arg,
int (*avl_compare) (const void *, const void *), uint64_t gap)
{
range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
avl_create(&rt->rt_root, range_tree_seg_compare,
sizeof (range_seg_t), offsetof(range_seg_t, rs_node));
rt->rt_ops = ops;
rt->rt_gap = gap;
rt->rt_arg = arg;
rt->rt_avl_compare = avl_compare;
if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
rt->rt_ops->rtop_create(rt, rt->rt_arg);
return (rt);
}
range_tree_t *
range_tree_create(range_tree_ops_t *ops, void *arg)
{
return (range_tree_create_impl(ops, arg, NULL, 0));
}
void
range_tree_destroy(range_tree_t *rt)
{
VERIFY0(rt->rt_space);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
avl_destroy(&rt->rt_root);
kmem_free(rt, sizeof (*rt));
}
void
range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
{
ASSERT3U(rs->rs_fill + delta, !=, 0);
ASSERT3U(rs->rs_fill + delta, <=, rs->rs_end - rs->rs_start);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
rs->rs_fill += delta;
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
}
static void
range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
{
range_tree_t *rt = arg;
avl_index_t where;
range_seg_t rsearch, *rs_before, *rs_after, *rs;
uint64_t end = start + size, gap = rt->rt_gap;
uint64_t bridge_size = 0;
boolean_t merge_before, merge_after;
ASSERT3U(size, !=, 0);
ASSERT3U(fill, <=, size);
rsearch.rs_start = start;
rsearch.rs_end = end;
rs = avl_find(&rt->rt_root, &rsearch, &where);
if (gap == 0 && rs != NULL &&
rs->rs_start <= start && rs->rs_end >= end) {
zfs_panic_recover("zfs: allocating allocated segment"
"(offset=%llu size=%llu) of (offset=%llu size=%llu)\n",
(longlong_t)start, (longlong_t)size,
(longlong_t)rs->rs_start,
(longlong_t)rs->rs_end - rs->rs_start);
return;
}
/*
* If this is a gap-supporting range tree, it is possible that we
* are inserting into an existing segment. In this case simply
* bump the fill count and call the remove / add callbacks. If the
* new range will extend an existing segment, we remove the
* existing one, apply the new extent to it and re-insert it using
* the normal code paths.
*/
if (rs != NULL) {
ASSERT3U(gap, !=, 0);
if (rs->rs_start <= start && rs->rs_end >= end) {
range_tree_adjust_fill(rt, rs, fill);
return;
}
avl_remove(&rt->rt_root, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
range_tree_stat_decr(rt, rs);
rt->rt_space -= rs->rs_end - rs->rs_start;
fill += rs->rs_fill;
start = MIN(start, rs->rs_start);
end = MAX(end, rs->rs_end);
size = end - start;
range_tree_add_impl(rt, start, size, fill);
kmem_cache_free(range_seg_cache, rs);
return;
}
ASSERT3P(rs, ==, NULL);
/*
* Determine whether or not we will have to merge with our neighbors.
* If gap != 0, we might need to merge with our neighbors even if we
* aren't directly touching.
*/
rs_before = avl_nearest(&rt->rt_root, where, AVL_BEFORE);
rs_after = avl_nearest(&rt->rt_root, where, AVL_AFTER);
merge_before = (rs_before != NULL && rs_before->rs_end >= start - gap);
merge_after = (rs_after != NULL && rs_after->rs_start <= end + gap);
if (merge_before && gap != 0)
bridge_size += start - rs_before->rs_end;
if (merge_after && gap != 0)
bridge_size += rs_after->rs_start - end;
if (merge_before && merge_after) {
avl_remove(&rt->rt_root, rs_before);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
}
range_tree_stat_decr(rt, rs_before);
range_tree_stat_decr(rt, rs_after);
rs_after->rs_fill += rs_before->rs_fill + fill;
rs_after->rs_start = rs_before->rs_start;
kmem_cache_free(range_seg_cache, rs_before);
rs = rs_after;
} else if (merge_before) {
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
range_tree_stat_decr(rt, rs_before);
rs_before->rs_fill += fill;
rs_before->rs_end = end;
rs = rs_before;
} else if (merge_after) {
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
range_tree_stat_decr(rt, rs_after);
rs_after->rs_fill += fill;
rs_after->rs_start = start;
rs = rs_after;
} else {
rs = kmem_cache_alloc(range_seg_cache, KM_SLEEP);
rs->rs_fill = fill;
rs->rs_start = start;
rs->rs_end = end;
avl_insert(&rt->rt_root, rs, where);
}
if (gap != 0)
ASSERT3U(rs->rs_fill, <=, rs->rs_end - rs->rs_start);
else
ASSERT3U(rs->rs_fill, ==, rs->rs_end - rs->rs_start);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
range_tree_stat_incr(rt, rs);
rt->rt_space += size + bridge_size;
}
void
range_tree_add(void *arg, uint64_t start, uint64_t size)
{
range_tree_add_impl(arg, start, size, size);
}
static void
range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
boolean_t do_fill)
{
avl_index_t where;
range_seg_t rsearch, *rs, *newseg;
uint64_t end = start + size;
boolean_t left_over, right_over;
VERIFY3U(size, !=, 0);
VERIFY3U(size, <=, rt->rt_space);
rsearch.rs_start = start;
rsearch.rs_end = end;
rs = avl_find(&rt->rt_root, &rsearch, &where);
/* Make sure we completely overlap with someone */
if (rs == NULL) {
zfs_panic_recover("zfs: freeing free segment "
"(offset=%llu size=%llu)",
(longlong_t)start, (longlong_t)size);
return;
}
/*
* Range trees with gap support must only remove complete segments
* from the tree. This allows us to maintain accurate fill accounting
* and to ensure that bridged sections are not leaked. If we need to
* remove less than the full segment, we can only adjust the fill count.
*/
if (rt->rt_gap != 0) {
if (do_fill) {
if (rs->rs_fill == size) {
start = rs->rs_start;
end = rs->rs_end;
size = end - start;
} else {
range_tree_adjust_fill(rt, rs, -size);
return;
}
} else if (rs->rs_start != start || rs->rs_end != end) {
zfs_panic_recover("zfs: freeing partial segment of "
"gap tree (offset=%llu size=%llu) of "
"(offset=%llu size=%llu)",
(longlong_t)start, (longlong_t)size,
(longlong_t)rs->rs_start,
(longlong_t)rs->rs_end - rs->rs_start);
return;
}
}
VERIFY3U(rs->rs_start, <=, start);
VERIFY3U(rs->rs_end, >=, end);
left_over = (rs->rs_start != start);
right_over = (rs->rs_end != end);
range_tree_stat_decr(rt, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
if (left_over && right_over) {
newseg = kmem_cache_alloc(range_seg_cache, KM_SLEEP);
newseg->rs_start = end;
newseg->rs_end = rs->rs_end;
newseg->rs_fill = newseg->rs_end - newseg->rs_start;
range_tree_stat_incr(rt, newseg);
rs->rs_end = start;
avl_insert_here(&rt->rt_root, newseg, rs, AVL_AFTER);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, newseg, rt->rt_arg);
} else if (left_over) {
rs->rs_end = start;
} else if (right_over) {
rs->rs_start = end;
} else {
avl_remove(&rt->rt_root, rs);
kmem_cache_free(range_seg_cache, rs);
rs = NULL;
}
if (rs != NULL) {
/*
* The fill of the leftover segment will always be equal to
* the size, since we do not support removing partial segments
* of range trees with gaps.
*/
rs->rs_fill = rs->rs_end - rs->rs_start;
range_tree_stat_incr(rt, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
}
rt->rt_space -= size;
}
void
range_tree_remove(void *arg, uint64_t start, uint64_t size)
{
range_tree_remove_impl(arg, start, size, B_FALSE);
}
void
range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
{
range_tree_remove_impl(rt, start, size, B_TRUE);
}
void
range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
uint64_t newstart, uint64_t newsize)
{
int64_t delta = newsize - (rs->rs_end - rs->rs_start);
range_tree_stat_decr(rt, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
rs->rs_start = newstart;
rs->rs_end = newstart + newsize;
range_tree_stat_incr(rt, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
rt->rt_space += delta;
}
static range_seg_t *
range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
{
range_seg_t rsearch;
uint64_t end = start + size;
VERIFY(size != 0);
rsearch.rs_start = start;
rsearch.rs_end = end;
return (avl_find(&rt->rt_root, &rsearch, NULL));
}
range_seg_t *
range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
{
range_seg_t *rs = range_tree_find_impl(rt, start, size);
if (rs != NULL && rs->rs_start <= start && rs->rs_end >= start + size)
return (rs);
return (NULL);
}
void
range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
{
range_seg_t *rs = range_tree_find(rt, off, size);
if (rs != NULL)
panic("segment already in tree; rs=%p", (void *)rs);
}
boolean_t
range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
{
return (range_tree_find(rt, start, size) != NULL);
}
/*
* Ensure that this range is not in the tree, regardless of whether
* it is currently in the tree.
*/
void
range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
{
range_seg_t *rs;
if (size == 0)
return;
while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
uint64_t free_start = MAX(rs->rs_start, start);
uint64_t free_end = MIN(rs->rs_end, start + size);
range_tree_remove(rt, free_start, free_end - free_start);
}
}
void
range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
{
range_tree_t *rt;
ASSERT0(range_tree_space(*rtdst));
ASSERT0(avl_numnodes(&(*rtdst)->rt_root));
rt = *rtsrc;
*rtsrc = *rtdst;
*rtdst = rt;
}
void
range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
{
range_seg_t *rs;
void *cookie = NULL;
if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
while ((rs = avl_destroy_nodes(&rt->rt_root, &cookie)) != NULL) {
if (func != NULL)
func(arg, rs->rs_start, rs->rs_end - rs->rs_start);
kmem_cache_free(range_seg_cache, rs);
}
bzero(rt->rt_histogram, sizeof (rt->rt_histogram));
rt->rt_space = 0;
}
void
range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
{
range_seg_t *rs;
for (rs = avl_first(&rt->rt_root); rs; rs = AVL_NEXT(&rt->rt_root, rs))
func(arg, rs->rs_start, rs->rs_end - rs->rs_start);
}
range_seg_t *
range_tree_first(range_tree_t *rt)
{
return (avl_first(&rt->rt_root));
}
uint64_t
range_tree_space(range_tree_t *rt)
{
return (rt->rt_space);
}
boolean_t
range_tree_is_empty(range_tree_t *rt)
{
ASSERT(rt != NULL);
return (range_tree_space(rt) == 0);
}
/* Generic range tree functions for maintaining segments in an AVL tree. */
void
rt_avl_create(range_tree_t *rt, void *arg)
{
avl_tree_t *tree = arg;
avl_create(tree, rt->rt_avl_compare, sizeof (range_seg_t),
offsetof(range_seg_t, rs_pp_node));
}
void
rt_avl_destroy(range_tree_t *rt, void *arg)
{
avl_tree_t *tree = arg;
ASSERT0(avl_numnodes(tree));
avl_destroy(tree);
}
void
rt_avl_add(range_tree_t *rt, range_seg_t *rs, void *arg)
{
avl_tree_t *tree = arg;
avl_add(tree, rs);
}
void
rt_avl_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
{
avl_tree_t *tree = arg;
avl_remove(tree, rs);
}
void
rt_avl_vacate(range_tree_t *rt, void *arg)
{
/*
* Normally one would walk the tree freeing nodes along the way.
* Since the nodes are shared with the range trees we can avoid
* walking all nodes and just reinitialize the avl tree. The nodes
* will be freed by the range tree, so we don't want to free them here.
*/
rt_avl_create(rt, arg);
}
uint64_t
range_tree_min(range_tree_t *rt)
{
range_seg_t *rs = avl_first(&rt->rt_root);
return (rs != NULL ? rs->rs_start : 0);
}
uint64_t
range_tree_max(range_tree_t *rt)
{
range_seg_t *rs = avl_last(&rt->rt_root);
return (rs != NULL ? rs->rs_end : 0);
}
uint64_t
range_tree_span(range_tree_t *rt)
{
return (range_tree_max(rt) - range_tree_min(rt));
}