df3601781d
- Do not ever set a counter to a value. For those counters that we don't increment, but return directly from hardware create cases in if_get_counter() method. Sponsored by: Netflix Sponsored by: Nginx, Inc.
5772 lines
166 KiB
C
5772 lines
166 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2001-2014, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#if __FreeBSD_version >= 800000
|
|
#include <sys/buf_ring.h>
|
|
#endif
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#include <machine/in_cksum.h>
|
|
#include <dev/led/led.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcireg.h>
|
|
|
|
#include "e1000_api.h"
|
|
#include "e1000_82571.h"
|
|
#include "if_em.h"
|
|
|
|
/*********************************************************************
|
|
* Set this to one to display debug statistics
|
|
*********************************************************************/
|
|
int em_display_debug_stats = 0;
|
|
|
|
/*********************************************************************
|
|
* Driver version:
|
|
*********************************************************************/
|
|
char em_driver_version[] = "7.4.2";
|
|
|
|
/*********************************************************************
|
|
* PCI Device ID Table
|
|
*
|
|
* Used by probe to select devices to load on
|
|
* Last field stores an index into e1000_strings
|
|
* Last entry must be all 0s
|
|
*
|
|
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
|
|
*********************************************************************/
|
|
|
|
static em_vendor_info_t em_vendor_info_array[] =
|
|
{
|
|
/* Intel(R) PRO/1000 Network Connection */
|
|
{ 0x8086, E1000_DEV_ID_82571EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82572EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82572EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82572EI_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82572EI, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82573E, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82573E_IAMT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82573L, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82583V, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IFE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_IGP_M, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH8_82567V_3, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IGP_M, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IGP_M_V, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IFE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH9_BM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82574L, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82574LA, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH10_R_BM_LM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH10_R_BM_LF, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH10_R_BM_V, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH10_D_BM_LM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH10_D_BM_LF, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_ICH10_D_BM_V, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_M_HV_LM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_M_HV_LC, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_D_HV_DM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_D_HV_DC, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH2_LV_LM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH2_LV_V, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_LPT_I217_V, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_I218_LM2, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_I218_V2, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_I218_LM3, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_PCH_I218_V3, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
/* required last entry */
|
|
{ 0, 0, 0, 0, 0}
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Table of branding strings for all supported NICs.
|
|
*********************************************************************/
|
|
|
|
static char *em_strings[] = {
|
|
"Intel(R) PRO/1000 Network Connection"
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Function prototypes
|
|
*********************************************************************/
|
|
static int em_probe(device_t);
|
|
static int em_attach(device_t);
|
|
static int em_detach(device_t);
|
|
static int em_shutdown(device_t);
|
|
static int em_suspend(device_t);
|
|
static int em_resume(device_t);
|
|
#ifdef EM_MULTIQUEUE
|
|
static int em_mq_start(if_t, struct mbuf *);
|
|
static int em_mq_start_locked(if_t,
|
|
struct tx_ring *, struct mbuf *);
|
|
static void em_qflush(if_t);
|
|
#else
|
|
static void em_start(if_t);
|
|
static void em_start_locked(if_t, struct tx_ring *);
|
|
#endif
|
|
static int em_ioctl(if_t, u_long, caddr_t);
|
|
static uint64_t em_get_counter(if_t, ift_counter);
|
|
static void em_init(void *);
|
|
static void em_init_locked(struct adapter *);
|
|
static void em_stop(void *);
|
|
static void em_media_status(if_t, struct ifmediareq *);
|
|
static int em_media_change(if_t);
|
|
static void em_identify_hardware(struct adapter *);
|
|
static int em_allocate_pci_resources(struct adapter *);
|
|
static int em_allocate_legacy(struct adapter *);
|
|
static int em_allocate_msix(struct adapter *);
|
|
static int em_allocate_queues(struct adapter *);
|
|
static int em_setup_msix(struct adapter *);
|
|
static void em_free_pci_resources(struct adapter *);
|
|
static void em_local_timer(void *);
|
|
static void em_reset(struct adapter *);
|
|
static int em_setup_interface(device_t, struct adapter *);
|
|
|
|
static void em_setup_transmit_structures(struct adapter *);
|
|
static void em_initialize_transmit_unit(struct adapter *);
|
|
static int em_allocate_transmit_buffers(struct tx_ring *);
|
|
static void em_free_transmit_structures(struct adapter *);
|
|
static void em_free_transmit_buffers(struct tx_ring *);
|
|
|
|
static int em_setup_receive_structures(struct adapter *);
|
|
static int em_allocate_receive_buffers(struct rx_ring *);
|
|
static void em_initialize_receive_unit(struct adapter *);
|
|
static void em_free_receive_structures(struct adapter *);
|
|
static void em_free_receive_buffers(struct rx_ring *);
|
|
|
|
static void em_enable_intr(struct adapter *);
|
|
static void em_disable_intr(struct adapter *);
|
|
static void em_update_stats_counters(struct adapter *);
|
|
static void em_add_hw_stats(struct adapter *adapter);
|
|
static void em_txeof(struct tx_ring *);
|
|
static bool em_rxeof(struct rx_ring *, int, int *);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static int em_fixup_rx(struct rx_ring *);
|
|
#endif
|
|
static void em_receive_checksum(struct e1000_rx_desc *, struct mbuf *);
|
|
static void em_transmit_checksum_setup(struct tx_ring *, struct mbuf *, int,
|
|
struct ip *, u32 *, u32 *);
|
|
static void em_tso_setup(struct tx_ring *, struct mbuf *, int, struct ip *,
|
|
struct tcphdr *, u32 *, u32 *);
|
|
static void em_set_promisc(struct adapter *);
|
|
static void em_disable_promisc(struct adapter *);
|
|
static void em_set_multi(struct adapter *);
|
|
static void em_update_link_status(struct adapter *);
|
|
static void em_refresh_mbufs(struct rx_ring *, int);
|
|
static void em_register_vlan(void *, if_t, u16);
|
|
static void em_unregister_vlan(void *, if_t, u16);
|
|
static void em_setup_vlan_hw_support(struct adapter *);
|
|
static int em_xmit(struct tx_ring *, struct mbuf **);
|
|
static int em_dma_malloc(struct adapter *, bus_size_t,
|
|
struct em_dma_alloc *, int);
|
|
static void em_dma_free(struct adapter *, struct em_dma_alloc *);
|
|
static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
|
|
static void em_print_nvm_info(struct adapter *);
|
|
static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
|
|
static void em_print_debug_info(struct adapter *);
|
|
static int em_is_valid_ether_addr(u8 *);
|
|
static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
|
|
static void em_add_int_delay_sysctl(struct adapter *, const char *,
|
|
const char *, struct em_int_delay_info *, int, int);
|
|
/* Management and WOL Support */
|
|
static void em_init_manageability(struct adapter *);
|
|
static void em_release_manageability(struct adapter *);
|
|
static void em_get_hw_control(struct adapter *);
|
|
static void em_release_hw_control(struct adapter *);
|
|
static void em_get_wakeup(device_t);
|
|
static void em_enable_wakeup(device_t);
|
|
static int em_enable_phy_wakeup(struct adapter *);
|
|
static void em_led_func(void *, int);
|
|
static void em_disable_aspm(struct adapter *);
|
|
|
|
static int em_irq_fast(void *);
|
|
|
|
/* MSIX handlers */
|
|
static void em_msix_tx(void *);
|
|
static void em_msix_rx(void *);
|
|
static void em_msix_link(void *);
|
|
static void em_handle_tx(void *context, int pending);
|
|
static void em_handle_rx(void *context, int pending);
|
|
static void em_handle_link(void *context, int pending);
|
|
|
|
static void em_set_sysctl_value(struct adapter *, const char *,
|
|
const char *, int *, int);
|
|
static int em_set_flowcntl(SYSCTL_HANDLER_ARGS);
|
|
static int em_sysctl_eee(SYSCTL_HANDLER_ARGS);
|
|
|
|
static __inline void em_rx_discard(struct rx_ring *, int);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static poll_handler_drv_t em_poll;
|
|
#endif /* POLLING */
|
|
|
|
/*********************************************************************
|
|
* FreeBSD Device Interface Entry Points
|
|
*********************************************************************/
|
|
|
|
static device_method_t em_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, em_probe),
|
|
DEVMETHOD(device_attach, em_attach),
|
|
DEVMETHOD(device_detach, em_detach),
|
|
DEVMETHOD(device_shutdown, em_shutdown),
|
|
DEVMETHOD(device_suspend, em_suspend),
|
|
DEVMETHOD(device_resume, em_resume),
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t em_driver = {
|
|
"em", em_methods, sizeof(struct adapter),
|
|
};
|
|
|
|
devclass_t em_devclass;
|
|
DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
|
|
MODULE_DEPEND(em, pci, 1, 1, 1);
|
|
MODULE_DEPEND(em, ether, 1, 1, 1);
|
|
|
|
/*********************************************************************
|
|
* Tunable default values.
|
|
*********************************************************************/
|
|
|
|
#define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
|
|
#define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
|
|
#define M_TSO_LEN 66
|
|
|
|
#define MAX_INTS_PER_SEC 8000
|
|
#define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256))
|
|
|
|
/* Allow common code without TSO */
|
|
#ifndef CSUM_TSO
|
|
#define CSUM_TSO 0
|
|
#endif
|
|
|
|
static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
|
|
|
|
static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
|
|
static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
|
|
SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
|
|
0, "Default transmit interrupt delay in usecs");
|
|
SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
|
|
0, "Default receive interrupt delay in usecs");
|
|
|
|
static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
|
|
static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
|
|
SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
|
|
&em_tx_abs_int_delay_dflt, 0,
|
|
"Default transmit interrupt delay limit in usecs");
|
|
SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
|
|
&em_rx_abs_int_delay_dflt, 0,
|
|
"Default receive interrupt delay limit in usecs");
|
|
|
|
static int em_rxd = EM_DEFAULT_RXD;
|
|
static int em_txd = EM_DEFAULT_TXD;
|
|
SYSCTL_INT(_hw_em, OID_AUTO, rxd, CTLFLAG_RDTUN, &em_rxd, 0,
|
|
"Number of receive descriptors per queue");
|
|
SYSCTL_INT(_hw_em, OID_AUTO, txd, CTLFLAG_RDTUN, &em_txd, 0,
|
|
"Number of transmit descriptors per queue");
|
|
|
|
static int em_smart_pwr_down = FALSE;
|
|
SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
|
|
0, "Set to true to leave smart power down enabled on newer adapters");
|
|
|
|
/* Controls whether promiscuous also shows bad packets */
|
|
static int em_debug_sbp = FALSE;
|
|
SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
|
|
"Show bad packets in promiscuous mode");
|
|
|
|
static int em_enable_msix = TRUE;
|
|
SYSCTL_INT(_hw_em, OID_AUTO, enable_msix, CTLFLAG_RDTUN, &em_enable_msix, 0,
|
|
"Enable MSI-X interrupts");
|
|
|
|
/* How many packets rxeof tries to clean at a time */
|
|
static int em_rx_process_limit = 100;
|
|
SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
|
|
&em_rx_process_limit, 0,
|
|
"Maximum number of received packets to process "
|
|
"at a time, -1 means unlimited");
|
|
|
|
/* Energy efficient ethernet - default to OFF */
|
|
static int eee_setting = 1;
|
|
SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
|
|
"Enable Energy Efficient Ethernet");
|
|
|
|
/* Global used in WOL setup with multiport cards */
|
|
static int global_quad_port_a = 0;
|
|
|
|
#ifdef DEV_NETMAP /* see ixgbe.c for details */
|
|
#include <dev/netmap/if_em_netmap.h>
|
|
#endif /* DEV_NETMAP */
|
|
|
|
/*********************************************************************
|
|
* Device identification routine
|
|
*
|
|
* em_probe determines if the driver should be loaded on
|
|
* adapter based on PCI vendor/device id of the adapter.
|
|
*
|
|
* return BUS_PROBE_DEFAULT on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
em_probe(device_t dev)
|
|
{
|
|
char adapter_name[60];
|
|
u16 pci_vendor_id = 0;
|
|
u16 pci_device_id = 0;
|
|
u16 pci_subvendor_id = 0;
|
|
u16 pci_subdevice_id = 0;
|
|
em_vendor_info_t *ent;
|
|
|
|
INIT_DEBUGOUT("em_probe: begin");
|
|
|
|
pci_vendor_id = pci_get_vendor(dev);
|
|
if (pci_vendor_id != EM_VENDOR_ID)
|
|
return (ENXIO);
|
|
|
|
pci_device_id = pci_get_device(dev);
|
|
pci_subvendor_id = pci_get_subvendor(dev);
|
|
pci_subdevice_id = pci_get_subdevice(dev);
|
|
|
|
ent = em_vendor_info_array;
|
|
while (ent->vendor_id != 0) {
|
|
if ((pci_vendor_id == ent->vendor_id) &&
|
|
(pci_device_id == ent->device_id) &&
|
|
|
|
((pci_subvendor_id == ent->subvendor_id) ||
|
|
(ent->subvendor_id == PCI_ANY_ID)) &&
|
|
|
|
((pci_subdevice_id == ent->subdevice_id) ||
|
|
(ent->subdevice_id == PCI_ANY_ID))) {
|
|
sprintf(adapter_name, "%s %s",
|
|
em_strings[ent->index],
|
|
em_driver_version);
|
|
device_set_desc_copy(dev, adapter_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
ent++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device initialization routine
|
|
*
|
|
* The attach entry point is called when the driver is being loaded.
|
|
* This routine identifies the type of hardware, allocates all resources
|
|
* and initializes the hardware.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
em_attach(device_t dev)
|
|
{
|
|
struct adapter *adapter;
|
|
struct e1000_hw *hw;
|
|
int error = 0;
|
|
|
|
INIT_DEBUGOUT("em_attach: begin");
|
|
|
|
if (resource_disabled("em", device_get_unit(dev))) {
|
|
device_printf(dev, "Disabled by device hint\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
adapter = device_get_softc(dev);
|
|
adapter->dev = adapter->osdep.dev = dev;
|
|
hw = &adapter->hw;
|
|
EM_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
|
|
|
|
/* SYSCTL stuff */
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
|
|
em_sysctl_nvm_info, "I", "NVM Information");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
|
|
em_sysctl_debug_info, "I", "Debug Information");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
|
|
em_set_flowcntl, "I", "Flow Control");
|
|
|
|
callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
|
|
|
|
/* Determine hardware and mac info */
|
|
em_identify_hardware(adapter);
|
|
|
|
/* Setup PCI resources */
|
|
if (em_allocate_pci_resources(adapter)) {
|
|
device_printf(dev, "Allocation of PCI resources failed\n");
|
|
error = ENXIO;
|
|
goto err_pci;
|
|
}
|
|
|
|
/*
|
|
** For ICH8 and family we need to
|
|
** map the flash memory, and this
|
|
** must happen after the MAC is
|
|
** identified
|
|
*/
|
|
if ((hw->mac.type == e1000_ich8lan) ||
|
|
(hw->mac.type == e1000_ich9lan) ||
|
|
(hw->mac.type == e1000_ich10lan) ||
|
|
(hw->mac.type == e1000_pchlan) ||
|
|
(hw->mac.type == e1000_pch2lan) ||
|
|
(hw->mac.type == e1000_pch_lpt)) {
|
|
int rid = EM_BAR_TYPE_FLASH;
|
|
adapter->flash = bus_alloc_resource_any(dev,
|
|
SYS_RES_MEMORY, &rid, RF_ACTIVE);
|
|
if (adapter->flash == NULL) {
|
|
device_printf(dev, "Mapping of Flash failed\n");
|
|
error = ENXIO;
|
|
goto err_pci;
|
|
}
|
|
/* This is used in the shared code */
|
|
hw->flash_address = (u8 *)adapter->flash;
|
|
adapter->osdep.flash_bus_space_tag =
|
|
rman_get_bustag(adapter->flash);
|
|
adapter->osdep.flash_bus_space_handle =
|
|
rman_get_bushandle(adapter->flash);
|
|
}
|
|
|
|
/* Do Shared Code initialization */
|
|
if (e1000_setup_init_funcs(hw, TRUE)) {
|
|
device_printf(dev, "Setup of Shared code failed\n");
|
|
error = ENXIO;
|
|
goto err_pci;
|
|
}
|
|
|
|
e1000_get_bus_info(hw);
|
|
|
|
/* Set up some sysctls for the tunable interrupt delays */
|
|
em_add_int_delay_sysctl(adapter, "rx_int_delay",
|
|
"receive interrupt delay in usecs", &adapter->rx_int_delay,
|
|
E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
|
|
em_add_int_delay_sysctl(adapter, "tx_int_delay",
|
|
"transmit interrupt delay in usecs", &adapter->tx_int_delay,
|
|
E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
|
|
em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
|
|
"receive interrupt delay limit in usecs",
|
|
&adapter->rx_abs_int_delay,
|
|
E1000_REGISTER(hw, E1000_RADV),
|
|
em_rx_abs_int_delay_dflt);
|
|
em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
|
|
"transmit interrupt delay limit in usecs",
|
|
&adapter->tx_abs_int_delay,
|
|
E1000_REGISTER(hw, E1000_TADV),
|
|
em_tx_abs_int_delay_dflt);
|
|
em_add_int_delay_sysctl(adapter, "itr",
|
|
"interrupt delay limit in usecs/4",
|
|
&adapter->tx_itr,
|
|
E1000_REGISTER(hw, E1000_ITR),
|
|
DEFAULT_ITR);
|
|
|
|
/* Sysctl for limiting the amount of work done in the taskqueue */
|
|
em_set_sysctl_value(adapter, "rx_processing_limit",
|
|
"max number of rx packets to process", &adapter->rx_process_limit,
|
|
em_rx_process_limit);
|
|
|
|
/*
|
|
* Validate number of transmit and receive descriptors. It
|
|
* must not exceed hardware maximum, and must be multiple
|
|
* of E1000_DBA_ALIGN.
|
|
*/
|
|
if (((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN) != 0 ||
|
|
(em_txd > EM_MAX_TXD) || (em_txd < EM_MIN_TXD)) {
|
|
device_printf(dev, "Using %d TX descriptors instead of %d!\n",
|
|
EM_DEFAULT_TXD, em_txd);
|
|
adapter->num_tx_desc = EM_DEFAULT_TXD;
|
|
} else
|
|
adapter->num_tx_desc = em_txd;
|
|
|
|
if (((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN) != 0 ||
|
|
(em_rxd > EM_MAX_RXD) || (em_rxd < EM_MIN_RXD)) {
|
|
device_printf(dev, "Using %d RX descriptors instead of %d!\n",
|
|
EM_DEFAULT_RXD, em_rxd);
|
|
adapter->num_rx_desc = EM_DEFAULT_RXD;
|
|
} else
|
|
adapter->num_rx_desc = em_rxd;
|
|
|
|
hw->mac.autoneg = DO_AUTO_NEG;
|
|
hw->phy.autoneg_wait_to_complete = FALSE;
|
|
hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
|
|
|
|
/* Copper options */
|
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
|
hw->phy.mdix = AUTO_ALL_MODES;
|
|
hw->phy.disable_polarity_correction = FALSE;
|
|
hw->phy.ms_type = EM_MASTER_SLAVE;
|
|
}
|
|
|
|
/*
|
|
* Set the frame limits assuming
|
|
* standard ethernet sized frames.
|
|
*/
|
|
adapter->hw.mac.max_frame_size =
|
|
ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
|
|
|
|
/*
|
|
* This controls when hardware reports transmit completion
|
|
* status.
|
|
*/
|
|
hw->mac.report_tx_early = 1;
|
|
|
|
/*
|
|
** Get queue/ring memory
|
|
*/
|
|
if (em_allocate_queues(adapter)) {
|
|
error = ENOMEM;
|
|
goto err_pci;
|
|
}
|
|
|
|
/* Allocate multicast array memory. */
|
|
adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
|
|
MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
|
|
if (adapter->mta == NULL) {
|
|
device_printf(dev, "Can not allocate multicast setup array\n");
|
|
error = ENOMEM;
|
|
goto err_late;
|
|
}
|
|
|
|
/* Check SOL/IDER usage */
|
|
if (e1000_check_reset_block(hw))
|
|
device_printf(dev, "PHY reset is blocked"
|
|
" due to SOL/IDER session.\n");
|
|
|
|
/* Sysctl for setting Energy Efficient Ethernet */
|
|
hw->dev_spec.ich8lan.eee_disable = eee_setting;
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
|
|
adapter, 0, em_sysctl_eee, "I",
|
|
"Disable Energy Efficient Ethernet");
|
|
|
|
/*
|
|
** Start from a known state, this is
|
|
** important in reading the nvm and
|
|
** mac from that.
|
|
*/
|
|
e1000_reset_hw(hw);
|
|
|
|
|
|
/* Make sure we have a good EEPROM before we read from it */
|
|
if (e1000_validate_nvm_checksum(hw) < 0) {
|
|
/*
|
|
** Some PCI-E parts fail the first check due to
|
|
** the link being in sleep state, call it again,
|
|
** if it fails a second time its a real issue.
|
|
*/
|
|
if (e1000_validate_nvm_checksum(hw) < 0) {
|
|
device_printf(dev,
|
|
"The EEPROM Checksum Is Not Valid\n");
|
|
error = EIO;
|
|
goto err_late;
|
|
}
|
|
}
|
|
|
|
/* Copy the permanent MAC address out of the EEPROM */
|
|
if (e1000_read_mac_addr(hw) < 0) {
|
|
device_printf(dev, "EEPROM read error while reading MAC"
|
|
" address\n");
|
|
error = EIO;
|
|
goto err_late;
|
|
}
|
|
|
|
if (!em_is_valid_ether_addr(hw->mac.addr)) {
|
|
device_printf(dev, "Invalid MAC address\n");
|
|
error = EIO;
|
|
goto err_late;
|
|
}
|
|
|
|
/* Disable ULP support */
|
|
e1000_disable_ulp_lpt_lp(hw, TRUE);
|
|
|
|
/*
|
|
** Do interrupt configuration
|
|
*/
|
|
if (adapter->msix > 1) /* Do MSIX */
|
|
error = em_allocate_msix(adapter);
|
|
else /* MSI or Legacy */
|
|
error = em_allocate_legacy(adapter);
|
|
if (error)
|
|
goto err_late;
|
|
|
|
/*
|
|
* Get Wake-on-Lan and Management info for later use
|
|
*/
|
|
em_get_wakeup(dev);
|
|
|
|
/* Setup OS specific network interface */
|
|
if (em_setup_interface(dev, adapter) != 0)
|
|
goto err_late;
|
|
|
|
em_reset(adapter);
|
|
|
|
/* Initialize statistics */
|
|
em_update_stats_counters(adapter);
|
|
|
|
hw->mac.get_link_status = 1;
|
|
em_update_link_status(adapter);
|
|
|
|
/* Register for VLAN events */
|
|
adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
|
|
em_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
|
|
adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
|
|
em_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
|
|
|
|
em_add_hw_stats(adapter);
|
|
|
|
/* Non-AMT based hardware can now take control from firmware */
|
|
if (adapter->has_manage && !adapter->has_amt)
|
|
em_get_hw_control(adapter);
|
|
|
|
/* Tell the stack that the interface is not active */
|
|
if_setdrvflagbits(adapter->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
|
|
|
|
adapter->led_dev = led_create(em_led_func, adapter,
|
|
device_get_nameunit(dev));
|
|
#ifdef DEV_NETMAP
|
|
em_netmap_attach(adapter);
|
|
#endif /* DEV_NETMAP */
|
|
|
|
INIT_DEBUGOUT("em_attach: end");
|
|
|
|
return (0);
|
|
|
|
err_late:
|
|
em_free_transmit_structures(adapter);
|
|
em_free_receive_structures(adapter);
|
|
em_release_hw_control(adapter);
|
|
if (adapter->ifp != (void *)NULL)
|
|
if_free(adapter->ifp);
|
|
err_pci:
|
|
em_free_pci_resources(adapter);
|
|
free(adapter->mta, M_DEVBUF);
|
|
EM_CORE_LOCK_DESTROY(adapter);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device removal routine
|
|
*
|
|
* The detach entry point is called when the driver is being removed.
|
|
* This routine stops the adapter and deallocates all the resources
|
|
* that were allocated for driver operation.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
em_detach(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
if_t ifp = adapter->ifp;
|
|
|
|
INIT_DEBUGOUT("em_detach: begin");
|
|
|
|
/* Make sure VLANS are not using driver */
|
|
if (if_vlantrunkinuse(ifp)) {
|
|
device_printf(dev,"Vlan in use, detach first\n");
|
|
return (EBUSY);
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (if_getcapenable(ifp) & IFCAP_POLLING)
|
|
ether_poll_deregister_drv(ifp);
|
|
#endif
|
|
|
|
if (adapter->led_dev != NULL)
|
|
led_destroy(adapter->led_dev);
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
adapter->in_detach = 1;
|
|
em_stop(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
EM_CORE_LOCK_DESTROY(adapter);
|
|
|
|
e1000_phy_hw_reset(&adapter->hw);
|
|
|
|
em_release_manageability(adapter);
|
|
em_release_hw_control(adapter);
|
|
|
|
/* Unregister VLAN events */
|
|
if (adapter->vlan_attach != NULL)
|
|
EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach);
|
|
if (adapter->vlan_detach != NULL)
|
|
EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach);
|
|
|
|
ether_ifdetach(adapter->ifp);
|
|
callout_drain(&adapter->timer);
|
|
|
|
#ifdef DEV_NETMAP
|
|
netmap_detach(ifp);
|
|
#endif /* DEV_NETMAP */
|
|
|
|
em_free_pci_resources(adapter);
|
|
bus_generic_detach(dev);
|
|
if_free(ifp);
|
|
|
|
em_free_transmit_structures(adapter);
|
|
em_free_receive_structures(adapter);
|
|
|
|
em_release_hw_control(adapter);
|
|
free(adapter->mta, M_DEVBUF);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Shutdown entry point
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
em_shutdown(device_t dev)
|
|
{
|
|
return em_suspend(dev);
|
|
}
|
|
|
|
/*
|
|
* Suspend/resume device methods.
|
|
*/
|
|
static int
|
|
em_suspend(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
|
|
em_release_manageability(adapter);
|
|
em_release_hw_control(adapter);
|
|
em_enable_wakeup(dev);
|
|
|
|
EM_CORE_UNLOCK(adapter);
|
|
|
|
return bus_generic_suspend(dev);
|
|
}
|
|
|
|
static int
|
|
em_resume(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
if_t ifp = adapter->ifp;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
if (adapter->hw.mac.type == e1000_pch2lan)
|
|
e1000_resume_workarounds_pchlan(&adapter->hw);
|
|
em_init_locked(adapter);
|
|
em_init_manageability(adapter);
|
|
|
|
if ((if_getflags(ifp) & IFF_UP) &&
|
|
(if_getdrvflags(ifp) & IFF_DRV_RUNNING) && adapter->link_active) {
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
EM_TX_LOCK(txr);
|
|
#ifdef EM_MULTIQUEUE
|
|
if (!drbr_empty(ifp, txr->br))
|
|
em_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!if_sendq_empty(ifp))
|
|
em_start_locked(ifp, txr);
|
|
#endif
|
|
EM_TX_UNLOCK(txr);
|
|
}
|
|
}
|
|
EM_CORE_UNLOCK(adapter);
|
|
|
|
return bus_generic_resume(dev);
|
|
}
|
|
|
|
|
|
#ifdef EM_MULTIQUEUE
|
|
/*********************************************************************
|
|
* Multiqueue Transmit routines
|
|
*
|
|
* em_mq_start is called by the stack to initiate a transmit.
|
|
* however, if busy the driver can queue the request rather
|
|
* than do an immediate send. It is this that is an advantage
|
|
* in this driver, rather than also having multiple tx queues.
|
|
**********************************************************************/
|
|
static int
|
|
em_mq_start_locked(if_t ifp, struct tx_ring *txr, struct mbuf *m)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct mbuf *next;
|
|
int err = 0, enq = 0;
|
|
|
|
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || adapter->link_active == 0) {
|
|
if (m != NULL)
|
|
err = drbr_enqueue(ifp, txr->br, m);
|
|
return (err);
|
|
}
|
|
|
|
enq = 0;
|
|
if (m != NULL) {
|
|
err = drbr_enqueue(ifp, txr->br, m);
|
|
if (err)
|
|
return (err);
|
|
}
|
|
|
|
/* Process the queue */
|
|
while ((next = drbr_peek(ifp, txr->br)) != NULL) {
|
|
if ((err = em_xmit(txr, &next)) != 0) {
|
|
if (next == NULL)
|
|
drbr_advance(ifp, txr->br);
|
|
else
|
|
drbr_putback(ifp, txr->br, next);
|
|
break;
|
|
}
|
|
drbr_advance(ifp, txr->br);
|
|
enq++;
|
|
if_inc_counter(ifp, IFCOUNTER_OBYTES, next->m_pkthdr.len);
|
|
if (next->m_flags & M_MCAST)
|
|
if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
|
|
if_etherbpfmtap(ifp, next);
|
|
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
}
|
|
|
|
if (enq > 0) {
|
|
/* Set the watchdog */
|
|
txr->queue_status = EM_QUEUE_WORKING;
|
|
txr->watchdog_time = ticks;
|
|
}
|
|
|
|
if (txr->tx_avail < EM_MAX_SCATTER)
|
|
em_txeof(txr);
|
|
if (txr->tx_avail < EM_MAX_SCATTER)
|
|
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE,0);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
** Multiqueue capable stack interface
|
|
*/
|
|
static int
|
|
em_mq_start(if_t ifp, struct mbuf *m)
|
|
{
|
|
struct adapter *adapter = if_getsoftc(ifp);
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
int error;
|
|
|
|
if (EM_TX_TRYLOCK(txr)) {
|
|
error = em_mq_start_locked(ifp, txr, m);
|
|
EM_TX_UNLOCK(txr);
|
|
} else
|
|
error = drbr_enqueue(ifp, txr->br, m);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
** Flush all ring buffers
|
|
*/
|
|
static void
|
|
em_qflush(if_t ifp)
|
|
{
|
|
struct adapter *adapter = if_getsoftc(ifp);
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct mbuf *m;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
EM_TX_LOCK(txr);
|
|
while ((m = buf_ring_dequeue_sc(txr->br)) != NULL)
|
|
m_freem(m);
|
|
EM_TX_UNLOCK(txr);
|
|
}
|
|
if_qflush(ifp);
|
|
}
|
|
#else /* !EM_MULTIQUEUE */
|
|
|
|
static void
|
|
em_start_locked(if_t ifp, struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = if_getsoftc(ifp);
|
|
struct mbuf *m_head;
|
|
|
|
EM_TX_LOCK_ASSERT(txr);
|
|
|
|
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
if (!adapter->link_active)
|
|
return;
|
|
|
|
while (!if_sendq_empty(ifp)) {
|
|
/* Call cleanup if number of TX descriptors low */
|
|
if (txr->tx_avail <= EM_TX_CLEANUP_THRESHOLD)
|
|
em_txeof(txr);
|
|
if (txr->tx_avail < EM_MAX_SCATTER) {
|
|
if_setdrvflagbits(ifp,IFF_DRV_OACTIVE, 0);
|
|
break;
|
|
}
|
|
m_head = if_dequeue(ifp);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Encapsulation can modify our pointer, and or make it
|
|
* NULL on failure. In that event, we can't requeue.
|
|
*/
|
|
if (em_xmit(txr, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
if_sendq_prepend(ifp, m_head);
|
|
break;
|
|
}
|
|
|
|
/* Send a copy of the frame to the BPF listener */
|
|
if_etherbpfmtap(ifp, m_head);
|
|
|
|
/* Set timeout in case hardware has problems transmitting. */
|
|
txr->watchdog_time = ticks;
|
|
txr->queue_status = EM_QUEUE_WORKING;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
em_start(if_t ifp)
|
|
{
|
|
struct adapter *adapter = if_getsoftc(ifp);
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
EM_TX_LOCK(txr);
|
|
em_start_locked(ifp, txr);
|
|
EM_TX_UNLOCK(txr);
|
|
}
|
|
return;
|
|
}
|
|
#endif /* EM_MULTIQUEUE */
|
|
|
|
/*********************************************************************
|
|
* Ioctl entry point
|
|
*
|
|
* em_ioctl is called when the user wants to configure the
|
|
* interface.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static int
|
|
em_ioctl(if_t ifp, u_long command, caddr_t data)
|
|
{
|
|
struct adapter *adapter = if_getsoftc(ifp);
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
#if defined(INET) || defined(INET6)
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
#endif
|
|
bool avoid_reset = FALSE;
|
|
int error = 0;
|
|
|
|
if (adapter->in_detach)
|
|
return (error);
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
#ifdef INET
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
avoid_reset = TRUE;
|
|
#endif
|
|
#ifdef INET6
|
|
if (ifa->ifa_addr->sa_family == AF_INET6)
|
|
avoid_reset = TRUE;
|
|
#endif
|
|
/*
|
|
** Calling init results in link renegotiation,
|
|
** so we avoid doing it when possible.
|
|
*/
|
|
if (avoid_reset) {
|
|
if_setflagbits(ifp,IFF_UP,0);
|
|
if (!(if_getdrvflags(ifp)& IFF_DRV_RUNNING))
|
|
em_init(adapter);
|
|
#ifdef INET
|
|
if (!(if_getflags(ifp) & IFF_NOARP))
|
|
arp_ifinit(ifp, ifa);
|
|
#endif
|
|
} else
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFMTU:
|
|
{
|
|
int max_frame_size;
|
|
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_ich9lan:
|
|
case e1000_ich10lan:
|
|
case e1000_pch2lan:
|
|
case e1000_pch_lpt:
|
|
case e1000_82574:
|
|
case e1000_82583:
|
|
case e1000_80003es2lan: /* 9K Jumbo Frame size */
|
|
max_frame_size = 9234;
|
|
break;
|
|
case e1000_pchlan:
|
|
max_frame_size = 4096;
|
|
break;
|
|
/* Adapters that do not support jumbo frames */
|
|
case e1000_ich8lan:
|
|
max_frame_size = ETHER_MAX_LEN;
|
|
break;
|
|
default:
|
|
max_frame_size = MAX_JUMBO_FRAME_SIZE;
|
|
}
|
|
if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
|
|
ETHER_CRC_LEN) {
|
|
EM_CORE_UNLOCK(adapter);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if_setmtu(ifp, ifr->ifr_mtu);
|
|
adapter->hw.mac.max_frame_size =
|
|
if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN;
|
|
em_init_locked(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
break;
|
|
}
|
|
case SIOCSIFFLAGS:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd:\
|
|
SIOCSIFFLAGS (Set Interface Flags)");
|
|
EM_CORE_LOCK(adapter);
|
|
if (if_getflags(ifp) & IFF_UP) {
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
if ((if_getflags(ifp) ^ adapter->if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI)) {
|
|
em_disable_promisc(adapter);
|
|
em_set_promisc(adapter);
|
|
}
|
|
} else
|
|
em_init_locked(adapter);
|
|
} else
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
|
|
em_stop(adapter);
|
|
adapter->if_flags = if_getflags(ifp);
|
|
EM_CORE_UNLOCK(adapter);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
EM_CORE_LOCK(adapter);
|
|
em_disable_intr(adapter);
|
|
em_set_multi(adapter);
|
|
#ifdef DEVICE_POLLING
|
|
if (!(if_getcapenable(ifp) & IFCAP_POLLING))
|
|
#endif
|
|
em_enable_intr(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
/* Check SOL/IDER usage */
|
|
EM_CORE_LOCK(adapter);
|
|
if (e1000_check_reset_block(&adapter->hw)) {
|
|
EM_CORE_UNLOCK(adapter);
|
|
device_printf(adapter->dev, "Media change is"
|
|
" blocked due to SOL/IDER session.\n");
|
|
break;
|
|
}
|
|
EM_CORE_UNLOCK(adapter);
|
|
/* falls thru */
|
|
case SIOCGIFMEDIA:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: \
|
|
SIOCxIFMEDIA (Get/Set Interface Media)");
|
|
error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
{
|
|
int mask, reinit;
|
|
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
|
|
reinit = 0;
|
|
mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
|
|
#ifdef DEVICE_POLLING
|
|
if (mask & IFCAP_POLLING) {
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING) {
|
|
error = ether_poll_register_drv(em_poll, ifp);
|
|
if (error)
|
|
return (error);
|
|
EM_CORE_LOCK(adapter);
|
|
em_disable_intr(adapter);
|
|
if_setcapenablebit(ifp, IFCAP_POLLING, 0);
|
|
EM_CORE_UNLOCK(adapter);
|
|
} else {
|
|
error = ether_poll_deregister_drv(ifp);
|
|
/* Enable interrupt even in error case */
|
|
EM_CORE_LOCK(adapter);
|
|
em_enable_intr(adapter);
|
|
if_setcapenablebit(ifp, 0, IFCAP_POLLING);
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
}
|
|
#endif
|
|
if (mask & IFCAP_HWCSUM) {
|
|
if_togglecapenable(ifp,IFCAP_HWCSUM);
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_TSO4) {
|
|
if_togglecapenable(ifp,IFCAP_TSO4);
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_VLAN_HWTAGGING) {
|
|
if_togglecapenable(ifp,IFCAP_VLAN_HWTAGGING);
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_VLAN_HWFILTER) {
|
|
if_togglecapenable(ifp, IFCAP_VLAN_HWFILTER);
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_VLAN_HWTSO) {
|
|
if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
|
|
reinit = 1;
|
|
}
|
|
if ((mask & IFCAP_WOL) &&
|
|
(if_getcapabilities(ifp) & IFCAP_WOL) != 0) {
|
|
if (mask & IFCAP_WOL_MCAST)
|
|
if_togglecapenable(ifp, IFCAP_WOL_MCAST);
|
|
if (mask & IFCAP_WOL_MAGIC)
|
|
if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
|
|
}
|
|
if (reinit && (if_getdrvflags(ifp) & IFF_DRV_RUNNING))
|
|
em_init(adapter);
|
|
if_vlancap(ifp);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Init entry point
|
|
*
|
|
* This routine is used in two ways. It is used by the stack as
|
|
* init entry point in network interface structure. It is also used
|
|
* by the driver as a hw/sw initialization routine to get to a
|
|
* consistent state.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_init_locked(struct adapter *adapter)
|
|
{
|
|
if_t ifp = adapter->ifp;
|
|
device_t dev = adapter->dev;
|
|
|
|
INIT_DEBUGOUT("em_init: begin");
|
|
|
|
EM_CORE_LOCK_ASSERT(adapter);
|
|
|
|
em_disable_intr(adapter);
|
|
callout_stop(&adapter->timer);
|
|
|
|
/* Get the latest mac address, User can use a LAA */
|
|
bcopy(if_getlladdr(adapter->ifp), adapter->hw.mac.addr,
|
|
ETHER_ADDR_LEN);
|
|
|
|
/* Put the address into the Receive Address Array */
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
|
|
|
|
/*
|
|
* With the 82571 adapter, RAR[0] may be overwritten
|
|
* when the other port is reset, we make a duplicate
|
|
* in RAR[14] for that eventuality, this assures
|
|
* the interface continues to function.
|
|
*/
|
|
if (adapter->hw.mac.type == e1000_82571) {
|
|
e1000_set_laa_state_82571(&adapter->hw, TRUE);
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
|
|
E1000_RAR_ENTRIES - 1);
|
|
}
|
|
|
|
/* Initialize the hardware */
|
|
em_reset(adapter);
|
|
em_update_link_status(adapter);
|
|
|
|
/* Setup VLAN support, basic and offload if available */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
|
|
|
|
/* Set hardware offload abilities */
|
|
if_clearhwassist(ifp);
|
|
if (if_getcapenable(ifp) & IFCAP_TXCSUM)
|
|
if_sethwassistbits(ifp, CSUM_TCP | CSUM_UDP, 0);
|
|
if (if_getcapenable(ifp) & IFCAP_TSO4)
|
|
if_sethwassistbits(ifp, CSUM_TSO, 0);
|
|
|
|
/* Configure for OS presence */
|
|
em_init_manageability(adapter);
|
|
|
|
/* Prepare transmit descriptors and buffers */
|
|
em_setup_transmit_structures(adapter);
|
|
em_initialize_transmit_unit(adapter);
|
|
|
|
/* Setup Multicast table */
|
|
em_set_multi(adapter);
|
|
|
|
/*
|
|
** Figure out the desired mbuf
|
|
** pool for doing jumbos
|
|
*/
|
|
if (adapter->hw.mac.max_frame_size <= 2048)
|
|
adapter->rx_mbuf_sz = MCLBYTES;
|
|
else if (adapter->hw.mac.max_frame_size <= 4096)
|
|
adapter->rx_mbuf_sz = MJUMPAGESIZE;
|
|
else
|
|
adapter->rx_mbuf_sz = MJUM9BYTES;
|
|
|
|
/* Prepare receive descriptors and buffers */
|
|
if (em_setup_receive_structures(adapter)) {
|
|
device_printf(dev, "Could not setup receive structures\n");
|
|
em_stop(adapter);
|
|
return;
|
|
}
|
|
em_initialize_receive_unit(adapter);
|
|
|
|
/* Use real VLAN Filter support? */
|
|
if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
|
|
if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
|
|
/* Use real VLAN Filter support */
|
|
em_setup_vlan_hw_support(adapter);
|
|
else {
|
|
u32 ctrl;
|
|
ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
|
|
ctrl |= E1000_CTRL_VME;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
|
|
}
|
|
}
|
|
|
|
/* Don't lose promiscuous settings */
|
|
em_set_promisc(adapter);
|
|
|
|
/* Set the interface as ACTIVE */
|
|
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
|
|
|
|
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
|
|
e1000_clear_hw_cntrs_base_generic(&adapter->hw);
|
|
|
|
/* MSI/X configuration for 82574 */
|
|
if (adapter->hw.mac.type == e1000_82574) {
|
|
int tmp;
|
|
tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
tmp |= E1000_CTRL_EXT_PBA_CLR;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
|
|
/* Set the IVAR - interrupt vector routing. */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/*
|
|
* Only enable interrupts if we are not polling, make sure
|
|
* they are off otherwise.
|
|
*/
|
|
if (if_getcapenable(ifp) & IFCAP_POLLING)
|
|
em_disable_intr(adapter);
|
|
else
|
|
#endif /* DEVICE_POLLING */
|
|
em_enable_intr(adapter);
|
|
|
|
/* AMT based hardware can now take control from firmware */
|
|
if (adapter->has_manage && adapter->has_amt)
|
|
em_get_hw_control(adapter);
|
|
}
|
|
|
|
static void
|
|
em_init(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
em_init_locked(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/*********************************************************************
|
|
*
|
|
* Legacy polling routine: note this only works with single queue
|
|
*
|
|
*********************************************************************/
|
|
static int
|
|
em_poll(if_t ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct adapter *adapter = if_getsoftc(ifp);
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
u32 reg_icr;
|
|
int rx_done;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
|
|
EM_CORE_UNLOCK(adapter);
|
|
return (0);
|
|
}
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
|
callout_stop(&adapter->timer);
|
|
adapter->hw.mac.get_link_status = 1;
|
|
em_update_link_status(adapter);
|
|
callout_reset(&adapter->timer, hz,
|
|
em_local_timer, adapter);
|
|
}
|
|
}
|
|
EM_CORE_UNLOCK(adapter);
|
|
|
|
em_rxeof(rxr, count, &rx_done);
|
|
|
|
EM_TX_LOCK(txr);
|
|
em_txeof(txr);
|
|
#ifdef EM_MULTIQUEUE
|
|
if (!drbr_empty(ifp, txr->br))
|
|
em_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!if_sendq_empty(ifp))
|
|
em_start_locked(ifp, txr);
|
|
#endif
|
|
EM_TX_UNLOCK(txr);
|
|
|
|
return (rx_done);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Fast Legacy/MSI Combined Interrupt Service routine
|
|
*
|
|
*********************************************************************/
|
|
static int
|
|
em_irq_fast(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
if_t ifp;
|
|
u32 reg_icr;
|
|
|
|
ifp = adapter->ifp;
|
|
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
|
|
/* Hot eject? */
|
|
if (reg_icr == 0xffffffff)
|
|
return FILTER_STRAY;
|
|
|
|
/* Definitely not our interrupt. */
|
|
if (reg_icr == 0x0)
|
|
return FILTER_STRAY;
|
|
|
|
/*
|
|
* Starting with the 82571 chip, bit 31 should be used to
|
|
* determine whether the interrupt belongs to us.
|
|
*/
|
|
if (adapter->hw.mac.type >= e1000_82571 &&
|
|
(reg_icr & E1000_ICR_INT_ASSERTED) == 0)
|
|
return FILTER_STRAY;
|
|
|
|
em_disable_intr(adapter);
|
|
taskqueue_enqueue(adapter->tq, &adapter->que_task);
|
|
|
|
/* Link status change */
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
|
adapter->hw.mac.get_link_status = 1;
|
|
taskqueue_enqueue(taskqueue_fast, &adapter->link_task);
|
|
}
|
|
|
|
if (reg_icr & E1000_ICR_RXO)
|
|
adapter->rx_overruns++;
|
|
return FILTER_HANDLED;
|
|
}
|
|
|
|
/* Combined RX/TX handler, used by Legacy and MSI */
|
|
static void
|
|
em_handle_que(void *context, int pending)
|
|
{
|
|
struct adapter *adapter = context;
|
|
if_t ifp = adapter->ifp;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
|
|
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
bool more = em_rxeof(rxr, adapter->rx_process_limit, NULL);
|
|
EM_TX_LOCK(txr);
|
|
em_txeof(txr);
|
|
#ifdef EM_MULTIQUEUE
|
|
if (!drbr_empty(ifp, txr->br))
|
|
em_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!if_sendq_empty(ifp))
|
|
em_start_locked(ifp, txr);
|
|
#endif
|
|
EM_TX_UNLOCK(txr);
|
|
if (more) {
|
|
taskqueue_enqueue(adapter->tq, &adapter->que_task);
|
|
return;
|
|
}
|
|
}
|
|
|
|
em_enable_intr(adapter);
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSIX Interrupt Service Routines
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_msix_tx(void *arg)
|
|
{
|
|
struct tx_ring *txr = arg;
|
|
struct adapter *adapter = txr->adapter;
|
|
if_t ifp = adapter->ifp;
|
|
|
|
++txr->tx_irq;
|
|
EM_TX_LOCK(txr);
|
|
em_txeof(txr);
|
|
#ifdef EM_MULTIQUEUE
|
|
if (!drbr_empty(ifp, txr->br))
|
|
em_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!if_sendq_empty(ifp))
|
|
em_start_locked(ifp, txr);
|
|
#endif
|
|
/* Reenable this interrupt */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS, txr->ims);
|
|
EM_TX_UNLOCK(txr);
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSIX RX Interrupt Service routine
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_msix_rx(void *arg)
|
|
{
|
|
struct rx_ring *rxr = arg;
|
|
struct adapter *adapter = rxr->adapter;
|
|
bool more;
|
|
|
|
++rxr->rx_irq;
|
|
if (!(if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING))
|
|
return;
|
|
more = em_rxeof(rxr, adapter->rx_process_limit, NULL);
|
|
if (more)
|
|
taskqueue_enqueue(rxr->tq, &rxr->rx_task);
|
|
else
|
|
/* Reenable this interrupt */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxr->ims);
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSIX Link Fast Interrupt Service routine
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_msix_link(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
u32 reg_icr;
|
|
|
|
++adapter->link_irq;
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
|
adapter->hw.mac.get_link_status = 1;
|
|
em_handle_link(adapter, 0);
|
|
} else
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS,
|
|
EM_MSIX_LINK | E1000_IMS_LSC);
|
|
return;
|
|
}
|
|
|
|
static void
|
|
em_handle_rx(void *context, int pending)
|
|
{
|
|
struct rx_ring *rxr = context;
|
|
struct adapter *adapter = rxr->adapter;
|
|
bool more;
|
|
|
|
more = em_rxeof(rxr, adapter->rx_process_limit, NULL);
|
|
if (more)
|
|
taskqueue_enqueue(rxr->tq, &rxr->rx_task);
|
|
else
|
|
/* Reenable this interrupt */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxr->ims);
|
|
}
|
|
|
|
static void
|
|
em_handle_tx(void *context, int pending)
|
|
{
|
|
struct tx_ring *txr = context;
|
|
struct adapter *adapter = txr->adapter;
|
|
if_t ifp = adapter->ifp;
|
|
|
|
EM_TX_LOCK(txr);
|
|
em_txeof(txr);
|
|
#ifdef EM_MULTIQUEUE
|
|
if (!drbr_empty(ifp, txr->br))
|
|
em_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!if_sendq_empty(ifp))
|
|
em_start_locked(ifp, txr);
|
|
#endif
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS, txr->ims);
|
|
EM_TX_UNLOCK(txr);
|
|
}
|
|
|
|
static void
|
|
em_handle_link(void *context, int pending)
|
|
{
|
|
struct adapter *adapter = context;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
if_t ifp = adapter->ifp;
|
|
|
|
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
|
|
return;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
callout_stop(&adapter->timer);
|
|
em_update_link_status(adapter);
|
|
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS,
|
|
EM_MSIX_LINK | E1000_IMS_LSC);
|
|
if (adapter->link_active) {
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
EM_TX_LOCK(txr);
|
|
#ifdef EM_MULTIQUEUE
|
|
if (!drbr_empty(ifp, txr->br))
|
|
em_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (if_sendq_empty(ifp))
|
|
em_start_locked(ifp, txr);
|
|
#endif
|
|
EM_TX_UNLOCK(txr);
|
|
}
|
|
}
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called whenever the user queries the status of
|
|
* the interface using ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_media_status(if_t ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct adapter *adapter = if_getsoftc(ifp);
|
|
u_char fiber_type = IFM_1000_SX;
|
|
|
|
INIT_DEBUGOUT("em_media_status: begin");
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
em_update_link_status(adapter);
|
|
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
if (!adapter->link_active) {
|
|
EM_CORE_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
|
|
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
|
|
ifmr->ifm_active |= fiber_type | IFM_FDX;
|
|
} else {
|
|
switch (adapter->link_speed) {
|
|
case 10:
|
|
ifmr->ifm_active |= IFM_10_T;
|
|
break;
|
|
case 100:
|
|
ifmr->ifm_active |= IFM_100_TX;
|
|
break;
|
|
case 1000:
|
|
ifmr->ifm_active |= IFM_1000_T;
|
|
break;
|
|
}
|
|
if (adapter->link_duplex == FULL_DUPLEX)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
}
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called when the user changes speed/duplex using
|
|
* media/mediopt option with ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_media_change(if_t ifp)
|
|
{
|
|
struct adapter *adapter = if_getsoftc(ifp);
|
|
struct ifmedia *ifm = &adapter->media;
|
|
|
|
INIT_DEBUGOUT("em_media_change: begin");
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return (EINVAL);
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
switch (IFM_SUBTYPE(ifm->ifm_media)) {
|
|
case IFM_AUTO:
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
|
|
break;
|
|
case IFM_1000_LX:
|
|
case IFM_1000_SX:
|
|
case IFM_1000_T:
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
|
|
break;
|
|
case IFM_100_TX:
|
|
adapter->hw.mac.autoneg = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = 0;
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
|
|
else
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
|
|
break;
|
|
case IFM_10_T:
|
|
adapter->hw.mac.autoneg = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = 0;
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
|
|
else
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
|
|
break;
|
|
default:
|
|
device_printf(adapter->dev, "Unsupported media type\n");
|
|
}
|
|
|
|
em_init_locked(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine maps the mbufs to tx descriptors.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static int
|
|
em_xmit(struct tx_ring *txr, struct mbuf **m_headp)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
bus_dma_segment_t segs[EM_MAX_SCATTER];
|
|
bus_dmamap_t map;
|
|
struct em_buffer *tx_buffer, *tx_buffer_mapped;
|
|
struct e1000_tx_desc *ctxd = NULL;
|
|
struct mbuf *m_head;
|
|
struct ether_header *eh;
|
|
struct ip *ip = NULL;
|
|
struct tcphdr *tp = NULL;
|
|
u32 txd_upper, txd_lower, txd_used, txd_saved;
|
|
int ip_off, poff;
|
|
int nsegs, i, j, first, last = 0;
|
|
int error, do_tso, tso_desc = 0, remap = 1;
|
|
|
|
m_head = *m_headp;
|
|
txd_upper = txd_lower = txd_used = txd_saved = 0;
|
|
do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0);
|
|
ip_off = poff = 0;
|
|
|
|
/*
|
|
* Intel recommends entire IP/TCP header length reside in a single
|
|
* buffer. If multiple descriptors are used to describe the IP and
|
|
* TCP header, each descriptor should describe one or more
|
|
* complete headers; descriptors referencing only parts of headers
|
|
* are not supported. If all layer headers are not coalesced into
|
|
* a single buffer, each buffer should not cross a 4KB boundary,
|
|
* or be larger than the maximum read request size.
|
|
* Controller also requires modifing IP/TCP header to make TSO work
|
|
* so we firstly get a writable mbuf chain then coalesce ethernet/
|
|
* IP/TCP header into a single buffer to meet the requirement of
|
|
* controller. This also simplifies IP/TCP/UDP checksum offloading
|
|
* which also has similiar restrictions.
|
|
*/
|
|
if (do_tso || m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD) {
|
|
if (do_tso || (m_head->m_next != NULL &&
|
|
m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)) {
|
|
if (M_WRITABLE(*m_headp) == 0) {
|
|
m_head = m_dup(*m_headp, M_NOWAIT);
|
|
m_freem(*m_headp);
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_headp = m_head;
|
|
}
|
|
}
|
|
/*
|
|
* XXX
|
|
* Assume IPv4, we don't have TSO/checksum offload support
|
|
* for IPv6 yet.
|
|
*/
|
|
ip_off = sizeof(struct ether_header);
|
|
m_head = m_pullup(m_head, ip_off);
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
eh = mtod(m_head, struct ether_header *);
|
|
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
|
|
ip_off = sizeof(struct ether_vlan_header);
|
|
m_head = m_pullup(m_head, ip_off);
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
m_head = m_pullup(m_head, ip_off + sizeof(struct ip));
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m_head, char *) + ip_off);
|
|
poff = ip_off + (ip->ip_hl << 2);
|
|
if (do_tso) {
|
|
m_head = m_pullup(m_head, poff + sizeof(struct tcphdr));
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
tp = (struct tcphdr *)(mtod(m_head, char *) + poff);
|
|
/*
|
|
* TSO workaround:
|
|
* pull 4 more bytes of data into it.
|
|
*/
|
|
m_head = m_pullup(m_head, poff + (tp->th_off << 2) + 4);
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m_head, char *) + ip_off);
|
|
ip->ip_len = 0;
|
|
ip->ip_sum = 0;
|
|
/*
|
|
* The pseudo TCP checksum does not include TCP payload
|
|
* length so driver should recompute the checksum here
|
|
* what hardware expect to see. This is adherence of
|
|
* Microsoft's Large Send specification.
|
|
*/
|
|
tp = (struct tcphdr *)(mtod(m_head, char *) + poff);
|
|
tp->th_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
} else if (m_head->m_pkthdr.csum_flags & CSUM_TCP) {
|
|
m_head = m_pullup(m_head, poff + sizeof(struct tcphdr));
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
tp = (struct tcphdr *)(mtod(m_head, char *) + poff);
|
|
m_head = m_pullup(m_head, poff + (tp->th_off << 2));
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m_head, char *) + ip_off);
|
|
tp = (struct tcphdr *)(mtod(m_head, char *) + poff);
|
|
} else if (m_head->m_pkthdr.csum_flags & CSUM_UDP) {
|
|
m_head = m_pullup(m_head, poff + sizeof(struct udphdr));
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m_head, char *) + ip_off);
|
|
}
|
|
*m_headp = m_head;
|
|
}
|
|
|
|
/*
|
|
* Map the packet for DMA
|
|
*
|
|
* Capture the first descriptor index,
|
|
* this descriptor will have the index
|
|
* of the EOP which is the only one that
|
|
* now gets a DONE bit writeback.
|
|
*/
|
|
first = txr->next_avail_desc;
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
tx_buffer_mapped = tx_buffer;
|
|
map = tx_buffer->map;
|
|
|
|
retry:
|
|
error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
/*
|
|
* There are two types of errors we can (try) to handle:
|
|
* - EFBIG means the mbuf chain was too long and bus_dma ran
|
|
* out of segments. Defragment the mbuf chain and try again.
|
|
* - ENOMEM means bus_dma could not obtain enough bounce buffers
|
|
* at this point in time. Defer sending and try again later.
|
|
* All other errors, in particular EINVAL, are fatal and prevent the
|
|
* mbuf chain from ever going through. Drop it and report error.
|
|
*/
|
|
if (error == EFBIG && remap) {
|
|
struct mbuf *m;
|
|
|
|
m = m_defrag(*m_headp, M_NOWAIT);
|
|
if (m == NULL) {
|
|
adapter->mbuf_alloc_failed++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_headp = m;
|
|
|
|
/* Try it again, but only once */
|
|
remap = 0;
|
|
goto retry;
|
|
} else if (error == ENOMEM) {
|
|
adapter->no_tx_dma_setup++;
|
|
return (error);
|
|
} else if (error != 0) {
|
|
adapter->no_tx_dma_setup++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* TSO Hardware workaround, if this packet is not
|
|
* TSO, and is only a single descriptor long, and
|
|
* it follows a TSO burst, then we need to add a
|
|
* sentinel descriptor to prevent premature writeback.
|
|
*/
|
|
if ((do_tso == 0) && (txr->tx_tso == TRUE)) {
|
|
if (nsegs == 1)
|
|
tso_desc = TRUE;
|
|
txr->tx_tso = FALSE;
|
|
}
|
|
|
|
if (nsegs > (txr->tx_avail - 2)) {
|
|
txr->no_desc_avail++;
|
|
bus_dmamap_unload(txr->txtag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
m_head = *m_headp;
|
|
|
|
/* Do hardware assists */
|
|
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
|
|
em_tso_setup(txr, m_head, ip_off, ip, tp,
|
|
&txd_upper, &txd_lower);
|
|
/* we need to make a final sentinel transmit desc */
|
|
tso_desc = TRUE;
|
|
} else if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)
|
|
em_transmit_checksum_setup(txr, m_head,
|
|
ip_off, ip, &txd_upper, &txd_lower);
|
|
|
|
if (m_head->m_flags & M_VLANTAG) {
|
|
/* Set the vlan id. */
|
|
txd_upper |= htole16(if_getvtag(m_head)) << 16;
|
|
/* Tell hardware to add tag */
|
|
txd_lower |= htole32(E1000_TXD_CMD_VLE);
|
|
}
|
|
|
|
i = txr->next_avail_desc;
|
|
|
|
/* Set up our transmit descriptors */
|
|
for (j = 0; j < nsegs; j++) {
|
|
bus_size_t seg_len;
|
|
bus_addr_t seg_addr;
|
|
|
|
tx_buffer = &txr->tx_buffers[i];
|
|
ctxd = &txr->tx_base[i];
|
|
seg_addr = segs[j].ds_addr;
|
|
seg_len = segs[j].ds_len;
|
|
/*
|
|
** TSO Workaround:
|
|
** If this is the last descriptor, we want to
|
|
** split it so we have a small final sentinel
|
|
*/
|
|
if (tso_desc && (j == (nsegs -1)) && (seg_len > 8)) {
|
|
seg_len -= 4;
|
|
ctxd->buffer_addr = htole64(seg_addr);
|
|
ctxd->lower.data = htole32(
|
|
adapter->txd_cmd | txd_lower | seg_len);
|
|
ctxd->upper.data =
|
|
htole32(txd_upper);
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
/* Now make the sentinel */
|
|
++txd_used; /* using an extra txd */
|
|
ctxd = &txr->tx_base[i];
|
|
tx_buffer = &txr->tx_buffers[i];
|
|
ctxd->buffer_addr =
|
|
htole64(seg_addr + seg_len);
|
|
ctxd->lower.data = htole32(
|
|
adapter->txd_cmd | txd_lower | 4);
|
|
ctxd->upper.data =
|
|
htole32(txd_upper);
|
|
last = i;
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
} else {
|
|
ctxd->buffer_addr = htole64(seg_addr);
|
|
ctxd->lower.data = htole32(
|
|
adapter->txd_cmd | txd_lower | seg_len);
|
|
ctxd->upper.data =
|
|
htole32(txd_upper);
|
|
last = i;
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
}
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
}
|
|
|
|
txr->next_avail_desc = i;
|
|
txr->tx_avail -= nsegs;
|
|
if (tso_desc) /* TSO used an extra for sentinel */
|
|
txr->tx_avail -= txd_used;
|
|
|
|
tx_buffer->m_head = m_head;
|
|
/*
|
|
** Here we swap the map so the last descriptor,
|
|
** which gets the completion interrupt has the
|
|
** real map, and the first descriptor gets the
|
|
** unused map from this descriptor.
|
|
*/
|
|
tx_buffer_mapped->map = tx_buffer->map;
|
|
tx_buffer->map = map;
|
|
bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Last Descriptor of Packet
|
|
* needs End Of Packet (EOP)
|
|
* and Report Status (RS)
|
|
*/
|
|
ctxd->lower.data |=
|
|
htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
|
|
/*
|
|
* Keep track in the first buffer which
|
|
* descriptor will be written back
|
|
*/
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
tx_buffer->next_eop = last;
|
|
/* Update the watchdog time early and often */
|
|
txr->watchdog_time = ticks;
|
|
|
|
/*
|
|
* Advance the Transmit Descriptor Tail (TDT), this tells the E1000
|
|
* that this frame is available to transmit.
|
|
*/
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), i);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
em_set_promisc(struct adapter *adapter)
|
|
{
|
|
if_t ifp = adapter->ifp;
|
|
u32 reg_rctl;
|
|
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
|
|
if (if_getflags(ifp) & IFF_PROMISC) {
|
|
reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
/* Turn this on if you want to see bad packets */
|
|
if (em_debug_sbp)
|
|
reg_rctl |= E1000_RCTL_SBP;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
} else if (if_getflags(ifp) & IFF_ALLMULTI) {
|
|
reg_rctl |= E1000_RCTL_MPE;
|
|
reg_rctl &= ~E1000_RCTL_UPE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
}
|
|
}
|
|
|
|
static void
|
|
em_disable_promisc(struct adapter *adapter)
|
|
{
|
|
if_t ifp = adapter->ifp;
|
|
u32 reg_rctl;
|
|
int mcnt = 0;
|
|
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
reg_rctl &= (~E1000_RCTL_UPE);
|
|
if (if_getflags(ifp) & IFF_ALLMULTI)
|
|
mcnt = MAX_NUM_MULTICAST_ADDRESSES;
|
|
else
|
|
mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES);
|
|
/* Don't disable if in MAX groups */
|
|
if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
|
|
reg_rctl &= (~E1000_RCTL_MPE);
|
|
reg_rctl &= (~E1000_RCTL_SBP);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Multicast Update
|
|
*
|
|
* This routine is called whenever multicast address list is updated.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_set_multi(struct adapter *adapter)
|
|
{
|
|
if_t ifp = adapter->ifp;
|
|
u32 reg_rctl = 0;
|
|
u8 *mta; /* Multicast array memory */
|
|
int mcnt = 0;
|
|
|
|
IOCTL_DEBUGOUT("em_set_multi: begin");
|
|
|
|
mta = adapter->mta;
|
|
bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
|
|
|
|
if (adapter->hw.mac.type == e1000_82542 &&
|
|
adapter->hw.revision_id == E1000_REVISION_2) {
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
|
|
e1000_pci_clear_mwi(&adapter->hw);
|
|
reg_rctl |= E1000_RCTL_RST;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
msec_delay(5);
|
|
}
|
|
|
|
if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES);
|
|
|
|
if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
reg_rctl |= E1000_RCTL_MPE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
} else
|
|
e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
|
|
|
|
if (adapter->hw.mac.type == e1000_82542 &&
|
|
adapter->hw.revision_id == E1000_REVISION_2) {
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
reg_rctl &= ~E1000_RCTL_RST;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
msec_delay(5);
|
|
if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
|
|
e1000_pci_set_mwi(&adapter->hw);
|
|
}
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Timer routine
|
|
*
|
|
* This routine checks for link status and updates statistics.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_local_timer(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
if_t ifp = adapter->ifp;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
u32 trigger;
|
|
|
|
EM_CORE_LOCK_ASSERT(adapter);
|
|
|
|
em_update_link_status(adapter);
|
|
em_update_stats_counters(adapter);
|
|
|
|
/* Reset LAA into RAR[0] on 82571 */
|
|
if ((adapter->hw.mac.type == e1000_82571) &&
|
|
e1000_get_laa_state_82571(&adapter->hw))
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
|
|
|
|
/* Mask to use in the irq trigger */
|
|
if (adapter->msix_mem)
|
|
trigger = rxr->ims;
|
|
else
|
|
trigger = E1000_ICS_RXDMT0;
|
|
|
|
/*
|
|
** Check on the state of the TX queue(s), this
|
|
** can be done without the lock because its RO
|
|
** and the HUNG state will be static if set.
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
if ((txr->queue_status == EM_QUEUE_HUNG) &&
|
|
(adapter->pause_frames == 0))
|
|
goto hung;
|
|
/* Schedule a TX tasklet if needed */
|
|
if (txr->tx_avail <= EM_MAX_SCATTER)
|
|
taskqueue_enqueue(txr->tq, &txr->tx_task);
|
|
}
|
|
|
|
adapter->pause_frames = 0;
|
|
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
|
|
#ifndef DEVICE_POLLING
|
|
/* Trigger an RX interrupt to guarantee mbuf refresh */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_ICS, trigger);
|
|
#endif
|
|
return;
|
|
hung:
|
|
/* Looks like we're hung */
|
|
device_printf(adapter->dev, "Watchdog timeout -- resetting\n");
|
|
device_printf(adapter->dev,
|
|
"Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
|
|
E1000_READ_REG(&adapter->hw, E1000_TDH(txr->me)),
|
|
E1000_READ_REG(&adapter->hw, E1000_TDT(txr->me)));
|
|
device_printf(adapter->dev,"TX(%d) desc avail = %d,"
|
|
"Next TX to Clean = %d\n",
|
|
txr->me, txr->tx_avail, txr->next_to_clean);
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
|
|
adapter->watchdog_events++;
|
|
adapter->pause_frames = 0;
|
|
em_init_locked(adapter);
|
|
}
|
|
|
|
|
|
static void
|
|
em_update_link_status(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
if_t ifp = adapter->ifp;
|
|
device_t dev = adapter->dev;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
u32 link_check = 0;
|
|
|
|
/* Get the cached link value or read phy for real */
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_copper:
|
|
if (hw->mac.get_link_status) {
|
|
/* Do the work to read phy */
|
|
e1000_check_for_link(hw);
|
|
link_check = !hw->mac.get_link_status;
|
|
if (link_check) /* ESB2 fix */
|
|
e1000_cfg_on_link_up(hw);
|
|
} else
|
|
link_check = TRUE;
|
|
break;
|
|
case e1000_media_type_fiber:
|
|
e1000_check_for_link(hw);
|
|
link_check = (E1000_READ_REG(hw, E1000_STATUS) &
|
|
E1000_STATUS_LU);
|
|
break;
|
|
case e1000_media_type_internal_serdes:
|
|
e1000_check_for_link(hw);
|
|
link_check = adapter->hw.mac.serdes_has_link;
|
|
break;
|
|
default:
|
|
case e1000_media_type_unknown:
|
|
break;
|
|
}
|
|
|
|
/* Now check for a transition */
|
|
if (link_check && (adapter->link_active == 0)) {
|
|
e1000_get_speed_and_duplex(hw, &adapter->link_speed,
|
|
&adapter->link_duplex);
|
|
/* Check if we must disable SPEED_MODE bit on PCI-E */
|
|
if ((adapter->link_speed != SPEED_1000) &&
|
|
((hw->mac.type == e1000_82571) ||
|
|
(hw->mac.type == e1000_82572))) {
|
|
int tarc0;
|
|
tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
|
|
tarc0 &= ~SPEED_MODE_BIT;
|
|
E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
|
|
}
|
|
if (bootverbose)
|
|
device_printf(dev, "Link is up %d Mbps %s\n",
|
|
adapter->link_speed,
|
|
((adapter->link_duplex == FULL_DUPLEX) ?
|
|
"Full Duplex" : "Half Duplex"));
|
|
adapter->link_active = 1;
|
|
adapter->smartspeed = 0;
|
|
if_setbaudrate(ifp, adapter->link_speed * 1000000);
|
|
if_link_state_change(ifp, LINK_STATE_UP);
|
|
} else if (!link_check && (adapter->link_active == 1)) {
|
|
if_setbaudrate(ifp, 0);
|
|
adapter->link_speed = 0;
|
|
adapter->link_duplex = 0;
|
|
if (bootverbose)
|
|
device_printf(dev, "Link is Down\n");
|
|
adapter->link_active = 0;
|
|
/* Link down, disable watchdog */
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++)
|
|
txr->queue_status = EM_QUEUE_IDLE;
|
|
if_link_state_change(ifp, LINK_STATE_DOWN);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine disables all traffic on the adapter by issuing a
|
|
* global reset on the MAC and deallocates TX/RX buffers.
|
|
*
|
|
* This routine should always be called with BOTH the CORE
|
|
* and TX locks.
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_stop(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
if_t ifp = adapter->ifp;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
EM_CORE_LOCK_ASSERT(adapter);
|
|
|
|
INIT_DEBUGOUT("em_stop: begin");
|
|
|
|
em_disable_intr(adapter);
|
|
callout_stop(&adapter->timer);
|
|
|
|
/* Tell the stack that the interface is no longer active */
|
|
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
|
|
|
|
/* Unarm watchdog timer. */
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
EM_TX_LOCK(txr);
|
|
txr->queue_status = EM_QUEUE_IDLE;
|
|
EM_TX_UNLOCK(txr);
|
|
}
|
|
|
|
e1000_reset_hw(&adapter->hw);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
|
|
|
|
e1000_led_off(&adapter->hw);
|
|
e1000_cleanup_led(&adapter->hw);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Determine hardware revision.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_identify_hardware(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
/* Make sure our PCI config space has the necessary stuff set */
|
|
pci_enable_busmaster(dev);
|
|
adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
|
|
/* Save off the information about this board */
|
|
adapter->hw.vendor_id = pci_get_vendor(dev);
|
|
adapter->hw.device_id = pci_get_device(dev);
|
|
adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
|
|
adapter->hw.subsystem_vendor_id =
|
|
pci_read_config(dev, PCIR_SUBVEND_0, 2);
|
|
adapter->hw.subsystem_device_id =
|
|
pci_read_config(dev, PCIR_SUBDEV_0, 2);
|
|
|
|
/* Do Shared Code Init and Setup */
|
|
if (e1000_set_mac_type(&adapter->hw)) {
|
|
device_printf(dev, "Setup init failure\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int
|
|
em_allocate_pci_resources(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int rid;
|
|
|
|
rid = PCIR_BAR(0);
|
|
adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&rid, RF_ACTIVE);
|
|
if (adapter->memory == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: memory\n");
|
|
return (ENXIO);
|
|
}
|
|
adapter->osdep.mem_bus_space_tag =
|
|
rman_get_bustag(adapter->memory);
|
|
adapter->osdep.mem_bus_space_handle =
|
|
rman_get_bushandle(adapter->memory);
|
|
adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
|
|
|
|
/* Default to a single queue */
|
|
adapter->num_queues = 1;
|
|
|
|
/*
|
|
* Setup MSI/X or MSI if PCI Express
|
|
*/
|
|
adapter->msix = em_setup_msix(adapter);
|
|
|
|
adapter->hw.back = &adapter->osdep;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup the Legacy or MSI Interrupt handler
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
em_allocate_legacy(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
int error, rid = 0;
|
|
|
|
/* Manually turn off all interrupts */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
|
|
|
|
if (adapter->msix == 1) /* using MSI */
|
|
rid = 1;
|
|
/* We allocate a single interrupt resource */
|
|
adapter->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (adapter->res == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: "
|
|
"interrupt\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Allocate a fast interrupt and the associated
|
|
* deferred processing contexts.
|
|
*/
|
|
TASK_INIT(&adapter->que_task, 0, em_handle_que, adapter);
|
|
adapter->tq = taskqueue_create_fast("em_taskq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &adapter->tq);
|
|
taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s que",
|
|
device_get_nameunit(adapter->dev));
|
|
/* Use a TX only tasklet for local timer */
|
|
TASK_INIT(&txr->tx_task, 0, em_handle_tx, txr);
|
|
txr->tq = taskqueue_create_fast("em_txq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &txr->tq);
|
|
taskqueue_start_threads(&txr->tq, 1, PI_NET, "%s txq",
|
|
device_get_nameunit(adapter->dev));
|
|
TASK_INIT(&adapter->link_task, 0, em_handle_link, adapter);
|
|
if ((error = bus_setup_intr(dev, adapter->res, INTR_TYPE_NET,
|
|
em_irq_fast, NULL, adapter, &adapter->tag)) != 0) {
|
|
device_printf(dev, "Failed to register fast interrupt "
|
|
"handler: %d\n", error);
|
|
taskqueue_free(adapter->tq);
|
|
adapter->tq = NULL;
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup the MSIX Interrupt handlers
|
|
* This is not really Multiqueue, rather
|
|
* its just seperate interrupt vectors
|
|
* for TX, RX, and Link.
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
em_allocate_msix(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
int error, rid, vector = 0;
|
|
|
|
|
|
/* Make sure all interrupts are disabled */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
|
|
|
|
/* First set up ring resources */
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++, rxr++) {
|
|
|
|
/* RX ring */
|
|
rid = vector + 1;
|
|
|
|
rxr->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_ACTIVE);
|
|
if (rxr->res == NULL) {
|
|
device_printf(dev,
|
|
"Unable to allocate bus resource: "
|
|
"RX MSIX Interrupt %d\n", i);
|
|
return (ENXIO);
|
|
}
|
|
if ((error = bus_setup_intr(dev, rxr->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL, em_msix_rx,
|
|
rxr, &rxr->tag)) != 0) {
|
|
device_printf(dev, "Failed to register RX handler");
|
|
return (error);
|
|
}
|
|
#if __FreeBSD_version >= 800504
|
|
bus_describe_intr(dev, rxr->res, rxr->tag, "rx %d", i);
|
|
#endif
|
|
rxr->msix = vector++; /* NOTE increment vector for TX */
|
|
TASK_INIT(&rxr->rx_task, 0, em_handle_rx, rxr);
|
|
rxr->tq = taskqueue_create_fast("em_rxq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &rxr->tq);
|
|
taskqueue_start_threads(&rxr->tq, 1, PI_NET, "%s rxq",
|
|
device_get_nameunit(adapter->dev));
|
|
/*
|
|
** Set the bit to enable interrupt
|
|
** in E1000_IMS -- bits 20 and 21
|
|
** are for RX0 and RX1, note this has
|
|
** NOTHING to do with the MSIX vector
|
|
*/
|
|
rxr->ims = 1 << (20 + i);
|
|
adapter->ivars |= (8 | rxr->msix) << (i * 4);
|
|
|
|
/* TX ring */
|
|
rid = vector + 1;
|
|
txr->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_ACTIVE);
|
|
if (txr->res == NULL) {
|
|
device_printf(dev,
|
|
"Unable to allocate bus resource: "
|
|
"TX MSIX Interrupt %d\n", i);
|
|
return (ENXIO);
|
|
}
|
|
if ((error = bus_setup_intr(dev, txr->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL, em_msix_tx,
|
|
txr, &txr->tag)) != 0) {
|
|
device_printf(dev, "Failed to register TX handler");
|
|
return (error);
|
|
}
|
|
#if __FreeBSD_version >= 800504
|
|
bus_describe_intr(dev, txr->res, txr->tag, "tx %d", i);
|
|
#endif
|
|
txr->msix = vector++; /* Increment vector for next pass */
|
|
TASK_INIT(&txr->tx_task, 0, em_handle_tx, txr);
|
|
txr->tq = taskqueue_create_fast("em_txq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &txr->tq);
|
|
taskqueue_start_threads(&txr->tq, 1, PI_NET, "%s txq",
|
|
device_get_nameunit(adapter->dev));
|
|
/*
|
|
** Set the bit to enable interrupt
|
|
** in E1000_IMS -- bits 22 and 23
|
|
** are for TX0 and TX1, note this has
|
|
** NOTHING to do with the MSIX vector
|
|
*/
|
|
txr->ims = 1 << (22 + i);
|
|
adapter->ivars |= (8 | txr->msix) << (8 + (i * 4));
|
|
}
|
|
|
|
/* Link interrupt */
|
|
++rid;
|
|
adapter->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_ACTIVE);
|
|
if (!adapter->res) {
|
|
device_printf(dev,"Unable to allocate "
|
|
"bus resource: Link interrupt [%d]\n", rid);
|
|
return (ENXIO);
|
|
}
|
|
/* Set the link handler function */
|
|
error = bus_setup_intr(dev, adapter->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL,
|
|
em_msix_link, adapter, &adapter->tag);
|
|
if (error) {
|
|
adapter->res = NULL;
|
|
device_printf(dev, "Failed to register LINK handler");
|
|
return (error);
|
|
}
|
|
#if __FreeBSD_version >= 800504
|
|
bus_describe_intr(dev, adapter->res, adapter->tag, "link");
|
|
#endif
|
|
adapter->linkvec = vector;
|
|
adapter->ivars |= (8 | vector) << 16;
|
|
adapter->ivars |= 0x80000000;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static void
|
|
em_free_pci_resources(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct tx_ring *txr;
|
|
struct rx_ring *rxr;
|
|
int rid;
|
|
|
|
|
|
/*
|
|
** Release all the queue interrupt resources:
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
txr = &adapter->tx_rings[i];
|
|
rxr = &adapter->rx_rings[i];
|
|
/* an early abort? */
|
|
if ((txr == NULL) || (rxr == NULL))
|
|
break;
|
|
rid = txr->msix +1;
|
|
if (txr->tag != NULL) {
|
|
bus_teardown_intr(dev, txr->res, txr->tag);
|
|
txr->tag = NULL;
|
|
}
|
|
if (txr->res != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ,
|
|
rid, txr->res);
|
|
rid = rxr->msix +1;
|
|
if (rxr->tag != NULL) {
|
|
bus_teardown_intr(dev, rxr->res, rxr->tag);
|
|
rxr->tag = NULL;
|
|
}
|
|
if (rxr->res != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ,
|
|
rid, rxr->res);
|
|
}
|
|
|
|
if (adapter->linkvec) /* we are doing MSIX */
|
|
rid = adapter->linkvec + 1;
|
|
else
|
|
(adapter->msix != 0) ? (rid = 1):(rid = 0);
|
|
|
|
if (adapter->tag != NULL) {
|
|
bus_teardown_intr(dev, adapter->res, adapter->tag);
|
|
adapter->tag = NULL;
|
|
}
|
|
|
|
if (adapter->res != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ, rid, adapter->res);
|
|
|
|
|
|
if (adapter->msix)
|
|
pci_release_msi(dev);
|
|
|
|
if (adapter->msix_mem != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(EM_MSIX_BAR), adapter->msix_mem);
|
|
|
|
if (adapter->memory != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(0), adapter->memory);
|
|
|
|
if (adapter->flash != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
EM_FLASH, adapter->flash);
|
|
}
|
|
|
|
/*
|
|
* Setup MSI or MSI/X
|
|
*/
|
|
static int
|
|
em_setup_msix(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int val;
|
|
|
|
/*
|
|
** Setup MSI/X for Hartwell: tests have shown
|
|
** use of two queues to be unstable, and to
|
|
** provide no great gain anyway, so we simply
|
|
** seperate the interrupts and use a single queue.
|
|
*/
|
|
if ((adapter->hw.mac.type == e1000_82574) &&
|
|
(em_enable_msix == TRUE)) {
|
|
/* Map the MSIX BAR */
|
|
int rid = PCIR_BAR(EM_MSIX_BAR);
|
|
adapter->msix_mem = bus_alloc_resource_any(dev,
|
|
SYS_RES_MEMORY, &rid, RF_ACTIVE);
|
|
if (adapter->msix_mem == NULL) {
|
|
/* May not be enabled */
|
|
device_printf(adapter->dev,
|
|
"Unable to map MSIX table \n");
|
|
goto msi;
|
|
}
|
|
val = pci_msix_count(dev);
|
|
/* We only need/want 3 vectors */
|
|
if (val >= 3)
|
|
val = 3;
|
|
else {
|
|
device_printf(adapter->dev,
|
|
"MSIX: insufficient vectors, using MSI\n");
|
|
goto msi;
|
|
}
|
|
|
|
if ((pci_alloc_msix(dev, &val) == 0) && (val == 3)) {
|
|
device_printf(adapter->dev,
|
|
"Using MSIX interrupts "
|
|
"with %d vectors\n", val);
|
|
return (val);
|
|
}
|
|
|
|
/*
|
|
** If MSIX alloc failed or provided us with
|
|
** less than needed, free and fall through to MSI
|
|
*/
|
|
pci_release_msi(dev);
|
|
}
|
|
msi:
|
|
if (adapter->msix_mem != NULL) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(EM_MSIX_BAR), adapter->msix_mem);
|
|
adapter->msix_mem = NULL;
|
|
}
|
|
val = 1;
|
|
if (pci_alloc_msi(dev, &val) == 0) {
|
|
device_printf(adapter->dev,"Using an MSI interrupt\n");
|
|
return (val);
|
|
}
|
|
/* Should only happen due to manual configuration */
|
|
device_printf(adapter->dev,"No MSI/MSIX using a Legacy IRQ\n");
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize the hardware to a configuration
|
|
* as specified by the adapter structure.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_reset(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
if_t ifp = adapter->ifp;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u16 rx_buffer_size;
|
|
u32 pba;
|
|
|
|
INIT_DEBUGOUT("em_reset: begin");
|
|
|
|
/* Set up smart power down as default off on newer adapters. */
|
|
if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
|
|
hw->mac.type == e1000_82572)) {
|
|
u16 phy_tmp = 0;
|
|
|
|
/* Speed up time to link by disabling smart power down. */
|
|
e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
|
|
phy_tmp &= ~IGP02E1000_PM_SPD;
|
|
e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
|
|
}
|
|
|
|
/*
|
|
* Packet Buffer Allocation (PBA)
|
|
* Writing PBA sets the receive portion of the buffer
|
|
* the remainder is used for the transmit buffer.
|
|
*/
|
|
switch (hw->mac.type) {
|
|
/* Total Packet Buffer on these is 48K */
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_80003es2lan:
|
|
pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
|
|
break;
|
|
case e1000_82573: /* 82573: Total Packet Buffer is 32K */
|
|
pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
|
|
break;
|
|
case e1000_82574:
|
|
case e1000_82583:
|
|
pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
|
|
break;
|
|
case e1000_ich8lan:
|
|
pba = E1000_PBA_8K;
|
|
break;
|
|
case e1000_ich9lan:
|
|
case e1000_ich10lan:
|
|
/* Boost Receive side for jumbo frames */
|
|
if (adapter->hw.mac.max_frame_size > 4096)
|
|
pba = E1000_PBA_14K;
|
|
else
|
|
pba = E1000_PBA_10K;
|
|
break;
|
|
case e1000_pchlan:
|
|
case e1000_pch2lan:
|
|
case e1000_pch_lpt:
|
|
pba = E1000_PBA_26K;
|
|
break;
|
|
default:
|
|
if (adapter->hw.mac.max_frame_size > 8192)
|
|
pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
|
|
else
|
|
pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
|
|
}
|
|
E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
|
|
|
|
/*
|
|
* These parameters control the automatic generation (Tx) and
|
|
* response (Rx) to Ethernet PAUSE frames.
|
|
* - High water mark should allow for at least two frames to be
|
|
* received after sending an XOFF.
|
|
* - Low water mark works best when it is very near the high water mark.
|
|
* This allows the receiver to restart by sending XON when it has
|
|
* drained a bit. Here we use an arbitary value of 1500 which will
|
|
* restart after one full frame is pulled from the buffer. There
|
|
* could be several smaller frames in the buffer and if so they will
|
|
* not trigger the XON until their total number reduces the buffer
|
|
* by 1500.
|
|
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
|
|
*/
|
|
rx_buffer_size = ((E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10 );
|
|
hw->fc.high_water = rx_buffer_size -
|
|
roundup2(adapter->hw.mac.max_frame_size, 1024);
|
|
hw->fc.low_water = hw->fc.high_water - 1500;
|
|
|
|
if (adapter->fc) /* locally set flow control value? */
|
|
hw->fc.requested_mode = adapter->fc;
|
|
else
|
|
hw->fc.requested_mode = e1000_fc_full;
|
|
|
|
if (hw->mac.type == e1000_80003es2lan)
|
|
hw->fc.pause_time = 0xFFFF;
|
|
else
|
|
hw->fc.pause_time = EM_FC_PAUSE_TIME;
|
|
|
|
hw->fc.send_xon = TRUE;
|
|
|
|
/* Device specific overrides/settings */
|
|
switch (hw->mac.type) {
|
|
case e1000_pchlan:
|
|
/* Workaround: no TX flow ctrl for PCH */
|
|
hw->fc.requested_mode = e1000_fc_rx_pause;
|
|
hw->fc.pause_time = 0xFFFF; /* override */
|
|
if (if_getmtu(ifp) > ETHERMTU) {
|
|
hw->fc.high_water = 0x3500;
|
|
hw->fc.low_water = 0x1500;
|
|
} else {
|
|
hw->fc.high_water = 0x5000;
|
|
hw->fc.low_water = 0x3000;
|
|
}
|
|
hw->fc.refresh_time = 0x1000;
|
|
break;
|
|
case e1000_pch2lan:
|
|
case e1000_pch_lpt:
|
|
hw->fc.high_water = 0x5C20;
|
|
hw->fc.low_water = 0x5048;
|
|
hw->fc.pause_time = 0x0650;
|
|
hw->fc.refresh_time = 0x0400;
|
|
/* Jumbos need adjusted PBA */
|
|
if (if_getmtu(ifp) > ETHERMTU)
|
|
E1000_WRITE_REG(hw, E1000_PBA, 12);
|
|
else
|
|
E1000_WRITE_REG(hw, E1000_PBA, 26);
|
|
break;
|
|
case e1000_ich9lan:
|
|
case e1000_ich10lan:
|
|
if (if_getmtu(ifp) > ETHERMTU) {
|
|
hw->fc.high_water = 0x2800;
|
|
hw->fc.low_water = hw->fc.high_water - 8;
|
|
break;
|
|
}
|
|
/* else fall thru */
|
|
default:
|
|
if (hw->mac.type == e1000_80003es2lan)
|
|
hw->fc.pause_time = 0xFFFF;
|
|
break;
|
|
}
|
|
|
|
/* Issue a global reset */
|
|
e1000_reset_hw(hw);
|
|
E1000_WRITE_REG(hw, E1000_WUC, 0);
|
|
em_disable_aspm(adapter);
|
|
/* and a re-init */
|
|
if (e1000_init_hw(hw) < 0) {
|
|
device_printf(dev, "Hardware Initialization Failed\n");
|
|
return;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
|
|
e1000_get_phy_info(hw);
|
|
e1000_check_for_link(hw);
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup networking device structure and register an interface.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_setup_interface(device_t dev, struct adapter *adapter)
|
|
{
|
|
if_t ifp;
|
|
|
|
INIT_DEBUGOUT("em_setup_interface: begin");
|
|
|
|
ifp = adapter->ifp = if_gethandle(IFT_ETHER);
|
|
if (ifp == 0) {
|
|
device_printf(dev, "can not allocate ifnet structure\n");
|
|
return (-1);
|
|
}
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
if_setdev(ifp, dev);
|
|
if_setinitfn(ifp, em_init);
|
|
if_setsoftc(ifp, adapter);
|
|
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
|
|
if_setioctlfn(ifp, em_ioctl);
|
|
if_setgetcounterfn(ifp, em_get_counter);
|
|
#ifdef EM_MULTIQUEUE
|
|
/* Multiqueue stack interface */
|
|
if_settransmitfn(ifp, em_mq_start);
|
|
if_setqflushfn(ifp, em_qflush);
|
|
#else
|
|
if_setstartfn(ifp, em_start);
|
|
if_setsendqlen(ifp, adapter->num_tx_desc - 1);
|
|
if_setsendqready(ifp);
|
|
#endif
|
|
|
|
ether_ifattach(ifp, adapter->hw.mac.addr);
|
|
|
|
if_setcapabilities(ifp, 0);
|
|
if_setcapenable(ifp, 0);
|
|
|
|
|
|
if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
|
|
IFCAP_TSO4, 0);
|
|
/*
|
|
* Tell the upper layer(s) we
|
|
* support full VLAN capability
|
|
*/
|
|
if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
|
|
if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO |
|
|
IFCAP_VLAN_MTU, 0);
|
|
if_setcapenable(ifp, if_getcapabilities(ifp));
|
|
|
|
/*
|
|
** Don't turn this on by default, if vlans are
|
|
** created on another pseudo device (eg. lagg)
|
|
** then vlan events are not passed thru, breaking
|
|
** operation, but with HW FILTER off it works. If
|
|
** using vlans directly on the em driver you can
|
|
** enable this and get full hardware tag filtering.
|
|
*/
|
|
if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWFILTER,0);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if_setcapabilitiesbit(ifp, IFCAP_POLLING,0);
|
|
#endif
|
|
|
|
/* Enable only WOL MAGIC by default */
|
|
if (adapter->wol) {
|
|
if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
|
|
if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
|
|
}
|
|
|
|
/*
|
|
* Specify the media types supported by this adapter and register
|
|
* callbacks to update media and link information
|
|
*/
|
|
ifmedia_init(&adapter->media, IFM_IMASK,
|
|
em_media_change, em_media_status);
|
|
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
|
|
u_char fiber_type = IFM_1000_SX; /* default type */
|
|
|
|
ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
|
|
} else {
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
|
|
0, NULL);
|
|
if (adapter->hw.phy.type != e1000_phy_ife) {
|
|
ifmedia_add(&adapter->media,
|
|
IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
|
|
ifmedia_add(&adapter->media,
|
|
IFM_ETHER | IFM_1000_T, 0, NULL);
|
|
}
|
|
}
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Manage DMA'able memory.
|
|
*/
|
|
static void
|
|
em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
if (error)
|
|
return;
|
|
*(bus_addr_t *) arg = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
em_dma_malloc(struct adapter *adapter, bus_size_t size,
|
|
struct em_dma_alloc *dma, int mapflags)
|
|
{
|
|
int error;
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
|
|
EM_DBA_ALIGN, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
size, /* maxsize */
|
|
1, /* nsegments */
|
|
size, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&dma->dma_tag);
|
|
if (error) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dma_tag_create failed: %d\n",
|
|
__func__, error);
|
|
goto fail_0;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
|
|
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
|
|
if (error) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dmamem_alloc(%ju) failed: %d\n",
|
|
__func__, (uintmax_t)size, error);
|
|
goto fail_2;
|
|
}
|
|
|
|
dma->dma_paddr = 0;
|
|
error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
|
|
size, em_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
|
|
if (error || dma->dma_paddr == 0) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dmamap_load failed: %d\n",
|
|
__func__, error);
|
|
goto fail_3;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail_3:
|
|
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
|
|
fail_2:
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
fail_0:
|
|
dma->dma_tag = NULL;
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
|
|
{
|
|
if (dma->dma_tag == NULL)
|
|
return;
|
|
if (dma->dma_paddr != 0) {
|
|
bus_dmamap_sync(dma->dma_tag, dma->dma_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
|
|
dma->dma_paddr = 0;
|
|
}
|
|
if (dma->dma_vaddr != NULL) {
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
dma->dma_vaddr = NULL;
|
|
}
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
dma->dma_tag = NULL;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for the transmit and receive rings, and then
|
|
* the descriptors associated with each, called only once at attach.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_allocate_queues(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct tx_ring *txr = NULL;
|
|
struct rx_ring *rxr = NULL;
|
|
int rsize, tsize, error = E1000_SUCCESS;
|
|
int txconf = 0, rxconf = 0;
|
|
|
|
|
|
/* Allocate the TX ring struct memory */
|
|
if (!(adapter->tx_rings =
|
|
(struct tx_ring *) malloc(sizeof(struct tx_ring) *
|
|
adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate TX ring memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Now allocate the RX */
|
|
if (!(adapter->rx_rings =
|
|
(struct rx_ring *) malloc(sizeof(struct rx_ring) *
|
|
adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate RX ring memory\n");
|
|
error = ENOMEM;
|
|
goto rx_fail;
|
|
}
|
|
|
|
tsize = roundup2(adapter->num_tx_desc *
|
|
sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
|
|
/*
|
|
* Now set up the TX queues, txconf is needed to handle the
|
|
* possibility that things fail midcourse and we need to
|
|
* undo memory gracefully
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++, txconf++) {
|
|
/* Set up some basics */
|
|
txr = &adapter->tx_rings[i];
|
|
txr->adapter = adapter;
|
|
txr->me = i;
|
|
|
|
/* Initialize the TX lock */
|
|
snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
|
|
device_get_nameunit(dev), txr->me);
|
|
mtx_init(&txr->tx_mtx, txr->mtx_name, NULL, MTX_DEF);
|
|
|
|
if (em_dma_malloc(adapter, tsize,
|
|
&txr->txdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev,
|
|
"Unable to allocate TX Descriptor memory\n");
|
|
error = ENOMEM;
|
|
goto err_tx_desc;
|
|
}
|
|
txr->tx_base = (struct e1000_tx_desc *)txr->txdma.dma_vaddr;
|
|
bzero((void *)txr->tx_base, tsize);
|
|
|
|
if (em_allocate_transmit_buffers(txr)) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up transmit buffers\n");
|
|
error = ENOMEM;
|
|
goto err_tx_desc;
|
|
}
|
|
#if __FreeBSD_version >= 800000
|
|
/* Allocate a buf ring */
|
|
txr->br = buf_ring_alloc(4096, M_DEVBUF,
|
|
M_WAITOK, &txr->tx_mtx);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Next the RX queues...
|
|
*/
|
|
rsize = roundup2(adapter->num_rx_desc *
|
|
sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
|
|
for (int i = 0; i < adapter->num_queues; i++, rxconf++) {
|
|
rxr = &adapter->rx_rings[i];
|
|
rxr->adapter = adapter;
|
|
rxr->me = i;
|
|
|
|
/* Initialize the RX lock */
|
|
snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
|
|
device_get_nameunit(dev), txr->me);
|
|
mtx_init(&rxr->rx_mtx, rxr->mtx_name, NULL, MTX_DEF);
|
|
|
|
if (em_dma_malloc(adapter, rsize,
|
|
&rxr->rxdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev,
|
|
"Unable to allocate RxDescriptor memory\n");
|
|
error = ENOMEM;
|
|
goto err_rx_desc;
|
|
}
|
|
rxr->rx_base = (struct e1000_rx_desc *)rxr->rxdma.dma_vaddr;
|
|
bzero((void *)rxr->rx_base, rsize);
|
|
|
|
/* Allocate receive buffers for the ring*/
|
|
if (em_allocate_receive_buffers(rxr)) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up receive buffers\n");
|
|
error = ENOMEM;
|
|
goto err_rx_desc;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
err_rx_desc:
|
|
for (rxr = adapter->rx_rings; rxconf > 0; rxr++, rxconf--)
|
|
em_dma_free(adapter, &rxr->rxdma);
|
|
err_tx_desc:
|
|
for (txr = adapter->tx_rings; txconf > 0; txr++, txconf--)
|
|
em_dma_free(adapter, &txr->txdma);
|
|
free(adapter->rx_rings, M_DEVBUF);
|
|
rx_fail:
|
|
#if __FreeBSD_version >= 800000
|
|
buf_ring_free(txr->br, M_DEVBUF);
|
|
#endif
|
|
free(adapter->tx_rings, M_DEVBUF);
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for tx_buffer structures. The tx_buffer stores all
|
|
* the information needed to transmit a packet on the wire. This is
|
|
* called only once at attach, setup is done every reset.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_allocate_transmit_buffers(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
device_t dev = adapter->dev;
|
|
struct em_buffer *txbuf;
|
|
int error, i;
|
|
|
|
/*
|
|
* Setup DMA descriptor areas.
|
|
*/
|
|
if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
EM_TSO_SIZE, /* maxsize */
|
|
EM_MAX_SCATTER, /* nsegments */
|
|
PAGE_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&txr->txtag))) {
|
|
device_printf(dev,"Unable to allocate TX DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (!(txr->tx_buffers =
|
|
(struct em_buffer *) malloc(sizeof(struct em_buffer) *
|
|
adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate tx_buffer memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Create the descriptor buffer dma maps */
|
|
txbuf = txr->tx_buffers;
|
|
for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
|
|
error = bus_dmamap_create(txr->txtag, 0, &txbuf->map);
|
|
if (error != 0) {
|
|
device_printf(dev, "Unable to create TX DMA map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
/* We free all, it handles case where we are in the middle */
|
|
em_free_transmit_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize a transmit ring.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_setup_transmit_ring(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct em_buffer *txbuf;
|
|
int i;
|
|
#ifdef DEV_NETMAP
|
|
struct netmap_slot *slot;
|
|
struct netmap_adapter *na = netmap_getna(adapter->ifp);
|
|
#endif /* DEV_NETMAP */
|
|
|
|
/* Clear the old descriptor contents */
|
|
EM_TX_LOCK(txr);
|
|
#ifdef DEV_NETMAP
|
|
slot = netmap_reset(na, NR_TX, txr->me, 0);
|
|
#endif /* DEV_NETMAP */
|
|
|
|
bzero((void *)txr->tx_base,
|
|
(sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
|
|
/* Reset indices */
|
|
txr->next_avail_desc = 0;
|
|
txr->next_to_clean = 0;
|
|
|
|
/* Free any existing tx buffers. */
|
|
txbuf = txr->tx_buffers;
|
|
for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
|
|
if (txbuf->m_head != NULL) {
|
|
bus_dmamap_sync(txr->txtag, txbuf->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag, txbuf->map);
|
|
m_freem(txbuf->m_head);
|
|
txbuf->m_head = NULL;
|
|
}
|
|
#ifdef DEV_NETMAP
|
|
if (slot) {
|
|
int si = netmap_idx_n2k(&na->tx_rings[txr->me], i);
|
|
uint64_t paddr;
|
|
void *addr;
|
|
|
|
addr = PNMB(na, slot + si, &paddr);
|
|
txr->tx_base[i].buffer_addr = htole64(paddr);
|
|
/* reload the map for netmap mode */
|
|
netmap_load_map(na, txr->txtag, txbuf->map, addr);
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
|
|
/* clear the watch index */
|
|
txbuf->next_eop = -1;
|
|
}
|
|
|
|
/* Set number of descriptors available */
|
|
txr->tx_avail = adapter->num_tx_desc;
|
|
txr->queue_status = EM_QUEUE_IDLE;
|
|
|
|
/* Clear checksum offload context. */
|
|
txr->last_hw_offload = 0;
|
|
txr->last_hw_ipcss = 0;
|
|
txr->last_hw_ipcso = 0;
|
|
txr->last_hw_tucss = 0;
|
|
txr->last_hw_tucso = 0;
|
|
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
EM_TX_UNLOCK(txr);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize all transmit rings.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_setup_transmit_structures(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++)
|
|
em_setup_transmit_ring(txr);
|
|
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable transmit unit.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_initialize_transmit_unit(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 tctl, tarc, tipg = 0;
|
|
|
|
INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
u64 bus_addr = txr->txdma.dma_paddr;
|
|
/* Base and Len of TX Ring */
|
|
E1000_WRITE_REG(hw, E1000_TDLEN(i),
|
|
adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
|
|
E1000_WRITE_REG(hw, E1000_TDBAH(i),
|
|
(u32)(bus_addr >> 32));
|
|
E1000_WRITE_REG(hw, E1000_TDBAL(i),
|
|
(u32)bus_addr);
|
|
/* Init the HEAD/TAIL indices */
|
|
E1000_WRITE_REG(hw, E1000_TDT(i), 0);
|
|
E1000_WRITE_REG(hw, E1000_TDH(i), 0);
|
|
|
|
HW_DEBUGOUT2("Base = %x, Length = %x\n",
|
|
E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
|
|
E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
|
|
|
|
txr->queue_status = EM_QUEUE_IDLE;
|
|
}
|
|
|
|
/* Set the default values for the Tx Inter Packet Gap timer */
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_80003es2lan:
|
|
tipg = DEFAULT_82543_TIPG_IPGR1;
|
|
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
|
|
E1000_TIPG_IPGR2_SHIFT;
|
|
break;
|
|
default:
|
|
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.phy.media_type ==
|
|
e1000_media_type_internal_serdes))
|
|
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
|
|
else
|
|
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
|
|
tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
|
|
tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
|
|
}
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
|
|
|
|
if(adapter->hw.mac.type >= e1000_82540)
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TADV,
|
|
adapter->tx_abs_int_delay.value);
|
|
|
|
if ((adapter->hw.mac.type == e1000_82571) ||
|
|
(adapter->hw.mac.type == e1000_82572)) {
|
|
tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
|
|
tarc |= SPEED_MODE_BIT;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
|
|
} else if (adapter->hw.mac.type == e1000_80003es2lan) {
|
|
tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
|
|
tarc |= 1;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
|
|
tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
|
|
tarc |= 1;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
|
|
}
|
|
|
|
adapter->txd_cmd = E1000_TXD_CMD_IFCS;
|
|
if (adapter->tx_int_delay.value > 0)
|
|
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
|
|
|
|
/* Program the Transmit Control Register */
|
|
tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
|
|
tctl &= ~E1000_TCTL_CT;
|
|
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
|
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
|
|
|
|
if (adapter->hw.mac.type >= e1000_82571)
|
|
tctl |= E1000_TCTL_MULR;
|
|
|
|
/* This write will effectively turn on the transmit unit. */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
|
|
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free all transmit rings.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_free_transmit_structures(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
EM_TX_LOCK(txr);
|
|
em_free_transmit_buffers(txr);
|
|
em_dma_free(adapter, &txr->txdma);
|
|
EM_TX_UNLOCK(txr);
|
|
EM_TX_LOCK_DESTROY(txr);
|
|
}
|
|
|
|
free(adapter->tx_rings, M_DEVBUF);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free transmit ring related data structures.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_free_transmit_buffers(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct em_buffer *txbuf;
|
|
|
|
INIT_DEBUGOUT("free_transmit_ring: begin");
|
|
|
|
if (txr->tx_buffers == NULL)
|
|
return;
|
|
|
|
for (int i = 0; i < adapter->num_tx_desc; i++) {
|
|
txbuf = &txr->tx_buffers[i];
|
|
if (txbuf->m_head != NULL) {
|
|
bus_dmamap_sync(txr->txtag, txbuf->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag,
|
|
txbuf->map);
|
|
m_freem(txbuf->m_head);
|
|
txbuf->m_head = NULL;
|
|
if (txbuf->map != NULL) {
|
|
bus_dmamap_destroy(txr->txtag,
|
|
txbuf->map);
|
|
txbuf->map = NULL;
|
|
}
|
|
} else if (txbuf->map != NULL) {
|
|
bus_dmamap_unload(txr->txtag,
|
|
txbuf->map);
|
|
bus_dmamap_destroy(txr->txtag,
|
|
txbuf->map);
|
|
txbuf->map = NULL;
|
|
}
|
|
}
|
|
#if __FreeBSD_version >= 800000
|
|
if (txr->br != NULL)
|
|
buf_ring_free(txr->br, M_DEVBUF);
|
|
#endif
|
|
if (txr->tx_buffers != NULL) {
|
|
free(txr->tx_buffers, M_DEVBUF);
|
|
txr->tx_buffers = NULL;
|
|
}
|
|
if (txr->txtag != NULL) {
|
|
bus_dma_tag_destroy(txr->txtag);
|
|
txr->txtag = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* The offload context is protocol specific (TCP/UDP) and thus
|
|
* only needs to be set when the protocol changes. The occasion
|
|
* of a context change can be a performance detriment, and
|
|
* might be better just disabled. The reason arises in the way
|
|
* in which the controller supports pipelined requests from the
|
|
* Tx data DMA. Up to four requests can be pipelined, and they may
|
|
* belong to the same packet or to multiple packets. However all
|
|
* requests for one packet are issued before a request is issued
|
|
* for a subsequent packet and if a request for the next packet
|
|
* requires a context change, that request will be stalled
|
|
* until the previous request completes. This means setting up
|
|
* a new context effectively disables pipelined Tx data DMA which
|
|
* in turn greatly slow down performance to send small sized
|
|
* frames.
|
|
**********************************************************************/
|
|
static void
|
|
em_transmit_checksum_setup(struct tx_ring *txr, struct mbuf *mp, int ip_off,
|
|
struct ip *ip, u32 *txd_upper, u32 *txd_lower)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct e1000_context_desc *TXD = NULL;
|
|
struct em_buffer *tx_buffer;
|
|
int cur, hdr_len;
|
|
u32 cmd = 0;
|
|
u16 offload = 0;
|
|
u8 ipcso, ipcss, tucso, tucss;
|
|
|
|
ipcss = ipcso = tucss = tucso = 0;
|
|
hdr_len = ip_off + (ip->ip_hl << 2);
|
|
cur = txr->next_avail_desc;
|
|
|
|
/* Setup of IP header checksum. */
|
|
if (mp->m_pkthdr.csum_flags & CSUM_IP) {
|
|
*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
|
|
offload |= CSUM_IP;
|
|
ipcss = ip_off;
|
|
ipcso = ip_off + offsetof(struct ip, ip_sum);
|
|
/*
|
|
* Start offset for header checksum calculation.
|
|
* End offset for header checksum calculation.
|
|
* Offset of place to put the checksum.
|
|
*/
|
|
TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
|
|
TXD->lower_setup.ip_fields.ipcss = ipcss;
|
|
TXD->lower_setup.ip_fields.ipcse = htole16(hdr_len);
|
|
TXD->lower_setup.ip_fields.ipcso = ipcso;
|
|
cmd |= E1000_TXD_CMD_IP;
|
|
}
|
|
|
|
if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
|
|
*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
|
*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
offload |= CSUM_TCP;
|
|
tucss = hdr_len;
|
|
tucso = hdr_len + offsetof(struct tcphdr, th_sum);
|
|
/*
|
|
* Setting up new checksum offload context for every frames
|
|
* takes a lot of processing time for hardware. This also
|
|
* reduces performance a lot for small sized frames so avoid
|
|
* it if driver can use previously configured checksum
|
|
* offload context.
|
|
*/
|
|
if (txr->last_hw_offload == offload) {
|
|
if (offload & CSUM_IP) {
|
|
if (txr->last_hw_ipcss == ipcss &&
|
|
txr->last_hw_ipcso == ipcso &&
|
|
txr->last_hw_tucss == tucss &&
|
|
txr->last_hw_tucso == tucso)
|
|
return;
|
|
} else {
|
|
if (txr->last_hw_tucss == tucss &&
|
|
txr->last_hw_tucso == tucso)
|
|
return;
|
|
}
|
|
}
|
|
txr->last_hw_offload = offload;
|
|
txr->last_hw_tucss = tucss;
|
|
txr->last_hw_tucso = tucso;
|
|
/*
|
|
* Start offset for payload checksum calculation.
|
|
* End offset for payload checksum calculation.
|
|
* Offset of place to put the checksum.
|
|
*/
|
|
TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
|
|
TXD->upper_setup.tcp_fields.tucss = hdr_len;
|
|
TXD->upper_setup.tcp_fields.tucse = htole16(0);
|
|
TXD->upper_setup.tcp_fields.tucso = tucso;
|
|
cmd |= E1000_TXD_CMD_TCP;
|
|
} else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
|
|
*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
|
*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
tucss = hdr_len;
|
|
tucso = hdr_len + offsetof(struct udphdr, uh_sum);
|
|
/*
|
|
* Setting up new checksum offload context for every frames
|
|
* takes a lot of processing time for hardware. This also
|
|
* reduces performance a lot for small sized frames so avoid
|
|
* it if driver can use previously configured checksum
|
|
* offload context.
|
|
*/
|
|
if (txr->last_hw_offload == offload) {
|
|
if (offload & CSUM_IP) {
|
|
if (txr->last_hw_ipcss == ipcss &&
|
|
txr->last_hw_ipcso == ipcso &&
|
|
txr->last_hw_tucss == tucss &&
|
|
txr->last_hw_tucso == tucso)
|
|
return;
|
|
} else {
|
|
if (txr->last_hw_tucss == tucss &&
|
|
txr->last_hw_tucso == tucso)
|
|
return;
|
|
}
|
|
}
|
|
txr->last_hw_offload = offload;
|
|
txr->last_hw_tucss = tucss;
|
|
txr->last_hw_tucso = tucso;
|
|
/*
|
|
* Start offset for header checksum calculation.
|
|
* End offset for header checksum calculation.
|
|
* Offset of place to put the checksum.
|
|
*/
|
|
TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
|
|
TXD->upper_setup.tcp_fields.tucss = tucss;
|
|
TXD->upper_setup.tcp_fields.tucse = htole16(0);
|
|
TXD->upper_setup.tcp_fields.tucso = tucso;
|
|
}
|
|
|
|
if (offload & CSUM_IP) {
|
|
txr->last_hw_ipcss = ipcss;
|
|
txr->last_hw_ipcso = ipcso;
|
|
}
|
|
|
|
TXD->tcp_seg_setup.data = htole32(0);
|
|
TXD->cmd_and_length =
|
|
htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | cmd);
|
|
tx_buffer = &txr->tx_buffers[cur];
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
|
|
if (++cur == adapter->num_tx_desc)
|
|
cur = 0;
|
|
|
|
txr->tx_avail--;
|
|
txr->next_avail_desc = cur;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Setup work for hardware segmentation offload (TSO)
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_tso_setup(struct tx_ring *txr, struct mbuf *mp, int ip_off,
|
|
struct ip *ip, struct tcphdr *tp, u32 *txd_upper, u32 *txd_lower)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct e1000_context_desc *TXD;
|
|
struct em_buffer *tx_buffer;
|
|
int cur, hdr_len;
|
|
|
|
/*
|
|
* In theory we can use the same TSO context if and only if
|
|
* frame is the same type(IP/TCP) and the same MSS. However
|
|
* checking whether a frame has the same IP/TCP structure is
|
|
* hard thing so just ignore that and always restablish a
|
|
* new TSO context.
|
|
*/
|
|
hdr_len = ip_off + (ip->ip_hl << 2) + (tp->th_off << 2);
|
|
*txd_lower = (E1000_TXD_CMD_DEXT | /* Extended descr type */
|
|
E1000_TXD_DTYP_D | /* Data descr type */
|
|
E1000_TXD_CMD_TSE); /* Do TSE on this packet */
|
|
|
|
/* IP and/or TCP header checksum calculation and insertion. */
|
|
*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
|
|
|
|
cur = txr->next_avail_desc;
|
|
tx_buffer = &txr->tx_buffers[cur];
|
|
TXD = (struct e1000_context_desc *) &txr->tx_base[cur];
|
|
|
|
/*
|
|
* Start offset for header checksum calculation.
|
|
* End offset for header checksum calculation.
|
|
* Offset of place put the checksum.
|
|
*/
|
|
TXD->lower_setup.ip_fields.ipcss = ip_off;
|
|
TXD->lower_setup.ip_fields.ipcse =
|
|
htole16(ip_off + (ip->ip_hl << 2) - 1);
|
|
TXD->lower_setup.ip_fields.ipcso = ip_off + offsetof(struct ip, ip_sum);
|
|
/*
|
|
* Start offset for payload checksum calculation.
|
|
* End offset for payload checksum calculation.
|
|
* Offset of place to put the checksum.
|
|
*/
|
|
TXD->upper_setup.tcp_fields.tucss = ip_off + (ip->ip_hl << 2);
|
|
TXD->upper_setup.tcp_fields.tucse = 0;
|
|
TXD->upper_setup.tcp_fields.tucso =
|
|
ip_off + (ip->ip_hl << 2) + offsetof(struct tcphdr, th_sum);
|
|
/*
|
|
* Payload size per packet w/o any headers.
|
|
* Length of all headers up to payload.
|
|
*/
|
|
TXD->tcp_seg_setup.fields.mss = htole16(mp->m_pkthdr.tso_segsz);
|
|
TXD->tcp_seg_setup.fields.hdr_len = hdr_len;
|
|
|
|
TXD->cmd_and_length = htole32(adapter->txd_cmd |
|
|
E1000_TXD_CMD_DEXT | /* Extended descr */
|
|
E1000_TXD_CMD_TSE | /* TSE context */
|
|
E1000_TXD_CMD_IP | /* Do IP csum */
|
|
E1000_TXD_CMD_TCP | /* Do TCP checksum */
|
|
(mp->m_pkthdr.len - (hdr_len))); /* Total len */
|
|
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
|
|
if (++cur == adapter->num_tx_desc)
|
|
cur = 0;
|
|
|
|
txr->tx_avail--;
|
|
txr->next_avail_desc = cur;
|
|
txr->tx_tso = TRUE;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Examine each tx_buffer in the used queue. If the hardware is done
|
|
* processing the packet then free associated resources. The
|
|
* tx_buffer is put back on the free queue.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_txeof(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
int first, last, done, processed;
|
|
struct em_buffer *tx_buffer;
|
|
struct e1000_tx_desc *tx_desc, *eop_desc;
|
|
if_t ifp = adapter->ifp;
|
|
|
|
EM_TX_LOCK_ASSERT(txr);
|
|
#ifdef DEV_NETMAP
|
|
if (netmap_tx_irq(ifp, txr->me))
|
|
return;
|
|
#endif /* DEV_NETMAP */
|
|
|
|
/* No work, make sure watchdog is off */
|
|
if (txr->tx_avail == adapter->num_tx_desc) {
|
|
txr->queue_status = EM_QUEUE_IDLE;
|
|
return;
|
|
}
|
|
|
|
processed = 0;
|
|
first = txr->next_to_clean;
|
|
tx_desc = &txr->tx_base[first];
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
last = tx_buffer->next_eop;
|
|
eop_desc = &txr->tx_base[last];
|
|
|
|
/*
|
|
* What this does is get the index of the
|
|
* first descriptor AFTER the EOP of the
|
|
* first packet, that way we can do the
|
|
* simple comparison on the inner while loop.
|
|
*/
|
|
if (++last == adapter->num_tx_desc)
|
|
last = 0;
|
|
done = last;
|
|
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
|
|
/* We clean the range of the packet */
|
|
while (first != done) {
|
|
tx_desc->upper.data = 0;
|
|
tx_desc->lower.data = 0;
|
|
tx_desc->buffer_addr = 0;
|
|
++txr->tx_avail;
|
|
++processed;
|
|
|
|
if (tx_buffer->m_head) {
|
|
bus_dmamap_sync(txr->txtag,
|
|
tx_buffer->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag,
|
|
tx_buffer->map);
|
|
m_freem(tx_buffer->m_head);
|
|
tx_buffer->m_head = NULL;
|
|
}
|
|
tx_buffer->next_eop = -1;
|
|
txr->watchdog_time = ticks;
|
|
|
|
if (++first == adapter->num_tx_desc)
|
|
first = 0;
|
|
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
tx_desc = &txr->tx_base[first];
|
|
}
|
|
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
|
|
/* See if we can continue to the next packet */
|
|
last = tx_buffer->next_eop;
|
|
if (last != -1) {
|
|
eop_desc = &txr->tx_base[last];
|
|
/* Get new done point */
|
|
if (++last == adapter->num_tx_desc) last = 0;
|
|
done = last;
|
|
} else
|
|
break;
|
|
}
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
txr->next_to_clean = first;
|
|
|
|
/*
|
|
** Watchdog calculation, we know there's
|
|
** work outstanding or the first return
|
|
** would have been taken, so none processed
|
|
** for too long indicates a hang. local timer
|
|
** will examine this and do a reset if needed.
|
|
*/
|
|
if ((!processed) && ((ticks - txr->watchdog_time) > EM_WATCHDOG))
|
|
txr->queue_status = EM_QUEUE_HUNG;
|
|
|
|
/*
|
|
* If we have a minimum free, clear IFF_DRV_OACTIVE
|
|
* to tell the stack that it is OK to send packets.
|
|
* Notice that all writes of OACTIVE happen under the
|
|
* TX lock which, with a single queue, guarantees
|
|
* sanity.
|
|
*/
|
|
if (txr->tx_avail >= EM_MAX_SCATTER)
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
|
|
|
|
/* Disable watchdog if all clean */
|
|
if (txr->tx_avail == adapter->num_tx_desc) {
|
|
txr->queue_status = EM_QUEUE_IDLE;
|
|
}
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Refresh RX descriptor mbufs from system mbuf buffer pool.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_refresh_mbufs(struct rx_ring *rxr, int limit)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
struct em_buffer *rxbuf;
|
|
int i, j, error, nsegs;
|
|
bool cleaned = FALSE;
|
|
|
|
i = j = rxr->next_to_refresh;
|
|
/*
|
|
** Get one descriptor beyond
|
|
** our work mark to control
|
|
** the loop.
|
|
*/
|
|
if (++j == adapter->num_rx_desc)
|
|
j = 0;
|
|
|
|
while (j != limit) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
if (rxbuf->m_head == NULL) {
|
|
m = m_getjcl(M_NOWAIT, MT_DATA,
|
|
M_PKTHDR, adapter->rx_mbuf_sz);
|
|
/*
|
|
** If we have a temporary resource shortage
|
|
** that causes a failure, just abort refresh
|
|
** for now, we will return to this point when
|
|
** reinvoked from em_rxeof.
|
|
*/
|
|
if (m == NULL)
|
|
goto update;
|
|
} else
|
|
m = rxbuf->m_head;
|
|
|
|
m->m_len = m->m_pkthdr.len = adapter->rx_mbuf_sz;
|
|
m->m_flags |= M_PKTHDR;
|
|
m->m_data = m->m_ext.ext_buf;
|
|
|
|
/* Use bus_dma machinery to setup the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->rxtag, rxbuf->map,
|
|
m, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
printf("Refresh mbufs: hdr dmamap load"
|
|
" failure - %d\n", error);
|
|
m_free(m);
|
|
rxbuf->m_head = NULL;
|
|
goto update;
|
|
}
|
|
rxbuf->m_head = m;
|
|
bus_dmamap_sync(rxr->rxtag,
|
|
rxbuf->map, BUS_DMASYNC_PREREAD);
|
|
rxr->rx_base[i].buffer_addr = htole64(segs[0].ds_addr);
|
|
cleaned = TRUE;
|
|
|
|
i = j; /* Next is precalulated for us */
|
|
rxr->next_to_refresh = i;
|
|
/* Calculate next controlling index */
|
|
if (++j == adapter->num_rx_desc)
|
|
j = 0;
|
|
}
|
|
update:
|
|
/*
|
|
** Update the tail pointer only if,
|
|
** and as far as we have refreshed.
|
|
*/
|
|
if (cleaned)
|
|
E1000_WRITE_REG(&adapter->hw,
|
|
E1000_RDT(rxr->me), rxr->next_to_refresh);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for rx_buffer structures. Since we use one
|
|
* rx_buffer per received packet, the maximum number of rx_buffer's
|
|
* that we'll need is equal to the number of receive descriptors
|
|
* that we've allocated.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_allocate_receive_buffers(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
device_t dev = adapter->dev;
|
|
struct em_buffer *rxbuf;
|
|
int error;
|
|
|
|
rxr->rx_buffers = malloc(sizeof(struct em_buffer) *
|
|
adapter->num_rx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (rxr->rx_buffers == NULL) {
|
|
device_printf(dev, "Unable to allocate rx_buffer memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MJUM9BYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MJUM9BYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&rxr->rxtag);
|
|
if (error) {
|
|
device_printf(dev, "%s: bus_dma_tag_create failed %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
rxbuf = rxr->rx_buffers;
|
|
for (int i = 0; i < adapter->num_rx_desc; i++, rxbuf++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
error = bus_dmamap_create(rxr->rxtag, 0, &rxbuf->map);
|
|
if (error) {
|
|
device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
em_free_receive_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize a receive ring and its buffers.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_setup_receive_ring(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct em_buffer *rxbuf;
|
|
bus_dma_segment_t seg[1];
|
|
int rsize, nsegs, error = 0;
|
|
#ifdef DEV_NETMAP
|
|
struct netmap_slot *slot;
|
|
struct netmap_adapter *na = netmap_getna(adapter->ifp);
|
|
#endif
|
|
|
|
|
|
/* Clear the ring contents */
|
|
EM_RX_LOCK(rxr);
|
|
rsize = roundup2(adapter->num_rx_desc *
|
|
sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
|
|
bzero((void *)rxr->rx_base, rsize);
|
|
#ifdef DEV_NETMAP
|
|
slot = netmap_reset(na, NR_RX, rxr->me, 0);
|
|
#endif
|
|
|
|
/*
|
|
** Free current RX buffer structs and their mbufs
|
|
*/
|
|
for (int i = 0; i < adapter->num_rx_desc; i++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
if (rxbuf->m_head != NULL) {
|
|
bus_dmamap_sync(rxr->rxtag, rxbuf->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->rxtag, rxbuf->map);
|
|
m_freem(rxbuf->m_head);
|
|
rxbuf->m_head = NULL; /* mark as freed */
|
|
}
|
|
}
|
|
|
|
/* Now replenish the mbufs */
|
|
for (int j = 0; j != adapter->num_rx_desc; ++j) {
|
|
rxbuf = &rxr->rx_buffers[j];
|
|
#ifdef DEV_NETMAP
|
|
if (slot) {
|
|
int si = netmap_idx_n2k(&na->rx_rings[rxr->me], j);
|
|
uint64_t paddr;
|
|
void *addr;
|
|
|
|
addr = PNMB(na, slot + si, &paddr);
|
|
netmap_load_map(na, rxr->rxtag, rxbuf->map, addr);
|
|
/* Update descriptor */
|
|
rxr->rx_base[j].buffer_addr = htole64(paddr);
|
|
continue;
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
rxbuf->m_head = m_getjcl(M_NOWAIT, MT_DATA,
|
|
M_PKTHDR, adapter->rx_mbuf_sz);
|
|
if (rxbuf->m_head == NULL) {
|
|
error = ENOBUFS;
|
|
goto fail;
|
|
}
|
|
rxbuf->m_head->m_len = adapter->rx_mbuf_sz;
|
|
rxbuf->m_head->m_flags &= ~M_HASFCS; /* we strip it */
|
|
rxbuf->m_head->m_pkthdr.len = adapter->rx_mbuf_sz;
|
|
|
|
/* Get the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->rxtag,
|
|
rxbuf->map, rxbuf->m_head, seg,
|
|
&nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(rxbuf->m_head);
|
|
rxbuf->m_head = NULL;
|
|
goto fail;
|
|
}
|
|
bus_dmamap_sync(rxr->rxtag,
|
|
rxbuf->map, BUS_DMASYNC_PREREAD);
|
|
|
|
/* Update descriptor */
|
|
rxr->rx_base[j].buffer_addr = htole64(seg[0].ds_addr);
|
|
}
|
|
rxr->next_to_check = 0;
|
|
rxr->next_to_refresh = 0;
|
|
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
fail:
|
|
EM_RX_UNLOCK(rxr);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize all receive rings.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_setup_receive_structures(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
int q;
|
|
|
|
for (q = 0; q < adapter->num_queues; q++, rxr++)
|
|
if (em_setup_receive_ring(rxr))
|
|
goto fail;
|
|
|
|
return (0);
|
|
fail:
|
|
/*
|
|
* Free RX buffers allocated so far, we will only handle
|
|
* the rings that completed, the failing case will have
|
|
* cleaned up for itself. 'q' failed, so its the terminus.
|
|
*/
|
|
for (int i = 0; i < q; ++i) {
|
|
rxr = &adapter->rx_rings[i];
|
|
for (int n = 0; n < adapter->num_rx_desc; n++) {
|
|
struct em_buffer *rxbuf;
|
|
rxbuf = &rxr->rx_buffers[n];
|
|
if (rxbuf->m_head != NULL) {
|
|
bus_dmamap_sync(rxr->rxtag, rxbuf->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->rxtag, rxbuf->map);
|
|
m_freem(rxbuf->m_head);
|
|
rxbuf->m_head = NULL;
|
|
}
|
|
}
|
|
rxr->next_to_check = 0;
|
|
rxr->next_to_refresh = 0;
|
|
}
|
|
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free all receive rings.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_free_receive_structures(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
|
|
em_free_receive_buffers(rxr);
|
|
/* Free the ring memory as well */
|
|
em_dma_free(adapter, &rxr->rxdma);
|
|
EM_RX_LOCK_DESTROY(rxr);
|
|
}
|
|
|
|
free(adapter->rx_rings, M_DEVBUF);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free receive ring data structures
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_free_receive_buffers(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct em_buffer *rxbuf = NULL;
|
|
|
|
INIT_DEBUGOUT("free_receive_buffers: begin");
|
|
|
|
if (rxr->rx_buffers != NULL) {
|
|
for (int i = 0; i < adapter->num_rx_desc; i++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
if (rxbuf->map != NULL) {
|
|
bus_dmamap_sync(rxr->rxtag, rxbuf->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->rxtag, rxbuf->map);
|
|
bus_dmamap_destroy(rxr->rxtag, rxbuf->map);
|
|
}
|
|
if (rxbuf->m_head != NULL) {
|
|
m_freem(rxbuf->m_head);
|
|
rxbuf->m_head = NULL;
|
|
}
|
|
}
|
|
free(rxr->rx_buffers, M_DEVBUF);
|
|
rxr->rx_buffers = NULL;
|
|
rxr->next_to_check = 0;
|
|
rxr->next_to_refresh = 0;
|
|
}
|
|
|
|
if (rxr->rxtag != NULL) {
|
|
bus_dma_tag_destroy(rxr->rxtag);
|
|
rxr->rxtag = NULL;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable receive unit.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
em_initialize_receive_unit(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
if_t ifp = adapter->ifp;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u64 bus_addr;
|
|
u32 rctl, rxcsum;
|
|
|
|
INIT_DEBUGOUT("em_initialize_receive_units: begin");
|
|
|
|
/*
|
|
* Make sure receives are disabled while setting
|
|
* up the descriptor ring
|
|
*/
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
/* Do not disable if ever enabled on this hardware */
|
|
if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RADV,
|
|
adapter->rx_abs_int_delay.value);
|
|
/*
|
|
* Set the interrupt throttling rate. Value is calculated
|
|
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
|
|
*/
|
|
E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
|
|
|
|
/*
|
|
** When using MSIX interrupts we need to throttle
|
|
** using the EITR register (82574 only)
|
|
*/
|
|
if (hw->mac.type == e1000_82574) {
|
|
for (int i = 0; i < 4; i++)
|
|
E1000_WRITE_REG(hw, E1000_EITR_82574(i),
|
|
DEFAULT_ITR);
|
|
/* Disable accelerated acknowledge */
|
|
E1000_WRITE_REG(hw, E1000_RFCTL, E1000_RFCTL_ACK_DIS);
|
|
}
|
|
|
|
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
|
|
if (if_getcapenable(ifp) & IFCAP_RXCSUM)
|
|
rxcsum |= E1000_RXCSUM_TUOFL;
|
|
else
|
|
rxcsum &= ~E1000_RXCSUM_TUOFL;
|
|
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
|
|
|
|
/*
|
|
** XXX TEMPORARY WORKAROUND: on some systems with 82573
|
|
** long latencies are observed, like Lenovo X60. This
|
|
** change eliminates the problem, but since having positive
|
|
** values in RDTR is a known source of problems on other
|
|
** platforms another solution is being sought.
|
|
*/
|
|
if (hw->mac.type == e1000_82573)
|
|
E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
|
|
/* Setup the Base and Length of the Rx Descriptor Ring */
|
|
u32 rdt = adapter->num_rx_desc - 1; /* default */
|
|
|
|
bus_addr = rxr->rxdma.dma_paddr;
|
|
E1000_WRITE_REG(hw, E1000_RDLEN(i),
|
|
adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
|
|
E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
|
|
E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
|
|
/* Setup the Head and Tail Descriptor Pointers */
|
|
E1000_WRITE_REG(hw, E1000_RDH(i), 0);
|
|
#ifdef DEV_NETMAP
|
|
/*
|
|
* an init() while a netmap client is active must
|
|
* preserve the rx buffers passed to userspace.
|
|
*/
|
|
if (if_getcapenable(ifp) & IFCAP_NETMAP) {
|
|
struct netmap_adapter *na = netmap_getna(adapter->ifp);
|
|
rdt -= nm_kr_rxspace(&na->rx_rings[i]);
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
E1000_WRITE_REG(hw, E1000_RDT(i), rdt);
|
|
}
|
|
|
|
/* Set PTHRESH for improved jumbo performance */
|
|
if (((adapter->hw.mac.type == e1000_ich9lan) ||
|
|
(adapter->hw.mac.type == e1000_pch2lan) ||
|
|
(adapter->hw.mac.type == e1000_ich10lan)) &&
|
|
(if_getmtu(ifp) > ETHERMTU)) {
|
|
u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
|
|
}
|
|
|
|
if (adapter->hw.mac.type >= e1000_pch2lan) {
|
|
if (if_getmtu(ifp) > ETHERMTU)
|
|
e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
|
|
else
|
|
e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
|
|
}
|
|
|
|
/* Setup the Receive Control Register */
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
|
|
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
|
|
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
|
|
/* Strip the CRC */
|
|
rctl |= E1000_RCTL_SECRC;
|
|
|
|
/* Make sure VLAN Filters are off */
|
|
rctl &= ~E1000_RCTL_VFE;
|
|
rctl &= ~E1000_RCTL_SBP;
|
|
|
|
if (adapter->rx_mbuf_sz == MCLBYTES)
|
|
rctl |= E1000_RCTL_SZ_2048;
|
|
else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
|
|
rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
|
|
else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
|
|
rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
|
|
|
|
if (if_getmtu(ifp) > ETHERMTU)
|
|
rctl |= E1000_RCTL_LPE;
|
|
else
|
|
rctl &= ~E1000_RCTL_LPE;
|
|
|
|
/* Write out the settings */
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine executes in interrupt context. It replenishes
|
|
* the mbufs in the descriptor and sends data which has been
|
|
* dma'ed into host memory to upper layer.
|
|
*
|
|
* We loop at most count times if count is > 0, or until done if
|
|
* count < 0.
|
|
*
|
|
* For polling we also now return the number of cleaned packets
|
|
*********************************************************************/
|
|
static bool
|
|
em_rxeof(struct rx_ring *rxr, int count, int *done)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
if_t ifp = adapter->ifp;
|
|
struct mbuf *mp, *sendmp;
|
|
u8 status = 0;
|
|
u16 len;
|
|
int i, processed, rxdone = 0;
|
|
bool eop;
|
|
struct e1000_rx_desc *cur;
|
|
|
|
EM_RX_LOCK(rxr);
|
|
|
|
#ifdef DEV_NETMAP
|
|
if (netmap_rx_irq(ifp, rxr->me, &processed)) {
|
|
EM_RX_UNLOCK(rxr);
|
|
return (FALSE);
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
|
|
for (i = rxr->next_to_check, processed = 0; count != 0;) {
|
|
|
|
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
|
|
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
cur = &rxr->rx_base[i];
|
|
status = cur->status;
|
|
mp = sendmp = NULL;
|
|
|
|
if ((status & E1000_RXD_STAT_DD) == 0)
|
|
break;
|
|
|
|
len = le16toh(cur->length);
|
|
eop = (status & E1000_RXD_STAT_EOP) != 0;
|
|
|
|
if ((cur->errors & E1000_RXD_ERR_FRAME_ERR_MASK) ||
|
|
(rxr->discard == TRUE)) {
|
|
adapter->dropped_pkts++;
|
|
++rxr->rx_discarded;
|
|
if (!eop) /* Catch subsequent segs */
|
|
rxr->discard = TRUE;
|
|
else
|
|
rxr->discard = FALSE;
|
|
em_rx_discard(rxr, i);
|
|
goto next_desc;
|
|
}
|
|
bus_dmamap_unload(rxr->rxtag, rxr->rx_buffers[i].map);
|
|
|
|
/* Assign correct length to the current fragment */
|
|
mp = rxr->rx_buffers[i].m_head;
|
|
mp->m_len = len;
|
|
|
|
/* Trigger for refresh */
|
|
rxr->rx_buffers[i].m_head = NULL;
|
|
|
|
/* First segment? */
|
|
if (rxr->fmp == NULL) {
|
|
mp->m_pkthdr.len = len;
|
|
rxr->fmp = rxr->lmp = mp;
|
|
} else {
|
|
/* Chain mbuf's together */
|
|
mp->m_flags &= ~M_PKTHDR;
|
|
rxr->lmp->m_next = mp;
|
|
rxr->lmp = mp;
|
|
rxr->fmp->m_pkthdr.len += len;
|
|
}
|
|
|
|
if (eop) {
|
|
--count;
|
|
sendmp = rxr->fmp;
|
|
if_setrcvif(sendmp, ifp);
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
|
|
em_receive_checksum(cur, sendmp);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
if (adapter->hw.mac.max_frame_size >
|
|
(MCLBYTES - ETHER_ALIGN) &&
|
|
em_fixup_rx(rxr) != 0)
|
|
goto skip;
|
|
#endif
|
|
if (status & E1000_RXD_STAT_VP) {
|
|
if_setvtag(sendmp,
|
|
le16toh(cur->special));
|
|
sendmp->m_flags |= M_VLANTAG;
|
|
}
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
skip:
|
|
#endif
|
|
rxr->fmp = rxr->lmp = NULL;
|
|
}
|
|
next_desc:
|
|
/* Zero out the receive descriptors status. */
|
|
cur->status = 0;
|
|
++rxdone; /* cumulative for POLL */
|
|
++processed;
|
|
|
|
/* Advance our pointers to the next descriptor. */
|
|
if (++i == adapter->num_rx_desc)
|
|
i = 0;
|
|
|
|
/* Send to the stack */
|
|
if (sendmp != NULL) {
|
|
rxr->next_to_check = i;
|
|
EM_RX_UNLOCK(rxr);
|
|
if_input(ifp, sendmp);
|
|
EM_RX_LOCK(rxr);
|
|
i = rxr->next_to_check;
|
|
}
|
|
|
|
/* Only refresh mbufs every 8 descriptors */
|
|
if (processed == 8) {
|
|
em_refresh_mbufs(rxr, i);
|
|
processed = 0;
|
|
}
|
|
}
|
|
|
|
/* Catch any remaining refresh work */
|
|
if (e1000_rx_unrefreshed(rxr))
|
|
em_refresh_mbufs(rxr, i);
|
|
|
|
rxr->next_to_check = i;
|
|
if (done != NULL)
|
|
*done = rxdone;
|
|
EM_RX_UNLOCK(rxr);
|
|
|
|
return ((status & E1000_RXD_STAT_DD) ? TRUE : FALSE);
|
|
}
|
|
|
|
static __inline void
|
|
em_rx_discard(struct rx_ring *rxr, int i)
|
|
{
|
|
struct em_buffer *rbuf;
|
|
|
|
rbuf = &rxr->rx_buffers[i];
|
|
bus_dmamap_unload(rxr->rxtag, rbuf->map);
|
|
|
|
/* Free any previous pieces */
|
|
if (rxr->fmp != NULL) {
|
|
rxr->fmp->m_flags |= M_PKTHDR;
|
|
m_freem(rxr->fmp);
|
|
rxr->fmp = NULL;
|
|
rxr->lmp = NULL;
|
|
}
|
|
/*
|
|
** Free buffer and allow em_refresh_mbufs()
|
|
** to clean up and recharge buffer.
|
|
*/
|
|
if (rbuf->m_head) {
|
|
m_free(rbuf->m_head);
|
|
rbuf->m_head = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* When jumbo frames are enabled we should realign entire payload on
|
|
* architecures with strict alignment. This is serious design mistake of 8254x
|
|
* as it nullifies DMA operations. 8254x just allows RX buffer size to be
|
|
* 2048/4096/8192/16384. What we really want is 2048 - ETHER_ALIGN to align its
|
|
* payload. On architecures without strict alignment restrictions 8254x still
|
|
* performs unaligned memory access which would reduce the performance too.
|
|
* To avoid copying over an entire frame to align, we allocate a new mbuf and
|
|
* copy ethernet header to the new mbuf. The new mbuf is prepended into the
|
|
* existing mbuf chain.
|
|
*
|
|
* Be aware, best performance of the 8254x is achived only when jumbo frame is
|
|
* not used at all on architectures with strict alignment.
|
|
*/
|
|
static int
|
|
em_fixup_rx(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct mbuf *m, *n;
|
|
int error;
|
|
|
|
error = 0;
|
|
m = rxr->fmp;
|
|
if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
|
|
bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
|
|
m->m_data += ETHER_HDR_LEN;
|
|
} else {
|
|
MGETHDR(n, M_NOWAIT, MT_DATA);
|
|
if (n != NULL) {
|
|
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
|
|
m->m_data += ETHER_HDR_LEN;
|
|
m->m_len -= ETHER_HDR_LEN;
|
|
n->m_len = ETHER_HDR_LEN;
|
|
M_MOVE_PKTHDR(n, m);
|
|
n->m_next = m;
|
|
rxr->fmp = n;
|
|
} else {
|
|
adapter->dropped_pkts++;
|
|
m_freem(rxr->fmp);
|
|
rxr->fmp = NULL;
|
|
error = ENOMEM;
|
|
}
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Verify that the hardware indicated that the checksum is valid.
|
|
* Inform the stack about the status of checksum so that stack
|
|
* doesn't spend time verifying the checksum.
|
|
*
|
|
*********************************************************************/
|
|
static void
|
|
em_receive_checksum(struct e1000_rx_desc *rx_desc, struct mbuf *mp)
|
|
{
|
|
mp->m_pkthdr.csum_flags = 0;
|
|
|
|
/* Ignore Checksum bit is set */
|
|
if (rx_desc->status & E1000_RXD_STAT_IXSM)
|
|
return;
|
|
|
|
if (rx_desc->errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE))
|
|
return;
|
|
|
|
/* IP Checksum Good? */
|
|
if (rx_desc->status & E1000_RXD_STAT_IPCS)
|
|
mp->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
|
|
|
|
/* TCP or UDP checksum */
|
|
if (rx_desc->status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
|
|
mp->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
|
|
mp->m_pkthdr.csum_data = htons(0xffff);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine is run via an vlan
|
|
* config EVENT
|
|
*/
|
|
static void
|
|
em_register_vlan(void *arg, if_t ifp, u16 vtag)
|
|
{
|
|
struct adapter *adapter = if_getsoftc(ifp);
|
|
u32 index, bit;
|
|
|
|
if ((void*)adapter != arg) /* Not our event */
|
|
return;
|
|
|
|
if ((vtag == 0) || (vtag > 4095)) /* Invalid ID */
|
|
return;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
index = (vtag >> 5) & 0x7F;
|
|
bit = vtag & 0x1F;
|
|
adapter->shadow_vfta[index] |= (1 << bit);
|
|
++adapter->num_vlans;
|
|
/* Re-init to load the changes */
|
|
if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
|
|
em_init_locked(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
/*
|
|
* This routine is run via an vlan
|
|
* unconfig EVENT
|
|
*/
|
|
static void
|
|
em_unregister_vlan(void *arg, if_t ifp, u16 vtag)
|
|
{
|
|
struct adapter *adapter = if_getsoftc(ifp);
|
|
u32 index, bit;
|
|
|
|
if (adapter != arg)
|
|
return;
|
|
|
|
if ((vtag == 0) || (vtag > 4095)) /* Invalid */
|
|
return;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
index = (vtag >> 5) & 0x7F;
|
|
bit = vtag & 0x1F;
|
|
adapter->shadow_vfta[index] &= ~(1 << bit);
|
|
--adapter->num_vlans;
|
|
/* Re-init to load the changes */
|
|
if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
|
|
em_init_locked(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
static void
|
|
em_setup_vlan_hw_support(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 reg;
|
|
|
|
/*
|
|
** We get here thru init_locked, meaning
|
|
** a soft reset, this has already cleared
|
|
** the VFTA and other state, so if there
|
|
** have been no vlan's registered do nothing.
|
|
*/
|
|
if (adapter->num_vlans == 0)
|
|
return;
|
|
|
|
/*
|
|
** A soft reset zero's out the VFTA, so
|
|
** we need to repopulate it now.
|
|
*/
|
|
for (int i = 0; i < EM_VFTA_SIZE; i++)
|
|
if (adapter->shadow_vfta[i] != 0)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
|
|
i, adapter->shadow_vfta[i]);
|
|
|
|
reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
reg |= E1000_CTRL_VME;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, reg);
|
|
|
|
/* Enable the Filter Table */
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
reg &= ~E1000_RCTL_CFIEN;
|
|
reg |= E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
}
|
|
|
|
static void
|
|
em_enable_intr(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ims_mask = IMS_ENABLE_MASK;
|
|
|
|
if (hw->mac.type == e1000_82574) {
|
|
E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
|
|
ims_mask |= EM_MSIX_MASK;
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
|
|
}
|
|
|
|
static void
|
|
em_disable_intr(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
if (hw->mac.type == e1000_82574)
|
|
E1000_WRITE_REG(hw, EM_EIAC, 0);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
|
|
}
|
|
|
|
/*
|
|
* Bit of a misnomer, what this really means is
|
|
* to enable OS management of the system... aka
|
|
* to disable special hardware management features
|
|
*/
|
|
static void
|
|
em_init_manageability(struct adapter *adapter)
|
|
{
|
|
/* A shared code workaround */
|
|
#define E1000_82542_MANC2H E1000_MANC2H
|
|
if (adapter->has_manage) {
|
|
int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
|
|
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
|
|
|
|
/* disable hardware interception of ARP */
|
|
manc &= ~(E1000_MANC_ARP_EN);
|
|
|
|
/* enable receiving management packets to the host */
|
|
manc |= E1000_MANC_EN_MNG2HOST;
|
|
#define E1000_MNG2HOST_PORT_623 (1 << 5)
|
|
#define E1000_MNG2HOST_PORT_664 (1 << 6)
|
|
manc2h |= E1000_MNG2HOST_PORT_623;
|
|
manc2h |= E1000_MNG2HOST_PORT_664;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Give control back to hardware management
|
|
* controller if there is one.
|
|
*/
|
|
static void
|
|
em_release_manageability(struct adapter *adapter)
|
|
{
|
|
if (adapter->has_manage) {
|
|
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
|
|
|
|
/* re-enable hardware interception of ARP */
|
|
manc |= E1000_MANC_ARP_EN;
|
|
manc &= ~E1000_MANC_EN_MNG2HOST;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means
|
|
* that the driver is loaded. For AMT version type f/w
|
|
* this means that the network i/f is open.
|
|
*/
|
|
static void
|
|
em_get_hw_control(struct adapter *adapter)
|
|
{
|
|
u32 ctrl_ext, swsm;
|
|
|
|
if (adapter->hw.mac.type == e1000_82573) {
|
|
swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
|
|
swsm | E1000_SWSM_DRV_LOAD);
|
|
return;
|
|
}
|
|
/* else */
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
|
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that
|
|
* the driver is no longer loaded. For AMT versions of the
|
|
* f/w this means that the network i/f is closed.
|
|
*/
|
|
static void
|
|
em_release_hw_control(struct adapter *adapter)
|
|
{
|
|
u32 ctrl_ext, swsm;
|
|
|
|
if (!adapter->has_manage)
|
|
return;
|
|
|
|
if (adapter->hw.mac.type == e1000_82573) {
|
|
swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
|
|
swsm & ~E1000_SWSM_DRV_LOAD);
|
|
return;
|
|
}
|
|
/* else */
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
|
return;
|
|
}
|
|
|
|
static int
|
|
em_is_valid_ether_addr(u8 *addr)
|
|
{
|
|
char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
|
|
|
|
if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
|
|
return (FALSE);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/*
|
|
** Parse the interface capabilities with regard
|
|
** to both system management and wake-on-lan for
|
|
** later use.
|
|
*/
|
|
static void
|
|
em_get_wakeup(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
u16 eeprom_data = 0, device_id, apme_mask;
|
|
|
|
adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
|
|
apme_mask = EM_EEPROM_APME;
|
|
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82573:
|
|
case e1000_82583:
|
|
adapter->has_amt = TRUE;
|
|
/* Falls thru */
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_80003es2lan:
|
|
if (adapter->hw.bus.func == 1) {
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
|
|
break;
|
|
} else
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
|
|
break;
|
|
case e1000_ich8lan:
|
|
case e1000_ich9lan:
|
|
case e1000_ich10lan:
|
|
case e1000_pchlan:
|
|
case e1000_pch2lan:
|
|
apme_mask = E1000_WUC_APME;
|
|
adapter->has_amt = TRUE;
|
|
eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
|
|
break;
|
|
default:
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
|
|
break;
|
|
}
|
|
if (eeprom_data & apme_mask)
|
|
adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
|
|
/*
|
|
* We have the eeprom settings, now apply the special cases
|
|
* where the eeprom may be wrong or the board won't support
|
|
* wake on lan on a particular port
|
|
*/
|
|
device_id = pci_get_device(dev);
|
|
switch (device_id) {
|
|
case E1000_DEV_ID_82571EB_FIBER:
|
|
/* Wake events only supported on port A for dual fiber
|
|
* regardless of eeprom setting */
|
|
if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
|
|
E1000_STATUS_FUNC_1)
|
|
adapter->wol = 0;
|
|
break;
|
|
case E1000_DEV_ID_82571EB_QUAD_COPPER:
|
|
case E1000_DEV_ID_82571EB_QUAD_FIBER:
|
|
case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
|
|
/* if quad port adapter, disable WoL on all but port A */
|
|
if (global_quad_port_a != 0)
|
|
adapter->wol = 0;
|
|
/* Reset for multiple quad port adapters */
|
|
if (++global_quad_port_a == 4)
|
|
global_quad_port_a = 0;
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Enable PCI Wake On Lan capability
|
|
*/
|
|
static void
|
|
em_enable_wakeup(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
if_t ifp = adapter->ifp;
|
|
u32 pmc, ctrl, ctrl_ext, rctl;
|
|
u16 status;
|
|
|
|
if ((pci_find_cap(dev, PCIY_PMG, &pmc) != 0))
|
|
return;
|
|
|
|
/* Advertise the wakeup capability */
|
|
ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
|
|
ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
|
|
|
|
if ((adapter->hw.mac.type == e1000_ich8lan) ||
|
|
(adapter->hw.mac.type == e1000_pchlan) ||
|
|
(adapter->hw.mac.type == e1000_ich9lan) ||
|
|
(adapter->hw.mac.type == e1000_ich10lan))
|
|
e1000_suspend_workarounds_ich8lan(&adapter->hw);
|
|
|
|
/* Keep the laser running on Fiber adapters */
|
|
if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
|
|
adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
|
|
}
|
|
|
|
/*
|
|
** Determine type of Wakeup: note that wol
|
|
** is set with all bits on by default.
|
|
*/
|
|
if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
|
|
adapter->wol &= ~E1000_WUFC_MAG;
|
|
|
|
if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
|
|
adapter->wol &= ~E1000_WUFC_MC;
|
|
else {
|
|
rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
rctl |= E1000_RCTL_MPE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
if ((adapter->hw.mac.type == e1000_pchlan) ||
|
|
(adapter->hw.mac.type == e1000_pch2lan)) {
|
|
if (em_enable_phy_wakeup(adapter))
|
|
return;
|
|
} else {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
|
|
}
|
|
|
|
if (adapter->hw.phy.type == e1000_phy_igp_3)
|
|
e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
|
|
|
|
/* Request PME */
|
|
status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
|
|
status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
|
|
if (if_getcapenable(ifp) & IFCAP_WOL)
|
|
status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
|
|
pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** WOL in the newer chipset interfaces (pchlan)
|
|
** require thing to be copied into the phy
|
|
*/
|
|
static int
|
|
em_enable_phy_wakeup(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 mreg, ret = 0;
|
|
u16 preg;
|
|
|
|
/* copy MAC RARs to PHY RARs */
|
|
e1000_copy_rx_addrs_to_phy_ich8lan(hw);
|
|
|
|
/* copy MAC MTA to PHY MTA */
|
|
for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
|
|
mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
|
|
e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
|
|
e1000_write_phy_reg(hw, BM_MTA(i) + 1,
|
|
(u16)((mreg >> 16) & 0xFFFF));
|
|
}
|
|
|
|
/* configure PHY Rx Control register */
|
|
e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
|
|
mreg = E1000_READ_REG(hw, E1000_RCTL);
|
|
if (mreg & E1000_RCTL_UPE)
|
|
preg |= BM_RCTL_UPE;
|
|
if (mreg & E1000_RCTL_MPE)
|
|
preg |= BM_RCTL_MPE;
|
|
preg &= ~(BM_RCTL_MO_MASK);
|
|
if (mreg & E1000_RCTL_MO_3)
|
|
preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
|
|
<< BM_RCTL_MO_SHIFT);
|
|
if (mreg & E1000_RCTL_BAM)
|
|
preg |= BM_RCTL_BAM;
|
|
if (mreg & E1000_RCTL_PMCF)
|
|
preg |= BM_RCTL_PMCF;
|
|
mreg = E1000_READ_REG(hw, E1000_CTRL);
|
|
if (mreg & E1000_CTRL_RFCE)
|
|
preg |= BM_RCTL_RFCE;
|
|
e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
|
|
|
|
/* enable PHY wakeup in MAC register */
|
|
E1000_WRITE_REG(hw, E1000_WUC,
|
|
E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
|
|
E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
|
|
|
|
/* configure and enable PHY wakeup in PHY registers */
|
|
e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
|
|
e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
|
|
|
|
/* activate PHY wakeup */
|
|
ret = hw->phy.ops.acquire(hw);
|
|
if (ret) {
|
|
printf("Could not acquire PHY\n");
|
|
return ret;
|
|
}
|
|
e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
(BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
|
|
ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
|
|
if (ret) {
|
|
printf("Could not read PHY page 769\n");
|
|
goto out;
|
|
}
|
|
preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
|
|
ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
|
|
if (ret)
|
|
printf("Could not set PHY Host Wakeup bit\n");
|
|
out:
|
|
hw->phy.ops.release(hw);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
em_led_func(void *arg, int onoff)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
if (onoff) {
|
|
e1000_setup_led(&adapter->hw);
|
|
e1000_led_on(&adapter->hw);
|
|
} else {
|
|
e1000_led_off(&adapter->hw);
|
|
e1000_cleanup_led(&adapter->hw);
|
|
}
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
/*
|
|
** Disable the L0S and L1 LINK states
|
|
*/
|
|
static void
|
|
em_disable_aspm(struct adapter *adapter)
|
|
{
|
|
int base, reg;
|
|
u16 link_cap,link_ctrl;
|
|
device_t dev = adapter->dev;
|
|
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82573:
|
|
case e1000_82574:
|
|
case e1000_82583:
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
|
|
return;
|
|
reg = base + PCIER_LINK_CAP;
|
|
link_cap = pci_read_config(dev, reg, 2);
|
|
if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
|
|
return;
|
|
reg = base + PCIER_LINK_CTL;
|
|
link_ctrl = pci_read_config(dev, reg, 2);
|
|
link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
|
|
pci_write_config(dev, reg, link_ctrl, 2);
|
|
return;
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Update the board statistics counters.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
em_update_stats_counters(struct adapter *adapter)
|
|
{
|
|
|
|
if(adapter->hw.phy.media_type == e1000_media_type_copper ||
|
|
(E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
|
|
adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
|
|
adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
|
|
}
|
|
adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
|
|
adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
|
|
adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
|
|
adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
|
|
|
|
adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
|
|
adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
|
|
adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
|
|
adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
|
|
adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
|
|
adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
|
|
adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
|
|
/*
|
|
** For watchdog management we need to know if we have been
|
|
** paused during the last interval, so capture that here.
|
|
*/
|
|
adapter->pause_frames = E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
|
|
adapter->stats.xoffrxc += adapter->pause_frames;
|
|
adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
|
|
adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
|
|
adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
|
|
adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
|
|
adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
|
|
adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
|
|
adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
|
|
adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
|
|
adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
|
|
adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
|
|
adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
|
|
adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
|
|
|
|
/* For the 64-bit byte counters the low dword must be read first. */
|
|
/* Both registers clear on the read of the high dword */
|
|
|
|
adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
|
|
((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
|
|
adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
|
|
((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
|
|
|
|
adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
|
|
adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
|
|
adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
|
|
adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
|
|
adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
|
|
|
|
adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
|
|
adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
|
|
|
|
adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
|
|
adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
|
|
adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
|
|
adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
|
|
adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
|
|
adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
|
|
adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
|
|
adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
|
|
adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
|
|
adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
|
|
|
|
/* Interrupt Counts */
|
|
|
|
adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
|
|
adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
|
|
adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
|
|
adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
|
|
adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
|
|
adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
|
|
adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
|
|
adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
|
|
adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
|
|
|
|
if (adapter->hw.mac.type >= e1000_82543) {
|
|
adapter->stats.algnerrc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
|
|
adapter->stats.rxerrc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_RXERRC);
|
|
adapter->stats.tncrs +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TNCRS);
|
|
adapter->stats.cexterr +=
|
|
E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
|
|
adapter->stats.tsctc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TSCTC);
|
|
adapter->stats.tsctfc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
|
|
}
|
|
}
|
|
|
|
static uint64_t
|
|
em_get_counter(if_t ifp, ift_counter cnt)
|
|
{
|
|
struct adapter *adapter;
|
|
|
|
adapter = if_getsoftc(ifp);
|
|
|
|
switch (cnt) {
|
|
case IFCOUNTER_COLLISIONS:
|
|
return (adapter->stats.colc);
|
|
case IFCOUNTER_IERRORS:
|
|
return (adapter->dropped_pkts + adapter->stats.rxerrc +
|
|
adapter->stats.crcerrs + adapter->stats.algnerrc +
|
|
adapter->stats.ruc + adapter->stats.roc +
|
|
adapter->stats.mpc + adapter->stats.cexterr);
|
|
case IFCOUNTER_OERRORS:
|
|
return (adapter->stats.ecol + adapter->stats.latecol +
|
|
adapter->watchdog_events);
|
|
default:
|
|
return (if_get_counter_default(ifp, cnt));
|
|
}
|
|
}
|
|
|
|
/* Export a single 32-bit register via a read-only sysctl. */
|
|
static int
|
|
em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter;
|
|
u_int val;
|
|
|
|
adapter = oidp->oid_arg1;
|
|
val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
|
|
return (sysctl_handle_int(oidp, &val, 0, req));
|
|
}
|
|
|
|
/*
|
|
* Add sysctl variables, one per statistic, to the system.
|
|
*/
|
|
static void
|
|
em_add_hw_stats(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
|
|
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
|
|
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
|
|
struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
|
|
struct e1000_hw_stats *stats = &adapter->stats;
|
|
|
|
struct sysctl_oid *stat_node, *queue_node, *int_node;
|
|
struct sysctl_oid_list *stat_list, *queue_list, *int_list;
|
|
|
|
#define QUEUE_NAME_LEN 32
|
|
char namebuf[QUEUE_NAME_LEN];
|
|
|
|
/* Driver Statistics */
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
|
|
CTLFLAG_RD, &adapter->link_irq,
|
|
"Link MSIX IRQ Handled");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_alloc_fail",
|
|
CTLFLAG_RD, &adapter->mbuf_alloc_failed,
|
|
"Std mbuf failed");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "cluster_alloc_fail",
|
|
CTLFLAG_RD, &adapter->mbuf_cluster_failed,
|
|
"Std mbuf cluster failed");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
|
|
CTLFLAG_RD, &adapter->dropped_pkts,
|
|
"Driver dropped packets");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
|
|
CTLFLAG_RD, &adapter->no_tx_dma_setup,
|
|
"Driver tx dma failure in xmit");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
|
|
CTLFLAG_RD, &adapter->rx_overruns,
|
|
"RX overruns");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
|
|
CTLFLAG_RD, &adapter->watchdog_events,
|
|
"Watchdog timeouts");
|
|
|
|
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
|
|
em_sysctl_reg_handler, "IU",
|
|
"Device Control Register");
|
|
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
|
|
em_sysctl_reg_handler, "IU",
|
|
"Receiver Control Register");
|
|
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
|
|
CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
|
|
"Flow Control High Watermark");
|
|
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
|
|
CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
|
|
"Flow Control Low Watermark");
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++, txr++) {
|
|
snprintf(namebuf, QUEUE_NAME_LEN, "queue%d", i);
|
|
queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
|
|
CTLFLAG_RD, NULL, "Queue Name");
|
|
queue_list = SYSCTL_CHILDREN(queue_node);
|
|
|
|
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter,
|
|
E1000_TDH(txr->me),
|
|
em_sysctl_reg_handler, "IU",
|
|
"Transmit Descriptor Head");
|
|
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter,
|
|
E1000_TDT(txr->me),
|
|
em_sysctl_reg_handler, "IU",
|
|
"Transmit Descriptor Tail");
|
|
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
|
|
CTLFLAG_RD, &txr->tx_irq,
|
|
"Queue MSI-X Transmit Interrupts");
|
|
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "no_desc_avail",
|
|
CTLFLAG_RD, &txr->no_desc_avail,
|
|
"Queue No Descriptor Available");
|
|
|
|
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter,
|
|
E1000_RDH(rxr->me),
|
|
em_sysctl_reg_handler, "IU",
|
|
"Receive Descriptor Head");
|
|
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter,
|
|
E1000_RDT(rxr->me),
|
|
em_sysctl_reg_handler, "IU",
|
|
"Receive Descriptor Tail");
|
|
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
|
|
CTLFLAG_RD, &rxr->rx_irq,
|
|
"Queue MSI-X Receive Interrupts");
|
|
}
|
|
|
|
/* MAC stats get their own sub node */
|
|
|
|
stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
|
|
CTLFLAG_RD, NULL, "Statistics");
|
|
stat_list = SYSCTL_CHILDREN(stat_node);
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
|
|
CTLFLAG_RD, &stats->ecol,
|
|
"Excessive collisions");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
|
|
CTLFLAG_RD, &stats->scc,
|
|
"Single collisions");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
|
|
CTLFLAG_RD, &stats->mcc,
|
|
"Multiple collisions");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
|
|
CTLFLAG_RD, &stats->latecol,
|
|
"Late collisions");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
|
|
CTLFLAG_RD, &stats->colc,
|
|
"Collision Count");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
|
|
CTLFLAG_RD, &adapter->stats.symerrs,
|
|
"Symbol Errors");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
|
|
CTLFLAG_RD, &adapter->stats.sec,
|
|
"Sequence Errors");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
|
|
CTLFLAG_RD, &adapter->stats.dc,
|
|
"Defer Count");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
|
|
CTLFLAG_RD, &adapter->stats.mpc,
|
|
"Missed Packets");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
|
|
CTLFLAG_RD, &adapter->stats.rnbc,
|
|
"Receive No Buffers");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
|
|
CTLFLAG_RD, &adapter->stats.ruc,
|
|
"Receive Undersize");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
|
|
CTLFLAG_RD, &adapter->stats.rfc,
|
|
"Fragmented Packets Received ");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
|
|
CTLFLAG_RD, &adapter->stats.roc,
|
|
"Oversized Packets Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
|
|
CTLFLAG_RD, &adapter->stats.rjc,
|
|
"Recevied Jabber");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
|
|
CTLFLAG_RD, &adapter->stats.rxerrc,
|
|
"Receive Errors");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
|
|
CTLFLAG_RD, &adapter->stats.crcerrs,
|
|
"CRC errors");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
|
|
CTLFLAG_RD, &adapter->stats.algnerrc,
|
|
"Alignment Errors");
|
|
/* On 82575 these are collision counts */
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
|
|
CTLFLAG_RD, &adapter->stats.cexterr,
|
|
"Collision/Carrier extension errors");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
|
|
CTLFLAG_RD, &adapter->stats.xonrxc,
|
|
"XON Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
|
|
CTLFLAG_RD, &adapter->stats.xontxc,
|
|
"XON Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
|
|
CTLFLAG_RD, &adapter->stats.xoffrxc,
|
|
"XOFF Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
|
|
CTLFLAG_RD, &adapter->stats.xofftxc,
|
|
"XOFF Transmitted");
|
|
|
|
/* Packet Reception Stats */
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
|
|
CTLFLAG_RD, &adapter->stats.tpr,
|
|
"Total Packets Received ");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
|
|
CTLFLAG_RD, &adapter->stats.gprc,
|
|
"Good Packets Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
|
|
CTLFLAG_RD, &adapter->stats.bprc,
|
|
"Broadcast Packets Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
|
|
CTLFLAG_RD, &adapter->stats.mprc,
|
|
"Multicast Packets Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
|
|
CTLFLAG_RD, &adapter->stats.prc64,
|
|
"64 byte frames received ");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
|
|
CTLFLAG_RD, &adapter->stats.prc127,
|
|
"65-127 byte frames received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
|
|
CTLFLAG_RD, &adapter->stats.prc255,
|
|
"128-255 byte frames received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
|
|
CTLFLAG_RD, &adapter->stats.prc511,
|
|
"256-511 byte frames received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
|
|
CTLFLAG_RD, &adapter->stats.prc1023,
|
|
"512-1023 byte frames received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
|
|
CTLFLAG_RD, &adapter->stats.prc1522,
|
|
"1023-1522 byte frames received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
|
|
CTLFLAG_RD, &adapter->stats.gorc,
|
|
"Good Octets Received");
|
|
|
|
/* Packet Transmission Stats */
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
|
|
CTLFLAG_RD, &adapter->stats.gotc,
|
|
"Good Octets Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
|
|
CTLFLAG_RD, &adapter->stats.tpt,
|
|
"Total Packets Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
|
|
CTLFLAG_RD, &adapter->stats.gptc,
|
|
"Good Packets Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
|
|
CTLFLAG_RD, &adapter->stats.bptc,
|
|
"Broadcast Packets Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
|
|
CTLFLAG_RD, &adapter->stats.mptc,
|
|
"Multicast Packets Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
|
|
CTLFLAG_RD, &adapter->stats.ptc64,
|
|
"64 byte frames transmitted ");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
|
|
CTLFLAG_RD, &adapter->stats.ptc127,
|
|
"65-127 byte frames transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
|
|
CTLFLAG_RD, &adapter->stats.ptc255,
|
|
"128-255 byte frames transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
|
|
CTLFLAG_RD, &adapter->stats.ptc511,
|
|
"256-511 byte frames transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
|
|
CTLFLAG_RD, &adapter->stats.ptc1023,
|
|
"512-1023 byte frames transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
|
|
CTLFLAG_RD, &adapter->stats.ptc1522,
|
|
"1024-1522 byte frames transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
|
|
CTLFLAG_RD, &adapter->stats.tsctc,
|
|
"TSO Contexts Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
|
|
CTLFLAG_RD, &adapter->stats.tsctfc,
|
|
"TSO Contexts Failed");
|
|
|
|
|
|
/* Interrupt Stats */
|
|
|
|
int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
|
|
CTLFLAG_RD, NULL, "Interrupt Statistics");
|
|
int_list = SYSCTL_CHILDREN(int_node);
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
|
|
CTLFLAG_RD, &adapter->stats.iac,
|
|
"Interrupt Assertion Count");
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
|
|
CTLFLAG_RD, &adapter->stats.icrxptc,
|
|
"Interrupt Cause Rx Pkt Timer Expire Count");
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
|
|
CTLFLAG_RD, &adapter->stats.icrxatc,
|
|
"Interrupt Cause Rx Abs Timer Expire Count");
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
|
|
CTLFLAG_RD, &adapter->stats.ictxptc,
|
|
"Interrupt Cause Tx Pkt Timer Expire Count");
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
|
|
CTLFLAG_RD, &adapter->stats.ictxatc,
|
|
"Interrupt Cause Tx Abs Timer Expire Count");
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
|
|
CTLFLAG_RD, &adapter->stats.ictxqec,
|
|
"Interrupt Cause Tx Queue Empty Count");
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
|
|
CTLFLAG_RD, &adapter->stats.ictxqmtc,
|
|
"Interrupt Cause Tx Queue Min Thresh Count");
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
|
|
CTLFLAG_RD, &adapter->stats.icrxdmtc,
|
|
"Interrupt Cause Rx Desc Min Thresh Count");
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
|
|
CTLFLAG_RD, &adapter->stats.icrxoc,
|
|
"Interrupt Cause Receiver Overrun Count");
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* This routine provides a way to dump out the adapter eeprom,
|
|
* often a useful debug/service tool. This only dumps the first
|
|
* 32 words, stuff that matters is in that extent.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter = (struct adapter *)arg1;
|
|
int error;
|
|
int result;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
/*
|
|
* This value will cause a hex dump of the
|
|
* first 32 16-bit words of the EEPROM to
|
|
* the screen.
|
|
*/
|
|
if (result == 1)
|
|
em_print_nvm_info(adapter);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
em_print_nvm_info(struct adapter *adapter)
|
|
{
|
|
u16 eeprom_data;
|
|
int i, j, row = 0;
|
|
|
|
/* Its a bit crude, but it gets the job done */
|
|
printf("\nInterface EEPROM Dump:\n");
|
|
printf("Offset\n0x0000 ");
|
|
for (i = 0, j = 0; i < 32; i++, j++) {
|
|
if (j == 8) { /* Make the offset block */
|
|
j = 0; ++row;
|
|
printf("\n0x00%x0 ",row);
|
|
}
|
|
e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
|
|
printf("%04x ", eeprom_data);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static int
|
|
em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct em_int_delay_info *info;
|
|
struct adapter *adapter;
|
|
u32 regval;
|
|
int error, usecs, ticks;
|
|
|
|
info = (struct em_int_delay_info *)arg1;
|
|
usecs = info->value;
|
|
error = sysctl_handle_int(oidp, &usecs, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
|
|
return (EINVAL);
|
|
info->value = usecs;
|
|
ticks = EM_USECS_TO_TICKS(usecs);
|
|
if (info->offset == E1000_ITR) /* units are 256ns here */
|
|
ticks *= 4;
|
|
|
|
adapter = info->adapter;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
|
|
regval = (regval & ~0xffff) | (ticks & 0xffff);
|
|
/* Handle a few special cases. */
|
|
switch (info->offset) {
|
|
case E1000_RDTR:
|
|
break;
|
|
case E1000_TIDV:
|
|
if (ticks == 0) {
|
|
adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
|
|
/* Don't write 0 into the TIDV register. */
|
|
regval++;
|
|
} else
|
|
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
|
|
break;
|
|
}
|
|
E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
|
|
EM_CORE_UNLOCK(adapter);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
|
|
const char *description, struct em_int_delay_info *info,
|
|
int offset, int value)
|
|
{
|
|
info->adapter = adapter;
|
|
info->offset = offset;
|
|
info->value = value;
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
|
|
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
|
|
info, 0, em_sysctl_int_delay, "I", description);
|
|
}
|
|
|
|
static void
|
|
em_set_sysctl_value(struct adapter *adapter, const char *name,
|
|
const char *description, int *limit, int value)
|
|
{
|
|
*limit = value;
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
|
|
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
|
|
}
|
|
|
|
|
|
/*
|
|
** Set flow control using sysctl:
|
|
** Flow control values:
|
|
** 0 - off
|
|
** 1 - rx pause
|
|
** 2 - tx pause
|
|
** 3 - full
|
|
*/
|
|
static int
|
|
em_set_flowcntl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
static int input = 3; /* default is full */
|
|
struct adapter *adapter = (struct adapter *) arg1;
|
|
|
|
error = sysctl_handle_int(oidp, &input, 0, req);
|
|
|
|
if ((error) || (req->newptr == NULL))
|
|
return (error);
|
|
|
|
if (input == adapter->fc) /* no change? */
|
|
return (error);
|
|
|
|
switch (input) {
|
|
case e1000_fc_rx_pause:
|
|
case e1000_fc_tx_pause:
|
|
case e1000_fc_full:
|
|
case e1000_fc_none:
|
|
adapter->hw.fc.requested_mode = input;
|
|
adapter->fc = input;
|
|
break;
|
|
default:
|
|
/* Do nothing */
|
|
return (error);
|
|
}
|
|
|
|
adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
|
|
e1000_force_mac_fc(&adapter->hw);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
** Manage Energy Efficient Ethernet:
|
|
** Control values:
|
|
** 0/1 - enabled/disabled
|
|
*/
|
|
static int
|
|
em_sysctl_eee(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter = (struct adapter *) arg1;
|
|
int error, value;
|
|
|
|
value = adapter->hw.dev_spec.ich8lan.eee_disable;
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
if (error || req->newptr == NULL)
|
|
return (error);
|
|
EM_CORE_LOCK(adapter);
|
|
adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
|
|
em_init_locked(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter;
|
|
int error;
|
|
int result;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
if (result == 1) {
|
|
adapter = (struct adapter *)arg1;
|
|
em_print_debug_info(adapter);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
** This routine is meant to be fluid, add whatever is
|
|
** needed for debugging a problem. -jfv
|
|
*/
|
|
static void
|
|
em_print_debug_info(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
|
|
if (if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING)
|
|
printf("Interface is RUNNING ");
|
|
else
|
|
printf("Interface is NOT RUNNING\n");
|
|
|
|
if (if_getdrvflags(adapter->ifp) & IFF_DRV_OACTIVE)
|
|
printf("and INACTIVE\n");
|
|
else
|
|
printf("and ACTIVE\n");
|
|
|
|
device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
|
|
E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
|
|
E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
|
|
device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
|
|
E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
|
|
E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
|
|
device_printf(dev, "Tx Queue Status = %d\n", txr->queue_status);
|
|
device_printf(dev, "TX descriptors avail = %d\n",
|
|
txr->tx_avail);
|
|
device_printf(dev, "Tx Descriptors avail failure = %ld\n",
|
|
txr->no_desc_avail);
|
|
device_printf(dev, "RX discarded packets = %ld\n",
|
|
rxr->rx_discarded);
|
|
device_printf(dev, "RX Next to Check = %d\n", rxr->next_to_check);
|
|
device_printf(dev, "RX Next to Refresh = %d\n", rxr->next_to_refresh);
|
|
}
|