freebsd-nq/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c
Adrian Chadd 0c20aadbd9 Add bluetooth fixes to the AR5416/AR92xx HAL:
* Call the bluetooth setup function during the reset path, so the bluetooth
  settings are actually initialised.
* Call the AR9285 diversity functions during bluetooth setup; so the AR9285
  diversity and antenna configuration registers are correctly programmed
* Misc debugging info.

Tested:

* AR9285+AR3011 bluetooth combo; this code itself doesn't enable bluetooth
  coexistence but it's part of what I'm currently using.
2013-06-07 05:17:58 +00:00

2889 lines
94 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_eeprom_v14.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
#define EEP_MINOR(_ah) \
(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
/* Additional Time delay to wait after activiting the Base band */
#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
#define PLL_SETTLE_DELAY 300 /* 300 usec */
#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
static void ar5416InitDMA(struct ath_hal *ah);
static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
static void ar5416InitQoS(struct ath_hal *ah);
static void ar5416InitUserSettings(struct ath_hal *ah);
static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *);
#if 0
static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
#endif
static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
struct ar5416eeprom *pEepData,
const struct ieee80211_channel *chan, int16_t *ratesArray,
uint16_t cfgCtl, uint16_t AntennaReduction,
uint16_t twiceMaxRegulatoryPower,
uint16_t powerLimit);
static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
static void ar5416MarkPhyInactive(struct ath_hal *ah);
static void ar5416SetIFSTiming(struct ath_hal *ah,
const struct ieee80211_channel *chan);
/*
* Places the device in and out of reset and then places sane
* values in the registers based on EEPROM config, initialization
* vectors (as determined by the mode), and station configuration
*
* bChannelChange is used to preserve DMA/PCU registers across
* a HW Reset during channel change.
*/
HAL_BOOL
ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
struct ieee80211_channel *chan,
HAL_BOOL bChannelChange, HAL_STATUS *status)
{
#define N(a) (sizeof (a) / sizeof (a[0]))
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CHANNEL_INTERNAL *ichan;
uint32_t saveDefAntenna, saveLedState;
uint32_t macStaId1;
uint16_t rfXpdGain[2];
HAL_STATUS ecode;
uint32_t powerVal, rssiThrReg;
uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
int i;
uint64_t tsf = 0;
OS_MARK(ah, AH_MARK_RESET, bChannelChange);
/* Bring out of sleep mode */
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
__func__);
FAIL(HAL_EIO);
}
/*
* Map public channel to private.
*/
ichan = ath_hal_checkchannel(ah, chan);
if (ichan == AH_NULL)
FAIL(HAL_EINVAL);
switch (opmode) {
case HAL_M_STA:
case HAL_M_IBSS:
case HAL_M_HOSTAP:
case HAL_M_MONITOR:
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
__func__, opmode);
FAIL(HAL_EINVAL);
break;
}
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
/* Blank the channel survey statistics */
OS_MEMZERO(&ahp->ah_chansurvey, sizeof(ahp->ah_chansurvey));
/* XXX Turn on fast channel change for 5416 */
/*
* Preserve the bmiss rssi threshold and count threshold
* across resets
*/
rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
/* If reg is zero, first time thru set to default val */
if (rssiThrReg == 0)
rssiThrReg = INIT_RSSI_THR;
/*
* Preserve the antenna on a channel change
*/
saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
/*
* Don't do this for the AR9285 - it breaks RX for single
* antenna designs when diversity is disabled.
*
* I'm not sure what this was working around; it may be
* something to do with the AR5416. Certainly this register
* isn't supposed to be used by the MIMO chips for anything
* except for defining the default antenna when an external
* phase array / smart antenna is connected.
*
* See PR: kern/179269 .
*/
if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0) /* XXX magic constants */
saveDefAntenna = 1;
/* Save hardware flag before chip reset clears the register */
macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
/* Save led state from pci config register */
saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
/* For chips on which the RTC reset is done, save TSF before it gets cleared */
if (AR_SREV_HOWL(ah) ||
(AR_SREV_MERLIN(ah) &&
ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) ||
(ah->ah_config.ah_force_full_reset))
tsf = ar5416GetTsf64(ah);
/* Mark PHY as inactive; marked active in ar5416InitBB() */
ar5416MarkPhyInactive(ah);
if (!ar5416ChipReset(ah, chan)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
FAIL(HAL_EIO);
}
/* Restore TSF */
if (tsf)
ar5416SetTsf64(ah, tsf);
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
if (AR_SREV_MERLIN_10_OR_LATER(ah))
OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
AH5416(ah)->ah_writeIni(ah, chan);
if(AR_SREV_KIWI_13_OR_LATER(ah) ) {
/* Enable ASYNC FIFO */
OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
}
/* Override ini values (that can be overriden in this fashion) */
ar5416OverrideIni(ah, chan);
/* Setup 11n MAC/Phy mode registers */
ar5416Set11nRegs(ah, chan);
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
/*
* Some AR91xx SoC devices frequently fail to accept TSF writes
* right after the chip reset. When that happens, write a new
* value after the initvals have been applied, with an offset
* based on measured time difference
*/
if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) {
tsf += 1500;
ar5416SetTsf64(ah, tsf);
}
HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
/*
* This routine swaps the analog chains - it should be done
* before any radio register twiddling is done.
*/
ar5416InitChainMasks(ah);
/* Setup the open-loop power calibration if required */
if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
AH5416(ah)->ah_olcInit(ah);
AH5416(ah)->ah_olcTempCompensation(ah);
}
/* Setup the transmit power values. */
if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error init'ing transmit power\n", __func__);
FAIL(HAL_EIO);
}
/* Write the analog registers */
if (!ahp->ah_rfHal->setRfRegs(ah, chan,
IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: ar5212SetRfRegs failed\n", __func__);
FAIL(HAL_EIO);
}
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
ar5416SetDeltaSlope(ah, chan);
AH5416(ah)->ah_spurMitigate(ah, chan);
/* Setup board specific options for EEPROM version 3 */
if (!ah->ah_setBoardValues(ah, chan)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error setting board options\n", __func__);
FAIL(HAL_EIO);
}
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
| macStaId1
| AR_STA_ID1_RTS_USE_DEF
| ahp->ah_staId1Defaults
);
ar5212SetOperatingMode(ah, opmode);
/* Set Venice BSSID mask according to current state */
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
/* Restore previous led state */
if (AR_SREV_HOWL(ah))
OS_REG_WRITE(ah, AR_MAC_LED,
AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ);
else
OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) |
saveLedState);
/* Start TSF2 for generic timer 8-15 */
#ifdef NOTYET
if (AR_SREV_KIWI(ah))
ar5416StartTsf2(ah);
#endif
/*
* Enable Bluetooth Coexistence if it's enabled.
*/
if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE)
ar5416InitBTCoex(ah);
/* Restore previous antenna */
OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
/* then our BSSID and associate id */
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
(ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
/* Restore bmiss rssi & count thresholds */
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
/* Restore bmiss rssi & count thresholds */
OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
if (!ar5212SetChannel(ah, chan))
FAIL(HAL_EIO);
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
/* Set 1:1 QCU to DCU mapping for all queues */
for (i = 0; i < AR_NUM_DCU; i++)
OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
ahp->ah_intrTxqs = 0;
for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
ah->ah_resetTxQueue(ah, i);
ar5416InitIMR(ah, opmode);
ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
ar5416InitQoS(ah);
/* This may override the AR_DIAG_SW register */
ar5416InitUserSettings(ah);
/* XXX this won't work for AR9287! */
if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
ar5416SetIFSTiming(ah, chan);
#if 0
/*
* AR5413?
* Force window_length for 1/2 and 1/4 rate channels,
* the ini file sets this to zero otherwise.
*/
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
AR_PHY_FRAME_CTL_WINLEN, 3);
}
#endif
}
if (AR_SREV_KIWI_13_OR_LATER(ah)) {
/*
* Enable ASYNC FIFO
*
* If Async FIFO is enabled, the following counters change
* as MAC now runs at 117 Mhz instead of 88/44MHz when
* async FIFO is disabled.
*
* Overwrite the delay/timeouts initialized in ProcessIni()
* above.
*/
OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
OS_REG_WRITE(ah, AR_TIME_OUT,
AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
}
if (AR_SREV_KIWI_13_OR_LATER(ah)) {
/* Enable AGGWEP to accelerate encryption engine */
OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
}
/*
* disable seq number generation in hw
*/
OS_REG_WRITE(ah, AR_STA_ID1,
OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
ar5416InitDMA(ah);
/*
* program OBS bus to see MAC interrupts
*/
OS_REG_WRITE(ah, AR_OBS, 8);
/*
* Disable the "general" TX/RX mitigation timers.
*/
OS_REG_WRITE(ah, AR_MIRT, 0);
#ifdef AH_AR5416_INTERRUPT_MITIGATION
/*
* This initialises the RX interrupt mitigation timers.
*
* The mitigation timers begin at idle and are triggered
* upon the RXOK of a single frame (or sub-frame, for A-MPDU.)
* Then, the RX mitigation interrupt will fire:
*
* + 250uS after the last RX'ed frame, or
* + 700uS after the first RX'ed frame
*
* Thus, the LAST field dictates the extra latency
* induced by the RX mitigation method and the FIRST
* field dictates how long to delay before firing an
* RX mitigation interrupt.
*
* Please note this only seems to be for RXOK frames;
* not CRC or PHY error frames.
*
*/
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250);
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700);
#endif
ar5416InitBB(ah, chan);
/* Setup compression registers */
ar5212SetCompRegs(ah); /* XXX not needed? */
/*
* 5416 baseband will check the per rate power table
* and select the lower of the two
*/
ackTpcPow = 63;
ctsTpcPow = 63;
chirpTpcPow = 63;
powerVal = SM(ackTpcPow, AR_TPC_ACK) |
SM(ctsTpcPow, AR_TPC_CTS) |
SM(chirpTpcPow, AR_TPC_CHIRP);
OS_REG_WRITE(ah, AR_TPC, powerVal);
if (!ar5416InitCal(ah, chan))
FAIL(HAL_ESELFTEST);
ar5416RestoreChainMask(ah);
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
if (AR_SREV_HOWL(ah)) {
/*
* Enable the MBSSID block-ack fix for HOWL.
* This feature is only supported on Howl 1.4, but it is safe to
* set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3),
* since bit 22 is unused in those Howl revisions.
*/
unsigned int reg;
reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22));
OS_REG_WRITE(ah,AR_STA_ID1, reg);
ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg);
}
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
OS_MARK(ah, AH_MARK_RESET_DONE, 0);
return AH_TRUE;
bad:
OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
if (status != AH_NULL)
*status = ecode;
return AH_FALSE;
#undef FAIL
#undef N
}
#if 0
/*
* This channel change evaluates whether the selected hardware can
* perform a synthesizer-only channel change (no reset). If the
* TX is not stopped, or the RFBus cannot be granted in the given
* time, the function returns false as a reset is necessary
*/
HAL_BOOL
ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
{
uint32_t ulCount;
uint32_t data, synthDelay, qnum;
uint16_t rfXpdGain[4];
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CHANNEL_INTERNAL *ichan;
/*
* Map public channel to private.
*/
ichan = ath_hal_checkchannel(ah, chan);
/* TX must be stopped or RF Bus grant will not work */
for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
if (ar5212NumTxPending(ah, qnum)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: frames pending on queue %d\n", __func__, qnum);
return AH_FALSE;
}
}
/*
* Kill last Baseband Rx Frame - Request analog bus grant
*/
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
__func__);
return AH_FALSE;
}
ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
/* Change the synth */
if (!ar5212SetChannel(ah, chan))
return AH_FALSE;
/* Setup the transmit power values. */
if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error init'ing transmit power\n", __func__);
return AH_FALSE;
}
/*
* Wait for the frequency synth to settle (synth goes on
* via PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_CCK(ichan)) {
synthDelay = (4 * data) / 22;
} else {
synthDelay = data / 10;
}
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
/* Release the RFBus Grant */
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
ar5212SetSpurMitigation(ah, chan);
ar5416SetDeltaSlope(ah, chan);
}
/* XXX spur mitigation for Melin */
if (!IEEE80211_IS_CHAN_DFS(chan))
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
ichan->channel_time = 0;
ichan->tsf_last = ar5416GetTsf64(ah);
ar5212TxEnable(ah, AH_TRUE);
return AH_TRUE;
}
#endif
static void
ar5416InitDMA(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/*
* set AHB_MODE not to do cacheline prefetches
*/
OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
/*
* let mac dma reads be in 128 byte chunks
*/
OS_REG_WRITE(ah, AR_TXCFG,
(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
/*
* let mac dma writes be in 128 byte chunks
*/
/*
* XXX If you change this, you must change the headroom
* assigned in ah_maxTxTrigLev - see ar5416InitState().
*/
OS_REG_WRITE(ah, AR_RXCFG,
(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
/* restore TX trigger level */
OS_REG_WRITE(ah, AR_TXCFG,
(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
SM(ahp->ah_txTrigLev, AR_FTRIG));
/*
* Setup receive FIFO threshold to hold off TX activities
*/
OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
/*
* reduce the number of usable entries in PCU TXBUF to avoid
* wrap around.
*/
if (AR_SREV_KITE(ah))
/*
* For AR9285 the number of Fifos are reduced to half.
* So set the usable tx buf size also to half to
* avoid data/delimiter underruns
*/
OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
else
OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
}
static void
ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t synthDelay;
/*
* Wait for the frequency synth to settle (synth goes on
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IEEE80211_IS_CHAN_CCK(chan)) {
synthDelay = (4 * synthDelay) / 22;
} else {
synthDelay /= 10;
}
/* Turn on PLL on 5416 */
HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
__func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
/* Activate the PHY (includes baseband activate and synthesizer on) */
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
/*
* If the AP starts the calibration before the base band timeout
* completes we could get rx_clear false triggering. Add an
* extra BASE_ACTIVATE_DELAY usecs to ensure this condition
* does not happen.
*/
if (IEEE80211_IS_CHAN_HALF(chan)) {
OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
} else {
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
}
}
static void
ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/*
* Setup interrupt handling. Note that ar5212ResetTxQueue
* manipulates the secondary IMR's as queues are enabled
* and disabled. This is done with RMW ops to insure the
* settings we make here are preserved.
*/
ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
| AR_IMR_RXERR | AR_IMR_RXORN
| AR_IMR_BCNMISC;
#ifdef AH_AR5416_INTERRUPT_MITIGATION
ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
#else
ahp->ah_maskReg |= AR_IMR_RXOK;
#endif
ahp->ah_maskReg |= AR_IMR_TXOK;
if (opmode == HAL_M_HOSTAP)
ahp->ah_maskReg |= AR_IMR_MIB;
OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
#ifdef ADRIAN_NOTYET
/* This is straight from ath9k */
if (! AR_SREV_HOWL(ah)) {
OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
}
#endif
/* Enable bus errors that are OR'd to set the HIUERR bit */
#if 0
OS_REG_WRITE(ah, AR_IMR_S2,
OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
#endif
}
static void
ar5416InitQoS(struct ath_hal *ah)
{
/* QoS support */
OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
/* Turn on NOACK Support for QoS packets */
OS_REG_WRITE(ah, AR_NOACK,
SM(2, AR_NOACK_2BIT_VALUE) |
SM(5, AR_NOACK_BIT_OFFSET) |
SM(0, AR_NOACK_BYTE_OFFSET));
/*
* initialize TXOP for all TIDs
*/
OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
}
static void
ar5416InitUserSettings(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/* Restore user-specified settings */
if (ahp->ah_miscMode != 0)
OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE)
| ahp->ah_miscMode);
if (ahp->ah_sifstime != (u_int) -1)
ar5212SetSifsTime(ah, ahp->ah_sifstime);
if (ahp->ah_slottime != (u_int) -1)
ar5212SetSlotTime(ah, ahp->ah_slottime);
if (ahp->ah_acktimeout != (u_int) -1)
ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
if (ahp->ah_ctstimeout != (u_int) -1)
ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
if (AH_PRIVATE(ah)->ah_diagreg != 0)
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1)
ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout);
}
static void
ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t rfMode;
if (chan == AH_NULL)
return;
/* treat channel B as channel G , no B mode suport in owl */
rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
/* phy mode bits for 5GHz channels require Fast Clock */
rfMode |= AR_PHY_MODE_DYNAMIC
| AR_PHY_MODE_DYN_CCK_DISABLE;
} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
}
OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
}
/*
* Places the hardware into reset and then pulls it out of reset
*/
HAL_BOOL
ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
/*
* Warm reset is optimistic for open-loop TX power control.
*/
if (AR_SREV_MERLIN(ah) &&
ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
return AH_FALSE;
} else if (ah->ah_config.ah_force_full_reset) {
if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
return AH_FALSE;
} else {
if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
return AH_FALSE;
}
/* Bring out of sleep mode (AGAIN) */
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
return AH_FALSE;
#ifdef notyet
ahp->ah_chipFullSleep = AH_FALSE;
#endif
AH5416(ah)->ah_initPLL(ah, chan);
/*
* Perform warm reset before the mode/PLL/turbo registers
* are changed in order to deactivate the radio. Mode changes
* with an active radio can result in corrupted shifts to the
* radio device.
*/
ar5416SetRfMode(ah, chan);
return AH_TRUE;
}
/*
* Delta slope coefficient computation.
* Required for OFDM operation.
*/
static void
ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
uint32_t *coef_mantissa, uint32_t *coef_exponent)
{
#define COEF_SCALE_S 24
uint32_t coef_exp, coef_man;
/*
* ALGO -> coef_exp = 14-floor(log2(coef));
* floor(log2(x)) is the highest set bit position
*/
for (coef_exp = 31; coef_exp > 0; coef_exp--)
if ((coef_scaled >> coef_exp) & 0x1)
break;
/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
HALASSERT(coef_exp);
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
/*
* ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
* The coefficient is already shifted up for scaling
*/
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
*coef_exponent = coef_exp - 16;
#undef COEF_SCALE_S
}
void
ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
#define INIT_CLOCKMHZSCALED 0x64000000
uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
uint32_t clockMhzScaled;
CHAN_CENTERS centers;
/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
/* scale for selected channel bandwidth */
clockMhzScaled = INIT_CLOCKMHZSCALED;
if (IEEE80211_IS_CHAN_TURBO(chan))
clockMhzScaled <<= 1;
else if (IEEE80211_IS_CHAN_HALF(chan))
clockMhzScaled >>= 1;
else if (IEEE80211_IS_CHAN_QUARTER(chan))
clockMhzScaled >>= 2;
/*
* ALGO -> coef = 1e8/fcarrier*fclock/40;
* scaled coef to provide precision for this floating calculation
*/
ar5416GetChannelCenters(ah, chan, &centers);
coef_scaled = clockMhzScaled / centers.synth_center;
ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
/*
* For Short GI,
* scaled coeff is 9/10 that of normal coeff
*/
coef_scaled = (9 * coef_scaled)/10;
ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
/* for short gi */
OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
#undef INIT_CLOCKMHZSCALED
}
/*
* Set a limit on the overall output power. Used for dynamic
* transmit power control and the like.
*
* NB: limit is in units of 0.5 dbM.
*/
HAL_BOOL
ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
{
uint16_t dummyXpdGains[2];
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan,
dummyXpdGains);
}
HAL_BOOL
ar5416GetChipPowerLimits(struct ath_hal *ah,
struct ieee80211_channel *chan)
{
struct ath_hal_5212 *ahp = AH5212(ah);
int16_t minPower, maxPower;
/*
* Get Pier table max and min powers.
*/
if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
/* NB: rf code returns 1/4 dBm units, convert */
chan->ic_maxpower = maxPower / 2;
chan->ic_minpower = minPower / 2;
} else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: no min/max power for %u/0x%x\n",
__func__, chan->ic_freq, chan->ic_flags);
chan->ic_maxpower = AR5416_MAX_RATE_POWER;
chan->ic_minpower = 0;
}
HALDEBUG(ah, HAL_DEBUG_RESET,
"Chan %d: MaxPow = %d MinPow = %d\n",
chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
return AH_TRUE;
}
/**************************************************************
* ar5416WriteTxPowerRateRegisters
*
* Write the TX power rate registers from the raw values given
* in ratesArray[].
*
* The CCK and HT40 rate registers are only written if needed.
* HT20 and 11g/11a OFDM rate registers are always written.
*
* The values written are raw values which should be written
* to the registers - so it's up to the caller to pre-adjust
* them (eg CCK power offset value, or Merlin TX power offset,
* etc.)
*/
void
ar5416WriteTxPowerRateRegisters(struct ath_hal *ah,
const struct ieee80211_channel *chan, const int16_t ratesArray[])
{
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
/* Write the OFDM power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
POW_SM(ratesArray[rate18mb], 24)
| POW_SM(ratesArray[rate12mb], 16)
| POW_SM(ratesArray[rate9mb], 8)
| POW_SM(ratesArray[rate6mb], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
POW_SM(ratesArray[rate54mb], 24)
| POW_SM(ratesArray[rate48mb], 16)
| POW_SM(ratesArray[rate36mb], 8)
| POW_SM(ratesArray[rate24mb], 0)
);
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
/* Write the CCK power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
POW_SM(ratesArray[rate2s], 24)
| POW_SM(ratesArray[rate2l], 16)
| POW_SM(ratesArray[rateXr], 8) /* XR target power */
| POW_SM(ratesArray[rate1l], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
POW_SM(ratesArray[rate11s], 24)
| POW_SM(ratesArray[rate11l], 16)
| POW_SM(ratesArray[rate5_5s], 8)
| POW_SM(ratesArray[rate5_5l], 0)
);
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
__func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
}
/* Write the HT20 power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
POW_SM(ratesArray[rateHt20_3], 24)
| POW_SM(ratesArray[rateHt20_2], 16)
| POW_SM(ratesArray[rateHt20_1], 8)
| POW_SM(ratesArray[rateHt20_0], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
POW_SM(ratesArray[rateHt20_7], 24)
| POW_SM(ratesArray[rateHt20_6], 16)
| POW_SM(ratesArray[rateHt20_5], 8)
| POW_SM(ratesArray[rateHt20_4], 0)
);
if (IEEE80211_IS_CHAN_HT40(chan)) {
/* Write the HT40 power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
POW_SM(ratesArray[rateHt40_3], 24)
| POW_SM(ratesArray[rateHt40_2], 16)
| POW_SM(ratesArray[rateHt40_1], 8)
| POW_SM(ratesArray[rateHt40_0], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
POW_SM(ratesArray[rateHt40_7], 24)
| POW_SM(ratesArray[rateHt40_6], 16)
| POW_SM(ratesArray[rateHt40_5], 8)
| POW_SM(ratesArray[rateHt40_4], 0)
);
/* Write the Dup/Ext 40 power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
POW_SM(ratesArray[rateExtOfdm], 24)
| POW_SM(ratesArray[rateExtCck], 16)
| POW_SM(ratesArray[rateDupOfdm], 8)
| POW_SM(ratesArray[rateDupCck], 0)
);
}
/*
* Set max power to 30 dBm and, optionally,
* enable TPC in tx descriptors.
*/
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
(AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
#undef POW_SM
}
/**************************************************************
* ar5416SetTransmitPower
*
* Set the transmit power in the baseband for the given
* operating channel and mode.
*/
HAL_BOOL
ar5416SetTransmitPower(struct ath_hal *ah,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
#define N(a) (sizeof (a) / sizeof (a[0]))
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
MODAL_EEP_HEADER *pModal;
struct ath_hal_5212 *ahp = AH5212(ah);
int16_t txPowerIndexOffset = 0;
int i;
uint16_t cfgCtl;
uint16_t powerLimit;
uint16_t twiceAntennaReduction;
uint16_t twiceMaxRegulatoryPower;
int16_t maxPower;
HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ar5416eeprom *pEepData = &ee->ee_base;
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
/*
* Default to 2, is overridden based on the EEPROM version / value.
*/
AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
/* Setup info for the actual eeprom */
OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
cfgCtl = ath_hal_getctl(ah, chan);
powerLimit = chan->ic_maxregpower * 2;
twiceAntennaReduction = chan->ic_maxantgain;
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
__func__,chan->ic_freq, cfgCtl );
if (IS_EEP_MINOR_V2(ah)) {
AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
}
if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
&AH5416(ah)->ah_ratesArray[0],
cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower, powerLimit)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: unable to set tx power per rate table\n", __func__);
return AH_FALSE;
}
if (!AH5416(ah)->ah_setPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
__func__);
return AH_FALSE;
}
maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
AH5416(ah)->ah_ratesArray[rateHt20_0]);
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
}
if (IEEE80211_IS_CHAN_HT40(chan)) {
maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
}
ahp->ah_tx6PowerInHalfDbm = maxPower;
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
/*
* txPowerIndexOffset is set by the SetPowerTable() call -
* adjust the rate table (0 offset if rates EEPROM not loaded)
*/
for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
AH5416(ah)->ah_ratesArray[i] =
(int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
}
#ifdef AH_EEPROM_DUMP
/*
* Dump the rate array whilst it represents the intended dBm*2
* values versus what's being adjusted before being programmed
* in. Keep this in mind if you code up this function and enable
* this debugging; the values won't necessarily be what's being
* programmed into the hardware.
*/
ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
#endif
/*
* Merlin and later have a power offset, so subtract
* pwr_table_offset * 2 from each value. The default
* power offset is -5 dBm - ie, a register value of 0
* equates to a TX power of -5 dBm.
*/
if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
int8_t pwr_table_offset;
(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
&pwr_table_offset);
/* Underflow power gets clamped at raw value 0 */
/* Overflow power gets camped at AR5416_MAX_RATE_POWER */
for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
/*
* + pwr_table_offset is in dBm
* + ratesArray is in 1/2 dBm
*/
AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2);
if (AH5416(ah)->ah_ratesArray[i] < 0)
AH5416(ah)->ah_ratesArray[i] = 0;
else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
}
}
/*
* Adjust rates for OLC where needed
*
* The following CCK rates need adjusting when doing 2.4ghz
* CCK transmission.
*
* + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l
* + rateExtCck, rateDupCck
*
* They're adjusted here regardless. The hardware then gets
* programmed as needed. 5GHz operation doesn't program in CCK
* rates for legacy mode but they seem to be initialised for
* HT40 regardless of channel type.
*/
if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
int adj[] = {
rate2s, rate2l, rate1l, rate11s, rate11l,
rate5_5s, rate5_5l, rateExtCck, rateDupCck
};
int cck_ofdm_delta = 2;
int i;
for (i = 0; i < N(adj); i++) {
AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta;
if (AH5416(ah)->ah_ratesArray[adj[i]] < 0)
AH5416(ah)->ah_ratesArray[adj[i]] = 0;
}
}
/*
* Adjust the HT40 power to meet the correct target TX power
* for 40MHz mode, based on TX power curves that are established
* for 20MHz mode.
*
* XXX handle overflow/too high power level?
*/
if (IEEE80211_IS_CHAN_HT40(chan)) {
AH5416(ah)->ah_ratesArray[rateHt40_0] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_1] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc;
}
/* Write the TX power rate registers */
ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
/* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
POW_SM(pModal->pwrDecreaseFor3Chain, 6)
| POW_SM(pModal->pwrDecreaseFor2Chain, 0)
);
return AH_TRUE;
#undef POW_SM
#undef N
}
/*
* Exported call to check for a recent gain reading and return
* the current state of the thermal calibration gain engine.
*/
HAL_RFGAIN
ar5416GetRfgain(struct ath_hal *ah)
{
return (HAL_RFGAIN_INACTIVE);
}
/*
* Places all of hardware into reset
*/
HAL_BOOL
ar5416Disable(struct ath_hal *ah)
{
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
return AH_FALSE;
if (! ar5416SetResetReg(ah, HAL_RESET_COLD))
return AH_FALSE;
AH5416(ah)->ah_initPLL(ah, AH_NULL);
return (AH_TRUE);
}
/*
* Places the PHY and Radio chips into reset. A full reset
* must be called to leave this state. The PCI/MAC/PCU are
* not placed into reset as we must receive interrupt to
* re-enable the hardware.
*/
HAL_BOOL
ar5416PhyDisable(struct ath_hal *ah)
{
if (! ar5416SetResetReg(ah, HAL_RESET_WARM))
return AH_FALSE;
AH5416(ah)->ah_initPLL(ah, AH_NULL);
return (AH_TRUE);
}
/*
* Write the given reset bit mask into the reset register
*/
HAL_BOOL
ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
{
/*
* Set force wake
*/
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
switch (type) {
case HAL_RESET_POWER_ON:
return ar5416SetResetPowerOn(ah);
case HAL_RESET_WARM:
case HAL_RESET_COLD:
return ar5416SetReset(ah, type);
default:
HALASSERT(AH_FALSE);
return AH_FALSE;
}
}
static HAL_BOOL
ar5416SetResetPowerOn(struct ath_hal *ah)
{
/* Power On Reset (Hard Reset) */
/*
* Set force wake
*
* If the MAC was running, previously calling
* reset will wake up the MAC but it may go back to sleep
* before we can start polling.
* Set force wake stops that
* This must be called before initiating a hard reset.
*/
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
/*
* PowerOn reset can be used in open loop power control or failure recovery.
* If we do RTC reset while DMA is still running, hardware may corrupt memory.
* Therefore, we need to reset AHB first to stop DMA.
*/
if (! AR_SREV_HOWL(ah))
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
/*
* RTC reset and clear
*/
OS_REG_WRITE(ah, AR_RTC_RESET, 0);
OS_DELAY(20);
if (! AR_SREV_HOWL(ah))
OS_REG_WRITE(ah, AR_RC, 0);
OS_REG_WRITE(ah, AR_RTC_RESET, 1);
/*
* Poll till RTC is ON
*/
if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
return AH_FALSE;
}
return ar5416SetReset(ah, HAL_RESET_COLD);
}
static HAL_BOOL
ar5416SetReset(struct ath_hal *ah, int type)
{
uint32_t tmpReg, mask;
uint32_t rst_flags;
#ifdef AH_SUPPORT_AR9130 /* Because of the AR9130 specific registers */
if (AR_SREV_HOWL(ah)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n");
uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
val &= ~AR_RTC_DERIVED_CLK_PERIOD;
val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
(void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
}
#endif /* AH_SUPPORT_AR9130 */
/*
* Force wake
*/
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
#ifdef AH_SUPPORT_AR9130
if (AR_SREV_HOWL(ah)) {
rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
} else {
#endif /* AH_SUPPORT_AR9130 */
/*
* Reset AHB
*
* (In case the last interrupt source was a bus timeout.)
* XXX TODO: this is not the way to do it! It should be recorded
* XXX by the interrupt handler and passed _into_ the
* XXX reset path routine so this occurs.
*/
tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
} else {
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
}
rst_flags = AR_RTC_RC_MAC_WARM;
if (type == HAL_RESET_COLD)
rst_flags |= AR_RTC_RC_MAC_COLD;
#ifdef AH_SUPPORT_AR9130
}
#endif /* AH_SUPPORT_AR9130 */
OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
if (AR_SREV_HOWL(ah))
OS_DELAY(10000);
else
OS_DELAY(100);
/*
* Clear resets and force wakeup
*/
OS_REG_WRITE(ah, AR_RTC_RC, 0);
if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
return AH_FALSE;
}
/* Clear AHB reset */
if (! AR_SREV_HOWL(ah))
OS_REG_WRITE(ah, AR_RC, 0);
if (AR_SREV_HOWL(ah))
OS_DELAY(50);
if (AR_SREV_HOWL(ah)) {
uint32_t mask;
mask = OS_REG_READ(ah, AR_CFG);
if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
HALDEBUG(ah, HAL_DEBUG_RESET,
"CFG Byte Swap Set 0x%x\n", mask);
} else {
mask =
INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
OS_REG_WRITE(ah, AR_CFG, mask);
HALDEBUG(ah, HAL_DEBUG_RESET,
"Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG));
}
} else {
if (type == HAL_RESET_COLD) {
if (isBigEndian()) {
/*
* Set CFG, little-endian for descriptor accesses.
*/
mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
#ifndef AH_NEED_DESC_SWAP
mask |= AR_CFG_SWTD;
#endif
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s Applying descriptor swap\n", __func__);
OS_REG_WRITE(ah, AR_CFG, mask);
} else
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
}
}
return AH_TRUE;
}
void
ar5416InitChainMasks(struct ath_hal *ah)
{
int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
/* Flip this for this chainmask regardless of chip */
if (rx_chainmask == 0x5)
OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
/*
* Workaround for OWL 1.0 calibration failure; enable multi-chain;
* then set true mask after calibration.
*/
if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
} else {
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
}
OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
if (AH5416(ah)->ah_tx_chainmask == 0x5)
OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
if (AR_SREV_HOWL(ah)) {
OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
}
}
/*
* Work-around for Owl 1.0 calibration failure.
*
* ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0
* due to init calibration failures. ar5416RestoreChainMask restores
* these registers to the correct setting.
*/
void
ar5416RestoreChainMask(struct ath_hal *ah)
{
int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
}
}
void
ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
if (chan != AH_NULL) {
if (IEEE80211_IS_CHAN_HALF(chan))
pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
else if (IEEE80211_IS_CHAN_QUARTER(chan))
pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
if (IEEE80211_IS_CHAN_5GHZ(chan))
pll |= SM(0xa, AR_RTC_PLL_DIV);
else
pll |= SM(0xb, AR_RTC_PLL_DIV);
} else
pll |= SM(0xb, AR_RTC_PLL_DIV);
OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
/* TODO:
* For multi-band owl, switch between bands by reiniting the PLL.
*/
OS_DELAY(RTC_PLL_SETTLE_DELAY);
OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
}
static void
ar5416SetDefGainValues(struct ath_hal *ah,
const MODAL_EEP_HEADER *pModal,
const struct ar5416eeprom *eep,
uint8_t txRxAttenLocal, int regChainOffset, int i)
{
if (IS_EEP_MINOR_V3(ah)) {
txRxAttenLocal = pModal->txRxAttenCh[i];
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
pModal->bswMargin[i]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
pModal->bswAtten[i]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
pModal->xatten2Margin[i]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN2_DB,
pModal->xatten2Db[i]);
} else {
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_BSW_MARGIN,
pModal->bswMargin[i]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_BSW_ATTEN,
pModal->bswAtten[i]);
}
}
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
OS_REG_RMW_FIELD(ah,
AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
OS_REG_RMW_FIELD(ah,
AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
} else {
OS_REG_RMW_FIELD(ah,
AR_PHY_RXGAIN + regChainOffset,
AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
OS_REG_RMW_FIELD(ah,
AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]);
}
}
/*
* Get the register chain offset for the given chain.
*
* Take into account the register chain swapping with AR5416 v2.0.
*
* XXX make sure that the reg chain swapping is only done for
* XXX AR5416 v2.0 or greater, and not later chips?
*/
int
ar5416GetRegChainOffset(struct ath_hal *ah, int i)
{
int regChainOffset;
if (AR_SREV_5416_V20_OR_LATER(ah) &&
(AH5416(ah)->ah_rx_chainmask == 0x5 ||
AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
* only chains 0 and 2 populated
*/
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
} else {
regChainOffset = i * 0x1000;
}
return regChainOffset;
}
/*
* Read EEPROM header info and program the device for correct operation
* given the channel value.
*/
HAL_BOOL
ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
const struct ar5416eeprom *eep = &ee->ee_base;
const MODAL_EEP_HEADER *pModal;
int i, regChainOffset;
uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
/* NB: workaround for eeprom versions <= 14.2 */
txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_MERLIN(ah)) {
if (i >= 2) break;
}
regChainOffset = ar5416GetRegChainOffset(ah, i);
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
/*
* Large signal upgrade,
* If 14.3 or later EEPROM, use
* txRxAttenLocal = pModal->txRxAttenCh[i]
* else txRxAttenLocal is fixed value above.
*/
if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah))
ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
}
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
} else {
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
}
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS,
!!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS));
OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
!!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON));
}
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
if (! AR_SREV_MERLIN_10_OR_LATER(ah))
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
pModal->txEndToRxOn);
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
pModal->thresh62);
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
pModal->thresh62);
} else {
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
pModal->thresh62);
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62,
pModal->thresh62);
}
/* Minor Version Specific application */
if (IS_EEP_MINOR_V2(ah)) {
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
pModal->txFrameToDataStart);
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
pModal->txFrameToPaOn);
}
if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
/* Overwrite switch settling with HT40 value */
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
pModal->swSettleHt40);
if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
if (IEEE80211_IS_CHAN_2GHZ(chan))
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
eep->baseEepHeader.dacLpMode);
else if (eep->baseEepHeader.dacHiPwrMode_5G)
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
else
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
eep->baseEepHeader.dacLpMode);
OS_DELAY(100);
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
pModal->miscBits >> 2);
OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK,
eep->baseEepHeader.desiredScaleCCK);
}
return (AH_TRUE);
}
/*
* Helper functions common for AP/CB/XB
*/
/*
* Set the target power array "ratesArray" from the
* given set of target powers.
*
* This is used by the various chipset/EEPROM TX power
* setup routines.
*/
void
ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah,
const struct ieee80211_channel *chan,
int16_t *ratesArray,
const CAL_TARGET_POWER_LEG *targetPowerCck,
const CAL_TARGET_POWER_LEG *targetPowerCckExt,
const CAL_TARGET_POWER_LEG *targetPowerOfdm,
const CAL_TARGET_POWER_LEG *targetPowerOfdmExt,
const CAL_TARGET_POWER_HT *targetPowerHt20,
const CAL_TARGET_POWER_HT *targetPowerHt40)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
int i;
/* Blank the rates array, to be consistent */
for (i = 0; i < Ar5416RateSize; i++)
ratesArray[i] = 0;
/* Set rates Array from collected data */
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
ratesArray[rate18mb] = ratesArray[rate24mb] =
targetPowerOfdm->tPow2x[0];
ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1];
ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2];
ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3];
ratesArray[rateXr] = targetPowerOfdm->tPow2x[0];
for (i = 0; i < N(targetPowerHt20->tPow2x); i++) {
ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i];
}
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
ratesArray[rate1l] = targetPowerCck->tPow2x[0];
ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck->tPow2x[1];
ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2];
ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3];
}
if (IEEE80211_IS_CHAN_HT40(chan)) {
for (i = 0; i < N(targetPowerHt40->tPow2x); i++) {
ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i];
}
ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0];
ratesArray[rateDupCck] = targetPowerHt40->tPow2x[0];
ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0];
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
ratesArray[rateExtCck] = targetPowerCckExt->tPow2x[0];
}
}
#undef N
}
/*
* ar5416SetPowerPerRateTable
*
* Sets the transmit power in the baseband for the given
* operating channel and mode.
*/
static HAL_BOOL
ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
const struct ieee80211_channel *chan,
int16_t *ratesArray, uint16_t cfgCtl,
uint16_t AntennaReduction,
uint16_t twiceMaxRegulatoryPower,
uint16_t powerLimit)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
int16_t twiceLargestAntenna;
CAL_CTL_DATA *rep;
CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
int16_t scaledPower, minCtlPower;
#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
static const uint16_t ctlModesFor11a[] = {
CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
};
static const uint16_t ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
};
const uint16_t *pCtlMode;
uint16_t numCtlModes, ctlMode, freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
/* Compute TxPower reduction due to Antenna Gain */
twiceLargestAntenna = AH_MAX(AH_MAX(
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
#if 0
/* Turn it back on if we need to calculate per chain antenna gain reduction */
/* Use only if the expected gain > 6dbi */
/* Chain 0 is always used */
twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
if (ahp->ah_tx_chainmask & 0x2)
twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
if (ahp->ah_tx_chainmask & 0x4)
twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
#endif
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
/* XXX setup for 5212 use (really used?) */
ath_hal_eepromSet(ah,
IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
twiceLargestAntenna);
/*
* scaledPower is the minimum of the user input power level and
* the regulatory allowed power level
*/
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
/* Reduce scaled Power by number of chains active to get to per chain tx power level */
/* TODO: better value than these? */
switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
case 1:
break;
case 2:
scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
break;
case 3:
scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
break;
default:
return AH_FALSE; /* Unsupported number of chains */
}
scaledPower = AH_MAX(0, scaledPower);
/* Get target powers from EEPROM - our baseline for TX Power */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
/* Setup for CTL modes */
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
pCtlMode = ctlModesFor11g;
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
if (IEEE80211_IS_CHAN_HT40(chan)) {
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
/* Get target powers for extension channels */
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
}
} else {
/* Setup for CTL modes */
numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
pCtlMode = ctlModesFor11a;
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
if (IEEE80211_IS_CHAN_HT40(chan)) {
numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
}
}
/*
* For MIMO, need to apply regulatory caps individually across dynamically
* running modes: CCK, OFDM, HT20, HT40
*
* The outer loop walks through each possible applicable runtime mode.
* The inner loop walks through each ctlIndex entry in EEPROM.
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
*
*/
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode) {
freq = centers.ctl_center;
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
freq = centers.ext_center;
} else {
freq = centers.ctl_center;
}
/* walk through each CTL index stored in EEPROM */
for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
uint16_t twiceMinEdgePower;
/* compare test group from regulatory channel list with test mode from pCtlMode list */
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
rep = &(pEepData->ctlData[i]);
twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
IEEE80211_IS_CHAN_2GHZ(chan));
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
/* Find the minimum of all CTL edge powers that apply to this channel */
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
} else {
/* specific */
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
/* Apply ctl mode to correct target power set */
switch(pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
}
break;
case CTL_11A:
case CTL_11G:
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
break;
case CTL_11A_EXT:
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
}
break;
default:
return AH_FALSE;
break;
}
} /* end ctl mode checking */
/* Set rates Array from collected data */
ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
&targetPowerCck,
&targetPowerCckExt,
&targetPowerOfdm,
&targetPowerOfdmExt,
&targetPowerHt20,
&targetPowerHt40);
return AH_TRUE;
#undef EXT_ADDITIVE
#undef CTL_11A_EXT
#undef CTL_11G_EXT
#undef CTL_11B_EXT
#undef SUB_NUM_CTL_MODES_AT_5G_40
#undef SUB_NUM_CTL_MODES_AT_2G_40
#undef N
}
/**************************************************************************
* fbin2freq
*
* Get channel value from binary representation held in eeprom
* RETURNS: the frequency in MHz
*/
static uint16_t
fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
{
/*
* Reserved value 0xFF provides an empty definition both as
* an fbin and as a frequency - do not convert
*/
if (fbin == AR5416_BCHAN_UNUSED) {
return fbin;
}
return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
}
/*
* ar5416GetMaxEdgePower
*
* Find the maximum conformance test limit for the given channel and CTL info
*/
uint16_t
ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
{
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
/* Get the edge power */
for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
/*
* If there's an exact channel match or an inband flag set
* on the lower channel use the given rdEdgePower
*/
if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
break;
} else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
}
/* Leave loop - no more affecting edges possible in this monotonic increasing list */
break;
}
}
HALASSERT(twiceMaxEdgePower > 0);
return twiceMaxEdgePower;
}
/**************************************************************
* ar5416GetTargetPowers
*
* Return the rates of target power for the given target power table
* channel, and number of channels
*/
void
ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
HAL_BOOL isHt40Target)
{
uint16_t clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
uint16_t freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
freq = isHt40Target ? centers.synth_center : centers.ctl_center;
/* Copy the target powers into the temp channel list */
if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
{
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1)) {
HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
matchIndex = i - 1;
}
}
if (matchIndex != -1) {
OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
} else {
HALASSERT(lowIndex != -1);
/*
* Get the lower and upper channels, target powers,
* and interpolate between them.
*/
clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
/**************************************************************
* ar5416GetTargetPowersLeg
*
* Return the four rates of target power for the given target power table
* channel, and number of channels
*/
void
ar5416GetTargetPowersLeg(struct ath_hal *ah,
const struct ieee80211_channel *chan,
CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
HAL_BOOL isExtTarget)
{
uint16_t clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
uint16_t freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
/* Copy the target powers into the temp channel list */
if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
{
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1)) {
HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
matchIndex = i - 1;
}
}
if (matchIndex != -1) {
OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
} else {
HALASSERT(lowIndex != -1);
/*
* Get the lower and upper channels, target powers,
* and interpolate between them.
*/
clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
/*
* Set the gain boundaries for the given radio chain.
*
* The gain boundaries tell the hardware at what point in the
* PDADC array to "switch over" from one PD gain setting
* to another. There's also a gain overlap between two
* PDADC array gain curves where there's valid PD values
* for 2 gain settings.
*
* The hardware uses the gain overlap and gain boundaries
* to determine which gain curve to use for the given
* target TX power.
*/
void
ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i,
uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[])
{
int regChainOffset;
regChainOffset = ar5416GetRegChainOffset(ah, i);
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d,"
" gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2,
gainBoundaries[0], gainBoundaries[1], gainBoundaries[2],
gainBoundaries[3]);
OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
}
/*
* Get the gain values and the number of gain levels given
* in xpdMask.
*
* The EEPROM xpdMask determines which power detector gain
* levels were used during calibration. Each of these mask
* bits maps to a fixed gain level in hardware.
*/
uint16_t
ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask,
uint16_t xpdGainValues[])
{
int i;
uint16_t numXpdGain = 0;
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS) {
HALASSERT(0);
break;
}
xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
numXpdGain++;
}
}
return numXpdGain;
}
/*
* Write the detector gain and biases.
*
* There are four power detector gain levels. The xpdMask in the EEPROM
* determines which power detector gain levels have TX power calibration
* data associated with them. This function writes the number of
* PD gain levels and their values into the hardware.
*
* This is valid for all TX chains - the calibration data itself however
* will likely differ per-chain.
*/
void
ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain,
uint16_t xpdGainValues[])
{
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d,"
" xpdGainValues: %d, %d, %d\n", __func__, numXpdGain,
xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]);
OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 |
AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) |
SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) |
SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
}
/*
* Write the PDADC array to the given radio chain i.
*
* The 32 PDADC registers are written without any care about
* their contents - so if various chips treat values as "special",
* this routine will not care.
*/
void
ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[])
{
int regOffset, regChainOffset;
int j;
int reg32;
regChainOffset = ar5416GetRegChainOffset(ah, i);
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
for (j = 0; j < 32; j++) {
reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
((pdadcValues[4*j + 1] & 0xFF) << 8) |
((pdadcValues[4*j + 2] & 0xFF) << 16) |
((pdadcValues[4*j + 3] & 0xFF) << 24) ;
OS_REG_WRITE(ah, regOffset, reg32);
HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |"
" PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d"
" Value %3d | PDADC %3d Value %3d |\n",
i,
4*j, pdadcValues[4*j],
4*j+1, pdadcValues[4*j + 1],
4*j+2, pdadcValues[4*j + 2],
4*j+3, pdadcValues[4*j + 3]);
regOffset += 4;
}
}
/**************************************************************
* ar5416SetPowerCalTable
*
* Pull the PDADC piers from cal data and interpolate them across the given
* points as well as from the nearest pier(s) to get a power detector
* linear voltage to power level table.
*/
HAL_BOOL
ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
{
CAL_DATA_PER_FREQ *pRawDataset;
uint8_t *pCalBChans = AH_NULL;
uint16_t pdGainOverlap_t2;
static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
uint16_t numPiers, i;
int16_t tMinCalPower;
uint16_t numXpdGain, xpdMask;
uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
uint32_t regChainOffset;
OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
if (IS_EEP_MINOR_V2(ah)) {
pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
} else {
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
}
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR5416_NUM_2G_CAL_PIERS;
} else {
pCalBChans = pEepData->calFreqPier5G;
numPiers = AR5416_NUM_5G_CAL_PIERS;
}
/* Calculate the value of xpdgains from the xpdGain Mask */
numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues);
/* Write the detector gain biases and their number */
ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
regChainOffset = ar5416GetRegChainOffset(ah, i);
if (pEepData->baseEepHeader.txMask & (1 << i)) {
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
pRawDataset = pEepData->calPierData2G[i];
} else {
pRawDataset = pEepData->calPierData5G[i];
}
/* Fetch the gain boundaries and the PDADC values */
ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
pCalBChans, numPiers,
pdGainOverlap_t2,
&tMinCalPower, gainBoundaries,
pdadcValues, numXpdGain);
if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2,
gainBoundaries);
}
/* Write the power values into the baseband power table */
ar5416WritePdadcValues(ah, i, pdadcValues);
}
}
*pTxPowerIndexOffset = 0;
return AH_TRUE;
}
/**************************************************************
* ar5416GetGainBoundariesAndPdadcs
*
* Uses the data points read from EEPROM to reconstruct the pdadc power table
* Called by ar5416SetPowerCalTable only.
*/
void
ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
const struct ieee80211_channel *chan,
CAL_DATA_PER_FREQ *pRawDataSet,
uint8_t * bChans, uint16_t availPiers,
uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
uint8_t * pPDADCValues, uint16_t numXpdGains)
{
int i, j, k;
int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
uint16_t idxL, idxR, numPiers; /* Pier indexes */
/* filled out Vpd table for all pdGains (chanL) */
static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (chanR) */
static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (interpolated) */
static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
int16_t vpdStep;
int16_t tmpVal;
uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
HAL_BOOL match;
int16_t minDelta = 0;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
/* Trim numPiers for the number of populated channel Piers */
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
break;
}
}
/* Find pier indexes around the current channel */
match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
if (match) {
/* Directly fill both vpd tables from the matching index */
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
}
} else {
for (i = 0; i < numXpdGains; i++) {
pVpdL = pRawDataSet[idxL].vpdPdg[i];
pPwrL = pRawDataSet[idxL].pwrPdg[i];
pVpdR = pRawDataSet[idxR].vpdPdg[i];
pPwrR = pRawDataSet[idxR].pwrPdg[i];
/* Start Vpd interpolation from the max of the minimum powers */
minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
/* End Vpd interpolation from the min of the max powers */
maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
HALASSERT(maxPwrT4[i] > minPwrT4[i]);
/* Fill pier Vpds */
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
/* Interpolate the final vpd */
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
IEEE80211_IS_CHAN_2GHZ(chan)),
bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
}
}
}
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
k = 0; /* index for the final table */
for (i = 0; i < numXpdGains; i++) {
if (i == (numXpdGains - 1)) {
pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
} else {
pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
}
pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
/* NB: only applies to owl 1.0 */
if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
/*
* fix the gain delta, but get a delta that can be applied to min to
* keep the upper power values accurate, don't think max needs to
* be adjusted because should not be at that area of the table?
*/
minDelta = pPdGainBoundaries[0] - 23;
pPdGainBoundaries[0] = 23;
}
else {
minDelta = 0;
}
/* Find starting index for this pdGain */
if (i == 0) {
if (AR_SREV_MERLIN_10_OR_LATER(ah))
ss = (int16_t)(0 - (minPwrT4[i] / 2));
else
ss = 0; /* for the first pdGain, start from index 0 */
} else {
/* need overlap entries extrapolated below. */
ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
}
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
/*
*-ve ss indicates need to extrapolate data below for this pdGain
*/
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
pPDADCValues[k++] = vpdTableI[i][ss++];
}
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
/*
* for last gain, pdGainBoundary == Pmax_t2, so will
* have to extrapolate
*/
if (tgtIndex >= maxIndex) { /* need to extrapolate above */
while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
(ss - maxIndex +1) * vpdStep));
pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
ss++;
}
} /* extrapolated above */
} /* for all pdGainUsed */
/* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
while (i < AR5416_PD_GAINS_IN_MASK) {
pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
i++;
}
while (k < AR5416_NUM_PDADC_VALUES) {
pPDADCValues[k] = pPDADCValues[k-1];
k++;
}
return;
}
/*
* The linux ath9k driver and (from what I've been told) the reference
* Atheros driver enables the 11n PHY by default whether or not it's
* configured.
*/
static void
ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t phymode;
uint32_t enableDacFifo = 0;
HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
if (AR_SREV_KITE_10_OR_LATER(ah))
enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
/* Enable 11n HT, 20 MHz */
phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
/* Configure baseband for dynamic 20/40 operation */
if (IEEE80211_IS_CHAN_HT40(chan)) {
phymode |= AR_PHY_FC_DYN2040_EN;
/* Configure control (primary) channel at +-10MHz */
if (IEEE80211_IS_CHAN_HT40U(chan))
phymode |= AR_PHY_FC_DYN2040_PRI_CH;
#if 0
/* Configure 20/25 spacing */
if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
phymode |= AR_PHY_FC_DYN2040_EXT_CH;
#endif
macmode = HAL_HT_MACMODE_2040;
} else
macmode = HAL_HT_MACMODE_20;
OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
/* Configure MAC for 20/40 operation */
ar5416Set11nMac2040(ah, macmode);
/* global transmit timeout (25 TUs default)*/
/* XXX - put this elsewhere??? */
OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
/* carrier sense timeout */
OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
}
void
ar5416GetChannelCenters(struct ath_hal *ah,
const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
{
uint16_t freq = ath_hal_gethwchannel(ah, chan);
centers->ctl_center = freq;
centers->synth_center = freq;
/*
* In 20/40 phy mode, the center frequency is
* "between" the control and extension channels.
*/
if (IEEE80211_IS_CHAN_HT40U(chan)) {
centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
centers->ext_center =
centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
} else if (IEEE80211_IS_CHAN_HT40D(chan)) {
centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
centers->ext_center =
centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
} else {
centers->ext_center = freq;
}
}
/*
* Override the INI vals being programmed.
*/
static void
ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t val;
/*
* Set the RX_ABORT and RX_DIS and clear if off only after
* RXE is set for MAC. This prevents frames with corrupted
* descriptor status.
*/
OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
val = OS_REG_READ(ah, AR_PCU_MISC_MODE2);
val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE);
if (!AR_SREV_9271(ah))
val &= ~AR_PCU_MISC_MODE2_HWWAR1;
if (AR_SREV_KIWI_10_OR_LATER(ah))
val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
}
/*
* Disable RIFS search on some chips to avoid baseband
* hang issues.
*/
if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah))
(void) ar5416SetRifsDelay(ah, chan, AH_FALSE);
if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah))
return;
/*
* Disable BB clock gating
* Necessary to avoid issues on AR5416 2.0
*/
OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
}
struct ini {
uint32_t *data; /* NB: !const */
int rows, cols;
};
/*
* Override XPA bias level based on operating frequency.
* This is a v14 EEPROM specific thing for the AR9160.
*/
void
ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
MODAL_EEP_HEADER *pModal;
HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ar5416eeprom *eep = &ee->ee_base;
uint8_t biaslevel;
if (! AR_SREV_SOWL(ah))
return;
if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7)
return;
pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]);
if (pModal->xpaBiasLvl != 0xff)
biaslevel = pModal->xpaBiasLvl;
else {
uint16_t resetFreqBin, freqBin, freqCount = 0;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
freqBin = XPA_LVL_FREQ(0) & 0xff;
biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14);
freqCount++;
while (freqCount < 3) {
if (XPA_LVL_FREQ(freqCount) == 0x0)
break;
freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
if (resetFreqBin >= freqBin)
biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14);
else
break;
freqCount++;
}
}
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n",
__func__, biaslevel);
/*
* This is a dirty workaround for the const initval data,
* which will upset multiple AR9160's on the same board.
*
* The HAL should likely just have a private copy of the addac
* data per instance.
*/
if (IEEE80211_IS_CHAN_2GHZ(chan))
HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) =
(HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
else
HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) =
(HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
#undef XPA_LVL_FREQ
}
static void
ar5416MarkPhyInactive(struct ath_hal *ah)
{
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
}
#define AR5416_IFS_SLOT_FULL_RATE_40 0x168 /* 9 us half, 40 MHz core clock (9*40) */
#define AR5416_IFS_SLOT_HALF_RATE_40 0x104 /* 13 us half, 20 MHz core clock (13*20) */
#define AR5416_IFS_SLOT_QUARTER_RATE_40 0xD2 /* 21 us quarter, 10 MHz core clock (21*10) */
#define AR5416_IFS_EIFS_FULL_RATE_40 0xE60 /* (74 + (2 * 9)) * 40MHz core clock */
#define AR5416_IFS_EIFS_HALF_RATE_40 0xDAC /* (149 + (2 * 13)) * 20MHz core clock */
#define AR5416_IFS_EIFS_QUARTER_RATE_40 0xD48 /* (298 + (2 * 21)) * 10MHz core clock */
#define AR5416_IFS_SLOT_FULL_RATE_44 0x18c /* 9 us half, 44 MHz core clock (9*44) */
#define AR5416_IFS_SLOT_HALF_RATE_44 0x11e /* 13 us half, 22 MHz core clock (13*22) */
#define AR5416_IFS_SLOT_QUARTER_RATE_44 0xe7 /* 21 us quarter, 11 MHz core clock (21*11) */
#define AR5416_IFS_EIFS_FULL_RATE_44 0xfd0 /* (74 + (2 * 9)) * 44MHz core clock */
#define AR5416_IFS_EIFS_HALF_RATE_44 0xf0a /* (149 + (2 * 13)) * 22MHz core clock */
#define AR5416_IFS_EIFS_QUARTER_RATE_44 0xe9c /* (298 + (2 * 21)) * 11MHz core clock */
#define AR5416_INIT_USEC_40 40
#define AR5416_HALF_RATE_USEC_40 19 /* ((40 / 2) - 1 ) */
#define AR5416_QUARTER_RATE_USEC_40 9 /* ((40 / 4) - 1 ) */
#define AR5416_INIT_USEC_44 44
#define AR5416_HALF_RATE_USEC_44 21 /* ((44 / 2) - 1 ) */
#define AR5416_QUARTER_RATE_USEC_44 10 /* ((44 / 4) - 1 ) */
/* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */
#define AR5416_RX_NON_FULL_RATE_LATENCY 63
#define AR5416_TX_HALF_RATE_LATENCY 108
#define AR5416_TX_QUARTER_RATE_LATENCY 216
/*
* Adjust various register settings based on half/quarter rate clock setting.
* This includes:
*
* + USEC, TX/RX latency,
* + IFS params: slot, eifs, misc etc.
*
* TODO:
*
* + Verify which other registers need to be tweaked;
* + Verify the behaviour of this for 5GHz fast and non-fast clock mode;
* + This just plain won't work for long distance links - the coverage class
* code isn't aware of the slot/ifs/ACK/RTS timeout values that need to
* change;
* + Verify whether the 32KHz USEC value needs to be kept for the 802.11n
* series chips?
* + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock
*/
static void
ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
int clk_44 = 0;
HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
IEEE80211_IS_CHAN_QUARTER(chan));
/* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */
if (IEEE80211_IS_CHAN_2GHZ(chan))
clk_44 = 1;
else if (IEEE80211_IS_CHAN_5GHZ(chan) &&
IS_5GHZ_FAST_CLOCK_EN(ah, chan))
clk_44 = 1;
/* XXX does this need save/restoring for the 11n chips? */
refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
/*
* XXX This really should calculate things, not use
* hard coded values! Ew.
*/
if (IEEE80211_IS_CHAN_HALF(chan)) {
if (clk_44) {
slot = AR5416_IFS_SLOT_HALF_RATE_44;
rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
AR5416_USEC_RX_LAT_S;
txLat = AR5416_TX_HALF_RATE_LATENCY <<
AR5416_USEC_TX_LAT_S;
usec = AR5416_HALF_RATE_USEC_44;
eifs = AR5416_IFS_EIFS_HALF_RATE_44;
init_usec = AR5416_INIT_USEC_44 >> 1;
} else {
slot = AR5416_IFS_SLOT_HALF_RATE_40;
rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
AR5416_USEC_RX_LAT_S;
txLat = AR5416_TX_HALF_RATE_LATENCY <<
AR5416_USEC_TX_LAT_S;
usec = AR5416_HALF_RATE_USEC_40;
eifs = AR5416_IFS_EIFS_HALF_RATE_40;
init_usec = AR5416_INIT_USEC_40 >> 1;
}
} else { /* quarter rate */
if (clk_44) {
slot = AR5416_IFS_SLOT_QUARTER_RATE_44;
rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
AR5416_USEC_RX_LAT_S;
txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
AR5416_USEC_TX_LAT_S;
usec = AR5416_QUARTER_RATE_USEC_44;
eifs = AR5416_IFS_EIFS_QUARTER_RATE_44;
init_usec = AR5416_INIT_USEC_44 >> 2;
} else {
slot = AR5416_IFS_SLOT_QUARTER_RATE_40;
rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
AR5416_USEC_RX_LAT_S;
txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
AR5416_USEC_TX_LAT_S;
usec = AR5416_QUARTER_RATE_USEC_40;
eifs = AR5416_IFS_EIFS_QUARTER_RATE_40;
init_usec = AR5416_INIT_USEC_40 >> 2;
}
}
/* XXX verify these! */
OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
}