freebsd-nq/sbin/pfctl/pfctl_altq.c
Kristof Provost 26705a39e5 pfctl: Fix crash on ALTQ configuration
The following config could crash pfctl:
	altq on igb0 fairq bandwidth 1Gb queue { qLink }
	queue qLink fairq(default)

That happens because when we're parsing the parent queue (on igb0) it
doesn't have a parent, and the check in eval_pfqueue_fairq() checks
pa->parent rather than parent.

This was changed in eval_pfqueue_hfsc() in
1d34c9dac8, but not for fairq.

Reviewed by:	pkelsey
MFC after:	1 week
Sponsored by:	Rubicon Communications, LLC ("Netgate")
Differential Revision:	https://reviews.freebsd.org/D30346
2021-05-20 14:06:22 +02:00

1439 lines
36 KiB
C

/* $OpenBSD: pfctl_altq.c,v 1.93 2007/10/15 02:16:35 deraadt Exp $ */
/*
* Copyright (c) 2002
* Sony Computer Science Laboratories Inc.
* Copyright (c) 2002, 2003 Henning Brauer <henning@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define PFIOC_USE_LATEST
#include <sys/types.h>
#include <sys/bitset.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <net/pfvar.h>
#include <err.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <search.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <net/altq/altq.h>
#include <net/altq/altq_cbq.h>
#include <net/altq/altq_codel.h>
#include <net/altq/altq_priq.h>
#include <net/altq/altq_hfsc.h>
#include <net/altq/altq_fairq.h>
#include "pfctl_parser.h"
#include "pfctl.h"
#define is_sc_null(sc) (((sc) == NULL) || ((sc)->m1 == 0 && (sc)->m2 == 0))
static STAILQ_HEAD(interfaces, pfctl_altq) interfaces = STAILQ_HEAD_INITIALIZER(interfaces);
static struct hsearch_data queue_map;
static struct hsearch_data if_map;
static struct hsearch_data qid_map;
static struct pfctl_altq *pfaltq_lookup(char *ifname);
static struct pfctl_altq *qname_to_pfaltq(const char *, const char *);
static u_int32_t qname_to_qid(char *);
static int eval_pfqueue_cbq(struct pfctl *, struct pf_altq *,
struct pfctl_altq *);
static int cbq_compute_idletime(struct pfctl *, struct pf_altq *);
static int check_commit_cbq(int, int, struct pfctl_altq *);
static int print_cbq_opts(const struct pf_altq *);
static int print_codel_opts(const struct pf_altq *,
const struct node_queue_opt *);
static int eval_pfqueue_priq(struct pfctl *, struct pf_altq *,
struct pfctl_altq *);
static int check_commit_priq(int, int, struct pfctl_altq *);
static int print_priq_opts(const struct pf_altq *);
static int eval_pfqueue_hfsc(struct pfctl *, struct pf_altq *,
struct pfctl_altq *, struct pfctl_altq *);
static int check_commit_hfsc(int, int, struct pfctl_altq *);
static int print_hfsc_opts(const struct pf_altq *,
const struct node_queue_opt *);
static int eval_pfqueue_fairq(struct pfctl *, struct pf_altq *,
struct pfctl_altq *, struct pfctl_altq *);
static int print_fairq_opts(const struct pf_altq *,
const struct node_queue_opt *);
static int check_commit_fairq(int, int, struct pfctl_altq *);
static void gsc_add_sc(struct gen_sc *, struct service_curve *);
static int is_gsc_under_sc(struct gen_sc *,
struct service_curve *);
static struct segment *gsc_getentry(struct gen_sc *, double);
static int gsc_add_seg(struct gen_sc *, double, double, double,
double);
static double sc_x2y(struct service_curve *, double);
u_int32_t getifspeed(char *);
u_long getifmtu(char *);
int eval_queue_opts(struct pf_altq *, struct node_queue_opt *,
u_int64_t);
u_int64_t eval_bwspec(struct node_queue_bw *, u_int64_t);
void print_hfsc_sc(const char *, u_int, u_int, u_int,
const struct node_hfsc_sc *);
void print_fairq_sc(const char *, u_int, u_int, u_int,
const struct node_fairq_sc *);
static __attribute__((constructor)) void
pfctl_altq_init(void)
{
/*
* As hdestroy() will never be called on these tables, it will be
* safe to use references into the stored data as keys.
*/
if (hcreate_r(0, &queue_map) == 0)
err(1, "Failed to create altq queue map");
if (hcreate_r(0, &if_map) == 0)
err(1, "Failed to create altq interface map");
if (hcreate_r(0, &qid_map) == 0)
err(1, "Failed to create altq queue id map");
}
void
pfaltq_store(struct pf_altq *a)
{
struct pfctl_altq *altq;
ENTRY item;
ENTRY *ret_item;
size_t key_size;
if ((altq = malloc(sizeof(*altq))) == NULL)
err(1, "queue malloc");
memcpy(&altq->pa, a, sizeof(struct pf_altq));
memset(&altq->meta, 0, sizeof(altq->meta));
if (a->qname[0] == 0) {
item.key = altq->pa.ifname;
item.data = altq;
if (hsearch_r(item, ENTER, &ret_item, &if_map) == 0)
err(1, "interface map insert");
STAILQ_INSERT_TAIL(&interfaces, altq, meta.link);
} else {
key_size = sizeof(a->ifname) + sizeof(a->qname);
if ((item.key = malloc(key_size)) == NULL)
err(1, "queue map key malloc");
snprintf(item.key, key_size, "%s:%s", a->ifname, a->qname);
item.data = altq;
if (hsearch_r(item, ENTER, &ret_item, &queue_map) == 0)
err(1, "queue map insert");
item.key = altq->pa.qname;
item.data = &altq->pa.qid;
if (hsearch_r(item, ENTER, &ret_item, &qid_map) == 0)
err(1, "qid map insert");
}
}
static struct pfctl_altq *
pfaltq_lookup(char *ifname)
{
ENTRY item;
ENTRY *ret_item;
item.key = ifname;
if (hsearch_r(item, FIND, &ret_item, &if_map) == 0)
return (NULL);
return (ret_item->data);
}
static struct pfctl_altq *
qname_to_pfaltq(const char *qname, const char *ifname)
{
ENTRY item;
ENTRY *ret_item;
char key[IFNAMSIZ + PF_QNAME_SIZE];
item.key = key;
snprintf(item.key, sizeof(key), "%s:%s", ifname, qname);
if (hsearch_r(item, FIND, &ret_item, &queue_map) == 0)
return (NULL);
return (ret_item->data);
}
static u_int32_t
qname_to_qid(char *qname)
{
ENTRY item;
ENTRY *ret_item;
uint32_t qid;
/*
* We guarantee that same named queues on different interfaces
* have the same qid.
*/
item.key = qname;
if (hsearch_r(item, FIND, &ret_item, &qid_map) == 0)
return (0);
qid = *(uint32_t *)ret_item->data;
return (qid);
}
void
print_altq(const struct pf_altq *a, unsigned int level,
struct node_queue_bw *bw, struct node_queue_opt *qopts)
{
if (a->qname[0] != 0) {
print_queue(a, level, bw, 1, qopts);
return;
}
#ifdef __FreeBSD__
if (a->local_flags & PFALTQ_FLAG_IF_REMOVED)
printf("INACTIVE ");
#endif
printf("altq on %s ", a->ifname);
switch (a->scheduler) {
case ALTQT_CBQ:
if (!print_cbq_opts(a))
printf("cbq ");
break;
case ALTQT_PRIQ:
if (!print_priq_opts(a))
printf("priq ");
break;
case ALTQT_HFSC:
if (!print_hfsc_opts(a, qopts))
printf("hfsc ");
break;
case ALTQT_FAIRQ:
if (!print_fairq_opts(a, qopts))
printf("fairq ");
break;
case ALTQT_CODEL:
if (!print_codel_opts(a, qopts))
printf("codel ");
break;
}
if (bw != NULL && bw->bw_percent > 0) {
if (bw->bw_percent < 100)
printf("bandwidth %u%% ", bw->bw_percent);
} else
printf("bandwidth %s ", rate2str((double)a->ifbandwidth));
if (a->qlimit != DEFAULT_QLIMIT)
printf("qlimit %u ", a->qlimit);
printf("tbrsize %u ", a->tbrsize);
}
void
print_queue(const struct pf_altq *a, unsigned int level,
struct node_queue_bw *bw, int print_interface,
struct node_queue_opt *qopts)
{
unsigned int i;
#ifdef __FreeBSD__
if (a->local_flags & PFALTQ_FLAG_IF_REMOVED)
printf("INACTIVE ");
#endif
printf("queue ");
for (i = 0; i < level; ++i)
printf(" ");
printf("%s ", a->qname);
if (print_interface)
printf("on %s ", a->ifname);
if (a->scheduler == ALTQT_CBQ || a->scheduler == ALTQT_HFSC ||
a->scheduler == ALTQT_FAIRQ) {
if (bw != NULL && bw->bw_percent > 0) {
if (bw->bw_percent < 100)
printf("bandwidth %u%% ", bw->bw_percent);
} else
printf("bandwidth %s ", rate2str((double)a->bandwidth));
}
if (a->priority != DEFAULT_PRIORITY)
printf("priority %u ", a->priority);
if (a->qlimit != DEFAULT_QLIMIT)
printf("qlimit %u ", a->qlimit);
switch (a->scheduler) {
case ALTQT_CBQ:
print_cbq_opts(a);
break;
case ALTQT_PRIQ:
print_priq_opts(a);
break;
case ALTQT_HFSC:
print_hfsc_opts(a, qopts);
break;
case ALTQT_FAIRQ:
print_fairq_opts(a, qopts);
break;
}
}
/*
* eval_pfaltq computes the discipline parameters.
*/
int
eval_pfaltq(struct pfctl *pf, struct pf_altq *pa, struct node_queue_bw *bw,
struct node_queue_opt *opts)
{
u_int64_t rate;
u_int size, errors = 0;
if (bw->bw_absolute > 0)
pa->ifbandwidth = bw->bw_absolute;
else
if ((rate = getifspeed(pa->ifname)) == 0) {
fprintf(stderr, "interface %s does not know its bandwidth, "
"please specify an absolute bandwidth\n",
pa->ifname);
errors++;
} else if ((pa->ifbandwidth = eval_bwspec(bw, rate)) == 0)
pa->ifbandwidth = rate;
/*
* Limit bandwidth to UINT_MAX for schedulers that aren't 64-bit ready.
*/
if ((pa->scheduler != ALTQT_HFSC) && (pa->ifbandwidth > UINT_MAX)) {
pa->ifbandwidth = UINT_MAX;
warnx("interface %s bandwidth limited to %" PRIu64 " bps "
"because selected scheduler is 32-bit limited\n", pa->ifname,
pa->ifbandwidth);
}
errors += eval_queue_opts(pa, opts, pa->ifbandwidth);
/* if tbrsize is not specified, use heuristics */
if (pa->tbrsize == 0) {
rate = pa->ifbandwidth;
if (rate <= 1 * 1000 * 1000)
size = 1;
else if (rate <= 10 * 1000 * 1000)
size = 4;
else if (rate <= 200 * 1000 * 1000)
size = 8;
else if (rate <= 2500 * 1000 * 1000ULL)
size = 24;
else
size = 128;
size = size * getifmtu(pa->ifname);
pa->tbrsize = size;
}
return (errors);
}
/*
* check_commit_altq does consistency check for each interface
*/
int
check_commit_altq(int dev, int opts)
{
struct pfctl_altq *if_ppa;
int error = 0;
/* call the discipline check for each interface. */
STAILQ_FOREACH(if_ppa, &interfaces, meta.link) {
switch (if_ppa->pa.scheduler) {
case ALTQT_CBQ:
error = check_commit_cbq(dev, opts, if_ppa);
break;
case ALTQT_PRIQ:
error = check_commit_priq(dev, opts, if_ppa);
break;
case ALTQT_HFSC:
error = check_commit_hfsc(dev, opts, if_ppa);
break;
case ALTQT_FAIRQ:
error = check_commit_fairq(dev, opts, if_ppa);
break;
default:
break;
}
}
return (error);
}
/*
* eval_pfqueue computes the queue parameters.
*/
int
eval_pfqueue(struct pfctl *pf, struct pf_altq *pa, struct node_queue_bw *bw,
struct node_queue_opt *opts)
{
/* should be merged with expand_queue */
struct pfctl_altq *if_ppa, *parent;
int error = 0;
/* find the corresponding interface and copy fields used by queues */
if ((if_ppa = pfaltq_lookup(pa->ifname)) == NULL) {
fprintf(stderr, "altq not defined on %s\n", pa->ifname);
return (1);
}
pa->scheduler = if_ppa->pa.scheduler;
pa->ifbandwidth = if_ppa->pa.ifbandwidth;
if (qname_to_pfaltq(pa->qname, pa->ifname) != NULL) {
fprintf(stderr, "queue %s already exists on interface %s\n",
pa->qname, pa->ifname);
return (1);
}
pa->qid = qname_to_qid(pa->qname);
parent = NULL;
if (pa->parent[0] != 0) {
parent = qname_to_pfaltq(pa->parent, pa->ifname);
if (parent == NULL) {
fprintf(stderr, "parent %s not found for %s\n",
pa->parent, pa->qname);
return (1);
}
pa->parent_qid = parent->pa.qid;
}
if (pa->qlimit == 0)
pa->qlimit = DEFAULT_QLIMIT;
if (pa->scheduler == ALTQT_CBQ || pa->scheduler == ALTQT_HFSC ||
pa->scheduler == ALTQT_FAIRQ) {
pa->bandwidth = eval_bwspec(bw,
parent == NULL ? pa->ifbandwidth : parent->pa.bandwidth);
if (pa->bandwidth > pa->ifbandwidth) {
fprintf(stderr, "bandwidth for %s higher than "
"interface\n", pa->qname);
return (1);
}
/*
* If not HFSC, then check that the sum of the child
* bandwidths is less than the parent's bandwidth. For
* HFSC, the equivalent concept is to check that the sum of
* the child linkshare service curves are under the parent's
* linkshare service curve, and that check is performed by
* eval_pfqueue_hfsc().
*/
if ((parent != NULL) && (pa->scheduler != ALTQT_HFSC)) {
if (pa->bandwidth > parent->pa.bandwidth) {
warnx("bandwidth for %s higher than parent",
pa->qname);
return (1);
}
parent->meta.bwsum += pa->bandwidth;
if (parent->meta.bwsum > parent->pa.bandwidth) {
warnx("the sum of the child bandwidth (%" PRIu64
") higher than parent \"%s\" (%" PRIu64 ")",
parent->meta.bwsum, parent->pa.qname,
parent->pa.bandwidth);
}
}
}
if (eval_queue_opts(pa, opts,
parent == NULL ? pa->ifbandwidth : parent->pa.bandwidth))
return (1);
if (parent != NULL)
parent->meta.children++;
switch (pa->scheduler) {
case ALTQT_CBQ:
error = eval_pfqueue_cbq(pf, pa, if_ppa);
break;
case ALTQT_PRIQ:
error = eval_pfqueue_priq(pf, pa, if_ppa);
break;
case ALTQT_HFSC:
error = eval_pfqueue_hfsc(pf, pa, if_ppa, parent);
break;
case ALTQT_FAIRQ:
error = eval_pfqueue_fairq(pf, pa, if_ppa, parent);
break;
default:
break;
}
return (error);
}
/*
* CBQ support functions
*/
#define RM_FILTER_GAIN 5 /* log2 of gain, e.g., 5 => 31/32 */
#define RM_NS_PER_SEC (1000000000)
static int
eval_pfqueue_cbq(struct pfctl *pf, struct pf_altq *pa, struct pfctl_altq *if_ppa)
{
struct cbq_opts *opts;
u_int ifmtu;
if (pa->priority >= CBQ_MAXPRI) {
warnx("priority out of range: max %d", CBQ_MAXPRI - 1);
return (-1);
}
ifmtu = getifmtu(pa->ifname);
opts = &pa->pq_u.cbq_opts;
if (opts->pktsize == 0) { /* use default */
opts->pktsize = ifmtu;
if (opts->pktsize > MCLBYTES) /* do what TCP does */
opts->pktsize &= ~MCLBYTES;
} else if (opts->pktsize > ifmtu)
opts->pktsize = ifmtu;
if (opts->maxpktsize == 0) /* use default */
opts->maxpktsize = ifmtu;
else if (opts->maxpktsize > ifmtu)
opts->pktsize = ifmtu;
if (opts->pktsize > opts->maxpktsize)
opts->pktsize = opts->maxpktsize;
if (pa->parent[0] == 0)
opts->flags |= (CBQCLF_ROOTCLASS | CBQCLF_WRR);
if (pa->pq_u.cbq_opts.flags & CBQCLF_ROOTCLASS)
if_ppa->meta.root_classes++;
if (pa->pq_u.cbq_opts.flags & CBQCLF_DEFCLASS)
if_ppa->meta.default_classes++;
cbq_compute_idletime(pf, pa);
return (0);
}
/*
* compute ns_per_byte, maxidle, minidle, and offtime
*/
static int
cbq_compute_idletime(struct pfctl *pf, struct pf_altq *pa)
{
struct cbq_opts *opts;
double maxidle_s, maxidle, minidle;
double offtime, nsPerByte, ifnsPerByte, ptime, cptime;
double z, g, f, gton, gtom;
u_int minburst, maxburst;
opts = &pa->pq_u.cbq_opts;
ifnsPerByte = (1.0 / (double)pa->ifbandwidth) * RM_NS_PER_SEC * 8;
minburst = opts->minburst;
maxburst = opts->maxburst;
if (pa->bandwidth == 0)
f = 0.0001; /* small enough? */
else
f = ((double) pa->bandwidth / (double) pa->ifbandwidth);
nsPerByte = ifnsPerByte / f;
ptime = (double)opts->pktsize * ifnsPerByte;
cptime = ptime * (1.0 - f) / f;
if (nsPerByte * (double)opts->maxpktsize > (double)INT_MAX) {
/*
* this causes integer overflow in kernel!
* (bandwidth < 6Kbps when max_pkt_size=1500)
*/
if (pa->bandwidth != 0 && (pf->opts & PF_OPT_QUIET) == 0) {
warnx("queue bandwidth must be larger than %s",
rate2str(ifnsPerByte * (double)opts->maxpktsize /
(double)INT_MAX * (double)pa->ifbandwidth));
fprintf(stderr, "cbq: queue %s is too slow!\n",
pa->qname);
}
nsPerByte = (double)(INT_MAX / opts->maxpktsize);
}
if (maxburst == 0) { /* use default */
if (cptime > 10.0 * 1000000)
maxburst = 4;
else
maxburst = 16;
}
if (minburst == 0) /* use default */
minburst = 2;
if (minburst > maxburst)
minburst = maxburst;
z = (double)(1 << RM_FILTER_GAIN);
g = (1.0 - 1.0 / z);
gton = pow(g, (double)maxburst);
gtom = pow(g, (double)(minburst-1));
maxidle = ((1.0 / f - 1.0) * ((1.0 - gton) / gton));
maxidle_s = (1.0 - g);
if (maxidle > maxidle_s)
maxidle = ptime * maxidle;
else
maxidle = ptime * maxidle_s;
offtime = cptime * (1.0 + 1.0/(1.0 - g) * (1.0 - gtom) / gtom);
minidle = -((double)opts->maxpktsize * (double)nsPerByte);
/* scale parameters */
maxidle = ((maxidle * 8.0) / nsPerByte) *
pow(2.0, (double)RM_FILTER_GAIN);
offtime = (offtime * 8.0) / nsPerByte *
pow(2.0, (double)RM_FILTER_GAIN);
minidle = ((minidle * 8.0) / nsPerByte) *
pow(2.0, (double)RM_FILTER_GAIN);
maxidle = maxidle / 1000.0;
offtime = offtime / 1000.0;
minidle = minidle / 1000.0;
opts->minburst = minburst;
opts->maxburst = maxburst;
opts->ns_per_byte = (u_int)nsPerByte;
opts->maxidle = (u_int)fabs(maxidle);
opts->minidle = (int)minidle;
opts->offtime = (u_int)fabs(offtime);
return (0);
}
static int
check_commit_cbq(int dev, int opts, struct pfctl_altq *if_ppa)
{
int error = 0;
/*
* check if cbq has one root queue and one default queue
* for this interface
*/
if (if_ppa->meta.root_classes != 1) {
warnx("should have one root queue on %s", if_ppa->pa.ifname);
error++;
}
if (if_ppa->meta.default_classes != 1) {
warnx("should have one default queue on %s", if_ppa->pa.ifname);
error++;
}
return (error);
}
static int
print_cbq_opts(const struct pf_altq *a)
{
const struct cbq_opts *opts;
opts = &a->pq_u.cbq_opts;
if (opts->flags) {
printf("cbq(");
if (opts->flags & CBQCLF_RED)
printf(" red");
if (opts->flags & CBQCLF_ECN)
printf(" ecn");
if (opts->flags & CBQCLF_RIO)
printf(" rio");
if (opts->flags & CBQCLF_CODEL)
printf(" codel");
if (opts->flags & CBQCLF_CLEARDSCP)
printf(" cleardscp");
if (opts->flags & CBQCLF_FLOWVALVE)
printf(" flowvalve");
if (opts->flags & CBQCLF_BORROW)
printf(" borrow");
if (opts->flags & CBQCLF_WRR)
printf(" wrr");
if (opts->flags & CBQCLF_EFFICIENT)
printf(" efficient");
if (opts->flags & CBQCLF_ROOTCLASS)
printf(" root");
if (opts->flags & CBQCLF_DEFCLASS)
printf(" default");
printf(" ) ");
return (1);
} else
return (0);
}
/*
* PRIQ support functions
*/
static int
eval_pfqueue_priq(struct pfctl *pf, struct pf_altq *pa, struct pfctl_altq *if_ppa)
{
if (pa->priority >= PRIQ_MAXPRI) {
warnx("priority out of range: max %d", PRIQ_MAXPRI - 1);
return (-1);
}
if (BIT_ISSET(QPRI_BITSET_SIZE, pa->priority, &if_ppa->meta.qpris)) {
warnx("%s does not have a unique priority on interface %s",
pa->qname, pa->ifname);
return (-1);
} else
BIT_SET(QPRI_BITSET_SIZE, pa->priority, &if_ppa->meta.qpris);
if (pa->pq_u.priq_opts.flags & PRCF_DEFAULTCLASS)
if_ppa->meta.default_classes++;
return (0);
}
static int
check_commit_priq(int dev, int opts, struct pfctl_altq *if_ppa)
{
/*
* check if priq has one default class for this interface
*/
if (if_ppa->meta.default_classes != 1) {
warnx("should have one default queue on %s", if_ppa->pa.ifname);
return (1);
}
return (0);
}
static int
print_priq_opts(const struct pf_altq *a)
{
const struct priq_opts *opts;
opts = &a->pq_u.priq_opts;
if (opts->flags) {
printf("priq(");
if (opts->flags & PRCF_RED)
printf(" red");
if (opts->flags & PRCF_ECN)
printf(" ecn");
if (opts->flags & PRCF_RIO)
printf(" rio");
if (opts->flags & PRCF_CODEL)
printf(" codel");
if (opts->flags & PRCF_CLEARDSCP)
printf(" cleardscp");
if (opts->flags & PRCF_DEFAULTCLASS)
printf(" default");
printf(" ) ");
return (1);
} else
return (0);
}
/*
* HFSC support functions
*/
static int
eval_pfqueue_hfsc(struct pfctl *pf, struct pf_altq *pa, struct pfctl_altq *if_ppa,
struct pfctl_altq *parent)
{
struct hfsc_opts_v1 *opts;
struct service_curve sc;
opts = &pa->pq_u.hfsc_opts;
if (parent == NULL) {
/* root queue */
opts->lssc_m1 = pa->ifbandwidth;
opts->lssc_m2 = pa->ifbandwidth;
opts->lssc_d = 0;
return (0);
}
/* First child initializes the parent's service curve accumulators. */
if (parent->meta.children == 1) {
LIST_INIT(&parent->meta.rtsc);
LIST_INIT(&parent->meta.lssc);
}
if (parent->pa.pq_u.hfsc_opts.flags & HFCF_DEFAULTCLASS) {
warnx("adding %s would make default queue %s not a leaf",
pa->qname, pa->parent);
return (-1);
}
if (pa->pq_u.hfsc_opts.flags & HFCF_DEFAULTCLASS)
if_ppa->meta.default_classes++;
/* if link_share is not specified, use bandwidth */
if (opts->lssc_m2 == 0)
opts->lssc_m2 = pa->bandwidth;
if ((opts->rtsc_m1 > 0 && opts->rtsc_m2 == 0) ||
(opts->lssc_m1 > 0 && opts->lssc_m2 == 0) ||
(opts->ulsc_m1 > 0 && opts->ulsc_m2 == 0)) {
warnx("m2 is zero for %s", pa->qname);
return (-1);
}
if ((opts->rtsc_m1 < opts->rtsc_m2 && opts->rtsc_m1 != 0) ||
(opts->lssc_m1 < opts->lssc_m2 && opts->lssc_m1 != 0) ||
(opts->ulsc_m1 < opts->ulsc_m2 && opts->ulsc_m1 != 0)) {
warnx("m1 must be zero for convex curve: %s", pa->qname);
return (-1);
}
/*
* admission control:
* for the real-time service curve, the sum of the service curves
* should not exceed 80% of the interface bandwidth. 20% is reserved
* not to over-commit the actual interface bandwidth.
* for the linkshare service curve, the sum of the child service
* curve should not exceed the parent service curve.
* for the upper-limit service curve, the assigned bandwidth should
* be smaller than the interface bandwidth, and the upper-limit should
* be larger than the real-time service curve when both are defined.
*/
/* check the real-time service curve. reserve 20% of interface bw */
if (opts->rtsc_m2 != 0) {
/* add this queue to the sum */
sc.m1 = opts->rtsc_m1;
sc.d = opts->rtsc_d;
sc.m2 = opts->rtsc_m2;
gsc_add_sc(&parent->meta.rtsc, &sc);
/* compare the sum with 80% of the interface */
sc.m1 = 0;
sc.d = 0;
sc.m2 = pa->ifbandwidth / 100 * 80;
if (!is_gsc_under_sc(&parent->meta.rtsc, &sc)) {
warnx("real-time sc exceeds 80%% of the interface "
"bandwidth (%s)", rate2str((double)sc.m2));
return (-1);
}
}
/* check the linkshare service curve. */
if (opts->lssc_m2 != 0) {
/* add this queue to the child sum */
sc.m1 = opts->lssc_m1;
sc.d = opts->lssc_d;
sc.m2 = opts->lssc_m2;
gsc_add_sc(&parent->meta.lssc, &sc);
/* compare the sum of the children with parent's sc */
sc.m1 = parent->pa.pq_u.hfsc_opts.lssc_m1;
sc.d = parent->pa.pq_u.hfsc_opts.lssc_d;
sc.m2 = parent->pa.pq_u.hfsc_opts.lssc_m2;
if (!is_gsc_under_sc(&parent->meta.lssc, &sc)) {
warnx("linkshare sc exceeds parent's sc");
return (-1);
}
}
/* check the upper-limit service curve. */
if (opts->ulsc_m2 != 0) {
if (opts->ulsc_m1 > pa->ifbandwidth ||
opts->ulsc_m2 > pa->ifbandwidth) {
warnx("upper-limit larger than interface bandwidth");
return (-1);
}
if (opts->rtsc_m2 != 0 && opts->rtsc_m2 > opts->ulsc_m2) {
warnx("upper-limit sc smaller than real-time sc");
return (-1);
}
}
return (0);
}
/*
* FAIRQ support functions
*/
static int
eval_pfqueue_fairq(struct pfctl *pf __unused, struct pf_altq *pa,
struct pfctl_altq *if_ppa, struct pfctl_altq *parent)
{
struct fairq_opts *opts;
struct service_curve sc;
opts = &pa->pq_u.fairq_opts;
if (parent == NULL) {
/* root queue */
opts->lssc_m1 = pa->ifbandwidth;
opts->lssc_m2 = pa->ifbandwidth;
opts->lssc_d = 0;
return (0);
}
/* First child initializes the parent's service curve accumulator. */
if (parent->meta.children == 1)
LIST_INIT(&parent->meta.lssc);
if (parent->pa.pq_u.fairq_opts.flags & FARF_DEFAULTCLASS) {
warnx("adding %s would make default queue %s not a leaf",
pa->qname, pa->parent);
return (-1);
}
if (pa->pq_u.fairq_opts.flags & FARF_DEFAULTCLASS)
if_ppa->meta.default_classes++;
/* if link_share is not specified, use bandwidth */
if (opts->lssc_m2 == 0)
opts->lssc_m2 = pa->bandwidth;
/*
* admission control:
* for the real-time service curve, the sum of the service curves
* should not exceed 80% of the interface bandwidth. 20% is reserved
* not to over-commit the actual interface bandwidth.
* for the link-sharing service curve, the sum of the child service
* curve should not exceed the parent service curve.
* for the upper-limit service curve, the assigned bandwidth should
* be smaller than the interface bandwidth, and the upper-limit should
* be larger than the real-time service curve when both are defined.
*/
/* check the linkshare service curve. */
if (opts->lssc_m2 != 0) {
/* add this queue to the child sum */
sc.m1 = opts->lssc_m1;
sc.d = opts->lssc_d;
sc.m2 = opts->lssc_m2;
gsc_add_sc(&parent->meta.lssc, &sc);
/* compare the sum of the children with parent's sc */
sc.m1 = parent->pa.pq_u.fairq_opts.lssc_m1;
sc.d = parent->pa.pq_u.fairq_opts.lssc_d;
sc.m2 = parent->pa.pq_u.fairq_opts.lssc_m2;
if (!is_gsc_under_sc(&parent->meta.lssc, &sc)) {
warnx("link-sharing sc exceeds parent's sc");
return (-1);
}
}
return (0);
}
static int
check_commit_hfsc(int dev, int opts, struct pfctl_altq *if_ppa)
{
/* check if hfsc has one default queue for this interface */
if (if_ppa->meta.default_classes != 1) {
warnx("should have one default queue on %s", if_ppa->pa.ifname);
return (1);
}
return (0);
}
static int
check_commit_fairq(int dev __unused, int opts __unused, struct pfctl_altq *if_ppa)
{
/* check if fairq has one default queue for this interface */
if (if_ppa->meta.default_classes != 1) {
warnx("should have one default queue on %s", if_ppa->pa.ifname);
return (1);
}
return (0);
}
static int
print_hfsc_opts(const struct pf_altq *a, const struct node_queue_opt *qopts)
{
const struct hfsc_opts_v1 *opts;
const struct node_hfsc_sc *rtsc, *lssc, *ulsc;
opts = &a->pq_u.hfsc_opts;
if (qopts == NULL)
rtsc = lssc = ulsc = NULL;
else {
rtsc = &qopts->data.hfsc_opts.realtime;
lssc = &qopts->data.hfsc_opts.linkshare;
ulsc = &qopts->data.hfsc_opts.upperlimit;
}
if (opts->flags || opts->rtsc_m2 != 0 || opts->ulsc_m2 != 0 ||
(opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
opts->lssc_d != 0))) {
printf("hfsc(");
if (opts->flags & HFCF_RED)
printf(" red");
if (opts->flags & HFCF_ECN)
printf(" ecn");
if (opts->flags & HFCF_RIO)
printf(" rio");
if (opts->flags & HFCF_CODEL)
printf(" codel");
if (opts->flags & HFCF_CLEARDSCP)
printf(" cleardscp");
if (opts->flags & HFCF_DEFAULTCLASS)
printf(" default");
if (opts->rtsc_m2 != 0)
print_hfsc_sc("realtime", opts->rtsc_m1, opts->rtsc_d,
opts->rtsc_m2, rtsc);
if (opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
opts->lssc_d != 0))
print_hfsc_sc("linkshare", opts->lssc_m1, opts->lssc_d,
opts->lssc_m2, lssc);
if (opts->ulsc_m2 != 0)
print_hfsc_sc("upperlimit", opts->ulsc_m1, opts->ulsc_d,
opts->ulsc_m2, ulsc);
printf(" ) ");
return (1);
} else
return (0);
}
static int
print_codel_opts(const struct pf_altq *a, const struct node_queue_opt *qopts)
{
const struct codel_opts *opts;
opts = &a->pq_u.codel_opts;
if (opts->target || opts->interval || opts->ecn) {
printf("codel(");
if (opts->target)
printf(" target %d", opts->target);
if (opts->interval)
printf(" interval %d", opts->interval);
if (opts->ecn)
printf("ecn");
printf(" ) ");
return (1);
}
return (0);
}
static int
print_fairq_opts(const struct pf_altq *a, const struct node_queue_opt *qopts)
{
const struct fairq_opts *opts;
const struct node_fairq_sc *loc_lssc;
opts = &a->pq_u.fairq_opts;
if (qopts == NULL)
loc_lssc = NULL;
else
loc_lssc = &qopts->data.fairq_opts.linkshare;
if (opts->flags ||
(opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
opts->lssc_d != 0))) {
printf("fairq(");
if (opts->flags & FARF_RED)
printf(" red");
if (opts->flags & FARF_ECN)
printf(" ecn");
if (opts->flags & FARF_RIO)
printf(" rio");
if (opts->flags & FARF_CODEL)
printf(" codel");
if (opts->flags & FARF_CLEARDSCP)
printf(" cleardscp");
if (opts->flags & FARF_DEFAULTCLASS)
printf(" default");
if (opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
opts->lssc_d != 0))
print_fairq_sc("linkshare", opts->lssc_m1, opts->lssc_d,
opts->lssc_m2, loc_lssc);
printf(" ) ");
return (1);
} else
return (0);
}
/*
* admission control using generalized service curve
*/
/* add a new service curve to a generalized service curve */
static void
gsc_add_sc(struct gen_sc *gsc, struct service_curve *sc)
{
if (is_sc_null(sc))
return;
if (sc->d != 0)
gsc_add_seg(gsc, 0.0, 0.0, (double)sc->d, (double)sc->m1);
gsc_add_seg(gsc, (double)sc->d, 0.0, INFINITY, (double)sc->m2);
}
/*
* check whether all points of a generalized service curve have
* their y-coordinates no larger than a given two-piece linear
* service curve.
*/
static int
is_gsc_under_sc(struct gen_sc *gsc, struct service_curve *sc)
{
struct segment *s, *last, *end;
double y;
if (is_sc_null(sc)) {
if (LIST_EMPTY(gsc))
return (1);
LIST_FOREACH(s, gsc, _next) {
if (s->m != 0)
return (0);
}
return (1);
}
/*
* gsc has a dummy entry at the end with x = INFINITY.
* loop through up to this dummy entry.
*/
end = gsc_getentry(gsc, INFINITY);
if (end == NULL)
return (1);
last = NULL;
for (s = LIST_FIRST(gsc); s != end; s = LIST_NEXT(s, _next)) {
if (s->y > sc_x2y(sc, s->x))
return (0);
last = s;
}
/* last now holds the real last segment */
if (last == NULL)
return (1);
if (last->m > sc->m2)
return (0);
if (last->x < sc->d && last->m > sc->m1) {
y = last->y + (sc->d - last->x) * last->m;
if (y > sc_x2y(sc, sc->d))
return (0);
}
return (1);
}
/*
* return a segment entry starting at x.
* if gsc has no entry starting at x, a new entry is created at x.
*/
static struct segment *
gsc_getentry(struct gen_sc *gsc, double x)
{
struct segment *new, *prev, *s;
prev = NULL;
LIST_FOREACH(s, gsc, _next) {
if (s->x == x)
return (s); /* matching entry found */
else if (s->x < x)
prev = s;
else
break;
}
/* we have to create a new entry */
if ((new = calloc(1, sizeof(struct segment))) == NULL)
return (NULL);
new->x = x;
if (x == INFINITY || s == NULL)
new->d = 0;
else if (s->x == INFINITY)
new->d = INFINITY;
else
new->d = s->x - x;
if (prev == NULL) {
/* insert the new entry at the head of the list */
new->y = 0;
new->m = 0;
LIST_INSERT_HEAD(gsc, new, _next);
} else {
/*
* the start point intersects with the segment pointed by
* prev. divide prev into 2 segments
*/
if (x == INFINITY) {
prev->d = INFINITY;
if (prev->m == 0)
new->y = prev->y;
else
new->y = INFINITY;
} else {
prev->d = x - prev->x;
new->y = prev->d * prev->m + prev->y;
}
new->m = prev->m;
LIST_INSERT_AFTER(prev, new, _next);
}
return (new);
}
/* add a segment to a generalized service curve */
static int
gsc_add_seg(struct gen_sc *gsc, double x, double y, double d, double m)
{
struct segment *start, *end, *s;
double x2;
if (d == INFINITY)
x2 = INFINITY;
else
x2 = x + d;
start = gsc_getentry(gsc, x);
end = gsc_getentry(gsc, x2);
if (start == NULL || end == NULL)
return (-1);
for (s = start; s != end; s = LIST_NEXT(s, _next)) {
s->m += m;
s->y += y + (s->x - x) * m;
}
end = gsc_getentry(gsc, INFINITY);
for (; s != end; s = LIST_NEXT(s, _next)) {
s->y += m * d;
}
return (0);
}
/* get y-projection of a service curve */
static double
sc_x2y(struct service_curve *sc, double x)
{
double y;
if (x <= (double)sc->d)
/* y belongs to the 1st segment */
y = x * (double)sc->m1;
else
/* y belongs to the 2nd segment */
y = (double)sc->d * (double)sc->m1
+ (x - (double)sc->d) * (double)sc->m2;
return (y);
}
/*
* misc utilities
*/
#define R2S_BUFS 8
#define RATESTR_MAX 16
char *
rate2str(double rate)
{
char *buf;
static char r2sbuf[R2S_BUFS][RATESTR_MAX]; /* ring bufer */
static int idx = 0;
int i;
static const char unit[] = " KMG";
buf = r2sbuf[idx++];
if (idx == R2S_BUFS)
idx = 0;
for (i = 0; rate >= 1000 && i <= 3; i++)
rate /= 1000;
if ((int)(rate * 100) % 100)
snprintf(buf, RATESTR_MAX, "%.2f%cb", rate, unit[i]);
else
snprintf(buf, RATESTR_MAX, "%d%cb", (int)rate, unit[i]);
return (buf);
}
u_int32_t
getifspeed(char *ifname)
{
int s;
struct ifreq ifr;
struct if_data ifrdat;
s = get_query_socket();
bzero(&ifr, sizeof(ifr));
if (strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)) >=
sizeof(ifr.ifr_name))
errx(1, "getifspeed: strlcpy");
ifr.ifr_data = (caddr_t)&ifrdat;
if (ioctl(s, SIOCGIFDATA, (caddr_t)&ifr) == -1)
err(1, "SIOCGIFDATA");
return ((u_int32_t)ifrdat.ifi_baudrate);
}
u_long
getifmtu(char *ifname)
{
int s;
struct ifreq ifr;
s = get_query_socket();
bzero(&ifr, sizeof(ifr));
if (strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)) >=
sizeof(ifr.ifr_name))
errx(1, "getifmtu: strlcpy");
if (ioctl(s, SIOCGIFMTU, (caddr_t)&ifr) == -1)
#ifdef __FreeBSD__
ifr.ifr_mtu = 1500;
#else
err(1, "SIOCGIFMTU");
#endif
if (ifr.ifr_mtu > 0)
return (ifr.ifr_mtu);
else {
warnx("could not get mtu for %s, assuming 1500", ifname);
return (1500);
}
}
int
eval_queue_opts(struct pf_altq *pa, struct node_queue_opt *opts,
u_int64_t ref_bw)
{
int errors = 0;
switch (pa->scheduler) {
case ALTQT_CBQ:
pa->pq_u.cbq_opts = opts->data.cbq_opts;
break;
case ALTQT_PRIQ:
pa->pq_u.priq_opts = opts->data.priq_opts;
break;
case ALTQT_HFSC:
pa->pq_u.hfsc_opts.flags = opts->data.hfsc_opts.flags;
if (opts->data.hfsc_opts.linkshare.used) {
pa->pq_u.hfsc_opts.lssc_m1 =
eval_bwspec(&opts->data.hfsc_opts.linkshare.m1,
ref_bw);
pa->pq_u.hfsc_opts.lssc_m2 =
eval_bwspec(&opts->data.hfsc_opts.linkshare.m2,
ref_bw);
pa->pq_u.hfsc_opts.lssc_d =
opts->data.hfsc_opts.linkshare.d;
}
if (opts->data.hfsc_opts.realtime.used) {
pa->pq_u.hfsc_opts.rtsc_m1 =
eval_bwspec(&opts->data.hfsc_opts.realtime.m1,
ref_bw);
pa->pq_u.hfsc_opts.rtsc_m2 =
eval_bwspec(&opts->data.hfsc_opts.realtime.m2,
ref_bw);
pa->pq_u.hfsc_opts.rtsc_d =
opts->data.hfsc_opts.realtime.d;
}
if (opts->data.hfsc_opts.upperlimit.used) {
pa->pq_u.hfsc_opts.ulsc_m1 =
eval_bwspec(&opts->data.hfsc_opts.upperlimit.m1,
ref_bw);
pa->pq_u.hfsc_opts.ulsc_m2 =
eval_bwspec(&opts->data.hfsc_opts.upperlimit.m2,
ref_bw);
pa->pq_u.hfsc_opts.ulsc_d =
opts->data.hfsc_opts.upperlimit.d;
}
break;
case ALTQT_FAIRQ:
pa->pq_u.fairq_opts.flags = opts->data.fairq_opts.flags;
pa->pq_u.fairq_opts.nbuckets = opts->data.fairq_opts.nbuckets;
pa->pq_u.fairq_opts.hogs_m1 =
eval_bwspec(&opts->data.fairq_opts.hogs_bw, ref_bw);
if (opts->data.fairq_opts.linkshare.used) {
pa->pq_u.fairq_opts.lssc_m1 =
eval_bwspec(&opts->data.fairq_opts.linkshare.m1,
ref_bw);
pa->pq_u.fairq_opts.lssc_m2 =
eval_bwspec(&opts->data.fairq_opts.linkshare.m2,
ref_bw);
pa->pq_u.fairq_opts.lssc_d =
opts->data.fairq_opts.linkshare.d;
}
break;
case ALTQT_CODEL:
pa->pq_u.codel_opts.target = opts->data.codel_opts.target;
pa->pq_u.codel_opts.interval = opts->data.codel_opts.interval;
pa->pq_u.codel_opts.ecn = opts->data.codel_opts.ecn;
break;
default:
warnx("eval_queue_opts: unknown scheduler type %u",
opts->qtype);
errors++;
break;
}
return (errors);
}
/*
* If absolute bandwidth if set, return the lesser of that value and the
* reference bandwidth. Limiting to the reference bandwidth allows simple
* limiting of configured bandwidth parameters for schedulers that are
* 32-bit limited, as the root/interface bandwidth (top-level reference
* bandwidth) will be properly limited in that case.
*
* Otherwise, if the absolute bandwidth is not set, return given percentage
* of reference bandwidth.
*/
u_int64_t
eval_bwspec(struct node_queue_bw *bw, u_int64_t ref_bw)
{
if (bw->bw_absolute > 0)
return (MIN(bw->bw_absolute, ref_bw));
if (bw->bw_percent > 0)
return (ref_bw / 100 * bw->bw_percent);
return (0);
}
void
print_hfsc_sc(const char *scname, u_int m1, u_int d, u_int m2,
const struct node_hfsc_sc *sc)
{
printf(" %s", scname);
if (d != 0) {
printf("(");
if (sc != NULL && sc->m1.bw_percent > 0)
printf("%u%%", sc->m1.bw_percent);
else
printf("%s", rate2str((double)m1));
printf(" %u", d);
}
if (sc != NULL && sc->m2.bw_percent > 0)
printf(" %u%%", sc->m2.bw_percent);
else
printf(" %s", rate2str((double)m2));
if (d != 0)
printf(")");
}
void
print_fairq_sc(const char *scname, u_int m1, u_int d, u_int m2,
const struct node_fairq_sc *sc)
{
printf(" %s", scname);
if (d != 0) {
printf("(");
if (sc != NULL && sc->m1.bw_percent > 0)
printf("%u%%", sc->m1.bw_percent);
else
printf("%s", rate2str((double)m1));
printf(" %u", d);
}
if (sc != NULL && sc->m2.bw_percent > 0)
printf(" %u%%", sc->m2.bw_percent);
else
printf(" %s", rate2str((double)m2));
if (d != 0)
printf(")");
}