Peter Wemm 937a200089 Introduce svnlite so that we can check out our source code again.
This is actually a fully functional build except:
* All internal shared libraries are static linked to make sure there
  is no interference with ports (and to reduce build time).
* It does not have the python/perl/etc plugin or API support.
* By default, it installs as "svnlite" rather than "svn".
* If WITH_SVN added in make.conf, you get "svn".
* If WITHOUT_SVNLITE is in make.conf, this is completely disabled.

To be absolutely clear, this is not intended for any use other than
checking out freebsd source and committing, like we once did with cvs.

It should be usable for small scale local repositories that don't
need the python/perl plugin architecture.
2013-06-18 02:53:45 +00:00

983 lines
27 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr.h"
#include "apr_strings.h"
#include "apr_arch_proc_mutex.h"
#include "apr_arch_file_io.h" /* for apr_mkstemp() */
#include "apr_hash.h"
APR_DECLARE(apr_status_t) apr_proc_mutex_destroy(apr_proc_mutex_t *mutex)
{
return apr_pool_cleanup_run(mutex->pool, mutex, apr_proc_mutex_cleanup);
}
#if APR_HAS_POSIXSEM_SERIALIZE || APR_HAS_FCNTL_SERIALIZE || \
APR_HAS_PROC_PTHREAD_SERIALIZE || APR_HAS_SYSVSEM_SERIALIZE
static apr_status_t proc_mutex_no_child_init(apr_proc_mutex_t **mutex,
apr_pool_t *cont,
const char *fname)
{
return APR_SUCCESS;
}
#endif
#if APR_HAS_POSIXSEM_SERIALIZE
#ifndef SEM_FAILED
#define SEM_FAILED (-1)
#endif
static apr_status_t proc_mutex_posix_cleanup(void *mutex_)
{
apr_proc_mutex_t *mutex = mutex_;
if (sem_close(mutex->psem_interproc) < 0) {
return errno;
}
return APR_SUCCESS;
}
static unsigned int rshash (char *p) {
/* hash function from Robert Sedgwicks 'Algorithms in C' book */
unsigned int b = 378551;
unsigned int a = 63689;
unsigned int retval = 0;
for( ; *p; p++)
{
retval = retval * a + (*p);
a *= b;
}
return retval;
}
static apr_status_t proc_mutex_posix_create(apr_proc_mutex_t *new_mutex,
const char *fname)
{
#define APR_POSIXSEM_NAME_MIN 13
sem_t *psem;
char semname[32];
new_mutex->interproc = apr_palloc(new_mutex->pool,
sizeof(*new_mutex->interproc));
/*
* This bogusness is to follow what appears to be the
* lowest common denominator in Posix semaphore naming:
* - start with '/'
* - be at most 14 chars
* - be unique and not match anything on the filesystem
*
* Because of this, we use fname to generate a (unique) hash
* and use that as the name of the semaphore. If no filename was
* given, we create one based on the time. We tuck the name
* away, since it might be useful for debugging. We use 2 hashing
* functions to try to avoid collisions.
*
* To make this as robust as possible, we initially try something
* larger (and hopefully more unique) and gracefully fail down to the
* LCD above.
*
* NOTE: Darwin (Mac OS X) seems to be the most restrictive
* implementation. Versions previous to Darwin 6.2 had the 14
* char limit, but later rev's allow up to 31 characters.
*
*/
if (fname) {
apr_ssize_t flen = strlen(fname);
char *p = apr_pstrndup(new_mutex->pool, fname, strlen(fname));
unsigned int h1, h2;
h1 = apr_hashfunc_default((const char *)p, &flen);
h2 = rshash(p);
apr_snprintf(semname, sizeof(semname), "/ApR.%xH%x", h1, h2);
} else {
apr_time_t now;
unsigned long sec;
unsigned long usec;
now = apr_time_now();
sec = apr_time_sec(now);
usec = apr_time_usec(now);
apr_snprintf(semname, sizeof(semname), "/ApR.%lxZ%lx", sec, usec);
}
psem = sem_open(semname, O_CREAT | O_EXCL, 0644, 1);
if (psem == (sem_t *)SEM_FAILED) {
if (errno == ENAMETOOLONG) {
/* Oh well, good try */
semname[APR_POSIXSEM_NAME_MIN] = '\0';
} else {
return errno;
}
psem = sem_open(semname, O_CREAT | O_EXCL, 0644, 1);
}
if (psem == (sem_t *)SEM_FAILED) {
return errno;
}
/* Ahhh. The joys of Posix sems. Predelete it... */
sem_unlink(semname);
new_mutex->psem_interproc = psem;
new_mutex->fname = apr_pstrdup(new_mutex->pool, semname);
apr_pool_cleanup_register(new_mutex->pool, (void *)new_mutex,
apr_proc_mutex_cleanup,
apr_pool_cleanup_null);
return APR_SUCCESS;
}
static apr_status_t proc_mutex_posix_acquire(apr_proc_mutex_t *mutex)
{
if (sem_wait(mutex->psem_interproc) < 0) {
return errno;
}
mutex->curr_locked = 1;
return APR_SUCCESS;
}
static apr_status_t proc_mutex_posix_tryacquire(apr_proc_mutex_t *mutex)
{
if (sem_trywait(mutex->psem_interproc) < 0) {
if (errno == EAGAIN) {
return APR_EBUSY;
}
return errno;
}
mutex->curr_locked = 1;
return APR_SUCCESS;
}
static apr_status_t proc_mutex_posix_release(apr_proc_mutex_t *mutex)
{
mutex->curr_locked = 0;
if (sem_post(mutex->psem_interproc) < 0) {
/* any failure is probably fatal, so no big deal to leave
* ->curr_locked at 0. */
return errno;
}
return APR_SUCCESS;
}
static const apr_proc_mutex_unix_lock_methods_t mutex_posixsem_methods =
{
#if APR_PROCESS_LOCK_IS_GLOBAL || !APR_HAS_THREADS || defined(POSIXSEM_IS_GLOBAL)
APR_PROCESS_LOCK_MECH_IS_GLOBAL,
#else
0,
#endif
proc_mutex_posix_create,
proc_mutex_posix_acquire,
proc_mutex_posix_tryacquire,
proc_mutex_posix_release,
proc_mutex_posix_cleanup,
proc_mutex_no_child_init,
"posixsem"
};
#endif /* Posix sem implementation */
#if APR_HAS_SYSVSEM_SERIALIZE
static struct sembuf proc_mutex_op_on;
static struct sembuf proc_mutex_op_try;
static struct sembuf proc_mutex_op_off;
static void proc_mutex_sysv_setup(void)
{
proc_mutex_op_on.sem_num = 0;
proc_mutex_op_on.sem_op = -1;
proc_mutex_op_on.sem_flg = SEM_UNDO;
proc_mutex_op_try.sem_num = 0;
proc_mutex_op_try.sem_op = -1;
proc_mutex_op_try.sem_flg = SEM_UNDO | IPC_NOWAIT;
proc_mutex_op_off.sem_num = 0;
proc_mutex_op_off.sem_op = 1;
proc_mutex_op_off.sem_flg = SEM_UNDO;
}
static apr_status_t proc_mutex_sysv_cleanup(void *mutex_)
{
apr_proc_mutex_t *mutex=mutex_;
union semun ick;
if (mutex->interproc->filedes != -1) {
ick.val = 0;
semctl(mutex->interproc->filedes, 0, IPC_RMID, ick);
}
return APR_SUCCESS;
}
static apr_status_t proc_mutex_sysv_create(apr_proc_mutex_t *new_mutex,
const char *fname)
{
union semun ick;
apr_status_t rv;
new_mutex->interproc = apr_palloc(new_mutex->pool, sizeof(*new_mutex->interproc));
new_mutex->interproc->filedes = semget(IPC_PRIVATE, 1, IPC_CREAT | 0600);
if (new_mutex->interproc->filedes < 0) {
rv = errno;
proc_mutex_sysv_cleanup(new_mutex);
return rv;
}
ick.val = 1;
if (semctl(new_mutex->interproc->filedes, 0, SETVAL, ick) < 0) {
rv = errno;
proc_mutex_sysv_cleanup(new_mutex);
return rv;
}
new_mutex->curr_locked = 0;
apr_pool_cleanup_register(new_mutex->pool,
(void *)new_mutex, apr_proc_mutex_cleanup,
apr_pool_cleanup_null);
return APR_SUCCESS;
}
static apr_status_t proc_mutex_sysv_acquire(apr_proc_mutex_t *mutex)
{
int rc;
do {
rc = semop(mutex->interproc->filedes, &proc_mutex_op_on, 1);
} while (rc < 0 && errno == EINTR);
if (rc < 0) {
return errno;
}
mutex->curr_locked = 1;
return APR_SUCCESS;
}
static apr_status_t proc_mutex_sysv_tryacquire(apr_proc_mutex_t *mutex)
{
int rc;
do {
rc = semop(mutex->interproc->filedes, &proc_mutex_op_try, 1);
} while (rc < 0 && errno == EINTR);
if (rc < 0) {
if (errno == EAGAIN) {
return APR_EBUSY;
}
return errno;
}
mutex->curr_locked = 1;
return APR_SUCCESS;
}
static apr_status_t proc_mutex_sysv_release(apr_proc_mutex_t *mutex)
{
int rc;
mutex->curr_locked = 0;
do {
rc = semop(mutex->interproc->filedes, &proc_mutex_op_off, 1);
} while (rc < 0 && errno == EINTR);
if (rc < 0) {
return errno;
}
return APR_SUCCESS;
}
static const apr_proc_mutex_unix_lock_methods_t mutex_sysv_methods =
{
#if APR_PROCESS_LOCK_IS_GLOBAL || !APR_HAS_THREADS || defined(SYSVSEM_IS_GLOBAL)
APR_PROCESS_LOCK_MECH_IS_GLOBAL,
#else
0,
#endif
proc_mutex_sysv_create,
proc_mutex_sysv_acquire,
proc_mutex_sysv_tryacquire,
proc_mutex_sysv_release,
proc_mutex_sysv_cleanup,
proc_mutex_no_child_init,
"sysvsem"
};
#endif /* SysV sem implementation */
#if APR_HAS_PROC_PTHREAD_SERIALIZE
static apr_status_t proc_mutex_proc_pthread_cleanup(void *mutex_)
{
apr_proc_mutex_t *mutex=mutex_;
apr_status_t rv;
if (mutex->curr_locked == 1) {
if ((rv = pthread_mutex_unlock(mutex->pthread_interproc))) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
return rv;
}
}
/* curr_locked is set to -1 until the mutex has been created */
if (mutex->curr_locked != -1) {
if ((rv = pthread_mutex_destroy(mutex->pthread_interproc))) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
return rv;
}
}
if (munmap((caddr_t)mutex->pthread_interproc, sizeof(pthread_mutex_t))) {
return errno;
}
return APR_SUCCESS;
}
static apr_status_t proc_mutex_proc_pthread_create(apr_proc_mutex_t *new_mutex,
const char *fname)
{
apr_status_t rv;
int fd;
pthread_mutexattr_t mattr;
fd = open("/dev/zero", O_RDWR);
if (fd < 0) {
return errno;
}
new_mutex->pthread_interproc = (pthread_mutex_t *)mmap(
(caddr_t) 0,
sizeof(pthread_mutex_t),
PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);
if (new_mutex->pthread_interproc == (pthread_mutex_t *) (caddr_t) -1) {
close(fd);
return errno;
}
close(fd);
new_mutex->curr_locked = -1; /* until the mutex has been created */
if ((rv = pthread_mutexattr_init(&mattr))) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
proc_mutex_proc_pthread_cleanup(new_mutex);
return rv;
}
if ((rv = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED))) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
proc_mutex_proc_pthread_cleanup(new_mutex);
pthread_mutexattr_destroy(&mattr);
return rv;
}
#ifdef HAVE_PTHREAD_MUTEX_ROBUST
if ((rv = pthread_mutexattr_setrobust_np(&mattr,
PTHREAD_MUTEX_ROBUST_NP))) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
proc_mutex_proc_pthread_cleanup(new_mutex);
pthread_mutexattr_destroy(&mattr);
return rv;
}
if ((rv = pthread_mutexattr_setprotocol(&mattr, PTHREAD_PRIO_INHERIT))) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
proc_mutex_proc_pthread_cleanup(new_mutex);
pthread_mutexattr_destroy(&mattr);
return rv;
}
#endif /* HAVE_PTHREAD_MUTEX_ROBUST */
if ((rv = pthread_mutex_init(new_mutex->pthread_interproc, &mattr))) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
proc_mutex_proc_pthread_cleanup(new_mutex);
pthread_mutexattr_destroy(&mattr);
return rv;
}
new_mutex->curr_locked = 0; /* mutex created now */
if ((rv = pthread_mutexattr_destroy(&mattr))) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
proc_mutex_proc_pthread_cleanup(new_mutex);
return rv;
}
apr_pool_cleanup_register(new_mutex->pool,
(void *)new_mutex,
apr_proc_mutex_cleanup,
apr_pool_cleanup_null);
return APR_SUCCESS;
}
static apr_status_t proc_mutex_proc_pthread_acquire(apr_proc_mutex_t *mutex)
{
apr_status_t rv;
if ((rv = pthread_mutex_lock(mutex->pthread_interproc))) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
#ifdef HAVE_PTHREAD_MUTEX_ROBUST
/* Okay, our owner died. Let's try to make it consistent again. */
if (rv == EOWNERDEAD) {
pthread_mutex_consistent_np(mutex->pthread_interproc);
}
else
return rv;
#else
return rv;
#endif
}
mutex->curr_locked = 1;
return APR_SUCCESS;
}
static apr_status_t proc_mutex_proc_pthread_tryacquire(apr_proc_mutex_t *mutex)
{
apr_status_t rv;
if ((rv = pthread_mutex_trylock(mutex->pthread_interproc))) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
if (rv == EBUSY) {
return APR_EBUSY;
}
#ifdef HAVE_PTHREAD_MUTEX_ROBUST
/* Okay, our owner died. Let's try to make it consistent again. */
if (rv == EOWNERDEAD) {
pthread_mutex_consistent_np(mutex->pthread_interproc);
rv = APR_SUCCESS;
}
else
return rv;
#else
return rv;
#endif
}
mutex->curr_locked = 1;
return rv;
}
static apr_status_t proc_mutex_proc_pthread_release(apr_proc_mutex_t *mutex)
{
apr_status_t rv;
mutex->curr_locked = 0;
if ((rv = pthread_mutex_unlock(mutex->pthread_interproc))) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
return rv;
}
return APR_SUCCESS;
}
static const apr_proc_mutex_unix_lock_methods_t mutex_proc_pthread_methods =
{
APR_PROCESS_LOCK_MECH_IS_GLOBAL,
proc_mutex_proc_pthread_create,
proc_mutex_proc_pthread_acquire,
proc_mutex_proc_pthread_tryacquire,
proc_mutex_proc_pthread_release,
proc_mutex_proc_pthread_cleanup,
proc_mutex_no_child_init,
"pthread"
};
#endif
#if APR_HAS_FCNTL_SERIALIZE
static struct flock proc_mutex_lock_it;
static struct flock proc_mutex_unlock_it;
static apr_status_t proc_mutex_fcntl_release(apr_proc_mutex_t *);
static void proc_mutex_fcntl_setup(void)
{
proc_mutex_lock_it.l_whence = SEEK_SET; /* from current point */
proc_mutex_lock_it.l_start = 0; /* -"- */
proc_mutex_lock_it.l_len = 0; /* until end of file */
proc_mutex_lock_it.l_type = F_WRLCK; /* set exclusive/write lock */
proc_mutex_lock_it.l_pid = 0; /* pid not actually interesting */
proc_mutex_unlock_it.l_whence = SEEK_SET; /* from current point */
proc_mutex_unlock_it.l_start = 0; /* -"- */
proc_mutex_unlock_it.l_len = 0; /* until end of file */
proc_mutex_unlock_it.l_type = F_UNLCK; /* set exclusive/write lock */
proc_mutex_unlock_it.l_pid = 0; /* pid not actually interesting */
}
static apr_status_t proc_mutex_fcntl_cleanup(void *mutex_)
{
apr_status_t status;
apr_proc_mutex_t *mutex=mutex_;
if (mutex->curr_locked == 1) {
status = proc_mutex_fcntl_release(mutex);
if (status != APR_SUCCESS)
return status;
}
return apr_file_close(mutex->interproc);
}
static apr_status_t proc_mutex_fcntl_create(apr_proc_mutex_t *new_mutex,
const char *fname)
{
int rv;
if (fname) {
new_mutex->fname = apr_pstrdup(new_mutex->pool, fname);
rv = apr_file_open(&new_mutex->interproc, new_mutex->fname,
APR_FOPEN_CREATE | APR_FOPEN_WRITE | APR_FOPEN_EXCL,
APR_UREAD | APR_UWRITE | APR_GREAD | APR_WREAD,
new_mutex->pool);
}
else {
new_mutex->fname = apr_pstrdup(new_mutex->pool, "/tmp/aprXXXXXX");
rv = apr_file_mktemp(&new_mutex->interproc, new_mutex->fname,
APR_FOPEN_CREATE | APR_FOPEN_WRITE | APR_FOPEN_EXCL,
new_mutex->pool);
}
if (rv != APR_SUCCESS) {
return rv;
}
new_mutex->curr_locked = 0;
unlink(new_mutex->fname);
apr_pool_cleanup_register(new_mutex->pool,
(void*)new_mutex,
apr_proc_mutex_cleanup,
apr_pool_cleanup_null);
return APR_SUCCESS;
}
static apr_status_t proc_mutex_fcntl_acquire(apr_proc_mutex_t *mutex)
{
int rc;
do {
rc = fcntl(mutex->interproc->filedes, F_SETLKW, &proc_mutex_lock_it);
} while (rc < 0 && errno == EINTR);
if (rc < 0) {
return errno;
}
mutex->curr_locked=1;
return APR_SUCCESS;
}
static apr_status_t proc_mutex_fcntl_tryacquire(apr_proc_mutex_t *mutex)
{
int rc;
do {
rc = fcntl(mutex->interproc->filedes, F_SETLK, &proc_mutex_lock_it);
} while (rc < 0 && errno == EINTR);
if (rc < 0) {
#if FCNTL_TRYACQUIRE_EACCES
if (errno == EACCES) {
#else
if (errno == EAGAIN) {
#endif
return APR_EBUSY;
}
return errno;
}
mutex->curr_locked = 1;
return APR_SUCCESS;
}
static apr_status_t proc_mutex_fcntl_release(apr_proc_mutex_t *mutex)
{
int rc;
mutex->curr_locked=0;
do {
rc = fcntl(mutex->interproc->filedes, F_SETLKW, &proc_mutex_unlock_it);
} while (rc < 0 && errno == EINTR);
if (rc < 0) {
return errno;
}
return APR_SUCCESS;
}
static const apr_proc_mutex_unix_lock_methods_t mutex_fcntl_methods =
{
#if APR_PROCESS_LOCK_IS_GLOBAL || !APR_HAS_THREADS || defined(FCNTL_IS_GLOBAL)
APR_PROCESS_LOCK_MECH_IS_GLOBAL,
#else
0,
#endif
proc_mutex_fcntl_create,
proc_mutex_fcntl_acquire,
proc_mutex_fcntl_tryacquire,
proc_mutex_fcntl_release,
proc_mutex_fcntl_cleanup,
proc_mutex_no_child_init,
"fcntl"
};
#endif /* fcntl implementation */
#if APR_HAS_FLOCK_SERIALIZE
static apr_status_t proc_mutex_flock_release(apr_proc_mutex_t *);
static apr_status_t proc_mutex_flock_cleanup(void *mutex_)
{
apr_status_t status;
apr_proc_mutex_t *mutex=mutex_;
if (mutex->curr_locked == 1) {
status = proc_mutex_flock_release(mutex);
if (status != APR_SUCCESS)
return status;
}
if (mutex->interproc) { /* if it was opened properly */
apr_file_close(mutex->interproc);
}
unlink(mutex->fname);
return APR_SUCCESS;
}
static apr_status_t proc_mutex_flock_create(apr_proc_mutex_t *new_mutex,
const char *fname)
{
int rv;
if (fname) {
new_mutex->fname = apr_pstrdup(new_mutex->pool, fname);
rv = apr_file_open(&new_mutex->interproc, new_mutex->fname,
APR_FOPEN_CREATE | APR_FOPEN_WRITE | APR_FOPEN_EXCL,
APR_UREAD | APR_UWRITE,
new_mutex->pool);
}
else {
new_mutex->fname = apr_pstrdup(new_mutex->pool, "/tmp/aprXXXXXX");
rv = apr_file_mktemp(&new_mutex->interproc, new_mutex->fname,
APR_FOPEN_CREATE | APR_FOPEN_WRITE | APR_FOPEN_EXCL,
new_mutex->pool);
}
if (rv != APR_SUCCESS) {
proc_mutex_flock_cleanup(new_mutex);
return errno;
}
new_mutex->curr_locked = 0;
apr_pool_cleanup_register(new_mutex->pool, (void *)new_mutex,
apr_proc_mutex_cleanup,
apr_pool_cleanup_null);
return APR_SUCCESS;
}
static apr_status_t proc_mutex_flock_acquire(apr_proc_mutex_t *mutex)
{
int rc;
do {
rc = flock(mutex->interproc->filedes, LOCK_EX);
} while (rc < 0 && errno == EINTR);
if (rc < 0) {
return errno;
}
mutex->curr_locked = 1;
return APR_SUCCESS;
}
static apr_status_t proc_mutex_flock_tryacquire(apr_proc_mutex_t *mutex)
{
int rc;
do {
rc = flock(mutex->interproc->filedes, LOCK_EX | LOCK_NB);
} while (rc < 0 && errno == EINTR);
if (rc < 0) {
if (errno == EWOULDBLOCK || errno == EAGAIN) {
return APR_EBUSY;
}
return errno;
}
mutex->curr_locked = 1;
return APR_SUCCESS;
}
static apr_status_t proc_mutex_flock_release(apr_proc_mutex_t *mutex)
{
int rc;
mutex->curr_locked = 0;
do {
rc = flock(mutex->interproc->filedes, LOCK_UN);
} while (rc < 0 && errno == EINTR);
if (rc < 0) {
return errno;
}
return APR_SUCCESS;
}
static apr_status_t proc_mutex_flock_child_init(apr_proc_mutex_t **mutex,
apr_pool_t *pool,
const char *fname)
{
apr_proc_mutex_t *new_mutex;
int rv;
new_mutex = (apr_proc_mutex_t *)apr_palloc(pool, sizeof(apr_proc_mutex_t));
memcpy(new_mutex, *mutex, sizeof *new_mutex);
new_mutex->pool = pool;
if (!fname) {
fname = (*mutex)->fname;
}
new_mutex->fname = apr_pstrdup(pool, fname);
rv = apr_file_open(&new_mutex->interproc, new_mutex->fname,
APR_FOPEN_WRITE, 0, new_mutex->pool);
if (rv != APR_SUCCESS) {
return rv;
}
*mutex = new_mutex;
return APR_SUCCESS;
}
static const apr_proc_mutex_unix_lock_methods_t mutex_flock_methods =
{
#if APR_PROCESS_LOCK_IS_GLOBAL || !APR_HAS_THREADS || defined(FLOCK_IS_GLOBAL)
APR_PROCESS_LOCK_MECH_IS_GLOBAL,
#else
0,
#endif
proc_mutex_flock_create,
proc_mutex_flock_acquire,
proc_mutex_flock_tryacquire,
proc_mutex_flock_release,
proc_mutex_flock_cleanup,
proc_mutex_flock_child_init,
"flock"
};
#endif /* flock implementation */
void apr_proc_mutex_unix_setup_lock(void)
{
/* setup only needed for sysvsem and fnctl */
#if APR_HAS_SYSVSEM_SERIALIZE
proc_mutex_sysv_setup();
#endif
#if APR_HAS_FCNTL_SERIALIZE
proc_mutex_fcntl_setup();
#endif
}
static apr_status_t proc_mutex_choose_method(apr_proc_mutex_t *new_mutex, apr_lockmech_e mech)
{
switch (mech) {
case APR_LOCK_FCNTL:
#if APR_HAS_FCNTL_SERIALIZE
new_mutex->inter_meth = &mutex_fcntl_methods;
#else
return APR_ENOTIMPL;
#endif
break;
case APR_LOCK_FLOCK:
#if APR_HAS_FLOCK_SERIALIZE
new_mutex->inter_meth = &mutex_flock_methods;
#else
return APR_ENOTIMPL;
#endif
break;
case APR_LOCK_SYSVSEM:
#if APR_HAS_SYSVSEM_SERIALIZE
new_mutex->inter_meth = &mutex_sysv_methods;
#else
return APR_ENOTIMPL;
#endif
break;
case APR_LOCK_POSIXSEM:
#if APR_HAS_POSIXSEM_SERIALIZE
new_mutex->inter_meth = &mutex_posixsem_methods;
#else
return APR_ENOTIMPL;
#endif
break;
case APR_LOCK_PROC_PTHREAD:
#if APR_HAS_PROC_PTHREAD_SERIALIZE
new_mutex->inter_meth = &mutex_proc_pthread_methods;
#else
return APR_ENOTIMPL;
#endif
break;
case APR_LOCK_DEFAULT:
#if APR_USE_FLOCK_SERIALIZE
new_mutex->inter_meth = &mutex_flock_methods;
#elif APR_USE_SYSVSEM_SERIALIZE
new_mutex->inter_meth = &mutex_sysv_methods;
#elif APR_USE_FCNTL_SERIALIZE
new_mutex->inter_meth = &mutex_fcntl_methods;
#elif APR_USE_PROC_PTHREAD_SERIALIZE
new_mutex->inter_meth = &mutex_proc_pthread_methods;
#elif APR_USE_POSIXSEM_SERIALIZE
new_mutex->inter_meth = &mutex_posixsem_methods;
#else
return APR_ENOTIMPL;
#endif
break;
default:
return APR_ENOTIMPL;
}
return APR_SUCCESS;
}
APR_DECLARE(const char *) apr_proc_mutex_defname(void)
{
apr_status_t rv;
apr_proc_mutex_t mutex;
if ((rv = proc_mutex_choose_method(&mutex, APR_LOCK_DEFAULT)) != APR_SUCCESS) {
return "unknown";
}
mutex.meth = mutex.inter_meth;
return apr_proc_mutex_name(&mutex);
}
static apr_status_t proc_mutex_create(apr_proc_mutex_t *new_mutex, apr_lockmech_e mech, const char *fname)
{
apr_status_t rv;
if ((rv = proc_mutex_choose_method(new_mutex, mech)) != APR_SUCCESS) {
return rv;
}
new_mutex->meth = new_mutex->inter_meth;
if ((rv = new_mutex->meth->create(new_mutex, fname)) != APR_SUCCESS) {
return rv;
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_proc_mutex_create(apr_proc_mutex_t **mutex,
const char *fname,
apr_lockmech_e mech,
apr_pool_t *pool)
{
apr_proc_mutex_t *new_mutex;
apr_status_t rv;
new_mutex = apr_pcalloc(pool, sizeof(apr_proc_mutex_t));
new_mutex->pool = pool;
if ((rv = proc_mutex_create(new_mutex, mech, fname)) != APR_SUCCESS)
return rv;
*mutex = new_mutex;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_proc_mutex_child_init(apr_proc_mutex_t **mutex,
const char *fname,
apr_pool_t *pool)
{
return (*mutex)->meth->child_init(mutex, pool, fname);
}
APR_DECLARE(apr_status_t) apr_proc_mutex_lock(apr_proc_mutex_t *mutex)
{
return mutex->meth->acquire(mutex);
}
APR_DECLARE(apr_status_t) apr_proc_mutex_trylock(apr_proc_mutex_t *mutex)
{
return mutex->meth->tryacquire(mutex);
}
APR_DECLARE(apr_status_t) apr_proc_mutex_unlock(apr_proc_mutex_t *mutex)
{
return mutex->meth->release(mutex);
}
APR_DECLARE(apr_status_t) apr_proc_mutex_cleanup(void *mutex)
{
return ((apr_proc_mutex_t *)mutex)->meth->cleanup(mutex);
}
APR_DECLARE(const char *) apr_proc_mutex_name(apr_proc_mutex_t *mutex)
{
return mutex->meth->name;
}
APR_DECLARE(const char *) apr_proc_mutex_lockfile(apr_proc_mutex_t *mutex)
{
/* POSIX sems use the fname field but don't use a file,
* so be careful. */
#if APR_HAS_FLOCK_SERIALIZE
if (mutex->meth == &mutex_flock_methods) {
return mutex->fname;
}
#endif
#if APR_HAS_FCNTL_SERIALIZE
if (mutex->meth == &mutex_fcntl_methods) {
return mutex->fname;
}
#endif
return NULL;
}
APR_POOL_IMPLEMENT_ACCESSOR(proc_mutex)
/* Implement OS-specific accessors defined in apr_portable.h */
APR_DECLARE(apr_status_t) apr_os_proc_mutex_get(apr_os_proc_mutex_t *ospmutex,
apr_proc_mutex_t *pmutex)
{
#if APR_HAS_SYSVSEM_SERIALIZE || APR_HAS_FCNTL_SERIALIZE || APR_HAS_FLOCK_SERIALIZE || APR_HAS_POSIXSEM_SERIALIZE
ospmutex->crossproc = pmutex->interproc->filedes;
#endif
#if APR_HAS_PROC_PTHREAD_SERIALIZE
ospmutex->pthread_interproc = pmutex->pthread_interproc;
#endif
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_os_proc_mutex_put(apr_proc_mutex_t **pmutex,
apr_os_proc_mutex_t *ospmutex,
apr_pool_t *pool)
{
if (pool == NULL) {
return APR_ENOPOOL;
}
if ((*pmutex) == NULL) {
(*pmutex) = (apr_proc_mutex_t *)apr_pcalloc(pool,
sizeof(apr_proc_mutex_t));
(*pmutex)->pool = pool;
}
#if APR_HAS_SYSVSEM_SERIALIZE || APR_HAS_FCNTL_SERIALIZE || APR_HAS_FLOCK_SERIALIZE || APR_HAS_POSIXSEM_SERIALIZE
apr_os_file_put(&(*pmutex)->interproc, &ospmutex->crossproc, 0, pool);
#endif
#if APR_HAS_PROC_PTHREAD_SERIALIZE
(*pmutex)->pthread_interproc = ospmutex->pthread_interproc;
#endif
return APR_SUCCESS;
}