freebsd-nq/sys/crypto/rijndael/rijndael-api-fst.c
Hajimu UMEMOTO 3384154590 Sync with recent KAME.
This work was based on kame-20010528-freebsd43-snap.tgz and some
critical problem after the snap was out were fixed.
There are many many changes since last KAME merge.

TODO:
  - The definitions of SADB_* in sys/net/pfkeyv2.h are still different
    from RFC2407/IANA assignment because of binary compatibility
    issue.  It should be fixed under 5-CURRENT.
  - ip6po_m member of struct ip6_pktopts is no longer used.  But, it
    is still there because of binary compatibility issue.  It should
    be removed under 5-CURRENT.

Reviewed by:	itojun
Obtained from:	KAME
MFC after:	3 weeks
2001-06-11 12:39:29 +00:00

485 lines
13 KiB
C

/* $FreeBSD$ */
/* $KAME: rijndael-api-fst.c,v 1.10 2001/05/27 09:34:18 itojun Exp $ */
/*
* rijndael-api-fst.c v2.3 April '2000
*
* Optimised ANSI C code
*
* authors: v1.0: Antoon Bosselaers
* v2.0: Vincent Rijmen
* v2.1: Vincent Rijmen
* v2.2: Vincent Rijmen
* v2.3: Paulo Barreto
* v2.4: Vincent Rijmen
*
* This code is placed in the public domain.
*/
#include <sys/param.h>
#include <sys/types.h>
#ifdef _KERNEL
#include <sys/systm.h>
#else
#include <string.h>
#endif
#include <crypto/rijndael/rijndael-alg-fst.h>
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/rijndael/rijndael_local.h>
int rijndael_makeKey(keyInstance *key, BYTE direction, int keyLen, char *keyMaterial) {
word8 k[MAXKC][4];
int i;
char *keyMat;
if (key == NULL) {
return BAD_KEY_INSTANCE;
}
if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {
key->direction = direction;
} else {
return BAD_KEY_DIR;
}
if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) {
key->keyLen = keyLen;
} else {
return BAD_KEY_MAT;
}
if (keyMaterial != NULL) {
bcopy(keyMaterial, key->keyMaterial, keyLen/8);
}
key->ROUNDS = keyLen/32 + 6;
/* initialize key schedule: */
keyMat = key->keyMaterial;
for (i = 0; i < key->keyLen/8; i++) {
k[i >> 2][i & 3] = (word8)keyMat[i];
}
rijndaelKeySched(k, key->keySched, key->ROUNDS);
if (direction == DIR_DECRYPT) {
rijndaelKeyEncToDec(key->keySched, key->ROUNDS);
}
return TRUE;
}
int rijndael_cipherInit(cipherInstance *cipher, BYTE mode, char *IV) {
if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {
cipher->mode = mode;
} else {
return BAD_CIPHER_MODE;
}
if (IV != NULL) {
bcopy(IV, cipher->IV, MAX_IV_SIZE);
} else {
bzero(cipher->IV, MAX_IV_SIZE);
}
return TRUE;
}
int rijndael_blockEncrypt(cipherInstance *cipher, keyInstance *key,
BYTE *input, int inputLen, BYTE *outBuffer) {
int i, k, numBlocks;
word8 block[16], iv[4][4];
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_DECRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputLen <= 0) {
return 0; /* nothing to do */
}
numBlocks = inputLen/128;
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
rijndaelEncrypt(input, outBuffer, key->keySched, key->ROUNDS);
input += 16;
outBuffer += 16;
}
break;
case MODE_CBC:
#if 1 /*STRICT_ALIGN*/
bcopy(cipher->IV, block, 16);
bcopy(input, iv, 16);
((word32*)block)[0] ^= ((word32*)iv)[0];
((word32*)block)[1] ^= ((word32*)iv)[1];
((word32*)block)[2] ^= ((word32*)iv)[2];
((word32*)block)[3] ^= ((word32*)iv)[3];
#else
((word32*)block)[0] = ((word32*)cipher->IV)[0] ^ ((word32*)input)[0];
((word32*)block)[1] = ((word32*)cipher->IV)[1] ^ ((word32*)input)[1];
((word32*)block)[2] = ((word32*)cipher->IV)[2] ^ ((word32*)input)[2];
((word32*)block)[3] = ((word32*)cipher->IV)[3] ^ ((word32*)input)[3];
#endif
rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);
input += 16;
for (i = numBlocks - 1; i > 0; i--) {
#if 1 /*STRICT_ALIGN*/
bcopy(outBuffer, block, 16);
((word32*)block)[0] ^= ((word32*)iv)[0];
((word32*)block)[1] ^= ((word32*)iv)[1];
((word32*)block)[2] ^= ((word32*)iv)[2];
((word32*)block)[3] ^= ((word32*)iv)[3];
#else
((word32*)block)[0] = ((word32*)outBuffer)[0] ^ ((word32*)input)[0];
((word32*)block)[1] = ((word32*)outBuffer)[1] ^ ((word32*)input)[1];
((word32*)block)[2] = ((word32*)outBuffer)[2] ^ ((word32*)input)[2];
((word32*)block)[3] = ((word32*)outBuffer)[3] ^ ((word32*)input)[3];
#endif
outBuffer += 16;
rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);
input += 16;
}
break;
case MODE_CFB1:
#if 1 /*STRICT_ALIGN*/
bcopy(cipher->IV, iv, 16);
#else /* !STRICT_ALIGN */
*((word32*)iv[0]) = *((word32*)(cipher->IV ));
*((word32*)iv[1]) = *((word32*)(cipher->IV+ 4));
*((word32*)iv[2]) = *((word32*)(cipher->IV+ 8));
*((word32*)iv[3]) = *((word32*)(cipher->IV+12));
#endif /* ?STRICT_ALIGN */
for (i = numBlocks; i > 0; i--) {
for (k = 0; k < 128; k++) {
*((word32*) block ) = *((word32*)iv[0]);
*((word32*)(block+ 4)) = *((word32*)iv[1]);
*((word32*)(block+ 8)) = *((word32*)iv[2]);
*((word32*)(block+12)) = *((word32*)iv[3]);
rijndaelEncrypt(block, block, key->keySched, key->ROUNDS);
outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
iv[3][3] = (iv[3][3] << 1) | ((outBuffer[k/8] >> (7-(k&7))) & 1);
}
}
break;
default:
return BAD_CIPHER_STATE;
}
return 128*numBlocks;
}
/**
* Encrypt data partitioned in octets, using RFC 2040-like padding.
*
* @param input data to be encrypted (octet sequence)
* @param inputOctets input length in octets (not bits)
* @param outBuffer encrypted output data
*
* @return length in octets (not bits) of the encrypted output buffer.
*/
int rijndael_padEncrypt(cipherInstance *cipher, keyInstance *key,
BYTE *input, int inputOctets, BYTE *outBuffer) {
int i, numBlocks, padLen;
word8 block[16], *iv, *cp;
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_DECRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputOctets <= 0) {
return 0; /* nothing to do */
}
numBlocks = inputOctets/16;
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
rijndaelEncrypt(input, outBuffer, key->keySched, key->ROUNDS);
input += 16;
outBuffer += 16;
}
padLen = 16 - (inputOctets - 16*numBlocks);
if (padLen > 0 && padLen <= 16)
panic("rijndael_padEncrypt(ECB)");
bcopy(input, block, 16 - padLen);
for (cp = block + 16 - padLen; cp < block + 16; cp++)
*cp = padLen;
rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);
break;
case MODE_CBC:
iv = cipher->IV;
for (i = numBlocks; i > 0; i--) {
((word32*)block)[0] = ((word32*)input)[0] ^ ((word32*)iv)[0];
((word32*)block)[1] = ((word32*)input)[1] ^ ((word32*)iv)[1];
((word32*)block)[2] = ((word32*)input)[2] ^ ((word32*)iv)[2];
((word32*)block)[3] = ((word32*)input)[3] ^ ((word32*)iv)[3];
rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);
iv = outBuffer;
input += 16;
outBuffer += 16;
}
padLen = 16 - (inputOctets - 16*numBlocks);
if (padLen > 0 && padLen <= 16)
panic("rijndael_padEncrypt(CBC)");
for (i = 0; i < 16 - padLen; i++) {
block[i] = input[i] ^ iv[i];
}
for (i = 16 - padLen; i < 16; i++) {
block[i] = (BYTE)padLen ^ iv[i];
}
rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);
break;
default:
return BAD_CIPHER_STATE;
}
return 16*(numBlocks + 1);
}
int rijndael_blockDecrypt(cipherInstance *cipher, keyInstance *key,
BYTE *input, int inputLen, BYTE *outBuffer) {
int i, k, numBlocks;
word8 block[16], iv[4][4];
if (cipher == NULL ||
key == NULL ||
(cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputLen <= 0) {
return 0; /* nothing to do */
}
numBlocks = inputLen/128;
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
rijndaelDecrypt(input, outBuffer, key->keySched, key->ROUNDS);
input += 16;
outBuffer += 16;
}
break;
case MODE_CBC:
#if 1 /*STRICT_ALIGN */
bcopy(cipher->IV, iv, 16);
#else
*((word32*)iv[0]) = *((word32*)(cipher->IV ));
*((word32*)iv[1]) = *((word32*)(cipher->IV+ 4));
*((word32*)iv[2]) = *((word32*)(cipher->IV+ 8));
*((word32*)iv[3]) = *((word32*)(cipher->IV+12));
#endif
for (i = numBlocks; i > 0; i--) {
rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);
((word32*)block)[0] ^= *((word32*)iv[0]);
((word32*)block)[1] ^= *((word32*)iv[1]);
((word32*)block)[2] ^= *((word32*)iv[2]);
((word32*)block)[3] ^= *((word32*)iv[3]);
#if 1 /*STRICT_ALIGN*/
bcopy(input, iv, 16);
bcopy(block, outBuffer, 16);
#else
*((word32*)iv[0]) = ((word32*)input)[0]; ((word32*)outBuffer)[0] = ((word32*)block)[0];
*((word32*)iv[1]) = ((word32*)input)[1]; ((word32*)outBuffer)[1] = ((word32*)block)[1];
*((word32*)iv[2]) = ((word32*)input)[2]; ((word32*)outBuffer)[2] = ((word32*)block)[2];
*((word32*)iv[3]) = ((word32*)input)[3]; ((word32*)outBuffer)[3] = ((word32*)block)[3];
#endif
input += 16;
outBuffer += 16;
}
break;
case MODE_CFB1:
#if 1 /*STRICT_ALIGN */
bcopy(cipher->IV, iv, 16);
#else
*((word32*)iv[0]) = *((word32*)(cipher->IV));
*((word32*)iv[1]) = *((word32*)(cipher->IV+ 4));
*((word32*)iv[2]) = *((word32*)(cipher->IV+ 8));
*((word32*)iv[3]) = *((word32*)(cipher->IV+12));
#endif
for (i = numBlocks; i > 0; i--) {
for (k = 0; k < 128; k++) {
*((word32*) block ) = *((word32*)iv[0]);
*((word32*)(block+ 4)) = *((word32*)iv[1]);
*((word32*)(block+ 8)) = *((word32*)iv[2]);
*((word32*)(block+12)) = *((word32*)iv[3]);
rijndaelEncrypt(block, block, key->keySched, key->ROUNDS);
iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
iv[3][3] = (iv[3][3] << 1) | ((input[k/8] >> (7-(k&7))) & 1);
outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
}
}
break;
default:
return BAD_CIPHER_STATE;
}
return 128*numBlocks;
}
int rijndael_padDecrypt(cipherInstance *cipher, keyInstance *key,
BYTE *input, int inputOctets, BYTE *outBuffer) {
int i, numBlocks, padLen;
word8 block[16];
word32 iv[4];
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_ENCRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputOctets <= 0) {
return 0; /* nothing to do */
}
if (inputOctets % 16 != 0) {
return BAD_DATA;
}
numBlocks = inputOctets/16;
switch (cipher->mode) {
case MODE_ECB:
/* all blocks but last */
for (i = numBlocks - 1; i > 0; i--) {
rijndaelDecrypt(input, outBuffer, key->keySched, key->ROUNDS);
input += 16;
outBuffer += 16;
}
/* last block */
rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);
padLen = block[15];
if (padLen >= 16) {
return BAD_DATA;
}
for (i = 16 - padLen; i < 16; i++) {
if (block[i] != padLen) {
return BAD_DATA;
}
}
bcopy(block, outBuffer, 16 - padLen);
break;
case MODE_CBC:
bcopy(cipher->IV, iv, 16);
/* all blocks but last */
for (i = numBlocks - 1; i > 0; i--) {
rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);
((word32*)block)[0] ^= iv[0];
((word32*)block)[1] ^= iv[1];
((word32*)block)[2] ^= iv[2];
((word32*)block)[3] ^= iv[3];
bcopy(input, iv, 16);
bcopy(block, outBuffer, 16);
input += 16;
outBuffer += 16;
}
/* last block */
rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);
((word32*)block)[0] ^= iv[0];
((word32*)block)[1] ^= iv[1];
((word32*)block)[2] ^= iv[2];
((word32*)block)[3] ^= iv[3];
padLen = block[15];
if (padLen <= 0 || padLen > 16) {
return BAD_DATA;
}
for (i = 16 - padLen; i < 16; i++) {
if (block[i] != padLen) {
return BAD_DATA;
}
}
bcopy(block, outBuffer, 16 - padLen);
break;
default:
return BAD_CIPHER_STATE;
}
return 16*numBlocks - padLen;
}
#ifdef INTERMEDIATE_VALUE_KAT
/**
* cipherUpdateRounds:
*
* Encrypts/Decrypts exactly one full block a specified number of rounds.
* Only used in the Intermediate Value Known Answer Test.
*
* Returns:
* TRUE - on success
* BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized)
*/
int rijndael_cipherUpdateRounds(cipherInstance *cipher, keyInstance *key,
BYTE *input, int inputLen, BYTE *outBuffer, int rounds) {
int j;
word8 block[4][4];
if (cipher == NULL || key == NULL) {
return BAD_CIPHER_STATE;
}
for (j = 3; j >= 0; j--) {
/* parse input stream into rectangular array */
*((word32*)block[j]) = *((word32*)(input+4*j));
}
switch (key->direction) {
case DIR_ENCRYPT:
rijndaelEncryptRound(block, key->keySched, key->ROUNDS, rounds);
break;
case DIR_DECRYPT:
rijndaelDecryptRound(block, key->keySched, key->ROUNDS, rounds);
break;
default:
return BAD_KEY_DIR;
}
for (j = 3; j >= 0; j--) {
/* parse rectangular array into output ciphertext bytes */
*((word32*)(outBuffer+4*j)) = *((word32*)block[j]);
}
return TRUE;
}
#endif /* INTERMEDIATE_VALUE_KAT */