freebsd-nq/lib/libarchive/archive_read_support_format_mtree.c

1232 lines
30 KiB
C

/*-
* Copyright (c) 2003-2007 Tim Kientzle
* Copyright (c) 2008 Joerg Sonnenberger
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "archive_platform.h"
__FBSDID("$FreeBSD$");
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#include <stddef.h>
/* #include <stdint.h> */ /* See archive_platform.h */
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#include "archive.h"
#include "archive_entry.h"
#include "archive_private.h"
#include "archive_read_private.h"
#include "archive_string.h"
#ifndef O_BINARY
#define O_BINARY 0
#endif
#define MTREE_HAS_DEVICE 0x0001
#define MTREE_HAS_FFLAGS 0x0002
#define MTREE_HAS_GID 0x0004
#define MTREE_HAS_GNAME 0x0008
#define MTREE_HAS_MTIME 0x0010
#define MTREE_HAS_NLINK 0x0020
#define MTREE_HAS_PERM 0x0040
#define MTREE_HAS_SIZE 0x0080
#define MTREE_HAS_TYPE 0x0100
#define MTREE_HAS_UID 0x0200
#define MTREE_HAS_UNAME 0x0400
#define MTREE_HAS_OPTIONAL 0x0800
struct mtree_option {
struct mtree_option *next;
char *value;
};
struct mtree_entry {
struct mtree_entry *next;
struct mtree_option *options;
char *name;
char full;
char used;
};
struct mtree {
struct archive_string line;
size_t buffsize;
char *buff;
off_t offset;
int fd;
int filetype;
int archive_format;
const char *archive_format_name;
struct mtree_entry *entries;
struct mtree_entry *this_entry;
struct archive_string current_dir;
struct archive_string contents_name;
struct archive_entry_linkresolver *resolver;
off_t cur_size, cur_offset;
};
static int cleanup(struct archive_read *);
static int mtree_bid(struct archive_read *);
static int parse_file(struct archive_read *, struct archive_entry *,
struct mtree *, struct mtree_entry *, int *);
static void parse_escapes(char *, struct mtree_entry *);
static int parse_line(struct archive_read *, struct archive_entry *,
struct mtree *, struct mtree_entry *, int *);
static int parse_keyword(struct archive_read *, struct mtree *,
struct archive_entry *, struct mtree_option *, int *);
static int read_data(struct archive_read *a,
const void **buff, size_t *size, off_t *offset);
static ssize_t readline(struct archive_read *, struct mtree *, char **, ssize_t);
static int skip(struct archive_read *a);
static int read_header(struct archive_read *,
struct archive_entry *);
static int64_t mtree_atol10(char **);
static int64_t mtree_atol8(char **);
static int64_t mtree_atol(char **);
static void
free_options(struct mtree_option *head)
{
struct mtree_option *next;
for (; head != NULL; head = next) {
next = head->next;
free(head->value);
free(head);
}
}
int
archive_read_support_format_mtree(struct archive *_a)
{
struct archive_read *a = (struct archive_read *)_a;
struct mtree *mtree;
int r;
mtree = (struct mtree *)malloc(sizeof(*mtree));
if (mtree == NULL) {
archive_set_error(&a->archive, ENOMEM,
"Can't allocate mtree data");
return (ARCHIVE_FATAL);
}
memset(mtree, 0, sizeof(*mtree));
mtree->fd = -1;
r = __archive_read_register_format(a, mtree,
mtree_bid, read_header, read_data, skip, cleanup);
if (r != ARCHIVE_OK)
free(mtree);
return (ARCHIVE_OK);
}
static int
cleanup(struct archive_read *a)
{
struct mtree *mtree;
struct mtree_entry *p, *q;
mtree = (struct mtree *)(a->format->data);
p = mtree->entries;
while (p != NULL) {
q = p->next;
free(p->name);
free_options(p->options);
free(p);
p = q;
}
archive_string_free(&mtree->line);
archive_string_free(&mtree->current_dir);
archive_string_free(&mtree->contents_name);
archive_entry_linkresolver_free(mtree->resolver);
free(mtree->buff);
free(mtree);
(a->format->data) = NULL;
return (ARCHIVE_OK);
}
static int
mtree_bid(struct archive_read *a)
{
struct mtree *mtree;
ssize_t bytes_read;
const void *h;
const char *signature = "#mtree";
const char *p;
int bid;
mtree = (struct mtree *)(a->format->data);
/* Now let's look at the actual header and see if it matches. */
bytes_read = (a->decompressor->read_ahead)(a, &h, strlen(signature));
if (bytes_read <= 0)
return (bytes_read);
p = h;
bid = 0;
while (bytes_read > 0 && *signature != '\0') {
if (*p != *signature)
return (bid = 0);
bid += 8;
p++;
signature++;
bytes_read--;
}
return (bid);
}
/*
* The extended mtree format permits multiple lines specifying
* attributes for each file. For those entries, only the last line
* is actually used. Practically speaking, that means we have
* to read the entire mtree file into memory up front.
*
* The parsing is done in two steps. First, it is decided if a line
* changes the global defaults and if it is, processed accordingly.
* Otherwise, the options of the line are merged with the current
* global options.
*/
static int
add_option(struct archive_read *a, struct mtree_option **global,
const char *value, size_t len)
{
struct mtree_option *option;
if ((option = malloc(sizeof(*option))) == NULL) {
archive_set_error(&a->archive, errno, "Can't allocate memory");
return (ARCHIVE_FATAL);
}
if ((option->value = malloc(len + 1)) == NULL) {
free(option);
archive_set_error(&a->archive, errno, "Can't allocate memory");
return (ARCHIVE_FATAL);
}
memcpy(option->value, value, len);
option->value[len] = '\0';
option->next = *global;
*global = option;
return (ARCHIVE_OK);
}
static void
remove_option(struct mtree_option **global, const char *value, size_t len)
{
struct mtree_option *iter, *last;
last = NULL;
for (iter = *global; iter != NULL; last = iter, iter = iter->next) {
if (strncmp(iter->value, value, len) == 0 &&
(iter->value[len] == '\0' ||
iter->value[len] == '='))
break;
}
if (iter == NULL)
return;
if (last == NULL)
*global = iter->next;
else
last->next = iter->next;
free(iter->value);
free(iter);
}
static int
process_global_set(struct archive_read *a,
struct mtree_option **global, const char *line)
{
const char *next, *eq;
size_t len;
int r;
line += 4;
for (;;) {
next = line + strspn(line, " \t\r\n");
if (*next == '\0')
return (ARCHIVE_OK);
line = next;
next = line + strcspn(line, " \t\r\n");
eq = strchr(line, '=');
if (eq > next)
len = next - line;
else
len = eq - line;
remove_option(global, line, len);
r = add_option(a, global, line, next - line);
if (r != ARCHIVE_OK)
return (r);
line = next;
}
}
static int
process_global_unset(struct archive_read *a,
struct mtree_option **global, const char *line)
{
const char *next;
size_t len;
line += 6;
if (strchr(line, '=') != NULL) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"/unset shall not contain `='");
return ARCHIVE_FATAL;
}
for (;;) {
next = line + strspn(line, " \t\r\n");
if (*next == '\0')
return (ARCHIVE_OK);
line = next;
len = strcspn(line, " \t\r\n");
if (len == 3 && strncmp(line, "all", 3) == 0) {
free_options(*global);
*global = NULL;
} else {
remove_option(global, line, len);
}
line += len;
}
}
static int
process_add_entry(struct archive_read *a, struct mtree *mtree,
struct mtree_option **global, const char *line,
struct mtree_entry **last_entry)
{
struct mtree_entry *entry;
struct mtree_option *iter;
const char *next, *eq;
size_t len;
int r;
if ((entry = malloc(sizeof(*entry))) == NULL) {
archive_set_error(&a->archive, errno, "Can't allocate memory");
return (ARCHIVE_FATAL);
}
entry->next = NULL;
entry->options = NULL;
entry->name = NULL;
entry->used = 0;
entry->full = 0;
/* Add this entry to list. */
if (*last_entry == NULL)
mtree->entries = entry;
else
(*last_entry)->next = entry;
*last_entry = entry;
len = strcspn(line, " \t\r\n");
if ((entry->name = malloc(len + 1)) == NULL) {
archive_set_error(&a->archive, errno, "Can't allocate memory");
return (ARCHIVE_FATAL);
}
memcpy(entry->name, line, len);
entry->name[len] = '\0';
parse_escapes(entry->name, entry);
line += len;
for (iter = *global; iter != NULL; iter = iter->next) {
r = add_option(a, &entry->options, iter->value,
strlen(iter->value));
if (r != ARCHIVE_OK)
return (r);
}
for (;;) {
next = line + strspn(line, " \t\r\n");
if (*next == '\0')
return (ARCHIVE_OK);
line = next;
next = line + strcspn(line, " \t\r\n");
eq = strchr(line, '=');
if (eq > next)
len = next - line;
else
len = eq - line;
remove_option(&entry->options, line, len);
r = add_option(a, &entry->options, line, next - line);
if (r != ARCHIVE_OK)
return (r);
line = next;
}
}
static int
read_mtree(struct archive_read *a, struct mtree *mtree)
{
ssize_t len;
uintmax_t counter;
char *p;
struct mtree_option *global;
struct mtree_entry *last_entry;
int r;
mtree->archive_format = ARCHIVE_FORMAT_MTREE_V1;
mtree->archive_format_name = "mtree";
global = NULL;
last_entry = NULL;
r = ARCHIVE_OK;
for (counter = 1; ; ++counter) {
len = readline(a, mtree, &p, 256);
if (len == 0) {
mtree->this_entry = mtree->entries;
return (ARCHIVE_OK);
}
if (len < 0)
return (len);
/* Leading whitespace is never significant, ignore it. */
while (*p == ' ' || *p == '\t') {
++p;
--len;
}
/* Skip content lines and blank lines. */
if (*p == '#')
continue;
if (*p == '\r' || *p == '\n' || *p == '\0')
continue;
if (*p != '/') {
r = process_add_entry(a, mtree, &global, p,
&last_entry);
} else if (strncmp(p, "/set", 4) == 0) {
if (p[4] != ' ' && p[4] != '\t')
break;
r = process_global_set(a, &global, p);
} else if (strncmp(p, "/unset", 6) == 0) {
if (p[6] != ' ' && p[6] != '\t')
break;
r = process_global_unset(a, &global, p);
} else
break;
if (r != ARCHIVE_OK)
return r;
}
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Can't parse line %ju", counter);
return ARCHIVE_FATAL;
}
/*
* Read in the entire mtree file into memory on the first request.
* Then use the next unused file to satisfy each header request.
*/
static int
read_header(struct archive_read *a, struct archive_entry *entry)
{
struct mtree *mtree;
char *p;
int r, use_next;
mtree = (struct mtree *)(a->format->data);
if (mtree->fd >= 0) {
close(mtree->fd);
mtree->fd = -1;
}
if (mtree->entries == NULL) {
mtree->resolver = archive_entry_linkresolver_new();
if (mtree->resolver == NULL)
return ARCHIVE_FATAL;
archive_entry_linkresolver_set_strategy(mtree->resolver,
ARCHIVE_FORMAT_MTREE);
r = read_mtree(a, mtree);
if (r != ARCHIVE_OK)
return (r);
}
a->archive.archive_format = mtree->archive_format;
a->archive.archive_format_name = mtree->archive_format_name;
for (;;) {
if (mtree->this_entry == NULL)
return (ARCHIVE_EOF);
if (strcmp(mtree->this_entry->name, "..") == 0) {
mtree->this_entry->used = 1;
if (archive_strlen(&mtree->current_dir) > 0) {
/* Roll back current path. */
p = mtree->current_dir.s
+ mtree->current_dir.length - 1;
while (p >= mtree->current_dir.s && *p != '/')
--p;
if (p >= mtree->current_dir.s)
--p;
mtree->current_dir.length
= p - mtree->current_dir.s + 1;
}
}
if (!mtree->this_entry->used) {
use_next = 0;
r = parse_file(a, entry, mtree, mtree->this_entry, &use_next);
if (use_next == 0)
return (r);
}
mtree->this_entry = mtree->this_entry->next;
}
}
/*
* A single file can have multiple lines contribute specifications.
* Parse as many lines as necessary, then pull additional information
* from a backing file on disk as necessary.
*/
static int
parse_file(struct archive_read *a, struct archive_entry *entry,
struct mtree *mtree, struct mtree_entry *mentry, int *use_next)
{
const char *path;
struct stat st_storage, *st;
struct mtree_entry *mp;
struct archive_entry *sparse_entry;
int r = ARCHIVE_OK, r1, parsed_kws, mismatched_type;
mentry->used = 1;
/* Initialize reasonable defaults. */
mtree->filetype = AE_IFREG;
archive_entry_set_size(entry, 0);
/* Parse options from this line. */
parsed_kws = 0;
r = parse_line(a, entry, mtree, mentry, &parsed_kws);
if (mentry->full) {
archive_entry_copy_pathname(entry, mentry->name);
/*
* "Full" entries are allowed to have multiple lines
* and those lines aren't required to be adjacent. We
* don't support multiple lines for "relative" entries
* nor do we make any attempt to merge data from
* separate "relative" and "full" entries. (Merging
* "relative" and "full" entries would require dealing
* with pathname canonicalization, which is a very
* tricky subject.)
*/
for (mp = mentry->next; mp != NULL; mp = mp->next) {
if (mp->full && !mp->used
&& strcmp(mentry->name, mp->name) == 0) {
/* Later lines override earlier ones. */
mp->used = 1;
r1 = parse_line(a, entry, mtree, mp,
&parsed_kws);
if (r1 < r)
r = r1;
}
}
} else {
/*
* Relative entries require us to construct
* the full path and possibly update the
* current directory.
*/
size_t n = archive_strlen(&mtree->current_dir);
if (n > 0)
archive_strcat(&mtree->current_dir, "/");
archive_strcat(&mtree->current_dir, mentry->name);
archive_entry_copy_pathname(entry, mtree->current_dir.s);
if (archive_entry_filetype(entry) != AE_IFDIR)
mtree->current_dir.length = n;
}
/*
* Try to open and stat the file to get the real size
* and other file info. It would be nice to avoid
* this here so that getting a listing of an mtree
* wouldn't require opening every referenced contents
* file. But then we wouldn't know the actual
* contents size, so I don't see a really viable way
* around this. (Also, we may want to someday pull
* other unspecified info from the contents file on
* disk.)
*/
mtree->fd = -1;
if (archive_strlen(&mtree->contents_name) > 0)
path = mtree->contents_name.s;
else
path = archive_entry_pathname(entry);
if (archive_entry_filetype(entry) == AE_IFREG ||
archive_entry_filetype(entry) == AE_IFDIR) {
mtree->fd = open(path,
O_RDONLY | O_BINARY);
if (mtree->fd == -1 &&
(errno != ENOENT ||
archive_strlen(&mtree->contents_name) > 0)) {
archive_set_error(&a->archive, errno,
"Can't open %s", path);
r = ARCHIVE_WARN;
}
}
st = &st_storage;
if (mtree->fd >= 0) {
if (fstat(mtree->fd, st) == -1) {
archive_set_error(&a->archive, errno,
"Could not fstat %s", path);
r = ARCHIVE_WARN;
/* If we can't stat it, don't keep it open. */
close(mtree->fd);
mtree->fd = -1;
st = NULL;
}
} else if (lstat(path, st) == -1) {
st = NULL;
}
/*
* If there is a contents file on disk, use that size;
* otherwise leave it as-is (it might have been set from
* the mtree size= keyword).
*/
if (st != NULL) {
mismatched_type = 0;
if ((st->st_mode & S_IFMT) == S_IFREG &&
archive_entry_filetype(entry) != AE_IFREG)
mismatched_type = 1;
if ((st->st_mode & S_IFMT) == S_IFLNK &&
archive_entry_filetype(entry) != AE_IFLNK)
mismatched_type = 1;
if ((st->st_mode & S_IFSOCK) == S_IFSOCK &&
archive_entry_filetype(entry) != AE_IFSOCK)
mismatched_type = 1;
if ((st->st_mode & S_IFMT) == S_IFCHR &&
archive_entry_filetype(entry) != AE_IFCHR)
mismatched_type = 1;
if ((st->st_mode & S_IFMT) == S_IFBLK &&
archive_entry_filetype(entry) != AE_IFBLK)
mismatched_type = 1;
if ((st->st_mode & S_IFMT) == S_IFDIR &&
archive_entry_filetype(entry) != AE_IFDIR)
mismatched_type = 1;
if ((st->st_mode & S_IFMT) == S_IFIFO &&
archive_entry_filetype(entry) != AE_IFIFO)
mismatched_type = 1;
if (mismatched_type) {
if ((parsed_kws & MTREE_HAS_OPTIONAL) == 0) {
archive_set_error(&a->archive,
ARCHIVE_ERRNO_MISC,
"mtree specification has different type for %s",
archive_entry_pathname(entry));
r = ARCHIVE_WARN;
} else {
*use_next = 1;
}
/* Don't hold a non-regular file open. */
if (mtree->fd >= 0)
close(mtree->fd);
mtree->fd = -1;
st = NULL;
return r;
}
}
if (st != NULL) {
if ((parsed_kws & MTREE_HAS_DEVICE) == 0 &&
(archive_entry_filetype(entry) == AE_IFCHR ||
archive_entry_filetype(entry) == AE_IFBLK))
archive_entry_set_rdev(entry, st->st_rdev);
if ((parsed_kws & (MTREE_HAS_GID | MTREE_HAS_GNAME)) == 0)
archive_entry_set_gid(entry, st->st_gid);
if ((parsed_kws & (MTREE_HAS_UID | MTREE_HAS_UNAME)) == 0)
archive_entry_set_uid(entry, st->st_uid);
if ((parsed_kws & MTREE_HAS_MTIME) == 0) {
#if HAVE_STRUCT_STAT_ST_MTIMESPEC_TV_NSEC
archive_entry_set_mtime(entry, st->st_mtime,
st->st_mtimespec.tv_nsec);
#elif HAVE_STRUCT_STAT_ST_MTIM_TV_NSEC
archive_entry_set_mtime(entry, st->st_mtime,
st->st_mtim.tv_nsec);
#else
archive_entry_set_mtime(entry, st->st_mtime, 0);
#endif
}
if ((parsed_kws & MTREE_HAS_NLINK) == 0)
archive_entry_set_nlink(entry, st->st_nlink);
if ((parsed_kws & MTREE_HAS_PERM) == 0)
archive_entry_set_perm(entry, st->st_mode);
if ((parsed_kws & MTREE_HAS_SIZE) == 0)
archive_entry_set_size(entry, st->st_size);
archive_entry_set_ino(entry, st->st_ino);
archive_entry_set_dev(entry, st->st_dev);
archive_entry_linkify(mtree->resolver, &entry, &sparse_entry);
} else if (parsed_kws & MTREE_HAS_OPTIONAL) {
/*
* Couldn't open the entry, stat it or the on-disk type
* didn't match. If this entry is optional, just ignore it
* and read the next header entry.
*/
*use_next = 1;
return ARCHIVE_OK;
}
mtree->cur_size = archive_entry_size(entry);
mtree->offset = 0;
return r;
}
/*
* Each line contains a sequence of keywords.
*/
static int
parse_line(struct archive_read *a, struct archive_entry *entry,
struct mtree *mtree, struct mtree_entry *mp, int *parsed_kws)
{
struct mtree_option *iter;
int r = ARCHIVE_OK, r1;
for (iter = mp->options; iter != NULL; iter = iter->next) {
r1 = parse_keyword(a, mtree, entry, iter, parsed_kws);
if (r1 < r)
r = r1;
}
if ((*parsed_kws & MTREE_HAS_TYPE) == 0) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Missing type keyword in mtree specification");
return (ARCHIVE_WARN);
}
return (r);
}
/*
* Device entries have one of the following forms:
* raw dev_t
* format,major,minor[,subdevice]
*
* Just use major and minor, no translation etc is done
* between formats.
*/
static int
parse_device(struct archive *a, struct archive_entry *entry, char *val)
{
char *comma1, *comma2;
comma1 = strchr(val, ',');
if (comma1 == NULL) {
archive_entry_set_dev(entry, mtree_atol10(&val));
return (ARCHIVE_OK);
}
++comma1;
comma2 = strchr(comma1, ',');
if (comma2 == NULL) {
archive_set_error(a, ARCHIVE_ERRNO_FILE_FORMAT,
"Malformed device attribute");
return (ARCHIVE_WARN);
}
++comma2;
archive_entry_set_rdevmajor(entry, mtree_atol(&comma1));
archive_entry_set_rdevminor(entry, mtree_atol(&comma2));
return (ARCHIVE_OK);
}
/*
* Parse a single keyword and its value.
*/
static int
parse_keyword(struct archive_read *a, struct mtree *mtree,
struct archive_entry *entry, struct mtree_option *option, int *parsed_kws)
{
char *val, *key;
key = option->value;
if (*key == '\0')
return (ARCHIVE_OK);
if (strcmp(key, "optional") == 0) {
*parsed_kws |= MTREE_HAS_OPTIONAL;
return (ARCHIVE_OK);
}
if (strcmp(key, "ignore") == 0) {
/*
* The mtree processing is not recursive, so
* recursion will only happen for explicitly listed
* entries.
*/
return (ARCHIVE_OK);
}
val = strchr(key, '=');
if (val == NULL) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Malformed attribute \"%s\" (%d)", key, key[0]);
return (ARCHIVE_WARN);
}
*val = '\0';
++val;
switch (key[0]) {
case 'c':
if (strcmp(key, "content") == 0
|| strcmp(key, "contents") == 0) {
parse_escapes(val, NULL);
archive_strcpy(&mtree->contents_name, val);
break;
}
if (strcmp(key, "cksum") == 0)
break;
case 'd':
if (strcmp(key, "device") == 0) {
*parsed_kws |= MTREE_HAS_DEVICE;
return parse_device(&a->archive, entry, val);
}
case 'f':
if (strcmp(key, "flags") == 0) {
*parsed_kws |= MTREE_HAS_FFLAGS;
archive_entry_copy_fflags_text(entry, val);
break;
}
case 'g':
if (strcmp(key, "gid") == 0) {
*parsed_kws |= MTREE_HAS_GID;
archive_entry_set_gid(entry, mtree_atol10(&val));
break;
}
if (strcmp(key, "gname") == 0) {
*parsed_kws |= MTREE_HAS_GNAME;
archive_entry_copy_gname(entry, val);
break;
}
case 'l':
if (strcmp(key, "link") == 0) {
archive_entry_copy_symlink(entry, val);
break;
}
case 'm':
if (strcmp(key, "md5") == 0 || strcmp(key, "md5digest") == 0)
break;
if (strcmp(key, "mode") == 0) {
if (val[0] >= '0' && val[0] <= '9') {
*parsed_kws |= MTREE_HAS_PERM;
archive_entry_set_perm(entry,
mtree_atol8(&val));
} else {
archive_set_error(&a->archive,
ARCHIVE_ERRNO_FILE_FORMAT,
"Symbolic mode \"%s\" unsupported", val);
return ARCHIVE_WARN;
}
break;
}
case 'n':
if (strcmp(key, "nlink") == 0) {
*parsed_kws |= MTREE_HAS_NLINK;
archive_entry_set_nlink(entry, mtree_atol10(&val));
break;
}
case 'r':
if (strcmp(key, "rmd160") == 0 ||
strcmp(key, "rmd160digest") == 0)
break;
case 's':
if (strcmp(key, "sha1") == 0 || strcmp(key, "sha1digest") == 0)
break;
if (strcmp(key, "sha256") == 0 ||
strcmp(key, "sha256digest") == 0)
break;
if (strcmp(key, "sha384") == 0 ||
strcmp(key, "sha384digest") == 0)
break;
if (strcmp(key, "sha512") == 0 ||
strcmp(key, "sha512digest") == 0)
break;
if (strcmp(key, "size") == 0) {
archive_entry_set_size(entry, mtree_atol10(&val));
break;
}
case 't':
if (strcmp(key, "tags") == 0) {
/*
* Comma delimited list of tags.
* Ignore the tags for now, but the interface
* should be extended to allow inclusion/exclusion.
*/
break;
}
if (strcmp(key, "time") == 0) {
*parsed_kws |= MTREE_HAS_MTIME;
archive_entry_set_mtime(entry, mtree_atol10(&val), 0);
break;
}
if (strcmp(key, "type") == 0) {
*parsed_kws |= MTREE_HAS_TYPE;
switch (val[0]) {
case 'b':
if (strcmp(val, "block") == 0) {
mtree->filetype = AE_IFBLK;
break;
}
case 'c':
if (strcmp(val, "char") == 0) {
mtree->filetype = AE_IFCHR;
break;
}
case 'd':
if (strcmp(val, "dir") == 0) {
mtree->filetype = AE_IFDIR;
break;
}
case 'f':
if (strcmp(val, "fifo") == 0) {
mtree->filetype = AE_IFIFO;
break;
}
if (strcmp(val, "file") == 0) {
mtree->filetype = AE_IFREG;
break;
}
case 'l':
if (strcmp(val, "link") == 0) {
mtree->filetype = AE_IFLNK;
break;
}
default:
archive_set_error(&a->archive,
ARCHIVE_ERRNO_FILE_FORMAT,
"Unrecognized file type \"%s\"", val);
return (ARCHIVE_WARN);
}
archive_entry_set_filetype(entry, mtree->filetype);
break;
}
case 'u':
if (strcmp(key, "uid") == 0) {
*parsed_kws |= MTREE_HAS_UID;
archive_entry_set_uid(entry, mtree_atol10(&val));
break;
}
if (strcmp(key, "uname") == 0) {
*parsed_kws |= MTREE_HAS_UNAME;
archive_entry_copy_uname(entry, val);
break;
}
default:
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Unrecognized key %s=%s", key, val);
return (ARCHIVE_WARN);
}
return (ARCHIVE_OK);
}
static int
read_data(struct archive_read *a, const void **buff, size_t *size, off_t *offset)
{
size_t bytes_to_read;
ssize_t bytes_read;
struct mtree *mtree;
mtree = (struct mtree *)(a->format->data);
if (mtree->fd < 0) {
*buff = NULL;
*offset = 0;
*size = 0;
return (ARCHIVE_EOF);
}
if (mtree->buff == NULL) {
mtree->buffsize = 64 * 1024;
mtree->buff = malloc(mtree->buffsize);
if (mtree->buff == NULL) {
archive_set_error(&a->archive, ENOMEM,
"Can't allocate memory");
}
return (ARCHIVE_FATAL);
}
*buff = mtree->buff;
*offset = mtree->offset;
if ((off_t)mtree->buffsize > mtree->cur_size - mtree->offset)
bytes_to_read = mtree->cur_size - mtree->offset;
else
bytes_to_read = mtree->buffsize;
bytes_read = read(mtree->fd, mtree->buff, bytes_to_read);
if (bytes_read < 0) {
archive_set_error(&a->archive, errno, "Can't read");
return (ARCHIVE_WARN);
}
if (bytes_read == 0) {
*size = 0;
return (ARCHIVE_EOF);
}
mtree->offset += bytes_read;
*size = bytes_read;
return (ARCHIVE_OK);
}
/* Skip does nothing except possibly close the contents file. */
static int
skip(struct archive_read *a)
{
struct mtree *mtree;
mtree = (struct mtree *)(a->format->data);
if (mtree->fd >= 0) {
close(mtree->fd);
mtree->fd = -1;
}
return (ARCHIVE_OK);
}
/*
* Since parsing octal escapes always makes strings shorter,
* we can always do this conversion in-place.
*/
static void
parse_escapes(char *src, struct mtree_entry *mentry)
{
char *dest = src;
char c;
/*
* The current directory is somewhat special, it should be archived
* only once as it will confuse extraction otherwise.
*/
if (strcmp(src, ".") == 0)
mentry->full = 1;
while (*src != '\0') {
c = *src++;
if (c == '/' && mentry != NULL)
mentry->full = 1;
if (c == '\\') {
if (src[0] >= '0' && src[0] <= '3'
&& src[1] >= '0' && src[1] <= '7'
&& src[2] >= '0' && src[2] <= '7') {
c = (src[0] - '0') << 6;
c |= (src[1] - '0') << 3;
c |= (src[2] - '0');
src += 3;
}
}
*dest++ = c;
}
*dest = '\0';
}
/*
* Note that this implementation does not (and should not!) obey
* locale settings; you cannot simply substitute strtol here, since
* it does obey locale.
*/
static int64_t
mtree_atol8(char **p)
{
int64_t l, limit, last_digit_limit;
int digit, base;
base = 8;
limit = INT64_MAX / base;
last_digit_limit = INT64_MAX % base;
l = 0;
digit = **p - '0';
while (digit >= 0 && digit < base) {
if (l>limit || (l == limit && digit > last_digit_limit)) {
l = INT64_MAX; /* Truncate on overflow. */
break;
}
l = (l * base) + digit;
digit = *++(*p) - '0';
}
return (l);
}
/*
* Note that this implementation does not (and should not!) obey
* locale settings; you cannot simply substitute strtol here, since
* it does obey locale.
*/
static int64_t
mtree_atol10(char **p)
{
int64_t l, limit, last_digit_limit;
int base, digit, sign;
base = 10;
limit = INT64_MAX / base;
last_digit_limit = INT64_MAX % base;
if (**p == '-') {
sign = -1;
++(*p);
} else
sign = 1;
l = 0;
digit = **p - '0';
while (digit >= 0 && digit < base) {
if (l > limit || (l == limit && digit > last_digit_limit)) {
l = UINT64_MAX; /* Truncate on overflow. */
break;
}
l = (l * base) + digit;
digit = *++(*p) - '0';
}
return (sign < 0) ? -l : l;
}
/*
* Note that this implementation does not (and should not!) obey
* locale settings; you cannot simply substitute strtol here, since
* it does obey locale.
*/
static int64_t
mtree_atol16(char **p)
{
int64_t l, limit, last_digit_limit;
int base, digit, sign;
base = 16;
limit = INT64_MAX / base;
last_digit_limit = INT64_MAX % base;
if (**p == '-') {
sign = -1;
++(*p);
} else
sign = 1;
l = 0;
if (**p >= '0' && **p <= '9')
digit = **p - '0';
else if (**p >= 'a' && **p <= 'f')
digit = **p - 'a' + 10;
else if (**p >= 'A' && **p <= 'F')
digit = **p - 'A' + 10;
else
digit = -1;
while (digit >= 0 && digit < base) {
if (l > limit || (l == limit && digit > last_digit_limit)) {
l = UINT64_MAX; /* Truncate on overflow. */
break;
}
l = (l * base) + digit;
if (**p >= '0' && **p <= '9')
digit = **p - '0';
else if (**p >= 'a' && **p <= 'f')
digit = **p - 'a' + 10;
else if (**p >= 'A' && **p <= 'F')
digit = **p - 'A' + 10;
else
digit = -1;
}
return (sign < 0) ? -l : l;
}
static int64_t
mtree_atol(char **p)
{
if (**p != '0')
return mtree_atol10(p);
if ((*p)[1] == 'x' || (*p)[1] == 'X') {
*p += 2;
return mtree_atol16(p);
}
return mtree_atol8(p);
}
/*
* Returns length of line (including trailing newline)
* or negative on error. 'start' argument is updated to
* point to first character of line.
*/
static ssize_t
readline(struct archive_read *a, struct mtree *mtree, char **start, ssize_t limit)
{
ssize_t bytes_read;
ssize_t total_size = 0;
const void *t;
const char *s;
void *p;
/* Accumulate line in a line buffer. */
for (;;) {
/* Read some more. */
bytes_read = (a->decompressor->read_ahead)(a, &t, 1);
if (bytes_read == 0)
return (0);
if (bytes_read < 0)
return (ARCHIVE_FATAL);
s = t; /* Start of line? */
p = memchr(t, '\n', bytes_read);
/* If we found '\n', trim the read. */
if (p != NULL) {
bytes_read = 1 + ((const char *)p) - s;
}
if (total_size + bytes_read + 1 > limit) {
archive_set_error(&a->archive,
ARCHIVE_ERRNO_FILE_FORMAT,
"Line too long");
return (ARCHIVE_FATAL);
}
if (archive_string_ensure(&mtree->line,
total_size + bytes_read + 1) == NULL) {
archive_set_error(&a->archive, ENOMEM,
"Can't allocate working buffer");
return (ARCHIVE_FATAL);
}
memcpy(mtree->line.s + total_size, t, bytes_read);
(a->decompressor->consume)(a, bytes_read);
total_size += bytes_read;
/* Null terminate. */
mtree->line.s[total_size] = '\0';
/* If we found '\n', clean up and return. */
if (p != NULL) {
*start = mtree->line.s;
return (total_size);
}
}
}