freebsd-nq/sys/dev/netmap/netmap_generic.c
Luigi Rizzo f9790aeb88 split netmap code according to functions:
- netmap.c		base code
- netmap_freebsd.c	FreeBSD-specific code
- netmap_generic.c	emulate netmap over standard drivers
- netmap_mbq.c		simple mbuf tailq
- netmap_mem2.c		memory management
- netmap_vale.c		VALE switch

simplify devce-specific code
2013-12-15 08:37:24 +00:00

819 lines
25 KiB
C

/*
* Copyright (C) 2013 Universita` di Pisa. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This module implements netmap support on top of standard,
* unmodified device drivers.
*
* A NIOCREGIF request is handled here if the device does not
* have native support. TX and RX rings are emulated as follows:
*
* NIOCREGIF
* We preallocate a block of TX mbufs (roughly as many as
* tx descriptors; the number is not critical) to speed up
* operation during transmissions. The refcount on most of
* these buffers is artificially bumped up so we can recycle
* them more easily. Also, the destructor is intercepted
* so we use it as an interrupt notification to wake up
* processes blocked on a poll().
*
* For each receive ring we allocate one "struct mbq"
* (an mbuf tailq plus a spinlock). We intercept packets
* (through if_input)
* on the receive path and put them in the mbq from which
* netmap receive routines can grab them.
*
* TX:
* in the generic_txsync() routine, netmap buffers are copied
* (or linked, in a future) to the preallocated mbufs
* and pushed to the transmit queue. Some of these mbufs
* (those with NS_REPORT, or otherwise every half ring)
* have the refcount=1, others have refcount=2.
* When the destructor is invoked, we take that as
* a notification that all mbufs up to that one in
* the specific ring have been completed, and generate
* the equivalent of a transmit interrupt.
*
* RX:
*
*/
#ifdef __FreeBSD__
#include <sys/cdefs.h> /* prerequisite */
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/lock.h> /* PROT_EXEC */
#include <sys/rwlock.h>
#include <sys/socket.h> /* sockaddrs */
#include <sys/selinfo.h>
#include <net/if.h>
#include <net/if_var.h>
#include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */
// XXX temporary - D() defined here
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#include <dev/netmap/netmap_mem2.h>
#define rtnl_lock() D("rtnl_lock called");
#define rtnl_unlock() D("rtnl_lock called");
#define MBUF_TXQ(m) ((m)->m_pkthdr.flowid)
#define smp_mb()
/*
* mbuf wrappers
*/
/*
* we allocate an EXT_PACKET
*/
#define netmap_get_mbuf(len) m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR|M_NOFREE)
/* mbuf destructor, also need to change the type to EXT_EXTREF,
* add an M_NOFREE flag, and then clear the flag and
* chain into uma_zfree(zone_pack, mf)
* (or reinstall the buffer ?)
*/
#define SET_MBUF_DESTRUCTOR(m, fn) do { \
(m)->m_ext.ext_free = (void *)fn; \
(m)->m_ext.ext_type = EXT_EXTREF; \
} while (0)
#define GET_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *(m)->m_ext.ref_cnt : -1)
#else /* linux */
#include "bsd_glue.h"
#include <linux/rtnetlink.h> /* rtnl_[un]lock() */
#include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */
#include <linux/hrtimer.h>
//#define RATE /* Enables communication statistics. */
//#define REG_RESET
#endif /* linux */
/* Common headers. */
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#include <dev/netmap/netmap_mem2.h>
/* ======================== usage stats =========================== */
#ifdef RATE
#define IFRATE(x) x
struct rate_stats {
unsigned long txpkt;
unsigned long txsync;
unsigned long txirq;
unsigned long rxpkt;
unsigned long rxirq;
unsigned long rxsync;
};
struct rate_context {
unsigned refcount;
struct timer_list timer;
struct rate_stats new;
struct rate_stats old;
};
#define RATE_PRINTK(_NAME_) \
printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
#define RATE_PERIOD 2
static void rate_callback(unsigned long arg)
{
struct rate_context * ctx = (struct rate_context *)arg;
struct rate_stats cur = ctx->new;
int r;
RATE_PRINTK(txpkt);
RATE_PRINTK(txsync);
RATE_PRINTK(txirq);
RATE_PRINTK(rxpkt);
RATE_PRINTK(rxsync);
RATE_PRINTK(rxirq);
printk("\n");
ctx->old = cur;
r = mod_timer(&ctx->timer, jiffies +
msecs_to_jiffies(RATE_PERIOD * 1000));
if (unlikely(r))
D("[v1000] Error: mod_timer()");
}
static struct rate_context rate_ctx;
#else /* !RATE */
#define IFRATE(x)
#endif /* !RATE */
/* =============== GENERIC NETMAP ADAPTER SUPPORT ================= */
#define GENERIC_BUF_SIZE netmap_buf_size /* Size of the mbufs in the Tx pool. */
/*
* Wrapper used by the generic adapter layer to notify
* the poller threads. Differently from netmap_rx_irq(), we check
* only IFCAP_NETMAP instead of NAF_NATIVE_ON to enable the irq.
*/
static void
netmap_generic_irq(struct ifnet *ifp, u_int q, u_int *work_done)
{
if (unlikely(!(ifp->if_capenable & IFCAP_NETMAP)))
return;
netmap_common_irq(ifp, q, work_done);
}
/* Enable/disable netmap mode for a generic network interface. */
int generic_netmap_register(struct netmap_adapter *na, int enable)
{
struct ifnet *ifp = na->ifp;
struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
struct mbuf *m;
int error;
int i, r;
if (!na)
return EINVAL;
#ifdef REG_RESET
error = ifp->netdev_ops->ndo_stop(ifp);
if (error) {
return error;
}
#endif /* REG_RESET */
if (enable) { /* Enable netmap mode. */
/* Initialize the rx queue, as generic_rx_handler() can
* be called as soon as netmap_catch_rx() returns.
*/
for (r=0; r<na->num_rx_rings; r++) {
mbq_safe_init(&na->rx_rings[r].rx_queue);
na->rx_rings[r].nr_ntc = 0;
}
/* Init the mitigation timer. */
netmap_mitigation_init(gna);
/*
* Preallocate packet buffers for the tx rings.
*/
for (r=0; r<na->num_tx_rings; r++) {
na->tx_rings[r].nr_ntc = 0;
na->tx_rings[r].tx_pool = malloc(na->num_tx_desc * sizeof(struct mbuf *),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (!na->tx_rings[r].tx_pool) {
D("tx_pool allocation failed");
error = ENOMEM;
goto free_tx_pool;
}
for (i=0; i<na->num_tx_desc; i++) {
m = netmap_get_mbuf(GENERIC_BUF_SIZE);
if (!m) {
D("tx_pool[%d] allocation failed", i);
error = ENOMEM;
goto free_mbufs;
}
na->tx_rings[r].tx_pool[i] = m;
}
}
rtnl_lock();
/* Prepare to intercept incoming traffic. */
error = netmap_catch_rx(na, 1);
if (error) {
D("netdev_rx_handler_register() failed");
goto register_handler;
}
ifp->if_capenable |= IFCAP_NETMAP;
/* Make netmap control the packet steering. */
netmap_catch_packet_steering(gna, 1);
rtnl_unlock();
#ifdef RATE
if (rate_ctx.refcount == 0) {
D("setup_timer()");
memset(&rate_ctx, 0, sizeof(rate_ctx));
setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
D("Error: mod_timer()");
}
}
rate_ctx.refcount++;
#endif /* RATE */
} else { /* Disable netmap mode. */
rtnl_lock();
ifp->if_capenable &= ~IFCAP_NETMAP;
/* Release packet steering control. */
netmap_catch_packet_steering(gna, 0);
/* Do not intercept packets on the rx path. */
netmap_catch_rx(na, 0);
rtnl_unlock();
/* Free the mbufs going to the netmap rings */
for (r=0; r<na->num_rx_rings; r++) {
mbq_safe_purge(&na->rx_rings[r].rx_queue);
mbq_safe_destroy(&na->rx_rings[r].rx_queue);
}
netmap_mitigation_cleanup(gna);
for (r=0; r<na->num_tx_rings; r++) {
for (i=0; i<na->num_tx_desc; i++) {
m_freem(na->tx_rings[r].tx_pool[i]);
}
free(na->tx_rings[r].tx_pool, M_DEVBUF);
}
#ifdef RATE
if (--rate_ctx.refcount == 0) {
D("del_timer()");
del_timer(&rate_ctx.timer);
}
#endif
}
#ifdef REG_RESET
error = ifp->netdev_ops->ndo_open(ifp);
if (error) {
goto alloc_tx_pool;
}
#endif
return 0;
register_handler:
rtnl_unlock();
free_tx_pool:
r--;
i = na->num_tx_desc; /* Useless, but just to stay safe. */
free_mbufs:
i--;
for (; r>=0; r--) {
for (; i>=0; i--) {
m_freem(na->tx_rings[r].tx_pool[i]);
}
free(na->tx_rings[r].tx_pool, M_DEVBUF);
i = na->num_tx_desc - 1;
}
return error;
}
/*
* Callback invoked when the device driver frees an mbuf used
* by netmap to transmit a packet. This usually happens when
* the NIC notifies the driver that transmission is completed.
*/
static void
generic_mbuf_destructor(struct mbuf *m)
{
if (netmap_verbose)
D("Tx irq (%p) queue %d", m, MBUF_TXQ(m));
netmap_generic_irq(MBUF_IFP(m), MBUF_TXQ(m), NULL);
#ifdef __FreeBSD__
m->m_ext.ext_type = EXT_PACKET;
m->m_ext.ext_free = NULL;
if (*(m->m_ext.ref_cnt) == 0)
*(m->m_ext.ref_cnt) = 1;
uma_zfree(zone_pack, m);
#endif /* __FreeBSD__ */
IFRATE(rate_ctx.new.txirq++);
}
/* Record completed transmissions and update hwavail.
*
* nr_ntc is the oldest tx buffer not yet completed
* (same as nr_hwavail + nr_hwcur + 1),
* nr_hwcur is the first unsent buffer.
* When cleaning, we try to recover buffers between nr_ntc and nr_hwcur.
*/
static int
generic_netmap_tx_clean(struct netmap_kring *kring)
{
u_int num_slots = kring->nkr_num_slots;
u_int ntc = kring->nr_ntc;
u_int hwcur = kring->nr_hwcur;
u_int n = 0;
struct mbuf **tx_pool = kring->tx_pool;
while (ntc != hwcur) { /* buffers not completed */
struct mbuf *m = tx_pool[ntc];
if (unlikely(m == NULL)) {
/* try to replenish the entry */
tx_pool[ntc] = m = netmap_get_mbuf(GENERIC_BUF_SIZE);
if (unlikely(m == NULL)) {
D("mbuf allocation failed, XXX error");
// XXX how do we proceed ? break ?
return -ENOMEM;
}
} else if (GET_MBUF_REFCNT(m) != 1) {
break; /* This mbuf is still busy: its refcnt is 2. */
}
if (unlikely(++ntc == num_slots)) {
ntc = 0;
}
n++;
}
kring->nr_ntc = ntc;
kring->nr_hwavail += n;
ND("tx completed [%d] -> hwavail %d", n, kring->nr_hwavail);
return n;
}
/*
* We have pending packets in the driver between nr_ntc and j.
* Compute a position in the middle, to be used to generate
* a notification.
*/
static inline u_int
generic_tx_event_middle(struct netmap_kring *kring, u_int hwcur)
{
u_int n = kring->nkr_num_slots;
u_int ntc = kring->nr_ntc;
u_int e;
if (hwcur >= ntc) {
e = (hwcur + ntc) / 2;
} else { /* wrap around */
e = (hwcur + n + ntc) / 2;
if (e >= n) {
e -= n;
}
}
if (unlikely(e >= n)) {
D("This cannot happen");
e = 0;
}
return e;
}
/*
* We have pending packets in the driver between nr_ntc and hwcur.
* Schedule a notification approximately in the middle of the two.
* There is a race but this is only called within txsync which does
* a double check.
*/
static void
generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
{
struct mbuf *m;
u_int e;
if (kring->nr_ntc == hwcur) {
return;
}
e = generic_tx_event_middle(kring, hwcur);
m = kring->tx_pool[e];
if (m == NULL) {
/* This can happen if there is already an event on the netmap
slot 'e': There is nothing to do. */
return;
}
ND("Event at %d mbuf %p refcnt %d", e, m, GET_MBUF_REFCNT(m));
kring->tx_pool[e] = NULL;
SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor);
// XXX wmb() ?
/* Decrement the refcount an free it if we have the last one. */
m_freem(m);
smp_mb();
}
/*
* generic_netmap_txsync() transforms netmap buffers into mbufs
* and passes them to the standard device driver
* (ndo_start_xmit() or ifp->if_transmit() ).
* On linux this is not done directly, but using dev_queue_xmit(),
* since it implements the TX flow control (and takes some locks).
*/
static int
generic_netmap_txsync(struct netmap_adapter *na, u_int ring_nr, int flags)
{
struct ifnet *ifp = na->ifp;
struct netmap_kring *kring = &na->tx_rings[ring_nr];
struct netmap_ring *ring = kring->ring;
u_int j, k, num_slots = kring->nkr_num_slots;
int new_slots, ntx;
IFRATE(rate_ctx.new.txsync++);
// TODO: handle the case of mbuf allocation failure
/* first, reclaim completed buffers */
generic_netmap_tx_clean(kring);
/* Take a copy of ring->cur now, and never read it again. */
k = ring->cur;
if (unlikely(k >= num_slots)) {
return netmap_ring_reinit(kring);
}
rmb();
j = kring->nr_hwcur;
/*
* 'new_slots' counts how many new slots have been added:
* everything from hwcur to cur, excluding reserved ones, if any.
* nr_hwreserved start from hwcur and counts how many slots were
* not sent to the NIC from the previous round.
*/
new_slots = k - j - kring->nr_hwreserved;
if (new_slots < 0) {
new_slots += num_slots;
}
ntx = 0;
if (j != k) {
/* Process new packets to send:
* j is the current index in the netmap ring.
*/
while (j != k) {
struct netmap_slot *slot = &ring->slot[j]; /* Current slot in the netmap ring */
void *addr = NMB(slot);
u_int len = slot->len;
struct mbuf *m;
int tx_ret;
if (unlikely(addr == netmap_buffer_base || len > NETMAP_BUF_SIZE)) {
return netmap_ring_reinit(kring);
}
/* Tale a mbuf from the tx pool and copy in the user packet. */
m = kring->tx_pool[j];
if (unlikely(!m)) {
RD(5, "This should never happen");
kring->tx_pool[j] = m = netmap_get_mbuf(GENERIC_BUF_SIZE);
if (unlikely(m == NULL)) {
D("mbuf allocation failed");
break;
}
}
/* XXX we should ask notifications when NS_REPORT is set,
* or roughly every half frame. We can optimize this
* by lazily requesting notifications only when a
* transmission fails. Probably the best way is to
* break on failures and set notifications when
* ring->avail == 0 || j != k
*/
tx_ret = generic_xmit_frame(ifp, m, addr, len, ring_nr);
if (unlikely(tx_ret)) {
RD(5, "start_xmit failed: err %d [%u,%u,%u,%u]",
tx_ret, kring->nr_ntc, j, k, kring->nr_hwavail);
/*
* No room for this mbuf in the device driver.
* Request a notification FOR A PREVIOUS MBUF,
* then call generic_netmap_tx_clean(kring) to do the
* double check and see if we can free more buffers.
* If there is space continue, else break;
* NOTE: the double check is necessary if the problem
* occurs in the txsync call after selrecord().
* Also, we need some way to tell the caller that not
* all buffers were queued onto the device (this was
* not a problem with native netmap driver where space
* is preallocated). The bridge has a similar problem
* and we solve it there by dropping the excess packets.
*/
generic_set_tx_event(kring, j);
if (generic_netmap_tx_clean(kring)) { /* space now available */
continue;
} else {
break;
}
}
slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
if (unlikely(++j == num_slots))
j = 0;
ntx++;
}
/* Update hwcur to the next slot to transmit. */
kring->nr_hwcur = j;
/*
* Report all new slots as unavailable, even those not sent.
* We account for them with with hwreserved, so that
* nr_hwreserved =:= cur - nr_hwcur
*/
kring->nr_hwavail -= new_slots;
kring->nr_hwreserved = k - j;
if (kring->nr_hwreserved < 0) {
kring->nr_hwreserved += num_slots;
}
IFRATE(rate_ctx.new.txpkt += ntx);
if (!kring->nr_hwavail) {
/* No more available slots? Set a notification event
* on a netmap slot that will be cleaned in the future.
* No doublecheck is performed, since txsync() will be
* called twice by netmap_poll().
*/
generic_set_tx_event(kring, j);
}
ND("tx #%d, hwavail = %d", n, kring->nr_hwavail);
}
/* Synchronize the user's view to the kernel view. */
ring->avail = kring->nr_hwavail;
ring->reserved = kring->nr_hwreserved;
return 0;
}
/*
* This handler is registered (through netmap_catch_rx())
* within the attached network interface
* in the RX subsystem, so that every mbuf passed up by
* the driver can be stolen to the network stack.
* Stolen packets are put in a queue where the
* generic_netmap_rxsync() callback can extract them.
*/
void generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
u_int work_done;
u_int rr = 0; // receive ring number
ND("called");
/* limit the size of the queue */
if (unlikely(mbq_len(&na->rx_rings[rr].rx_queue) > 1024)) {
m_freem(m);
} else {
mbq_safe_enqueue(&na->rx_rings[rr].rx_queue, m);
}
if (netmap_generic_mit < 32768) {
/* no rx mitigation, pass notification up */
netmap_generic_irq(na->ifp, rr, &work_done);
IFRATE(rate_ctx.new.rxirq++);
} else {
/* same as send combining, filter notification if there is a
* pending timer, otherwise pass it up and start a timer.
*/
if (likely(netmap_mitigation_active(gna))) {
/* Record that there is some pending work. */
gna->mit_pending = 1;
} else {
netmap_generic_irq(na->ifp, rr, &work_done);
IFRATE(rate_ctx.new.rxirq++);
netmap_mitigation_start(gna);
}
}
}
/*
* generic_netmap_rxsync() extracts mbufs from the queue filled by
* generic_netmap_rx_handler() and puts their content in the netmap
* receive ring.
* Access must be protected because the rx handler is asynchronous,
*/
static int
generic_netmap_rxsync(struct netmap_adapter *na, u_int ring_nr, int flags)
{
struct netmap_kring *kring = &na->rx_rings[ring_nr];
struct netmap_ring *ring = kring->ring;
u_int j, n, lim = kring->nkr_num_slots - 1;
int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
u_int k, resvd = ring->reserved;
if (ring->cur > lim)
return netmap_ring_reinit(kring);
/* Import newly received packets into the netmap ring. */
if (netmap_no_pendintr || force_update) {
uint16_t slot_flags = kring->nkr_slot_flags;
struct mbuf *m;
n = 0;
j = kring->nr_ntc; /* first empty slot in the receive ring */
/* extract buffers from the rx queue, stop at most one
* slot before nr_hwcur (index k)
*/
k = (kring->nr_hwcur) ? kring->nr_hwcur-1 : lim;
while (j != k) {
int len;
void *addr = NMB(&ring->slot[j]);
if (addr == netmap_buffer_base) { /* Bad buffer */
return netmap_ring_reinit(kring);
}
/*
* Call the locked version of the function.
* XXX Ideally we could grab a batch of mbufs at once,
* by changing rx_queue into a ring.
*/
m = mbq_safe_dequeue(&kring->rx_queue);
if (!m)
break;
len = MBUF_LEN(m);
m_copydata(m, 0, len, addr);
ring->slot[j].len = len;
ring->slot[j].flags = slot_flags;
m_freem(m);
if (unlikely(j++ == lim))
j = 0;
n++;
}
if (n) {
kring->nr_ntc = j;
kring->nr_hwavail += n;
IFRATE(rate_ctx.new.rxpkt += n);
}
kring->nr_kflags &= ~NKR_PENDINTR;
}
// XXX should we invert the order ?
/* Skip past packets that userspace has released */
j = kring->nr_hwcur;
k = ring->cur;
if (resvd > 0) {
if (resvd + ring->avail >= lim + 1) {
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
ring->reserved = resvd = 0; // XXX panic...
}
k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd;
}
if (j != k) {
/* Userspace has released some packets. */
for (n = 0; j != k; n++) {
struct netmap_slot *slot = &ring->slot[j];
slot->flags &= ~NS_BUF_CHANGED;
if (unlikely(j++ == lim))
j = 0;
}
kring->nr_hwavail -= n;
kring->nr_hwcur = k;
}
/* Tell userspace that there are new packets. */
ring->avail = kring->nr_hwavail - resvd;
IFRATE(rate_ctx.new.rxsync++);
return 0;
}
static void
generic_netmap_dtor(struct netmap_adapter *na)
{
struct ifnet *ifp = na->ifp;
struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
struct netmap_adapter *prev_na = gna->prev;
if (prev_na != NULL) {
D("Released generic NA %p", gna);
if_rele(na->ifp);
netmap_adapter_put(prev_na);
}
if (ifp != NULL) {
WNA(ifp) = prev_na;
D("Restored native NA %p", prev_na);
na->ifp = NULL;
}
}
/*
* generic_netmap_attach() makes it possible to use netmap on
* a device without native netmap support.
* This is less performant than native support but potentially
* faster than raw sockets or similar schemes.
*
* In this "emulated" mode, netmap rings do not necessarily
* have the same size as those in the NIC. We use a default
* value and possibly override it if the OS has ways to fetch the
* actual configuration.
*/
int
generic_netmap_attach(struct ifnet *ifp)
{
struct netmap_adapter *na;
struct netmap_generic_adapter *gna;
int retval;
u_int num_tx_desc, num_rx_desc;
num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc);
ND("Netmap ring size: TX = %d, RX = %d", num_tx_desc, num_rx_desc);
gna = malloc(sizeof(*gna), M_DEVBUF, M_NOWAIT | M_ZERO);
if (gna == NULL) {
D("no memory on attach, give up");
return ENOMEM;
}
na = (struct netmap_adapter *)gna;
na->ifp = ifp;
na->num_tx_desc = num_tx_desc;
na->num_rx_desc = num_rx_desc;
na->nm_register = &generic_netmap_register;
na->nm_txsync = &generic_netmap_txsync;
na->nm_rxsync = &generic_netmap_rxsync;
na->nm_dtor = &generic_netmap_dtor;
/* when using generic, IFCAP_NETMAP is set so we force
* NAF_SKIP_INTR to use the regular interrupt handler
*/
na->na_flags = NAF_SKIP_INTR;
ND("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
ifp->num_tx_queues, ifp->real_num_tx_queues,
ifp->tx_queue_len);
ND("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
ifp->num_rx_queues, ifp->real_num_rx_queues);
generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
retval = netmap_attach_common(na);
if (retval) {
free(gna, M_DEVBUF);
}
return retval;
}