2006-09-01 06:07:26 +00:00

616 lines
15 KiB
C

/*-
* Copyright 1996, 1997, 1998, 1999 John D. Polstra.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Dynamic linker for ELF.
*
* John Polstra <jdp@polstra.com>.
*/
#include <sys/param.h>
#include <sys/mman.h>
#include <machine/ia64_cpu.h>
#include <dlfcn.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "debug.h"
#include "rtld.h"
extern Elf_Dyn _DYNAMIC;
/*
* Macros for loading/storing unaligned 64-bit values. These are
* needed because relocations can point to unaligned data. This
* occurs in the DWARF2 exception frame tables generated by the
* compiler, for instance.
*
* We don't use these when relocating jump slots and GOT entries,
* since they are guaranteed to be aligned.
*
* XXX dfr stub for now.
*/
#define load64(p) (*(u_int64_t *) (p))
#define store64(p, v) (*(u_int64_t *) (p) = (v))
/* Allocate an @fptr. */
#define FPTR_CHUNK_SIZE 64
struct fptr_chunk {
struct fptr fptrs[FPTR_CHUNK_SIZE];
};
static struct fptr_chunk first_chunk;
static struct fptr_chunk *current_chunk = &first_chunk;
static struct fptr *next_fptr = &first_chunk.fptrs[0];
static struct fptr *last_fptr = &first_chunk.fptrs[FPTR_CHUNK_SIZE];
/*
* We use static storage initially so that we don't have to call
* malloc during init_rtld().
*/
static struct fptr *
alloc_fptr(Elf_Addr target, Elf_Addr gp)
{
struct fptr* fptr;
if (next_fptr == last_fptr) {
current_chunk = malloc(sizeof(struct fptr_chunk));
next_fptr = &current_chunk->fptrs[0];
last_fptr = &current_chunk->fptrs[FPTR_CHUNK_SIZE];
}
fptr = next_fptr;
next_fptr++;
fptr->target = target;
fptr->gp = gp;
return fptr;
}
static struct fptr **
alloc_fptrs(Obj_Entry *obj, bool mapped)
{
struct fptr **fptrs;
size_t fbytes;
fbytes = obj->nchains * sizeof(struct fptr *);
/*
* Avoid malloc, if requested. Happens when relocating
* rtld itself on startup.
*/
if (mapped) {
fptrs = mmap(NULL, fbytes, PROT_READ|PROT_WRITE,
MAP_ANON, -1, 0);
if (fptrs == MAP_FAILED)
fptrs = NULL;
} else {
fptrs = malloc(fbytes);
if (fptrs != NULL)
memset(fptrs, 0, fbytes);
}
/*
* This assertion is necessary to guarantee function pointer
* uniqueness
*/
assert(fptrs != NULL);
return (obj->priv = fptrs);
}
static void
free_fptrs(Obj_Entry *obj, bool mapped)
{
struct fptr **fptrs;
size_t fbytes;
fptrs = obj->priv;
if (fptrs == NULL)
return;
fbytes = obj->nchains * sizeof(struct fptr *);
if (mapped)
munmap(fptrs, fbytes);
else
free(fptrs);
obj->priv = NULL;
}
/* Relocate a non-PLT object with addend. */
static int
reloc_non_plt_obj(Obj_Entry *obj_rtld, Obj_Entry *obj, const Elf_Rela *rela,
SymCache *cache)
{
struct fptr **fptrs;
Elf_Addr *where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
switch (ELF_R_TYPE(rela->r_info)) {
case R_IA_64_REL64LSB:
/*
* We handle rtld's relocations in rtld_start.S
*/
if (obj != obj_rtld)
store64(where,
load64(where) + (Elf_Addr) obj->relocbase);
break;
case R_IA_64_DIR64LSB: {
const Elf_Sym *def;
const Obj_Entry *defobj;
Elf_Addr target;
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
false, cache);
if (def == NULL)
return -1;
target = (def->st_shndx != SHN_UNDEF)
? (Elf_Addr)(defobj->relocbase + def->st_value) : 0;
store64(where, target + rela->r_addend);
break;
}
case R_IA_64_FPTR64LSB: {
/*
* We have to make sure that all @fptr references to
* the same function are identical so that code can
* compare function pointers.
*/
const Elf_Sym *def;
const Obj_Entry *defobj;
struct fptr *fptr = 0;
Elf_Addr target, gp;
int sym_index;
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
false, cache);
if (def == NULL)
return -1;
if (def->st_shndx != SHN_UNDEF) {
target = (Elf_Addr)(defobj->relocbase + def->st_value);
gp = (Elf_Addr)defobj->pltgot;
/* rtld is allowed to reference itself only */
assert(!obj->rtld || obj == defobj);
fptrs = defobj->priv;
if (fptrs == NULL)
fptrs = alloc_fptrs((Obj_Entry *) defobj,
obj->rtld);
sym_index = def - defobj->symtab;
/*
* Find the @fptr, using fptrs as a helper.
*/
if (fptrs)
fptr = fptrs[sym_index];
if (!fptr) {
fptr = alloc_fptr(target, gp);
if (fptrs)
fptrs[sym_index] = fptr;
}
} else
fptr = NULL;
store64(where, (Elf_Addr)fptr);
break;
}
case R_IA_64_IPLTLSB: {
/*
* Relocation typically used to populate C++ virtual function
* tables. It creates a 128-bit function descriptor at the
* specified memory address.
*/
const Elf_Sym *def;
const Obj_Entry *defobj;
struct fptr *fptr;
Elf_Addr target, gp;
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
false, cache);
if (def == NULL)
return -1;
if (def->st_shndx != SHN_UNDEF) {
target = (Elf_Addr)(defobj->relocbase + def->st_value);
gp = (Elf_Addr)defobj->pltgot;
} else {
target = 0;
gp = 0;
}
fptr = (void*)where;
store64(&fptr->target, target);
store64(&fptr->gp, gp);
break;
}
case R_IA_64_DTPMOD64LSB: {
const Elf_Sym *def;
const Obj_Entry *defobj;
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
false, cache);
if (def == NULL)
return -1;
store64(where, defobj->tlsindex);
break;
}
case R_IA_64_DTPREL64LSB: {
const Elf_Sym *def;
const Obj_Entry *defobj;
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
false, cache);
if (def == NULL)
return -1;
store64(where, def->st_value + rela->r_addend);
break;
}
case R_IA_64_TPREL64LSB: {
const Elf_Sym *def;
const Obj_Entry *defobj;
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
false, cache);
if (def == NULL)
return -1;
/*
* We lazily allocate offsets for static TLS as we
* see the first relocation that references the
* TLS block. This allows us to support (small
* amounts of) static TLS in dynamically loaded
* modules. If we run out of space, we generate an
* error.
*/
if (!defobj->tls_done) {
if (!allocate_tls_offset((Obj_Entry*) defobj)) {
_rtld_error("%s: No space available for static "
"Thread Local Storage", obj->path);
return -1;
}
}
store64(where, defobj->tlsoffset + def->st_value + rela->r_addend);
break;
}
case R_IA_64_NONE:
break;
default:
_rtld_error("%s: Unsupported relocation type %u"
" in non-PLT relocations\n", obj->path,
(unsigned int)ELF_R_TYPE(rela->r_info));
return -1;
}
return(0);
}
/* Process the non-PLT relocations. */
int
reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld)
{
const Elf_Rel *rellim;
const Elf_Rel *rel;
const Elf_Rela *relalim;
const Elf_Rela *rela;
SymCache *cache;
int bytes = obj->nchains * sizeof(SymCache);
int r = -1;
/*
* The dynamic loader may be called from a thread, we have
* limited amounts of stack available so we cannot use alloca().
*/
cache = mmap(NULL, bytes, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
if (cache == MAP_FAILED)
cache = NULL;
/* Perform relocations without addend if there are any: */
rellim = (const Elf_Rel *) ((caddr_t) obj->rel + obj->relsize);
for (rel = obj->rel; obj->rel != NULL && rel < rellim; rel++) {
Elf_Rela locrela;
locrela.r_info = rel->r_info;
locrela.r_offset = rel->r_offset;
locrela.r_addend = 0;
if (reloc_non_plt_obj(obj_rtld, obj, &locrela, cache))
goto done;
}
/* Perform relocations with addend if there are any: */
relalim = (const Elf_Rela *) ((caddr_t) obj->rela + obj->relasize);
for (rela = obj->rela; obj->rela != NULL && rela < relalim; rela++) {
if (reloc_non_plt_obj(obj_rtld, obj, rela, cache))
goto done;
}
r = 0;
done:
if (cache)
munmap(cache, bytes);
/*
* Release temporarily mapped fptrs if relocating
* rtld object itself. A new table will be created
* in make_function_pointer using malloc when needed.
*/
if (obj->rtld && obj->priv)
free_fptrs(obj, true);
return (r);
}
/* Process the PLT relocations. */
int
reloc_plt(Obj_Entry *obj)
{
/* All PLT relocations are the same kind: Elf_Rel or Elf_Rela. */
if (obj->pltrelsize != 0) {
const Elf_Rel *rellim;
const Elf_Rel *rel;
rellim = (const Elf_Rel *)
((char *)obj->pltrel + obj->pltrelsize);
for (rel = obj->pltrel; rel < rellim; rel++) {
Elf_Addr *where;
assert(ELF_R_TYPE(rel->r_info) == R_IA_64_IPLTLSB);
/* Relocate the @fptr pointing into the PLT. */
where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
*where += (Elf_Addr)obj->relocbase;
}
} else {
const Elf_Rela *relalim;
const Elf_Rela *rela;
relalim = (const Elf_Rela *)
((char *)obj->pltrela + obj->pltrelasize);
for (rela = obj->pltrela; rela < relalim; rela++) {
Elf_Addr *where;
assert(ELF_R_TYPE(rela->r_info) == R_IA_64_IPLTLSB);
/* Relocate the @fptr pointing into the PLT. */
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
*where += (Elf_Addr)obj->relocbase;
}
}
return 0;
}
/* Relocate the jump slots in an object. */
int
reloc_jmpslots(Obj_Entry *obj)
{
if (obj->jmpslots_done)
return 0;
/* All PLT relocations are the same kind: Elf_Rel or Elf_Rela. */
if (obj->pltrelsize != 0) {
const Elf_Rel *rellim;
const Elf_Rel *rel;
rellim = (const Elf_Rel *)
((char *)obj->pltrel + obj->pltrelsize);
for (rel = obj->pltrel; rel < rellim; rel++) {
Elf_Addr *where;
const Elf_Sym *def;
const Obj_Entry *defobj;
assert(ELF_R_TYPE(rel->r_info) == R_IA_64_IPLTLSB);
where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
def = find_symdef(ELF_R_SYM(rel->r_info), obj,
&defobj, true, NULL);
if (def == NULL)
return -1;
reloc_jmpslot(where,
(Elf_Addr)(defobj->relocbase
+ def->st_value),
defobj, obj, rel);
}
} else {
const Elf_Rela *relalim;
const Elf_Rela *rela;
relalim = (const Elf_Rela *)
((char *)obj->pltrela + obj->pltrelasize);
for (rela = obj->pltrela; rela < relalim; rela++) {
Elf_Addr *where;
const Elf_Sym *def;
const Obj_Entry *defobj;
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
def = find_symdef(ELF_R_SYM(rela->r_info), obj,
&defobj, true, NULL);
if (def == NULL)
return -1;
reloc_jmpslot(where,
(Elf_Addr)(defobj->relocbase
+ def->st_value),
defobj, obj, (Elf_Rel *)rela);
}
}
obj->jmpslots_done = true;
return 0;
}
/* Fixup the jump slot at "where" to transfer control to "target". */
Elf_Addr
reloc_jmpslot(Elf_Addr *where, Elf_Addr target, const Obj_Entry *obj,
const Obj_Entry *refobj, const Elf_Rel *rel)
{
Elf_Addr stubaddr;
dbg(" reloc_jmpslot: where=%p, target=%p, gp=%p",
(void *)where, (void *)target, (void *)obj->pltgot);
stubaddr = *where;
if (stubaddr != target) {
/*
* Point this @fptr directly at the target. Update the
* gp value first so that we don't break another cpu
* which is currently executing the PLT entry.
*/
where[1] = (Elf_Addr) obj->pltgot;
ia64_mf();
where[0] = target;
ia64_mf();
}
/*
* The caller needs an @fptr for the adjusted entry. The PLT
* entry serves this purpose nicely.
*/
return (Elf_Addr) where;
}
/*
* XXX ia64 doesn't seem to have copy relocations.
*
* Returns 0 on success, -1 on failure.
*/
int
do_copy_relocations(Obj_Entry *dstobj)
{
return 0;
}
/*
* Return the @fptr representing a given function symbol.
*/
void *
make_function_pointer(const Elf_Sym *sym, const Obj_Entry *obj)
{
struct fptr **fptrs = obj->priv;
int index = sym - obj->symtab;
if (!fptrs) {
/*
* This should only happen for something like
* dlsym("dlopen"). Actually, I'm not sure it can ever
* happen.
*/
fptrs = alloc_fptrs((Obj_Entry *) obj, false);
}
if (!fptrs[index]) {
Elf_Addr target, gp;
target = (Elf_Addr) (obj->relocbase + sym->st_value);
gp = (Elf_Addr) obj->pltgot;
fptrs[index] = alloc_fptr(target, gp);
}
return fptrs[index];
}
void
call_initfini_pointer(const Obj_Entry *obj, Elf_Addr target)
{
struct fptr fptr;
fptr.gp = (Elf_Addr) obj->pltgot;
fptr.target = target;
dbg(" initfini: target=%p, gp=%p",
(void *) fptr.target, (void *) fptr.gp);
((InitFunc) &fptr)();
}
/* Initialize the special PLT entries. */
void
init_pltgot(Obj_Entry *obj)
{
const Elf_Dyn *dynp;
Elf_Addr *pltres = 0;
/*
* When there are no PLT relocations, the DT_IA_64_PLT_RESERVE entry
* is bogus. Do not setup the BOR pointers in that case. An example
* of where this happens is /usr/lib/libxpg4.so.3.
*/
if (obj->pltrelasize == 0 && obj->pltrelsize == 0)
return;
/*
* Find the PLT RESERVE section.
*/
for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) {
if (dynp->d_tag == DT_IA_64_PLT_RESERVE)
pltres = (u_int64_t *)
(obj->relocbase + dynp->d_un.d_ptr);
}
if (!pltres)
errx(1, "Can't find DT_IA_64_PLT_RESERVE entry");
/*
* The PLT RESERVE section is used to get values to pass to
* _rtld_bind when lazy binding.
*/
pltres[0] = (Elf_Addr) obj;
pltres[1] = FPTR_TARGET(_rtld_bind_start);
pltres[2] = FPTR_GP(_rtld_bind_start);
}
void
allocate_initial_tls(Obj_Entry *list)
{
void *tpval;
/*
* Fix the size of the static TLS block by using the maximum
* offset allocated so far and adding a bit for dynamic modules to
* use.
*/
tls_static_space = tls_last_offset + tls_last_size + RTLD_STATIC_TLS_EXTRA;
tpval = allocate_tls(list, NULL, TLS_TCB_SIZE, 16);
__asm __volatile("mov r13 = %0" :: "r"(tpval));
}
void *__tls_get_addr(unsigned long module, unsigned long offset)
{
register Elf_Addr** tp __asm__("r13");
return tls_get_addr_common(tp, module, offset);
}