freebsd-nq/module/zfs/zfs_vfsops.c
Brian Behlendorf e30c0ada6d Linux 2.6.39 compat, invalidate_inodes()
Update code to use the spl_invalidate_inodes() wrapper.  This hides
some of the complexity of determining if invalidate_inodes() was
exported, and if so what is its prototype.  The second argument
of spl_invalidate_inodes() determined the behavior of how dirty
inodes are handled.  By passing a zero we are indicated that we
want those inodes to be treated as busy and skipped.
2011-04-19 08:57:23 -07:00

1634 lines
39 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* Portions Copyright 2010 Robert Milkowski */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/pathname.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/mntent.h>
#include <sys/mount.h>
#include <sys/cmn_err.h>
#include "fs/fs_subr.h"
#include <sys/zfs_znode.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_dir.h>
#include <sys/zil.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_deleg.h>
#include <sys/spa.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/varargs.h>
#include <sys/policy.h>
#include <sys/atomic.h>
#include <sys/mkdev.h>
#include <sys/modctl.h>
#include <sys/refstr.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_fuid.h>
#include <sys/bootconf.h>
#include <sys/sunddi.h>
#include <sys/dnlc.h>
#include <sys/dmu_objset.h>
#include <sys/spa_boot.h>
#include <sys/sa.h>
#include <sys/zpl.h>
#include "zfs_comutil.h"
/*ARGSUSED*/
int
zfs_sync(struct super_block *sb, int wait, cred_t *cr)
{
zfs_sb_t *zsb = sb->s_fs_info;
/*
* Data integrity is job one. We don't want a compromised kernel
* writing to the storage pool, so we never sync during panic.
*/
if (unlikely(oops_in_progress))
return (0);
/*
* Semantically, the only requirement is that the sync be initiated.
* The DMU syncs out txgs frequently, so there's nothing to do.
*/
if (!wait)
return (0);
if (zsb != NULL) {
/*
* Sync a specific filesystem.
*/
dsl_pool_t *dp;
ZFS_ENTER(zsb);
dp = dmu_objset_pool(zsb->z_os);
/*
* If the system is shutting down, then skip any
* filesystems which may exist on a suspended pool.
*/
if (spa_suspended(dp->dp_spa)) {
ZFS_EXIT(zsb);
return (0);
}
if (zsb->z_log != NULL)
zil_commit(zsb->z_log, 0);
ZFS_EXIT(zsb);
} else {
/*
* Sync all ZFS filesystems. This is what happens when you
* run sync(1M). Unlike other filesystems, ZFS honors the
* request by waiting for all pools to commit all dirty data.
*/
spa_sync_allpools();
}
return (0);
}
EXPORT_SYMBOL(zfs_sync);
static void
atime_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
struct vfsmount *vfs = zsb->z_vfs;
if (newval == TRUE) {
vfs->mnt_flags &= ~MNT_NOATIME;
sb->s_flags &= ~MS_NOATIME;
zsb->z_atime = TRUE;
} else {
vfs->mnt_flags |= MNT_NOATIME;
sb->s_flags |= MS_NOATIME;
zsb->z_atime = FALSE;
}
}
static void
xattr_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
if (newval == TRUE) {
zsb->z_flags |= ZSB_XATTR_USER;
} else {
zsb->z_flags &= ~ZSB_XATTR_USER;
}
}
static void
blksz_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
if (newval < SPA_MINBLOCKSIZE ||
newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
newval = SPA_MAXBLOCKSIZE;
zsb->z_max_blksz = newval;
}
static void
readonly_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
struct vfsmount *vfs = zsb->z_vfs;
if (newval) {
vfs->mnt_flags |= MNT_READONLY;
sb->s_flags |= MS_RDONLY;
} else {
vfs->mnt_flags &= ~MNT_READONLY;
sb->s_flags &= ~MS_RDONLY;
}
}
static void
devices_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
struct vfsmount *vfs = zsb->z_vfs;
if (newval == FALSE) {
vfs->mnt_flags |= MNT_NODEV;
sb->s_flags |= MS_NODEV;
} else {
vfs->mnt_flags &= ~MNT_NODEV;
sb->s_flags &= ~MS_NODEV;
}
}
static void
setuid_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
struct vfsmount *vfs = zsb->z_vfs;
if (newval == FALSE) {
vfs->mnt_flags |= MNT_NOSUID;
sb->s_flags |= MS_NOSUID;
} else {
vfs->mnt_flags &= ~MNT_NOSUID;
sb->s_flags &= ~MS_NOSUID;
}
}
static void
exec_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
struct vfsmount *vfs = zsb->z_vfs;
if (newval == FALSE) {
vfs->mnt_flags |= MNT_NOEXEC;
sb->s_flags |= MS_NOEXEC;
} else {
vfs->mnt_flags &= ~MNT_NOEXEC;
sb->s_flags &= ~MS_NOEXEC;
}
}
/*
* The nbmand mount option can be changed at mount time.
* We can't allow it to be toggled on live file systems or incorrect
* behavior may be seen from cifs clients
*
* This property isn't registered via dsl_prop_register(), but this callback
* will be called when a file system is first mounted
*/
static void
nbmand_changed_cb(void *arg, uint64_t newval)
{
zfs_sb_t *zsb = arg;
struct super_block *sb = zsb->z_sb;
if (newval == TRUE) {
sb->s_flags |= MS_MANDLOCK;
} else {
sb->s_flags &= ~MS_MANDLOCK;
}
}
static void
snapdir_changed_cb(void *arg, uint64_t newval)
{
((zfs_sb_t *)arg)->z_show_ctldir = newval;
}
static void
vscan_changed_cb(void *arg, uint64_t newval)
{
((zfs_sb_t *)arg)->z_vscan = newval;
}
static void
acl_inherit_changed_cb(void *arg, uint64_t newval)
{
((zfs_sb_t *)arg)->z_acl_inherit = newval;
}
int
zfs_register_callbacks(zfs_sb_t *zsb)
{
struct vfsmount *vfsp = zsb->z_vfs;
struct dsl_dataset *ds = NULL;
objset_t *os = zsb->z_os;
uint64_t nbmand;
boolean_t readonly = B_FALSE;
boolean_t setuid = B_TRUE;
boolean_t exec = B_TRUE;
boolean_t devices = B_TRUE;
boolean_t xattr = B_TRUE;
boolean_t atime = B_TRUE;
char osname[MAXNAMELEN];
int error = 0;
/*
* While Linux allows multiple vfs mounts per super block we have
* limited it artificially to one in zfs_fill_super. Thus it is
* safe for us to modify the vfs mount fails through the callbacks.
*/
if ((vfsp->mnt_flags & MNT_READONLY) ||
!spa_writeable(dmu_objset_spa(os)))
readonly = B_TRUE;
if (vfsp->mnt_flags & MNT_NOSUID) {
devices = B_FALSE;
setuid = B_FALSE;
} else {
if (vfsp->mnt_flags & MNT_NODEV)
devices = B_FALSE;
}
if (vfsp->mnt_flags & MNT_NOEXEC)
exec = B_FALSE;
if (vfsp->mnt_flags & MNT_NOATIME)
atime = B_FALSE;
/*
* nbmand is a special property which may only be changed at
* mount time. Unfortunately, Linux does not have a VFS mount
* flag instead this is a super block flag. So setting this
* option at mount time will have to wait until we can parse
* the mount option string. For now we rely on the nbmand
* value stored with the object set. Additional mount option
* string to be handled:
*
* case: sensitive|insensitive|mixed
* zerocopy: on|off
*/
dmu_objset_name(os, osname);
if ((error = dsl_prop_get_integer(osname, "nbmand", &nbmand, NULL)))
return (error);
/*
* Register property callbacks.
*
* It would probably be fine to just check for i/o error from
* the first prop_register(), but I guess I like to go
* overboard...
*/
ds = dmu_objset_ds(os);
error = dsl_prop_register(ds,
"atime", atime_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"xattr", xattr_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"recordsize", blksz_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"readonly", readonly_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"devices", devices_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"setuid", setuid_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"exec", exec_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"snapdir", snapdir_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"aclinherit", acl_inherit_changed_cb, zsb);
error = error ? error : dsl_prop_register(ds,
"vscan", vscan_changed_cb, zsb);
if (error)
goto unregister;
/*
* Invoke our callbacks to set required flags.
*/
readonly_changed_cb(zsb, readonly);
setuid_changed_cb(zsb, setuid);
exec_changed_cb(zsb, exec);
devices_changed_cb(zsb, devices);
xattr_changed_cb(zsb, xattr);
atime_changed_cb(zsb, atime);
nbmand_changed_cb(zsb, nbmand);
return (0);
unregister:
/*
* We may attempt to unregister some callbacks that are not
* registered, but this is OK; it will simply return ENOMSG,
* which we will ignore.
*/
(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zsb);
(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
zsb);
(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zsb);
return (error);
}
EXPORT_SYMBOL(zfs_register_callbacks);
static int
zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
uint64_t *userp, uint64_t *groupp)
{
znode_phys_t *znp = data;
int error = 0;
/*
* Is it a valid type of object to track?
*/
if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
return (ENOENT);
/*
* If we have a NULL data pointer
* then assume the id's aren't changing and
* return EEXIST to the dmu to let it know to
* use the same ids
*/
if (data == NULL)
return (EEXIST);
if (bonustype == DMU_OT_ZNODE) {
*userp = znp->zp_uid;
*groupp = znp->zp_gid;
} else {
int hdrsize;
ASSERT(bonustype == DMU_OT_SA);
hdrsize = sa_hdrsize(data);
if (hdrsize != 0) {
*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
SA_UID_OFFSET));
*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
SA_GID_OFFSET));
} else {
/*
* This should only happen for newly created
* files that haven't had the znode data filled
* in yet.
*/
*userp = 0;
*groupp = 0;
}
}
return (error);
}
static void
fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
char *domainbuf, int buflen, uid_t *ridp)
{
uint64_t fuid;
const char *domain;
fuid = strtonum(fuidstr, NULL);
domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
if (domain)
(void) strlcpy(domainbuf, domain, buflen);
else
domainbuf[0] = '\0';
*ridp = FUID_RID(fuid);
}
static uint64_t
zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
{
switch (type) {
case ZFS_PROP_USERUSED:
return (DMU_USERUSED_OBJECT);
case ZFS_PROP_GROUPUSED:
return (DMU_GROUPUSED_OBJECT);
case ZFS_PROP_USERQUOTA:
return (zsb->z_userquota_obj);
case ZFS_PROP_GROUPQUOTA:
return (zsb->z_groupquota_obj);
default:
return (ENOTSUP);
}
return (0);
}
int
zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
{
int error;
zap_cursor_t zc;
zap_attribute_t za;
zfs_useracct_t *buf = vbuf;
uint64_t obj;
if (!dmu_objset_userspace_present(zsb->z_os))
return (ENOTSUP);
obj = zfs_userquota_prop_to_obj(zsb, type);
if (obj == 0) {
*bufsizep = 0;
return (0);
}
for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
*bufsizep)
break;
fuidstr_to_sid(zsb, za.za_name,
buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
buf->zu_space = za.za_first_integer;
buf++;
}
if (error == ENOENT)
error = 0;
ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
*cookiep = zap_cursor_serialize(&zc);
zap_cursor_fini(&zc);
return (error);
}
EXPORT_SYMBOL(zfs_userspace_many);
/*
* buf must be big enough (eg, 32 bytes)
*/
static int
id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
char *buf, boolean_t addok)
{
uint64_t fuid;
int domainid = 0;
if (domain && domain[0]) {
domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
if (domainid == -1)
return (ENOENT);
}
fuid = FUID_ENCODE(domainid, rid);
(void) sprintf(buf, "%llx", (longlong_t)fuid);
return (0);
}
int
zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
const char *domain, uint64_t rid, uint64_t *valp)
{
char buf[32];
int err;
uint64_t obj;
*valp = 0;
if (!dmu_objset_userspace_present(zsb->z_os))
return (ENOTSUP);
obj = zfs_userquota_prop_to_obj(zsb, type);
if (obj == 0)
return (0);
err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE);
if (err)
return (err);
err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
if (err == ENOENT)
err = 0;
return (err);
}
EXPORT_SYMBOL(zfs_userspace_one);
int
zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
const char *domain, uint64_t rid, uint64_t quota)
{
char buf[32];
int err;
dmu_tx_t *tx;
uint64_t *objp;
boolean_t fuid_dirtied;
if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
return (EINVAL);
if (zsb->z_version < ZPL_VERSION_USERSPACE)
return (ENOTSUP);
objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj :
&zsb->z_groupquota_obj;
err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
if (err)
return (err);
fuid_dirtied = zsb->z_fuid_dirty;
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
if (*objp == 0) {
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
zfs_userquota_prop_prefixes[type]);
}
if (fuid_dirtied)
zfs_fuid_txhold(zsb, tx);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err) {
dmu_tx_abort(tx);
return (err);
}
mutex_enter(&zsb->z_lock);
if (*objp == 0) {
*objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
DMU_OT_NONE, 0, tx);
VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
}
mutex_exit(&zsb->z_lock);
if (quota == 0) {
err = zap_remove(zsb->z_os, *objp, buf, tx);
if (err == ENOENT)
err = 0;
} else {
err = zap_update(zsb->z_os, *objp, buf, 8, 1, &quota, tx);
}
ASSERT(err == 0);
if (fuid_dirtied)
zfs_fuid_sync(zsb, tx);
dmu_tx_commit(tx);
return (err);
}
EXPORT_SYMBOL(zfs_set_userquota);
boolean_t
zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
{
char buf[32];
uint64_t used, quota, usedobj, quotaobj;
int err;
usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
if (quotaobj == 0 || zsb->z_replay)
return (B_FALSE);
(void) sprintf(buf, "%llx", (longlong_t)fuid);
err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
if (err != 0)
return (B_FALSE);
err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
if (err != 0)
return (B_FALSE);
return (used >= quota);
}
EXPORT_SYMBOL(zfs_fuid_overquota);
boolean_t
zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
{
uint64_t fuid;
uint64_t quotaobj;
quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
fuid = isgroup ? zp->z_gid : zp->z_uid;
if (quotaobj == 0 || zsb->z_replay)
return (B_FALSE);
return (zfs_fuid_overquota(zsb, isgroup, fuid));
}
EXPORT_SYMBOL(zfs_owner_overquota);
int
zfs_sb_create(const char *osname, zfs_sb_t **zsbp)
{
objset_t *os;
zfs_sb_t *zsb;
uint64_t zval;
int i, error;
uint64_t sa_obj;
zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP);
/*
* We claim to always be readonly so we can open snapshots;
* other ZPL code will prevent us from writing to snapshots.
*/
error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
if (error) {
kmem_free(zsb, sizeof (zfs_sb_t));
return (error);
}
/*
* Initialize the zfs-specific filesystem structure.
* Should probably make this a kmem cache, shuffle fields,
* and just bzero up to z_hold_mtx[].
*/
zsb->z_vfs = NULL;
zsb->z_parent = zsb;
zsb->z_max_blksz = SPA_MAXBLOCKSIZE;
zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
zsb->z_os = os;
error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
if (error) {
goto out;
} else if (zsb->z_version >
zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
(void) printk("Can't mount a version %lld file system "
"on a version %lld pool\n. Pool must be upgraded to mount "
"this file system.", (u_longlong_t)zsb->z_version,
(u_longlong_t)spa_version(dmu_objset_spa(os)));
error = ENOTSUP;
goto out;
}
if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
goto out;
zsb->z_norm = (int)zval;
if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
goto out;
zsb->z_utf8 = (zval != 0);
if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
goto out;
zsb->z_case = (uint_t)zval;
/*
* Fold case on file systems that are always or sometimes case
* insensitive.
*/
if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
zsb->z_case == ZFS_CASE_MIXED)
zsb->z_norm |= U8_TEXTPREP_TOUPPER;
zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
if (zsb->z_use_sa) {
/* should either have both of these objects or none */
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
&sa_obj);
if (error)
return (error);
} else {
/*
* Pre SA versions file systems should never touch
* either the attribute registration or layout objects.
*/
sa_obj = 0;
}
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
&zsb->z_attr_table);
if (error)
goto out;
if (zsb->z_version >= ZPL_VERSION_SA)
sa_register_update_callback(os, zfs_sa_upgrade);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
&zsb->z_root);
if (error)
goto out;
ASSERT(zsb->z_root != 0);
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
&zsb->z_unlinkedobj);
if (error)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
8, 1, &zsb->z_userquota_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ,
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
8, 1, &zsb->z_groupquota_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
&zsb->z_fuid_obj);
if (error && error != ENOENT)
goto out;
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
&zsb->z_shares_dir);
if (error && error != ENOENT)
goto out;
mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zsb->z_all_znodes, sizeof (znode_t),
offsetof(znode_t, z_link_node));
rrw_init(&zsb->z_teardown_lock);
rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_init(&zsb->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
*zsbp = zsb;
return (0);
out:
dmu_objset_disown(os, zsb);
*zsbp = NULL;
kmem_free(zsb, sizeof (zfs_sb_t));
return (error);
}
static int
zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
{
int error;
error = zfs_register_callbacks(zsb);
if (error)
return (error);
/*
* Set the objset user_ptr to track its zsb.
*/
mutex_enter(&zsb->z_os->os_user_ptr_lock);
dmu_objset_set_user(zsb->z_os, zsb);
mutex_exit(&zsb->z_os->os_user_ptr_lock);
zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
/*
* If we are not mounting (ie: online recv), then we don't
* have to worry about replaying the log as we blocked all
* operations out since we closed the ZIL.
*/
if (mounting) {
boolean_t readonly;
/*
* During replay we remove the read only flag to
* allow replays to succeed.
*/
readonly = zsb->z_vfs->mnt_flags & MNT_READONLY;
if (readonly != 0)
zsb->z_vfs->mnt_flags &= ~MNT_READONLY;
else
zfs_unlinked_drain(zsb);
/*
* Parse and replay the intent log.
*
* Because of ziltest, this must be done after
* zfs_unlinked_drain(). (Further note: ziltest
* doesn't use readonly mounts, where
* zfs_unlinked_drain() isn't called.) This is because
* ziltest causes spa_sync() to think it's committed,
* but actually it is not, so the intent log contains
* many txg's worth of changes.
*
* In particular, if object N is in the unlinked set in
* the last txg to actually sync, then it could be
* actually freed in a later txg and then reallocated
* in a yet later txg. This would write a "create
* object N" record to the intent log. Normally, this
* would be fine because the spa_sync() would have
* written out the fact that object N is free, before
* we could write the "create object N" intent log
* record.
*
* But when we are in ziltest mode, we advance the "open
* txg" without actually spa_sync()-ing the changes to
* disk. So we would see that object N is still
* allocated and in the unlinked set, and there is an
* intent log record saying to allocate it.
*/
if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
if (zil_replay_disable) {
zil_destroy(zsb->z_log, B_FALSE);
} else {
zsb->z_replay = B_TRUE;
zil_replay(zsb->z_os, zsb,
zfs_replay_vector);
zsb->z_replay = B_FALSE;
}
}
zsb->z_vfs->mnt_flags |= readonly; /* restore readonly bit */
}
return (0);
}
void
zfs_sb_free(zfs_sb_t *zsb)
{
int i;
zfs_fuid_destroy(zsb);
mutex_destroy(&zsb->z_znodes_lock);
mutex_destroy(&zsb->z_lock);
list_destroy(&zsb->z_all_znodes);
rrw_destroy(&zsb->z_teardown_lock);
rw_destroy(&zsb->z_teardown_inactive_lock);
rw_destroy(&zsb->z_fuid_lock);
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_destroy(&zsb->z_hold_mtx[i]);
kmem_free(zsb, sizeof (zfs_sb_t));
}
static void
zfs_set_fuid_feature(zfs_sb_t *zsb)
{
zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
}
void
zfs_unregister_callbacks(zfs_sb_t *zsb)
{
objset_t *os = zsb->z_os;
struct dsl_dataset *ds;
/*
* Unregister properties.
*/
if (!dmu_objset_is_snapshot(os)) {
ds = dmu_objset_ds(os);
VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "aclinherit",
acl_inherit_changed_cb, zsb) == 0);
VERIFY(dsl_prop_unregister(ds, "vscan",
vscan_changed_cb, zsb) == 0);
}
}
EXPORT_SYMBOL(zfs_unregister_callbacks);
#ifdef HAVE_MLSLABEL
/*
* zfs_check_global_label:
* Check that the hex label string is appropriate for the dataset
* being mounted into the global_zone proper.
*
* Return an error if the hex label string is not default or
* admin_low/admin_high. For admin_low labels, the corresponding
* dataset must be readonly.
*/
int
zfs_check_global_label(const char *dsname, const char *hexsl)
{
if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
return (0);
if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
return (0);
if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
/* must be readonly */
uint64_t rdonly;
if (dsl_prop_get_integer(dsname,
zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
return (EACCES);
return (rdonly ? 0 : EACCES);
}
return (EACCES);
}
#endif /* HAVE_MLSLABEL */
int
zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
{
zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
uint64_t refdbytes, availbytes, usedobjs, availobjs;
uint32_t bshift;
ZFS_ENTER(zsb);
dmu_objset_space(zsb->z_os,
&refdbytes, &availbytes, &usedobjs, &availobjs);
/*
* The underlying storage pool actually uses multiple block
* size. Under Solaris frsize (fragment size) is reported as
* the smallest block size we support, and bsize (block size)
* as the filesystem's maximum block size. Unfortunately,
* under Linux the fragment size and block size are often used
* interchangeably. Thus we are forced to report both of them
* as the filesystem's maximum block size.
*/
statp->f_frsize = zsb->z_max_blksz;
statp->f_bsize = zsb->z_max_blksz;
bshift = fls(statp->f_bsize) - 1;
/*
* The following report "total" blocks of various kinds in
* the file system, but reported in terms of f_bsize - the
* "preferred" size.
*/
statp->f_blocks = (refdbytes + availbytes) >> bshift;
statp->f_bfree = availbytes >> bshift;
statp->f_bavail = statp->f_bfree; /* no root reservation */
/*
* statvfs() should really be called statufs(), because it assumes
* static metadata. ZFS doesn't preallocate files, so the best
* we can do is report the max that could possibly fit in f_files,
* and that minus the number actually used in f_ffree.
* For f_ffree, report the smaller of the number of object available
* and the number of blocks (each object will take at least a block).
*/
statp->f_ffree = MIN(availobjs, statp->f_bfree);
statp->f_files = statp->f_ffree + usedobjs;
statp->f_fsid.val[0] = dentry->d_sb->s_dev;
statp->f_fsid.val[1] = 0;
statp->f_type = ZFS_SUPER_MAGIC;
statp->f_namelen = ZFS_MAXNAMELEN;
/*
* We have all of 40 characters to stuff a string here.
* Is there anything useful we could/should provide?
*/
bzero(statp->f_spare, sizeof (statp->f_spare));
ZFS_EXIT(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_statvfs);
int
zfs_root(zfs_sb_t *zsb, struct inode **ipp)
{
znode_t *rootzp;
int error;
ZFS_ENTER(zsb);
error = zfs_zget(zsb, zsb->z_root, &rootzp);
if (error == 0)
*ipp = ZTOI(rootzp);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_root);
/*
* Teardown the zfs_sb_t::z_os.
*
* Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
* and 'z_teardown_inactive_lock' held.
*/
int
zfsvfs_teardown(zfs_sb_t *zsb, boolean_t unmounting)
{
znode_t *zp;
rrw_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
if (!unmounting) {
/*
* We purge the parent filesystem's super block as the
* parent filesystem and all of its snapshots have their
* inode's super block set to the parent's filesystem's
* super block. Note, 'z_parent' is self referential
* for non-snapshots.
*/
shrink_dcache_sb(zsb->z_parent->z_sb);
(void) spl_invalidate_inodes(zsb->z_parent->z_sb, 0);
}
/*
* Close the zil. NB: Can't close the zil while zfs_inactive
* threads are blocked as zil_close can call zfs_inactive.
*/
if (zsb->z_log) {
zil_close(zsb->z_log);
zsb->z_log = NULL;
}
rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
/*
* If we are not unmounting (ie: online recv) and someone already
* unmounted this file system while we were doing the switcheroo,
* or a reopen of z_os failed then just bail out now.
*/
if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
rw_exit(&zsb->z_teardown_inactive_lock);
rrw_exit(&zsb->z_teardown_lock, FTAG);
return (EIO);
}
/*
* At this point there are no vops active, and any new vops will
* fail with EIO since we have z_teardown_lock for writer (only
* relavent for forced unmount).
*
* Release all holds on dbufs.
*/
mutex_enter(&zsb->z_znodes_lock);
for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
zp = list_next(&zsb->z_all_znodes, zp))
if (zp->z_sa_hdl) {
ASSERT(atomic_read(&ZTOI(zp)->i_count) > 0);
zfs_znode_dmu_fini(zp);
}
mutex_exit(&zsb->z_znodes_lock);
/*
* If we are unmounting, set the unmounted flag and let new vops
* unblock. zfs_inactive will have the unmounted behavior, and all
* other vops will fail with EIO.
*/
if (unmounting) {
zsb->z_unmounted = B_TRUE;
rrw_exit(&zsb->z_teardown_lock, FTAG);
rw_exit(&zsb->z_teardown_inactive_lock);
}
/*
* z_os will be NULL if there was an error in attempting to reopen
* zsb, so just return as the properties had already been
*
* unregistered and cached data had been evicted before.
*/
if (zsb->z_os == NULL)
return (0);
/*
* Unregister properties.
*/
zfs_unregister_callbacks(zsb);
/*
* Evict cached data
*/
if (dmu_objset_is_dirty_anywhere(zsb->z_os))
if (!(zsb->z_vfs->mnt_flags & MNT_READONLY))
txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
(void) dmu_objset_evict_dbufs(zsb->z_os);
return (0);
}
int
zfs_domount(struct super_block *sb, void *data, int silent)
{
zpl_mount_data_t *zmd = data;
const char *osname = zmd->z_osname;
zfs_sb_t *zsb;
struct inode *root_inode;
uint64_t recordsize;
int error;
/*
* Linux allows multiple vfs mounts per super block. However, the
* zfs_sb_t only contains a pointer for a single vfs mount. This
* back reference in the long term could be extended to a list of
* vfs mounts if a hook were added to the kernel to notify us when
* a vfsmount is destroyed. Until then we must limit the number
* of mounts per super block to one.
*/
if (atomic_read(&sb->s_active) > 1)
return (EBUSY);
error = zfs_sb_create(osname, &zsb);
if (error)
return (error);
if ((error = dsl_prop_get_integer(osname, "recordsize",
&recordsize, NULL)))
goto out;
zsb->z_sb = sb;
zsb->z_vfs = zmd->z_vfs;
sb->s_fs_info = zsb;
sb->s_magic = ZFS_SUPER_MAGIC;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_time_gran = 1;
sb->s_blocksize = recordsize;
sb->s_blocksize_bits = ilog2(recordsize);
/* Set callback operations for the file system. */
sb->s_op = &zpl_super_operations;
sb->s_xattr = zpl_xattr_handlers;
#ifdef HAVE_EXPORTS
sb->s_export_op = &zpl_export_operations;
#endif /* HAVE_EXPORTS */
/* Set features for file system. */
zfs_set_fuid_feature(zsb);
if (dmu_objset_is_snapshot(zsb->z_os)) {
uint64_t pval;
atime_changed_cb(zsb, B_FALSE);
readonly_changed_cb(zsb, B_TRUE);
if ((error = dsl_prop_get_integer(osname,"xattr",&pval,NULL)))
goto out;
xattr_changed_cb(zsb, pval);
zsb->z_issnap = B_TRUE;
zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
mutex_enter(&zsb->z_os->os_user_ptr_lock);
dmu_objset_set_user(zsb->z_os, zsb);
mutex_exit(&zsb->z_os->os_user_ptr_lock);
} else {
error = zfs_sb_setup(zsb, B_TRUE);
#ifdef HAVE_SNAPSHOT
(void) zfs_snap_create(zsb);
#endif /* HAVE_SNAPSHOT */
}
/* Allocate a root inode for the filesystem. */
error = zfs_root(zsb, &root_inode);
if (error) {
(void) zfs_umount(sb);
goto out;
}
/* Allocate a root dentry for the filesystem */
sb->s_root = d_alloc_root(root_inode);
if (sb->s_root == NULL) {
(void) zfs_umount(sb);
error = ENOMEM;
goto out;
}
out:
if (error) {
dmu_objset_disown(zsb->z_os, zsb);
zfs_sb_free(zsb);
}
return (error);
}
EXPORT_SYMBOL(zfs_domount);
/*ARGSUSED*/
int
zfs_umount(struct super_block *sb)
{
zfs_sb_t *zsb = sb->s_fs_info;
objset_t *os;
VERIFY(zfsvfs_teardown(zsb, B_TRUE) == 0);
os = zsb->z_os;
/*
* z_os will be NULL if there was an error in
* attempting to reopen zsb.
*/
if (os != NULL) {
/*
* Unset the objset user_ptr.
*/
mutex_enter(&os->os_user_ptr_lock);
dmu_objset_set_user(os, NULL);
mutex_exit(&os->os_user_ptr_lock);
/*
* Finally release the objset
*/
dmu_objset_disown(os, zsb);
}
zfs_sb_free(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_umount);
int
zfs_remount(struct super_block *sb, int *flags, char *data)
{
zfs_sb_t *zsb = sb->s_fs_info;
boolean_t readonly = B_FALSE;
boolean_t setuid = B_TRUE;
boolean_t exec = B_TRUE;
boolean_t devices = B_TRUE;
boolean_t atime = B_TRUE;
if (*flags & MS_RDONLY)
readonly = B_TRUE;
if (*flags & MS_NOSUID) {
devices = B_FALSE;
setuid = B_FALSE;
} else {
if (*flags & MS_NODEV)
devices = B_FALSE;
}
if (*flags & MS_NOEXEC)
exec = B_FALSE;
if (*flags & MS_NOATIME)
atime = B_FALSE;
/*
* Invoke our callbacks to set required flags.
*/
readonly_changed_cb(zsb, readonly);
setuid_changed_cb(zsb, setuid);
exec_changed_cb(zsb, exec);
devices_changed_cb(zsb, devices);
atime_changed_cb(zsb, atime);
return (0);
}
EXPORT_SYMBOL(zfs_remount);
int
zfs_vget(struct vfsmount *vfsp, struct inode **ipp, fid_t *fidp)
{
zfs_sb_t *zsb = VTOZSB(vfsp);
znode_t *zp;
uint64_t object = 0;
uint64_t fid_gen = 0;
uint64_t gen_mask;
uint64_t zp_gen;
int i, err;
*ipp = NULL;
ZFS_ENTER(zsb);
if (fidp->fid_len == LONG_FID_LEN) {
zfid_long_t *zlfid = (zfid_long_t *)fidp;
uint64_t objsetid = 0;
uint64_t setgen = 0;
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
ZFS_EXIT(zsb);
#ifdef HAVE_SNAPSHOT
err = zfsctl_lookup_objset(vfsp, objsetid, &zsb);
if (err)
return (EINVAL);
#endif /* HAVE_SNAPSHOT */
ZFS_ENTER(zsb);
}
if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
zfid_short_t *zfid = (zfid_short_t *)fidp;
for (i = 0; i < sizeof (zfid->zf_object); i++)
object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
for (i = 0; i < sizeof (zfid->zf_gen); i++)
fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
} else {
ZFS_EXIT(zsb);
return (EINVAL);
}
#ifdef HAVE_SNAPSHOT
/* A zero fid_gen means we are in the .zfs control directories */
if (fid_gen == 0 &&
(object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
*ipp = zsb->z_ctldir;
ASSERT(*ipp != NULL);
if (object == ZFSCTL_INO_SNAPDIR) {
VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp, NULL,
0, NULL, NULL, NULL, NULL, NULL) == 0);
} else {
igrab(*ipp);
}
ZFS_EXIT(zsb);
return (0);
}
#endif /* HAVE_SNAPSHOT */
gen_mask = -1ULL >> (64 - 8 * i);
dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
if ((err = zfs_zget(zsb, object, &zp))) {
ZFS_EXIT(zsb);
return (err);
}
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
sizeof (uint64_t));
zp_gen = zp_gen & gen_mask;
if (zp_gen == 0)
zp_gen = 1;
if (zp->z_unlinked || zp_gen != fid_gen) {
dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
iput(ZTOI(zp));
ZFS_EXIT(zsb);
return (EINVAL);
}
*ipp = ZTOI(zp);
if (*ipp)
zfs_inode_update(ITOZ(*ipp));
ZFS_EXIT(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_vget);
/*
* Block out VOPs and close zfs_sb_t::z_os
*
* Note, if successful, then we return with the 'z_teardown_lock' and
* 'z_teardown_inactive_lock' write held.
*/
int
zfs_suspend_fs(zfs_sb_t *zsb)
{
int error;
if ((error = zfsvfs_teardown(zsb, B_FALSE)) != 0)
return (error);
dmu_objset_disown(zsb->z_os, zsb);
return (0);
}
EXPORT_SYMBOL(zfs_suspend_fs);
/*
* Reopen zfs_sb_t::z_os and release VOPs.
*/
int
zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
{
int err, err2;
ASSERT(RRW_WRITE_HELD(&zsb->z_teardown_lock));
ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zsb, &zsb->z_os);
if (err) {
zsb->z_os = NULL;
} else {
znode_t *zp;
uint64_t sa_obj = 0;
err2 = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
ZFS_SA_ATTRS, 8, 1, &sa_obj);
if ((err || err2) && zsb->z_version >= ZPL_VERSION_SA)
goto bail;
if ((err = sa_setup(zsb->z_os, sa_obj,
zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
goto bail;
VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
/*
* Attempt to re-establish all the active znodes with
* their dbufs. If a zfs_rezget() fails, then we'll let
* any potential callers discover that via ZFS_ENTER_VERIFY_VP
* when they try to use their znode.
*/
mutex_enter(&zsb->z_znodes_lock);
for (zp = list_head(&zsb->z_all_znodes); zp;
zp = list_next(&zsb->z_all_znodes, zp)) {
(void) zfs_rezget(zp);
}
mutex_exit(&zsb->z_znodes_lock);
}
bail:
/* release the VOPs */
rw_exit(&zsb->z_teardown_inactive_lock);
rrw_exit(&zsb->z_teardown_lock, FTAG);
if (err) {
/*
* Since we couldn't reopen zfs_sb_t::z_os, force
* unmount this file system.
*/
(void) zfs_umount(zsb->z_sb);
}
return (err);
}
EXPORT_SYMBOL(zfs_resume_fs);
int
zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
{
int error;
objset_t *os = zsb->z_os;
dmu_tx_t *tx;
if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
return (EINVAL);
if (newvers < zsb->z_version)
return (EINVAL);
if (zfs_spa_version_map(newvers) >
spa_version(dmu_objset_spa(zsb->z_os)))
return (ENOTSUP);
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
ZFS_SA_ATTRS);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
}
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
return (error);
}
error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
8, 1, &newvers, tx);
if (error) {
dmu_tx_commit(tx);
return (error);
}
if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
uint64_t sa_obj;
ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
SPA_VERSION_SA);
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
DMU_OT_NONE, 0, tx);
error = zap_add(os, MASTER_NODE_OBJ,
ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
ASSERT3U(error, ==, 0);
VERIFY(0 == sa_set_sa_object(os, sa_obj));
sa_register_update_callback(os, zfs_sa_upgrade);
}
spa_history_log_internal(LOG_DS_UPGRADE,
dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
zsb->z_version, newvers, dmu_objset_id(os));
dmu_tx_commit(tx);
zsb->z_version = newvers;
if (zsb->z_version >= ZPL_VERSION_FUID)
zfs_set_fuid_feature(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_set_version);
/*
* Read a property stored within the master node.
*/
int
zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
{
const char *pname;
int error = ENOENT;
/*
* Look up the file system's value for the property. For the
* version property, we look up a slightly different string.
*/
if (prop == ZFS_PROP_VERSION)
pname = ZPL_VERSION_STR;
else
pname = zfs_prop_to_name(prop);
if (os != NULL)
error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
if (error == ENOENT) {
/* No value set, use the default value */
switch (prop) {
case ZFS_PROP_VERSION:
*value = ZPL_VERSION;
break;
case ZFS_PROP_NORMALIZE:
case ZFS_PROP_UTF8ONLY:
*value = 0;
break;
case ZFS_PROP_CASE:
*value = ZFS_CASE_SENSITIVE;
break;
default:
return (error);
}
error = 0;
}
return (error);
}
void
zfs_init(void)
{
zfs_znode_init();
dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
register_filesystem(&zpl_fs_type);
}
void
zfs_fini(void)
{
unregister_filesystem(&zpl_fs_type);
zfs_znode_fini();
}