freebsd-nq/sys/dev/vmware/vmxnet3/if_vmx.c
John Baldwin 1941909336 Only use a power of 2 for the number of receive and transmit queues.
Using other values causes VMXNET3_CMD_ENABLE to fail.  The Linux
driver also enforces this restriction.

Reviewed by:	bryanv
MFC after:	1 week
Sponsored by:	Norse
Differential Revision:	https://reviews.freebsd.org/D4139
2015-11-16 21:36:50 +00:00

3923 lines
95 KiB
C

/*-
* Copyright (c) 2013 Tsubai Masanari
* Copyright (c) 2013 Bryan Venteicher <bryanv@FreeBSD.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $OpenBSD: src/sys/dev/pci/if_vmx.c,v 1.11 2013/06/22 00:28:10 uebayasi Exp $
*/
/* Driver for VMware vmxnet3 virtual ethernet devices. */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/endian.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/smp.h>
#include <sys/taskqueue.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <machine/in_cksum.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include "if_vmxreg.h"
#include "if_vmxvar.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#ifdef VMXNET3_FAILPOINTS
#include <sys/fail.h>
static SYSCTL_NODE(DEBUG_FP, OID_AUTO, vmxnet3, CTLFLAG_RW, 0,
"vmxnet3 fail points");
#define VMXNET3_FP _debug_fail_point_vmxnet3
#endif
static int vmxnet3_probe(device_t);
static int vmxnet3_attach(device_t);
static int vmxnet3_detach(device_t);
static int vmxnet3_shutdown(device_t);
static int vmxnet3_alloc_resources(struct vmxnet3_softc *);
static void vmxnet3_free_resources(struct vmxnet3_softc *);
static int vmxnet3_check_version(struct vmxnet3_softc *);
static void vmxnet3_initial_config(struct vmxnet3_softc *);
static void vmxnet3_check_multiqueue(struct vmxnet3_softc *);
static int vmxnet3_alloc_msix_interrupts(struct vmxnet3_softc *);
static int vmxnet3_alloc_msi_interrupts(struct vmxnet3_softc *);
static int vmxnet3_alloc_legacy_interrupts(struct vmxnet3_softc *);
static int vmxnet3_alloc_interrupt(struct vmxnet3_softc *, int, int,
struct vmxnet3_interrupt *);
static int vmxnet3_alloc_intr_resources(struct vmxnet3_softc *);
static int vmxnet3_setup_msix_interrupts(struct vmxnet3_softc *);
static int vmxnet3_setup_legacy_interrupt(struct vmxnet3_softc *);
static int vmxnet3_setup_interrupts(struct vmxnet3_softc *);
static int vmxnet3_alloc_interrupts(struct vmxnet3_softc *);
static void vmxnet3_free_interrupt(struct vmxnet3_softc *,
struct vmxnet3_interrupt *);
static void vmxnet3_free_interrupts(struct vmxnet3_softc *);
#ifndef VMXNET3_LEGACY_TX
static int vmxnet3_alloc_taskqueue(struct vmxnet3_softc *);
static void vmxnet3_start_taskqueue(struct vmxnet3_softc *);
static void vmxnet3_drain_taskqueue(struct vmxnet3_softc *);
static void vmxnet3_free_taskqueue(struct vmxnet3_softc *);
#endif
static int vmxnet3_init_rxq(struct vmxnet3_softc *, int);
static int vmxnet3_init_txq(struct vmxnet3_softc *, int);
static int vmxnet3_alloc_rxtx_queues(struct vmxnet3_softc *);
static void vmxnet3_destroy_rxq(struct vmxnet3_rxqueue *);
static void vmxnet3_destroy_txq(struct vmxnet3_txqueue *);
static void vmxnet3_free_rxtx_queues(struct vmxnet3_softc *);
static int vmxnet3_alloc_shared_data(struct vmxnet3_softc *);
static void vmxnet3_free_shared_data(struct vmxnet3_softc *);
static int vmxnet3_alloc_txq_data(struct vmxnet3_softc *);
static void vmxnet3_free_txq_data(struct vmxnet3_softc *);
static int vmxnet3_alloc_rxq_data(struct vmxnet3_softc *);
static void vmxnet3_free_rxq_data(struct vmxnet3_softc *);
static int vmxnet3_alloc_queue_data(struct vmxnet3_softc *);
static void vmxnet3_free_queue_data(struct vmxnet3_softc *);
static int vmxnet3_alloc_mcast_table(struct vmxnet3_softc *);
static void vmxnet3_init_shared_data(struct vmxnet3_softc *);
static void vmxnet3_reinit_interface(struct vmxnet3_softc *);
static void vmxnet3_reinit_rss_shared_data(struct vmxnet3_softc *);
static void vmxnet3_reinit_shared_data(struct vmxnet3_softc *);
static int vmxnet3_alloc_data(struct vmxnet3_softc *);
static void vmxnet3_free_data(struct vmxnet3_softc *);
static int vmxnet3_setup_interface(struct vmxnet3_softc *);
static void vmxnet3_evintr(struct vmxnet3_softc *);
static void vmxnet3_txq_eof(struct vmxnet3_txqueue *);
static void vmxnet3_rx_csum(struct vmxnet3_rxcompdesc *, struct mbuf *);
static int vmxnet3_newbuf(struct vmxnet3_softc *, struct vmxnet3_rxring *);
static void vmxnet3_rxq_eof_discard(struct vmxnet3_rxqueue *,
struct vmxnet3_rxring *, int);
static void vmxnet3_rxq_eof(struct vmxnet3_rxqueue *);
static void vmxnet3_legacy_intr(void *);
static void vmxnet3_txq_intr(void *);
static void vmxnet3_rxq_intr(void *);
static void vmxnet3_event_intr(void *);
static void vmxnet3_txstop(struct vmxnet3_softc *, struct vmxnet3_txqueue *);
static void vmxnet3_rxstop(struct vmxnet3_softc *, struct vmxnet3_rxqueue *);
static void vmxnet3_stop(struct vmxnet3_softc *);
static void vmxnet3_txinit(struct vmxnet3_softc *, struct vmxnet3_txqueue *);
static int vmxnet3_rxinit(struct vmxnet3_softc *, struct vmxnet3_rxqueue *);
static int vmxnet3_reinit_queues(struct vmxnet3_softc *);
static int vmxnet3_enable_device(struct vmxnet3_softc *);
static void vmxnet3_reinit_rxfilters(struct vmxnet3_softc *);
static int vmxnet3_reinit(struct vmxnet3_softc *);
static void vmxnet3_init_locked(struct vmxnet3_softc *);
static void vmxnet3_init(void *);
static int vmxnet3_txq_offload_ctx(struct vmxnet3_txqueue *,struct mbuf *,
int *, int *, int *);
static int vmxnet3_txq_load_mbuf(struct vmxnet3_txqueue *, struct mbuf **,
bus_dmamap_t, bus_dma_segment_t [], int *);
static void vmxnet3_txq_unload_mbuf(struct vmxnet3_txqueue *, bus_dmamap_t);
static int vmxnet3_txq_encap(struct vmxnet3_txqueue *, struct mbuf **);
#ifdef VMXNET3_LEGACY_TX
static void vmxnet3_start_locked(struct ifnet *);
static void vmxnet3_start(struct ifnet *);
#else
static int vmxnet3_txq_mq_start_locked(struct vmxnet3_txqueue *,
struct mbuf *);
static int vmxnet3_txq_mq_start(struct ifnet *, struct mbuf *);
static void vmxnet3_txq_tq_deferred(void *, int);
#endif
static void vmxnet3_txq_start(struct vmxnet3_txqueue *);
static void vmxnet3_tx_start_all(struct vmxnet3_softc *);
static void vmxnet3_update_vlan_filter(struct vmxnet3_softc *, int,
uint16_t);
static void vmxnet3_register_vlan(void *, struct ifnet *, uint16_t);
static void vmxnet3_unregister_vlan(void *, struct ifnet *, uint16_t);
static void vmxnet3_set_rxfilter(struct vmxnet3_softc *);
static int vmxnet3_change_mtu(struct vmxnet3_softc *, int);
static int vmxnet3_ioctl(struct ifnet *, u_long, caddr_t);
static uint64_t vmxnet3_get_counter(struct ifnet *, ift_counter);
#ifndef VMXNET3_LEGACY_TX
static void vmxnet3_qflush(struct ifnet *);
#endif
static int vmxnet3_watchdog(struct vmxnet3_txqueue *);
static void vmxnet3_refresh_host_stats(struct vmxnet3_softc *);
static void vmxnet3_tick(void *);
static void vmxnet3_link_status(struct vmxnet3_softc *);
static void vmxnet3_media_status(struct ifnet *, struct ifmediareq *);
static int vmxnet3_media_change(struct ifnet *);
static void vmxnet3_set_lladdr(struct vmxnet3_softc *);
static void vmxnet3_get_lladdr(struct vmxnet3_softc *);
static void vmxnet3_setup_txq_sysctl(struct vmxnet3_txqueue *,
struct sysctl_ctx_list *, struct sysctl_oid_list *);
static void vmxnet3_setup_rxq_sysctl(struct vmxnet3_rxqueue *,
struct sysctl_ctx_list *, struct sysctl_oid_list *);
static void vmxnet3_setup_queue_sysctl(struct vmxnet3_softc *,
struct sysctl_ctx_list *, struct sysctl_oid_list *);
static void vmxnet3_setup_sysctl(struct vmxnet3_softc *);
static void vmxnet3_write_bar0(struct vmxnet3_softc *, bus_size_t,
uint32_t);
static uint32_t vmxnet3_read_bar1(struct vmxnet3_softc *, bus_size_t);
static void vmxnet3_write_bar1(struct vmxnet3_softc *, bus_size_t,
uint32_t);
static void vmxnet3_write_cmd(struct vmxnet3_softc *, uint32_t);
static uint32_t vmxnet3_read_cmd(struct vmxnet3_softc *, uint32_t);
static void vmxnet3_enable_intr(struct vmxnet3_softc *, int);
static void vmxnet3_disable_intr(struct vmxnet3_softc *, int);
static void vmxnet3_enable_all_intrs(struct vmxnet3_softc *);
static void vmxnet3_disable_all_intrs(struct vmxnet3_softc *);
static int vmxnet3_dma_malloc(struct vmxnet3_softc *, bus_size_t,
bus_size_t, struct vmxnet3_dma_alloc *);
static void vmxnet3_dma_free(struct vmxnet3_softc *,
struct vmxnet3_dma_alloc *);
static int vmxnet3_tunable_int(struct vmxnet3_softc *,
const char *, int);
typedef enum {
VMXNET3_BARRIER_RD,
VMXNET3_BARRIER_WR,
VMXNET3_BARRIER_RDWR,
} vmxnet3_barrier_t;
static void vmxnet3_barrier(struct vmxnet3_softc *, vmxnet3_barrier_t);
/* Tunables. */
static int vmxnet3_mq_disable = 0;
TUNABLE_INT("hw.vmx.mq_disable", &vmxnet3_mq_disable);
static int vmxnet3_default_txnqueue = VMXNET3_DEF_TX_QUEUES;
TUNABLE_INT("hw.vmx.txnqueue", &vmxnet3_default_txnqueue);
static int vmxnet3_default_rxnqueue = VMXNET3_DEF_RX_QUEUES;
TUNABLE_INT("hw.vmx.rxnqueue", &vmxnet3_default_rxnqueue);
static int vmxnet3_default_txndesc = VMXNET3_DEF_TX_NDESC;
TUNABLE_INT("hw.vmx.txndesc", &vmxnet3_default_txndesc);
static int vmxnet3_default_rxndesc = VMXNET3_DEF_RX_NDESC;
TUNABLE_INT("hw.vmx.rxndesc", &vmxnet3_default_rxndesc);
static device_method_t vmxnet3_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, vmxnet3_probe),
DEVMETHOD(device_attach, vmxnet3_attach),
DEVMETHOD(device_detach, vmxnet3_detach),
DEVMETHOD(device_shutdown, vmxnet3_shutdown),
DEVMETHOD_END
};
static driver_t vmxnet3_driver = {
"vmx", vmxnet3_methods, sizeof(struct vmxnet3_softc)
};
static devclass_t vmxnet3_devclass;
DRIVER_MODULE(vmx, pci, vmxnet3_driver, vmxnet3_devclass, 0, 0);
MODULE_DEPEND(vmx, pci, 1, 1, 1);
MODULE_DEPEND(vmx, ether, 1, 1, 1);
#define VMXNET3_VMWARE_VENDOR_ID 0x15AD
#define VMXNET3_VMWARE_DEVICE_ID 0x07B0
static int
vmxnet3_probe(device_t dev)
{
if (pci_get_vendor(dev) == VMXNET3_VMWARE_VENDOR_ID &&
pci_get_device(dev) == VMXNET3_VMWARE_DEVICE_ID) {
device_set_desc(dev, "VMware VMXNET3 Ethernet Adapter");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
vmxnet3_attach(device_t dev)
{
struct vmxnet3_softc *sc;
int error;
sc = device_get_softc(dev);
sc->vmx_dev = dev;
pci_enable_busmaster(dev);
VMXNET3_CORE_LOCK_INIT(sc, device_get_nameunit(dev));
callout_init_mtx(&sc->vmx_tick, &sc->vmx_mtx, 0);
vmxnet3_initial_config(sc);
error = vmxnet3_alloc_resources(sc);
if (error)
goto fail;
error = vmxnet3_check_version(sc);
if (error)
goto fail;
error = vmxnet3_alloc_rxtx_queues(sc);
if (error)
goto fail;
#ifndef VMXNET3_LEGACY_TX
error = vmxnet3_alloc_taskqueue(sc);
if (error)
goto fail;
#endif
error = vmxnet3_alloc_interrupts(sc);
if (error)
goto fail;
vmxnet3_check_multiqueue(sc);
error = vmxnet3_alloc_data(sc);
if (error)
goto fail;
error = vmxnet3_setup_interface(sc);
if (error)
goto fail;
error = vmxnet3_setup_interrupts(sc);
if (error) {
ether_ifdetach(sc->vmx_ifp);
device_printf(dev, "could not set up interrupt\n");
goto fail;
}
vmxnet3_setup_sysctl(sc);
#ifndef VMXNET3_LEGACY_TX
vmxnet3_start_taskqueue(sc);
#endif
fail:
if (error)
vmxnet3_detach(dev);
return (error);
}
static int
vmxnet3_detach(device_t dev)
{
struct vmxnet3_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->vmx_ifp;
if (device_is_attached(dev)) {
VMXNET3_CORE_LOCK(sc);
vmxnet3_stop(sc);
VMXNET3_CORE_UNLOCK(sc);
callout_drain(&sc->vmx_tick);
#ifndef VMXNET3_LEGACY_TX
vmxnet3_drain_taskqueue(sc);
#endif
ether_ifdetach(ifp);
}
if (sc->vmx_vlan_attach != NULL) {
EVENTHANDLER_DEREGISTER(vlan_config, sc->vmx_vlan_attach);
sc->vmx_vlan_attach = NULL;
}
if (sc->vmx_vlan_detach != NULL) {
EVENTHANDLER_DEREGISTER(vlan_config, sc->vmx_vlan_detach);
sc->vmx_vlan_detach = NULL;
}
#ifndef VMXNET3_LEGACY_TX
vmxnet3_free_taskqueue(sc);
#endif
vmxnet3_free_interrupts(sc);
if (ifp != NULL) {
if_free(ifp);
sc->vmx_ifp = NULL;
}
ifmedia_removeall(&sc->vmx_media);
vmxnet3_free_data(sc);
vmxnet3_free_resources(sc);
vmxnet3_free_rxtx_queues(sc);
VMXNET3_CORE_LOCK_DESTROY(sc);
return (0);
}
static int
vmxnet3_shutdown(device_t dev)
{
return (0);
}
static int
vmxnet3_alloc_resources(struct vmxnet3_softc *sc)
{
device_t dev;
int rid;
dev = sc->vmx_dev;
rid = PCIR_BAR(0);
sc->vmx_res0 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->vmx_res0 == NULL) {
device_printf(dev,
"could not map BAR0 memory\n");
return (ENXIO);
}
sc->vmx_iot0 = rman_get_bustag(sc->vmx_res0);
sc->vmx_ioh0 = rman_get_bushandle(sc->vmx_res0);
rid = PCIR_BAR(1);
sc->vmx_res1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->vmx_res1 == NULL) {
device_printf(dev,
"could not map BAR1 memory\n");
return (ENXIO);
}
sc->vmx_iot1 = rman_get_bustag(sc->vmx_res1);
sc->vmx_ioh1 = rman_get_bushandle(sc->vmx_res1);
if (pci_find_cap(dev, PCIY_MSIX, NULL) == 0) {
rid = PCIR_BAR(2);
sc->vmx_msix_res = bus_alloc_resource_any(dev,
SYS_RES_MEMORY, &rid, RF_ACTIVE);
}
if (sc->vmx_msix_res == NULL)
sc->vmx_flags |= VMXNET3_FLAG_NO_MSIX;
return (0);
}
static void
vmxnet3_free_resources(struct vmxnet3_softc *sc)
{
device_t dev;
int rid;
dev = sc->vmx_dev;
if (sc->vmx_res0 != NULL) {
rid = PCIR_BAR(0);
bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->vmx_res0);
sc->vmx_res0 = NULL;
}
if (sc->vmx_res1 != NULL) {
rid = PCIR_BAR(1);
bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->vmx_res1);
sc->vmx_res1 = NULL;
}
if (sc->vmx_msix_res != NULL) {
rid = PCIR_BAR(2);
bus_release_resource(dev, SYS_RES_MEMORY, rid,
sc->vmx_msix_res);
sc->vmx_msix_res = NULL;
}
}
static int
vmxnet3_check_version(struct vmxnet3_softc *sc)
{
device_t dev;
uint32_t version;
dev = sc->vmx_dev;
version = vmxnet3_read_bar1(sc, VMXNET3_BAR1_VRRS);
if ((version & 0x01) == 0) {
device_printf(dev, "unsupported hardware version %#x\n",
version);
return (ENOTSUP);
}
vmxnet3_write_bar1(sc, VMXNET3_BAR1_VRRS, 1);
version = vmxnet3_read_bar1(sc, VMXNET3_BAR1_UVRS);
if ((version & 0x01) == 0) {
device_printf(dev, "unsupported UPT version %#x\n", version);
return (ENOTSUP);
}
vmxnet3_write_bar1(sc, VMXNET3_BAR1_UVRS, 1);
return (0);
}
static int
trunc_powerof2(int val)
{
return (1U << (fls(val) - 1));
}
static void
vmxnet3_initial_config(struct vmxnet3_softc *sc)
{
int nqueue, ndesc;
nqueue = vmxnet3_tunable_int(sc, "txnqueue", vmxnet3_default_txnqueue);
if (nqueue > VMXNET3_MAX_TX_QUEUES || nqueue < 1)
nqueue = VMXNET3_DEF_TX_QUEUES;
if (nqueue > mp_ncpus)
nqueue = mp_ncpus;
sc->vmx_max_ntxqueues = trunc_powerof2(nqueue);
nqueue = vmxnet3_tunable_int(sc, "rxnqueue", vmxnet3_default_rxnqueue);
if (nqueue > VMXNET3_MAX_RX_QUEUES || nqueue < 1)
nqueue = VMXNET3_DEF_RX_QUEUES;
if (nqueue > mp_ncpus)
nqueue = mp_ncpus;
sc->vmx_max_nrxqueues = trunc_powerof2(nqueue);
if (vmxnet3_tunable_int(sc, "mq_disable", vmxnet3_mq_disable)) {
sc->vmx_max_nrxqueues = 1;
sc->vmx_max_ntxqueues = 1;
}
ndesc = vmxnet3_tunable_int(sc, "txd", vmxnet3_default_txndesc);
if (ndesc > VMXNET3_MAX_TX_NDESC || ndesc < VMXNET3_MIN_TX_NDESC)
ndesc = VMXNET3_DEF_TX_NDESC;
if (ndesc & VMXNET3_MASK_TX_NDESC)
ndesc &= ~VMXNET3_MASK_TX_NDESC;
sc->vmx_ntxdescs = ndesc;
ndesc = vmxnet3_tunable_int(sc, "rxd", vmxnet3_default_rxndesc);
if (ndesc > VMXNET3_MAX_RX_NDESC || ndesc < VMXNET3_MIN_RX_NDESC)
ndesc = VMXNET3_DEF_RX_NDESC;
if (ndesc & VMXNET3_MASK_RX_NDESC)
ndesc &= ~VMXNET3_MASK_RX_NDESC;
sc->vmx_nrxdescs = ndesc;
sc->vmx_max_rxsegs = VMXNET3_MAX_RX_SEGS;
}
static void
vmxnet3_check_multiqueue(struct vmxnet3_softc *sc)
{
if (sc->vmx_intr_type != VMXNET3_IT_MSIX)
goto out;
/* BMV: Just use the maximum configured for now. */
sc->vmx_nrxqueues = sc->vmx_max_nrxqueues;
sc->vmx_ntxqueues = sc->vmx_max_ntxqueues;
if (sc->vmx_nrxqueues > 1)
sc->vmx_flags |= VMXNET3_FLAG_RSS;
return;
out:
sc->vmx_ntxqueues = 1;
sc->vmx_nrxqueues = 1;
}
static int
vmxnet3_alloc_msix_interrupts(struct vmxnet3_softc *sc)
{
device_t dev;
int nmsix, cnt, required;
dev = sc->vmx_dev;
if (sc->vmx_flags & VMXNET3_FLAG_NO_MSIX)
return (1);
/* Allocate an additional vector for the events interrupt. */
required = sc->vmx_max_nrxqueues + sc->vmx_max_ntxqueues + 1;
nmsix = pci_msix_count(dev);
if (nmsix < required)
return (1);
cnt = required;
if (pci_alloc_msix(dev, &cnt) == 0 && cnt >= required) {
sc->vmx_nintrs = required;
return (0);
} else
pci_release_msi(dev);
/* BMV TODO Fallback to sharing MSIX vectors if possible. */
return (1);
}
static int
vmxnet3_alloc_msi_interrupts(struct vmxnet3_softc *sc)
{
device_t dev;
int nmsi, cnt, required;
dev = sc->vmx_dev;
required = 1;
nmsi = pci_msi_count(dev);
if (nmsi < required)
return (1);
cnt = required;
if (pci_alloc_msi(dev, &cnt) == 0 && cnt >= required) {
sc->vmx_nintrs = 1;
return (0);
} else
pci_release_msi(dev);
return (1);
}
static int
vmxnet3_alloc_legacy_interrupts(struct vmxnet3_softc *sc)
{
sc->vmx_nintrs = 1;
return (0);
}
static int
vmxnet3_alloc_interrupt(struct vmxnet3_softc *sc, int rid, int flags,
struct vmxnet3_interrupt *intr)
{
struct resource *irq;
irq = bus_alloc_resource_any(sc->vmx_dev, SYS_RES_IRQ, &rid, flags);
if (irq == NULL)
return (ENXIO);
intr->vmxi_irq = irq;
intr->vmxi_rid = rid;
return (0);
}
static int
vmxnet3_alloc_intr_resources(struct vmxnet3_softc *sc)
{
int i, rid, flags, error;
rid = 0;
flags = RF_ACTIVE;
if (sc->vmx_intr_type == VMXNET3_IT_LEGACY)
flags |= RF_SHAREABLE;
else
rid = 1;
for (i = 0; i < sc->vmx_nintrs; i++, rid++) {
error = vmxnet3_alloc_interrupt(sc, rid, flags,
&sc->vmx_intrs[i]);
if (error)
return (error);
}
return (0);
}
static int
vmxnet3_setup_msix_interrupts(struct vmxnet3_softc *sc)
{
device_t dev;
struct vmxnet3_txqueue *txq;
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_interrupt *intr;
enum intr_type type;
int i, error;
dev = sc->vmx_dev;
intr = &sc->vmx_intrs[0];
type = INTR_TYPE_NET | INTR_MPSAFE;
for (i = 0; i < sc->vmx_ntxqueues; i++, intr++) {
txq = &sc->vmx_txq[i];
error = bus_setup_intr(dev, intr->vmxi_irq, type, NULL,
vmxnet3_txq_intr, txq, &intr->vmxi_handler);
if (error)
return (error);
bus_describe_intr(dev, intr->vmxi_irq, intr->vmxi_handler,
"tq%d", i);
txq->vxtxq_intr_idx = intr->vmxi_rid - 1;
}
for (i = 0; i < sc->vmx_nrxqueues; i++, intr++) {
rxq = &sc->vmx_rxq[i];
error = bus_setup_intr(dev, intr->vmxi_irq, type, NULL,
vmxnet3_rxq_intr, rxq, &intr->vmxi_handler);
if (error)
return (error);
bus_describe_intr(dev, intr->vmxi_irq, intr->vmxi_handler,
"rq%d", i);
rxq->vxrxq_intr_idx = intr->vmxi_rid - 1;
}
error = bus_setup_intr(dev, intr->vmxi_irq, type, NULL,
vmxnet3_event_intr, sc, &intr->vmxi_handler);
if (error)
return (error);
bus_describe_intr(dev, intr->vmxi_irq, intr->vmxi_handler, "event");
sc->vmx_event_intr_idx = intr->vmxi_rid - 1;
return (0);
}
static int
vmxnet3_setup_legacy_interrupt(struct vmxnet3_softc *sc)
{
struct vmxnet3_interrupt *intr;
int i, error;
intr = &sc->vmx_intrs[0];
error = bus_setup_intr(sc->vmx_dev, intr->vmxi_irq,
INTR_TYPE_NET | INTR_MPSAFE, NULL, vmxnet3_legacy_intr, sc,
&intr->vmxi_handler);
for (i = 0; i < sc->vmx_ntxqueues; i++)
sc->vmx_txq[i].vxtxq_intr_idx = 0;
for (i = 0; i < sc->vmx_nrxqueues; i++)
sc->vmx_rxq[i].vxrxq_intr_idx = 0;
sc->vmx_event_intr_idx = 0;
return (error);
}
static void
vmxnet3_set_interrupt_idx(struct vmxnet3_softc *sc)
{
struct vmxnet3_txqueue *txq;
struct vmxnet3_txq_shared *txs;
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_rxq_shared *rxs;
int i;
sc->vmx_ds->evintr = sc->vmx_event_intr_idx;
for (i = 0; i < sc->vmx_ntxqueues; i++) {
txq = &sc->vmx_txq[i];
txs = txq->vxtxq_ts;
txs->intr_idx = txq->vxtxq_intr_idx;
}
for (i = 0; i < sc->vmx_nrxqueues; i++) {
rxq = &sc->vmx_rxq[i];
rxs = rxq->vxrxq_rs;
rxs->intr_idx = rxq->vxrxq_intr_idx;
}
}
static int
vmxnet3_setup_interrupts(struct vmxnet3_softc *sc)
{
int error;
error = vmxnet3_alloc_intr_resources(sc);
if (error)
return (error);
switch (sc->vmx_intr_type) {
case VMXNET3_IT_MSIX:
error = vmxnet3_setup_msix_interrupts(sc);
break;
case VMXNET3_IT_MSI:
case VMXNET3_IT_LEGACY:
error = vmxnet3_setup_legacy_interrupt(sc);
break;
default:
panic("%s: invalid interrupt type %d", __func__,
sc->vmx_intr_type);
}
if (error == 0)
vmxnet3_set_interrupt_idx(sc);
return (error);
}
static int
vmxnet3_alloc_interrupts(struct vmxnet3_softc *sc)
{
device_t dev;
uint32_t config;
int error;
dev = sc->vmx_dev;
config = vmxnet3_read_cmd(sc, VMXNET3_CMD_GET_INTRCFG);
sc->vmx_intr_type = config & 0x03;
sc->vmx_intr_mask_mode = (config >> 2) & 0x03;
switch (sc->vmx_intr_type) {
case VMXNET3_IT_AUTO:
sc->vmx_intr_type = VMXNET3_IT_MSIX;
/* FALLTHROUGH */
case VMXNET3_IT_MSIX:
error = vmxnet3_alloc_msix_interrupts(sc);
if (error == 0)
break;
sc->vmx_intr_type = VMXNET3_IT_MSI;
/* FALLTHROUGH */
case VMXNET3_IT_MSI:
error = vmxnet3_alloc_msi_interrupts(sc);
if (error == 0)
break;
sc->vmx_intr_type = VMXNET3_IT_LEGACY;
/* FALLTHROUGH */
case VMXNET3_IT_LEGACY:
error = vmxnet3_alloc_legacy_interrupts(sc);
if (error == 0)
break;
/* FALLTHROUGH */
default:
sc->vmx_intr_type = -1;
device_printf(dev, "cannot allocate any interrupt resources\n");
return (ENXIO);
}
return (error);
}
static void
vmxnet3_free_interrupt(struct vmxnet3_softc *sc,
struct vmxnet3_interrupt *intr)
{
device_t dev;
dev = sc->vmx_dev;
if (intr->vmxi_handler != NULL) {
bus_teardown_intr(dev, intr->vmxi_irq, intr->vmxi_handler);
intr->vmxi_handler = NULL;
}
if (intr->vmxi_irq != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, intr->vmxi_rid,
intr->vmxi_irq);
intr->vmxi_irq = NULL;
intr->vmxi_rid = -1;
}
}
static void
vmxnet3_free_interrupts(struct vmxnet3_softc *sc)
{
int i;
for (i = 0; i < sc->vmx_nintrs; i++)
vmxnet3_free_interrupt(sc, &sc->vmx_intrs[i]);
if (sc->vmx_intr_type == VMXNET3_IT_MSI ||
sc->vmx_intr_type == VMXNET3_IT_MSIX)
pci_release_msi(sc->vmx_dev);
}
#ifndef VMXNET3_LEGACY_TX
static int
vmxnet3_alloc_taskqueue(struct vmxnet3_softc *sc)
{
device_t dev;
dev = sc->vmx_dev;
sc->vmx_tq = taskqueue_create(device_get_nameunit(dev), M_NOWAIT,
taskqueue_thread_enqueue, &sc->vmx_tq);
if (sc->vmx_tq == NULL)
return (ENOMEM);
return (0);
}
static void
vmxnet3_start_taskqueue(struct vmxnet3_softc *sc)
{
device_t dev;
int nthreads, error;
dev = sc->vmx_dev;
/*
* The taskqueue is typically not frequently used, so a dedicated
* thread for each queue is unnecessary.
*/
nthreads = MAX(1, sc->vmx_ntxqueues / 2);
/*
* Most drivers just ignore the return value - it only fails
* with ENOMEM so an error is not likely. It is hard for us
* to recover from an error here.
*/
error = taskqueue_start_threads(&sc->vmx_tq, nthreads, PI_NET,
"%s taskq", device_get_nameunit(dev));
if (error)
device_printf(dev, "failed to start taskqueue: %d", error);
}
static void
vmxnet3_drain_taskqueue(struct vmxnet3_softc *sc)
{
struct vmxnet3_txqueue *txq;
int i;
if (sc->vmx_tq != NULL) {
for (i = 0; i < sc->vmx_max_ntxqueues; i++) {
txq = &sc->vmx_txq[i];
taskqueue_drain(sc->vmx_tq, &txq->vxtxq_defrtask);
}
}
}
static void
vmxnet3_free_taskqueue(struct vmxnet3_softc *sc)
{
if (sc->vmx_tq != NULL) {
taskqueue_free(sc->vmx_tq);
sc->vmx_tq = NULL;
}
}
#endif
static int
vmxnet3_init_rxq(struct vmxnet3_softc *sc, int q)
{
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_rxring *rxr;
int i;
rxq = &sc->vmx_rxq[q];
snprintf(rxq->vxrxq_name, sizeof(rxq->vxrxq_name), "%s-rx%d",
device_get_nameunit(sc->vmx_dev), q);
mtx_init(&rxq->vxrxq_mtx, rxq->vxrxq_name, NULL, MTX_DEF);
rxq->vxrxq_sc = sc;
rxq->vxrxq_id = q;
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
rxr->vxrxr_rid = i;
rxr->vxrxr_ndesc = sc->vmx_nrxdescs;
rxr->vxrxr_rxbuf = malloc(rxr->vxrxr_ndesc *
sizeof(struct vmxnet3_rxbuf), M_DEVBUF, M_NOWAIT | M_ZERO);
if (rxr->vxrxr_rxbuf == NULL)
return (ENOMEM);
rxq->vxrxq_comp_ring.vxcr_ndesc += sc->vmx_nrxdescs;
}
return (0);
}
static int
vmxnet3_init_txq(struct vmxnet3_softc *sc, int q)
{
struct vmxnet3_txqueue *txq;
struct vmxnet3_txring *txr;
txq = &sc->vmx_txq[q];
txr = &txq->vxtxq_cmd_ring;
snprintf(txq->vxtxq_name, sizeof(txq->vxtxq_name), "%s-tx%d",
device_get_nameunit(sc->vmx_dev), q);
mtx_init(&txq->vxtxq_mtx, txq->vxtxq_name, NULL, MTX_DEF);
txq->vxtxq_sc = sc;
txq->vxtxq_id = q;
txr->vxtxr_ndesc = sc->vmx_ntxdescs;
txr->vxtxr_txbuf = malloc(txr->vxtxr_ndesc *
sizeof(struct vmxnet3_txbuf), M_DEVBUF, M_NOWAIT | M_ZERO);
if (txr->vxtxr_txbuf == NULL)
return (ENOMEM);
txq->vxtxq_comp_ring.vxcr_ndesc = sc->vmx_ntxdescs;
#ifndef VMXNET3_LEGACY_TX
TASK_INIT(&txq->vxtxq_defrtask, 0, vmxnet3_txq_tq_deferred, txq);
txq->vxtxq_br = buf_ring_alloc(VMXNET3_DEF_BUFRING_SIZE, M_DEVBUF,
M_NOWAIT, &txq->vxtxq_mtx);
if (txq->vxtxq_br == NULL)
return (ENOMEM);
#endif
return (0);
}
static int
vmxnet3_alloc_rxtx_queues(struct vmxnet3_softc *sc)
{
int i, error;
/*
* Only attempt to create multiple queues if MSIX is available. MSIX is
* disabled by default because its apparently broken for devices passed
* through by at least ESXi 5.1. The hw.pci.honor_msi_blacklist tunable
* must be set to zero for MSIX. This check prevents us from allocating
* queue structures that we will not use.
*/
if (sc->vmx_flags & VMXNET3_FLAG_NO_MSIX) {
sc->vmx_max_nrxqueues = 1;
sc->vmx_max_ntxqueues = 1;
}
sc->vmx_rxq = malloc(sizeof(struct vmxnet3_rxqueue) *
sc->vmx_max_nrxqueues, M_DEVBUF, M_NOWAIT | M_ZERO);
sc->vmx_txq = malloc(sizeof(struct vmxnet3_txqueue) *
sc->vmx_max_ntxqueues, M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->vmx_rxq == NULL || sc->vmx_txq == NULL)
return (ENOMEM);
for (i = 0; i < sc->vmx_max_nrxqueues; i++) {
error = vmxnet3_init_rxq(sc, i);
if (error)
return (error);
}
for (i = 0; i < sc->vmx_max_ntxqueues; i++) {
error = vmxnet3_init_txq(sc, i);
if (error)
return (error);
}
return (0);
}
static void
vmxnet3_destroy_rxq(struct vmxnet3_rxqueue *rxq)
{
struct vmxnet3_rxring *rxr;
int i;
rxq->vxrxq_sc = NULL;
rxq->vxrxq_id = -1;
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
if (rxr->vxrxr_rxbuf != NULL) {
free(rxr->vxrxr_rxbuf, M_DEVBUF);
rxr->vxrxr_rxbuf = NULL;
}
}
if (mtx_initialized(&rxq->vxrxq_mtx) != 0)
mtx_destroy(&rxq->vxrxq_mtx);
}
static void
vmxnet3_destroy_txq(struct vmxnet3_txqueue *txq)
{
struct vmxnet3_txring *txr;
txr = &txq->vxtxq_cmd_ring;
txq->vxtxq_sc = NULL;
txq->vxtxq_id = -1;
#ifndef VMXNET3_LEGACY_TX
if (txq->vxtxq_br != NULL) {
buf_ring_free(txq->vxtxq_br, M_DEVBUF);
txq->vxtxq_br = NULL;
}
#endif
if (txr->vxtxr_txbuf != NULL) {
free(txr->vxtxr_txbuf, M_DEVBUF);
txr->vxtxr_txbuf = NULL;
}
if (mtx_initialized(&txq->vxtxq_mtx) != 0)
mtx_destroy(&txq->vxtxq_mtx);
}
static void
vmxnet3_free_rxtx_queues(struct vmxnet3_softc *sc)
{
int i;
if (sc->vmx_rxq != NULL) {
for (i = 0; i < sc->vmx_max_nrxqueues; i++)
vmxnet3_destroy_rxq(&sc->vmx_rxq[i]);
free(sc->vmx_rxq, M_DEVBUF);
sc->vmx_rxq = NULL;
}
if (sc->vmx_txq != NULL) {
for (i = 0; i < sc->vmx_max_ntxqueues; i++)
vmxnet3_destroy_txq(&sc->vmx_txq[i]);
free(sc->vmx_txq, M_DEVBUF);
sc->vmx_txq = NULL;
}
}
static int
vmxnet3_alloc_shared_data(struct vmxnet3_softc *sc)
{
device_t dev;
uint8_t *kva;
size_t size;
int i, error;
dev = sc->vmx_dev;
size = sizeof(struct vmxnet3_driver_shared);
error = vmxnet3_dma_malloc(sc, size, 1, &sc->vmx_ds_dma);
if (error) {
device_printf(dev, "cannot alloc shared memory\n");
return (error);
}
sc->vmx_ds = (struct vmxnet3_driver_shared *) sc->vmx_ds_dma.dma_vaddr;
size = sc->vmx_ntxqueues * sizeof(struct vmxnet3_txq_shared) +
sc->vmx_nrxqueues * sizeof(struct vmxnet3_rxq_shared);
error = vmxnet3_dma_malloc(sc, size, 128, &sc->vmx_qs_dma);
if (error) {
device_printf(dev, "cannot alloc queue shared memory\n");
return (error);
}
sc->vmx_qs = (void *) sc->vmx_qs_dma.dma_vaddr;
kva = sc->vmx_qs;
for (i = 0; i < sc->vmx_ntxqueues; i++) {
sc->vmx_txq[i].vxtxq_ts = (struct vmxnet3_txq_shared *) kva;
kva += sizeof(struct vmxnet3_txq_shared);
}
for (i = 0; i < sc->vmx_nrxqueues; i++) {
sc->vmx_rxq[i].vxrxq_rs = (struct vmxnet3_rxq_shared *) kva;
kva += sizeof(struct vmxnet3_rxq_shared);
}
if (sc->vmx_flags & VMXNET3_FLAG_RSS) {
size = sizeof(struct vmxnet3_rss_shared);
error = vmxnet3_dma_malloc(sc, size, 128, &sc->vmx_rss_dma);
if (error) {
device_printf(dev, "cannot alloc rss shared memory\n");
return (error);
}
sc->vmx_rss =
(struct vmxnet3_rss_shared *) sc->vmx_rss_dma.dma_vaddr;
}
return (0);
}
static void
vmxnet3_free_shared_data(struct vmxnet3_softc *sc)
{
if (sc->vmx_rss != NULL) {
vmxnet3_dma_free(sc, &sc->vmx_rss_dma);
sc->vmx_rss = NULL;
}
if (sc->vmx_qs != NULL) {
vmxnet3_dma_free(sc, &sc->vmx_qs_dma);
sc->vmx_qs = NULL;
}
if (sc->vmx_ds != NULL) {
vmxnet3_dma_free(sc, &sc->vmx_ds_dma);
sc->vmx_ds = NULL;
}
}
static int
vmxnet3_alloc_txq_data(struct vmxnet3_softc *sc)
{
device_t dev;
struct vmxnet3_txqueue *txq;
struct vmxnet3_txring *txr;
struct vmxnet3_comp_ring *txc;
size_t descsz, compsz;
int i, q, error;
dev = sc->vmx_dev;
for (q = 0; q < sc->vmx_ntxqueues; q++) {
txq = &sc->vmx_txq[q];
txr = &txq->vxtxq_cmd_ring;
txc = &txq->vxtxq_comp_ring;
descsz = txr->vxtxr_ndesc * sizeof(struct vmxnet3_txdesc);
compsz = txr->vxtxr_ndesc * sizeof(struct vmxnet3_txcompdesc);
error = bus_dma_tag_create(bus_get_dma_tag(dev),
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
VMXNET3_TX_MAXSIZE, /* maxsize */
VMXNET3_TX_MAXSEGS, /* nsegments */
VMXNET3_TX_MAXSEGSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&txr->vxtxr_txtag);
if (error) {
device_printf(dev,
"unable to create Tx buffer tag for queue %d\n", q);
return (error);
}
error = vmxnet3_dma_malloc(sc, descsz, 512, &txr->vxtxr_dma);
if (error) {
device_printf(dev, "cannot alloc Tx descriptors for "
"queue %d error %d\n", q, error);
return (error);
}
txr->vxtxr_txd =
(struct vmxnet3_txdesc *) txr->vxtxr_dma.dma_vaddr;
error = vmxnet3_dma_malloc(sc, compsz, 512, &txc->vxcr_dma);
if (error) {
device_printf(dev, "cannot alloc Tx comp descriptors "
"for queue %d error %d\n", q, error);
return (error);
}
txc->vxcr_u.txcd =
(struct vmxnet3_txcompdesc *) txc->vxcr_dma.dma_vaddr;
for (i = 0; i < txr->vxtxr_ndesc; i++) {
error = bus_dmamap_create(txr->vxtxr_txtag, 0,
&txr->vxtxr_txbuf[i].vtxb_dmamap);
if (error) {
device_printf(dev, "unable to create Tx buf "
"dmamap for queue %d idx %d\n", q, i);
return (error);
}
}
}
return (0);
}
static void
vmxnet3_free_txq_data(struct vmxnet3_softc *sc)
{
device_t dev;
struct vmxnet3_txqueue *txq;
struct vmxnet3_txring *txr;
struct vmxnet3_comp_ring *txc;
struct vmxnet3_txbuf *txb;
int i, q;
dev = sc->vmx_dev;
for (q = 0; q < sc->vmx_ntxqueues; q++) {
txq = &sc->vmx_txq[q];
txr = &txq->vxtxq_cmd_ring;
txc = &txq->vxtxq_comp_ring;
for (i = 0; i < txr->vxtxr_ndesc; i++) {
txb = &txr->vxtxr_txbuf[i];
if (txb->vtxb_dmamap != NULL) {
bus_dmamap_destroy(txr->vxtxr_txtag,
txb->vtxb_dmamap);
txb->vtxb_dmamap = NULL;
}
}
if (txc->vxcr_u.txcd != NULL) {
vmxnet3_dma_free(sc, &txc->vxcr_dma);
txc->vxcr_u.txcd = NULL;
}
if (txr->vxtxr_txd != NULL) {
vmxnet3_dma_free(sc, &txr->vxtxr_dma);
txr->vxtxr_txd = NULL;
}
if (txr->vxtxr_txtag != NULL) {
bus_dma_tag_destroy(txr->vxtxr_txtag);
txr->vxtxr_txtag = NULL;
}
}
}
static int
vmxnet3_alloc_rxq_data(struct vmxnet3_softc *sc)
{
device_t dev;
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_rxring *rxr;
struct vmxnet3_comp_ring *rxc;
int descsz, compsz;
int i, j, q, error;
dev = sc->vmx_dev;
for (q = 0; q < sc->vmx_nrxqueues; q++) {
rxq = &sc->vmx_rxq[q];
rxc = &rxq->vxrxq_comp_ring;
compsz = 0;
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
descsz = rxr->vxrxr_ndesc *
sizeof(struct vmxnet3_rxdesc);
compsz += rxr->vxrxr_ndesc *
sizeof(struct vmxnet3_rxcompdesc);
error = bus_dma_tag_create(bus_get_dma_tag(dev),
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MJUMPAGESIZE, /* maxsize */
1, /* nsegments */
MJUMPAGESIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&rxr->vxrxr_rxtag);
if (error) {
device_printf(dev,
"unable to create Rx buffer tag for "
"queue %d\n", q);
return (error);
}
error = vmxnet3_dma_malloc(sc, descsz, 512,
&rxr->vxrxr_dma);
if (error) {
device_printf(dev, "cannot allocate Rx "
"descriptors for queue %d/%d error %d\n",
i, q, error);
return (error);
}
rxr->vxrxr_rxd =
(struct vmxnet3_rxdesc *) rxr->vxrxr_dma.dma_vaddr;
}
error = vmxnet3_dma_malloc(sc, compsz, 512, &rxc->vxcr_dma);
if (error) {
device_printf(dev, "cannot alloc Rx comp descriptors "
"for queue %d error %d\n", q, error);
return (error);
}
rxc->vxcr_u.rxcd =
(struct vmxnet3_rxcompdesc *) rxc->vxcr_dma.dma_vaddr;
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
error = bus_dmamap_create(rxr->vxrxr_rxtag, 0,
&rxr->vxrxr_spare_dmap);
if (error) {
device_printf(dev, "unable to create spare "
"dmamap for queue %d/%d error %d\n",
q, i, error);
return (error);
}
for (j = 0; j < rxr->vxrxr_ndesc; j++) {
error = bus_dmamap_create(rxr->vxrxr_rxtag, 0,
&rxr->vxrxr_rxbuf[j].vrxb_dmamap);
if (error) {
device_printf(dev, "unable to create "
"dmamap for queue %d/%d slot %d "
"error %d\n",
q, i, j, error);
return (error);
}
}
}
}
return (0);
}
static void
vmxnet3_free_rxq_data(struct vmxnet3_softc *sc)
{
device_t dev;
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_rxring *rxr;
struct vmxnet3_comp_ring *rxc;
struct vmxnet3_rxbuf *rxb;
int i, j, q;
dev = sc->vmx_dev;
for (q = 0; q < sc->vmx_nrxqueues; q++) {
rxq = &sc->vmx_rxq[q];
rxc = &rxq->vxrxq_comp_ring;
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
if (rxr->vxrxr_spare_dmap != NULL) {
bus_dmamap_destroy(rxr->vxrxr_rxtag,
rxr->vxrxr_spare_dmap);
rxr->vxrxr_spare_dmap = NULL;
}
for (j = 0; j < rxr->vxrxr_ndesc; j++) {
rxb = &rxr->vxrxr_rxbuf[j];
if (rxb->vrxb_dmamap != NULL) {
bus_dmamap_destroy(rxr->vxrxr_rxtag,
rxb->vrxb_dmamap);
rxb->vrxb_dmamap = NULL;
}
}
}
if (rxc->vxcr_u.rxcd != NULL) {
vmxnet3_dma_free(sc, &rxc->vxcr_dma);
rxc->vxcr_u.rxcd = NULL;
}
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
if (rxr->vxrxr_rxd != NULL) {
vmxnet3_dma_free(sc, &rxr->vxrxr_dma);
rxr->vxrxr_rxd = NULL;
}
if (rxr->vxrxr_rxtag != NULL) {
bus_dma_tag_destroy(rxr->vxrxr_rxtag);
rxr->vxrxr_rxtag = NULL;
}
}
}
}
static int
vmxnet3_alloc_queue_data(struct vmxnet3_softc *sc)
{
int error;
error = vmxnet3_alloc_txq_data(sc);
if (error)
return (error);
error = vmxnet3_alloc_rxq_data(sc);
if (error)
return (error);
return (0);
}
static void
vmxnet3_free_queue_data(struct vmxnet3_softc *sc)
{
if (sc->vmx_rxq != NULL)
vmxnet3_free_rxq_data(sc);
if (sc->vmx_txq != NULL)
vmxnet3_free_txq_data(sc);
}
static int
vmxnet3_alloc_mcast_table(struct vmxnet3_softc *sc)
{
int error;
error = vmxnet3_dma_malloc(sc, VMXNET3_MULTICAST_MAX * ETHER_ADDR_LEN,
32, &sc->vmx_mcast_dma);
if (error)
device_printf(sc->vmx_dev, "unable to alloc multicast table\n");
else
sc->vmx_mcast = sc->vmx_mcast_dma.dma_vaddr;
return (error);
}
static void
vmxnet3_free_mcast_table(struct vmxnet3_softc *sc)
{
if (sc->vmx_mcast != NULL) {
vmxnet3_dma_free(sc, &sc->vmx_mcast_dma);
sc->vmx_mcast = NULL;
}
}
static void
vmxnet3_init_shared_data(struct vmxnet3_softc *sc)
{
struct vmxnet3_driver_shared *ds;
struct vmxnet3_txqueue *txq;
struct vmxnet3_txq_shared *txs;
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_rxq_shared *rxs;
int i;
ds = sc->vmx_ds;
/*
* Initialize fields of the shared data that remains the same across
* reinits. Note the shared data is zero'd when allocated.
*/
ds->magic = VMXNET3_REV1_MAGIC;
/* DriverInfo */
ds->version = VMXNET3_DRIVER_VERSION;
ds->guest = VMXNET3_GOS_FREEBSD |
#ifdef __LP64__
VMXNET3_GOS_64BIT;
#else
VMXNET3_GOS_32BIT;
#endif
ds->vmxnet3_revision = 1;
ds->upt_version = 1;
/* Misc. conf */
ds->driver_data = vtophys(sc);
ds->driver_data_len = sizeof(struct vmxnet3_softc);
ds->queue_shared = sc->vmx_qs_dma.dma_paddr;
ds->queue_shared_len = sc->vmx_qs_dma.dma_size;
ds->nrxsg_max = sc->vmx_max_rxsegs;
/* RSS conf */
if (sc->vmx_flags & VMXNET3_FLAG_RSS) {
ds->rss.version = 1;
ds->rss.paddr = sc->vmx_rss_dma.dma_paddr;
ds->rss.len = sc->vmx_rss_dma.dma_size;
}
/* Interrupt control. */
ds->automask = sc->vmx_intr_mask_mode == VMXNET3_IMM_AUTO;
ds->nintr = sc->vmx_nintrs;
ds->evintr = sc->vmx_event_intr_idx;
ds->ictrl = VMXNET3_ICTRL_DISABLE_ALL;
for (i = 0; i < sc->vmx_nintrs; i++)
ds->modlevel[i] = UPT1_IMOD_ADAPTIVE;
/* Receive filter. */
ds->mcast_table = sc->vmx_mcast_dma.dma_paddr;
ds->mcast_tablelen = sc->vmx_mcast_dma.dma_size;
/* Tx queues */
for (i = 0; i < sc->vmx_ntxqueues; i++) {
txq = &sc->vmx_txq[i];
txs = txq->vxtxq_ts;
txs->cmd_ring = txq->vxtxq_cmd_ring.vxtxr_dma.dma_paddr;
txs->cmd_ring_len = txq->vxtxq_cmd_ring.vxtxr_ndesc;
txs->comp_ring = txq->vxtxq_comp_ring.vxcr_dma.dma_paddr;
txs->comp_ring_len = txq->vxtxq_comp_ring.vxcr_ndesc;
txs->driver_data = vtophys(txq);
txs->driver_data_len = sizeof(struct vmxnet3_txqueue);
}
/* Rx queues */
for (i = 0; i < sc->vmx_nrxqueues; i++) {
rxq = &sc->vmx_rxq[i];
rxs = rxq->vxrxq_rs;
rxs->cmd_ring[0] = rxq->vxrxq_cmd_ring[0].vxrxr_dma.dma_paddr;
rxs->cmd_ring_len[0] = rxq->vxrxq_cmd_ring[0].vxrxr_ndesc;
rxs->cmd_ring[1] = rxq->vxrxq_cmd_ring[1].vxrxr_dma.dma_paddr;
rxs->cmd_ring_len[1] = rxq->vxrxq_cmd_ring[1].vxrxr_ndesc;
rxs->comp_ring = rxq->vxrxq_comp_ring.vxcr_dma.dma_paddr;
rxs->comp_ring_len = rxq->vxrxq_comp_ring.vxcr_ndesc;
rxs->driver_data = vtophys(rxq);
rxs->driver_data_len = sizeof(struct vmxnet3_rxqueue);
}
}
static void
vmxnet3_reinit_interface(struct vmxnet3_softc *sc)
{
struct ifnet *ifp;
ifp = sc->vmx_ifp;
/* Use the current MAC address. */
bcopy(IF_LLADDR(sc->vmx_ifp), sc->vmx_lladdr, ETHER_ADDR_LEN);
vmxnet3_set_lladdr(sc);
ifp->if_hwassist = 0;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist |= VMXNET3_CSUM_OFFLOAD;
if (ifp->if_capenable & IFCAP_TXCSUM_IPV6)
ifp->if_hwassist |= VMXNET3_CSUM_OFFLOAD_IPV6;
if (ifp->if_capenable & IFCAP_TSO4)
ifp->if_hwassist |= CSUM_IP_TSO;
if (ifp->if_capenable & IFCAP_TSO6)
ifp->if_hwassist |= CSUM_IP6_TSO;
}
static void
vmxnet3_reinit_rss_shared_data(struct vmxnet3_softc *sc)
{
/*
* Use the same key as the Linux driver until FreeBSD can do
* RSS (presumably Toeplitz) in software.
*/
static const uint8_t rss_key[UPT1_RSS_MAX_KEY_SIZE] = {
0x3b, 0x56, 0xd1, 0x56, 0x13, 0x4a, 0xe7, 0xac,
0xe8, 0x79, 0x09, 0x75, 0xe8, 0x65, 0x79, 0x28,
0x35, 0x12, 0xb9, 0x56, 0x7c, 0x76, 0x4b, 0x70,
0xd8, 0x56, 0xa3, 0x18, 0x9b, 0x0a, 0xee, 0xf3,
0x96, 0xa6, 0x9f, 0x8f, 0x9e, 0x8c, 0x90, 0xc9,
};
struct vmxnet3_driver_shared *ds;
struct vmxnet3_rss_shared *rss;
int i;
ds = sc->vmx_ds;
rss = sc->vmx_rss;
rss->hash_type =
UPT1_RSS_HASH_TYPE_IPV4 | UPT1_RSS_HASH_TYPE_TCP_IPV4 |
UPT1_RSS_HASH_TYPE_IPV6 | UPT1_RSS_HASH_TYPE_TCP_IPV6;
rss->hash_func = UPT1_RSS_HASH_FUNC_TOEPLITZ;
rss->hash_key_size = UPT1_RSS_MAX_KEY_SIZE;
rss->ind_table_size = UPT1_RSS_MAX_IND_TABLE_SIZE;
memcpy(rss->hash_key, rss_key, UPT1_RSS_MAX_KEY_SIZE);
for (i = 0; i < UPT1_RSS_MAX_IND_TABLE_SIZE; i++)
rss->ind_table[i] = i % sc->vmx_nrxqueues;
}
static void
vmxnet3_reinit_shared_data(struct vmxnet3_softc *sc)
{
struct ifnet *ifp;
struct vmxnet3_driver_shared *ds;
ifp = sc->vmx_ifp;
ds = sc->vmx_ds;
ds->mtu = ifp->if_mtu;
ds->ntxqueue = sc->vmx_ntxqueues;
ds->nrxqueue = sc->vmx_nrxqueues;
ds->upt_features = 0;
if (ifp->if_capenable & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6))
ds->upt_features |= UPT1_F_CSUM;
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
ds->upt_features |= UPT1_F_VLAN;
if (ifp->if_capenable & IFCAP_LRO)
ds->upt_features |= UPT1_F_LRO;
if (sc->vmx_flags & VMXNET3_FLAG_RSS) {
ds->upt_features |= UPT1_F_RSS;
vmxnet3_reinit_rss_shared_data(sc);
}
vmxnet3_write_bar1(sc, VMXNET3_BAR1_DSL, sc->vmx_ds_dma.dma_paddr);
vmxnet3_write_bar1(sc, VMXNET3_BAR1_DSH,
(uint64_t) sc->vmx_ds_dma.dma_paddr >> 32);
}
static int
vmxnet3_alloc_data(struct vmxnet3_softc *sc)
{
int error;
error = vmxnet3_alloc_shared_data(sc);
if (error)
return (error);
error = vmxnet3_alloc_queue_data(sc);
if (error)
return (error);
error = vmxnet3_alloc_mcast_table(sc);
if (error)
return (error);
vmxnet3_init_shared_data(sc);
return (0);
}
static void
vmxnet3_free_data(struct vmxnet3_softc *sc)
{
vmxnet3_free_mcast_table(sc);
vmxnet3_free_queue_data(sc);
vmxnet3_free_shared_data(sc);
}
static int
vmxnet3_setup_interface(struct vmxnet3_softc *sc)
{
device_t dev;
struct ifnet *ifp;
dev = sc->vmx_dev;
ifp = sc->vmx_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure\n");
return (ENOSPC);
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
#if __FreeBSD_version < 1000025
ifp->if_baudrate = 1000000000;
#elif __FreeBSD_version < 1100011
if_initbaudrate(ifp, IF_Gbps(10));
#else
ifp->if_baudrate = IF_Gbps(10);
#endif
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = vmxnet3_init;
ifp->if_ioctl = vmxnet3_ioctl;
ifp->if_get_counter = vmxnet3_get_counter;
ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
ifp->if_hw_tsomaxsegcount = VMXNET3_TX_MAXSEGS;
ifp->if_hw_tsomaxsegsize = VMXNET3_TX_MAXSEGSIZE;
#ifdef VMXNET3_LEGACY_TX
ifp->if_start = vmxnet3_start;
ifp->if_snd.ifq_drv_maxlen = sc->vmx_ntxdescs - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, sc->vmx_ntxdescs - 1);
IFQ_SET_READY(&ifp->if_snd);
#else
ifp->if_transmit = vmxnet3_txq_mq_start;
ifp->if_qflush = vmxnet3_qflush;
#endif
vmxnet3_get_lladdr(sc);
ether_ifattach(ifp, sc->vmx_lladdr);
ifp->if_capabilities |= IFCAP_RXCSUM | IFCAP_TXCSUM;
ifp->if_capabilities |= IFCAP_RXCSUM_IPV6 | IFCAP_TXCSUM_IPV6;
ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_TSO6;
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM;
ifp->if_capenable = ifp->if_capabilities;
/* These capabilities are not enabled by default. */
ifp->if_capabilities |= IFCAP_LRO | IFCAP_VLAN_HWFILTER;
sc->vmx_vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
vmxnet3_register_vlan, sc, EVENTHANDLER_PRI_FIRST);
sc->vmx_vlan_detach = EVENTHANDLER_REGISTER(vlan_config,
vmxnet3_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST);
ifmedia_init(&sc->vmx_media, 0, vmxnet3_media_change,
vmxnet3_media_status);
ifmedia_add(&sc->vmx_media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->vmx_media, IFM_ETHER | IFM_AUTO);
return (0);
}
static void
vmxnet3_evintr(struct vmxnet3_softc *sc)
{
device_t dev;
struct ifnet *ifp;
struct vmxnet3_txq_shared *ts;
struct vmxnet3_rxq_shared *rs;
uint32_t event;
int reset;
dev = sc->vmx_dev;
ifp = sc->vmx_ifp;
reset = 0;
VMXNET3_CORE_LOCK(sc);
/* Clear events. */
event = sc->vmx_ds->event;
vmxnet3_write_bar1(sc, VMXNET3_BAR1_EVENT, event);
if (event & VMXNET3_EVENT_LINK) {
vmxnet3_link_status(sc);
if (sc->vmx_link_active != 0)
vmxnet3_tx_start_all(sc);
}
if (event & (VMXNET3_EVENT_TQERROR | VMXNET3_EVENT_RQERROR)) {
reset = 1;
vmxnet3_read_cmd(sc, VMXNET3_CMD_GET_STATUS);
ts = sc->vmx_txq[0].vxtxq_ts;
if (ts->stopped != 0)
device_printf(dev, "Tx queue error %#x\n", ts->error);
rs = sc->vmx_rxq[0].vxrxq_rs;
if (rs->stopped != 0)
device_printf(dev, "Rx queue error %#x\n", rs->error);
device_printf(dev, "Rx/Tx queue error event ... resetting\n");
}
if (event & VMXNET3_EVENT_DIC)
device_printf(dev, "device implementation change event\n");
if (event & VMXNET3_EVENT_DEBUG)
device_printf(dev, "debug event\n");
if (reset != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vmxnet3_init_locked(sc);
}
VMXNET3_CORE_UNLOCK(sc);
}
static void
vmxnet3_txq_eof(struct vmxnet3_txqueue *txq)
{
struct vmxnet3_softc *sc;
struct ifnet *ifp;
struct vmxnet3_txring *txr;
struct vmxnet3_comp_ring *txc;
struct vmxnet3_txcompdesc *txcd;
struct vmxnet3_txbuf *txb;
struct mbuf *m;
u_int sop;
sc = txq->vxtxq_sc;
ifp = sc->vmx_ifp;
txr = &txq->vxtxq_cmd_ring;
txc = &txq->vxtxq_comp_ring;
VMXNET3_TXQ_LOCK_ASSERT(txq);
for (;;) {
txcd = &txc->vxcr_u.txcd[txc->vxcr_next];
if (txcd->gen != txc->vxcr_gen)
break;
vmxnet3_barrier(sc, VMXNET3_BARRIER_RD);
if (++txc->vxcr_next == txc->vxcr_ndesc) {
txc->vxcr_next = 0;
txc->vxcr_gen ^= 1;
}
sop = txr->vxtxr_next;
txb = &txr->vxtxr_txbuf[sop];
if ((m = txb->vtxb_m) != NULL) {
bus_dmamap_sync(txr->vxtxr_txtag, txb->vtxb_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txr->vxtxr_txtag, txb->vtxb_dmamap);
txq->vxtxq_stats.vmtxs_opackets++;
txq->vxtxq_stats.vmtxs_obytes += m->m_pkthdr.len;
if (m->m_flags & M_MCAST)
txq->vxtxq_stats.vmtxs_omcasts++;
m_freem(m);
txb->vtxb_m = NULL;
}
txr->vxtxr_next = (txcd->eop_idx + 1) % txr->vxtxr_ndesc;
}
if (txr->vxtxr_head == txr->vxtxr_next)
txq->vxtxq_watchdog = 0;
}
static int
vmxnet3_newbuf(struct vmxnet3_softc *sc, struct vmxnet3_rxring *rxr)
{
struct ifnet *ifp;
struct mbuf *m;
struct vmxnet3_rxdesc *rxd;
struct vmxnet3_rxbuf *rxb;
bus_dma_tag_t tag;
bus_dmamap_t dmap;
bus_dma_segment_t segs[1];
int idx, clsize, btype, flags, nsegs, error;
ifp = sc->vmx_ifp;
tag = rxr->vxrxr_rxtag;
dmap = rxr->vxrxr_spare_dmap;
idx = rxr->vxrxr_fill;
rxd = &rxr->vxrxr_rxd[idx];
rxb = &rxr->vxrxr_rxbuf[idx];
#ifdef VMXNET3_FAILPOINTS
KFAIL_POINT_CODE(VMXNET3_FP, newbuf, return ENOBUFS);
if (rxr->vxrxr_rid != 0)
KFAIL_POINT_CODE(VMXNET3_FP, newbuf_body_only, return ENOBUFS);
#endif
if (rxr->vxrxr_rid == 0 && (idx % sc->vmx_rx_max_chain) == 0) {
flags = M_PKTHDR;
clsize = MCLBYTES;
btype = VMXNET3_BTYPE_HEAD;
} else {
#if __FreeBSD_version < 902001
/*
* These mbufs will never be used for the start of a frame.
* Roughly prior to branching releng/9.2, the load_mbuf_sg()
* required the mbuf to always be a packet header. Avoid
* unnecessary mbuf initialization in newer versions where
* that is not the case.
*/
flags = M_PKTHDR;
#else
flags = 0;
#endif
clsize = MJUMPAGESIZE;
btype = VMXNET3_BTYPE_BODY;
}
m = m_getjcl(M_NOWAIT, MT_DATA, flags, clsize);
if (m == NULL) {
sc->vmx_stats.vmst_mgetcl_failed++;
return (ENOBUFS);
}
if (btype == VMXNET3_BTYPE_HEAD) {
m->m_len = m->m_pkthdr.len = clsize;
m_adj(m, ETHER_ALIGN);
} else
m->m_len = clsize;
error = bus_dmamap_load_mbuf_sg(tag, dmap, m, &segs[0], &nsegs,
BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
sc->vmx_stats.vmst_mbuf_load_failed++;
return (error);
}
KASSERT(nsegs == 1,
("%s: mbuf %p with too many segments %d", __func__, m, nsegs));
#if __FreeBSD_version < 902001
if (btype == VMXNET3_BTYPE_BODY)
m->m_flags &= ~M_PKTHDR;
#endif
if (rxb->vrxb_m != NULL) {
bus_dmamap_sync(tag, rxb->vrxb_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(tag, rxb->vrxb_dmamap);
}
rxr->vxrxr_spare_dmap = rxb->vrxb_dmamap;
rxb->vrxb_dmamap = dmap;
rxb->vrxb_m = m;
rxd->addr = segs[0].ds_addr;
rxd->len = segs[0].ds_len;
rxd->btype = btype;
rxd->gen = rxr->vxrxr_gen;
vmxnet3_rxr_increment_fill(rxr);
return (0);
}
static void
vmxnet3_rxq_eof_discard(struct vmxnet3_rxqueue *rxq,
struct vmxnet3_rxring *rxr, int idx)
{
struct vmxnet3_rxdesc *rxd;
rxd = &rxr->vxrxr_rxd[idx];
rxd->gen = rxr->vxrxr_gen;
vmxnet3_rxr_increment_fill(rxr);
}
static void
vmxnet3_rxq_discard_chain(struct vmxnet3_rxqueue *rxq)
{
struct vmxnet3_softc *sc;
struct vmxnet3_rxring *rxr;
struct vmxnet3_comp_ring *rxc;
struct vmxnet3_rxcompdesc *rxcd;
int idx, eof;
sc = rxq->vxrxq_sc;
rxc = &rxq->vxrxq_comp_ring;
do {
rxcd = &rxc->vxcr_u.rxcd[rxc->vxcr_next];
if (rxcd->gen != rxc->vxcr_gen)
break; /* Not expected. */
vmxnet3_barrier(sc, VMXNET3_BARRIER_RD);
if (++rxc->vxcr_next == rxc->vxcr_ndesc) {
rxc->vxcr_next = 0;
rxc->vxcr_gen ^= 1;
}
idx = rxcd->rxd_idx;
eof = rxcd->eop;
if (rxcd->qid < sc->vmx_nrxqueues)
rxr = &rxq->vxrxq_cmd_ring[0];
else
rxr = &rxq->vxrxq_cmd_ring[1];
vmxnet3_rxq_eof_discard(rxq, rxr, idx);
} while (!eof);
}
static void
vmxnet3_rx_csum(struct vmxnet3_rxcompdesc *rxcd, struct mbuf *m)
{
if (rxcd->ipv4) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (rxcd->ipcsum_ok)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
if (!rxcd->fragment) {
if (rxcd->csum_ok && (rxcd->tcp || rxcd->udp)) {
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xFFFF;
}
}
}
static void
vmxnet3_rxq_input(struct vmxnet3_rxqueue *rxq,
struct vmxnet3_rxcompdesc *rxcd, struct mbuf *m)
{
struct vmxnet3_softc *sc;
struct ifnet *ifp;
sc = rxq->vxrxq_sc;
ifp = sc->vmx_ifp;
if (rxcd->error) {
rxq->vxrxq_stats.vmrxs_ierrors++;
m_freem(m);
return;
}
#ifdef notyet
switch (rxcd->rss_type) {
case VMXNET3_RCD_RSS_TYPE_IPV4:
m->m_pkthdr.flowid = rxcd->rss_hash;
M_HASHTYPE_SET(m, M_HASHTYPE_RSS_IPV4);
break;
case VMXNET3_RCD_RSS_TYPE_TCPIPV4:
m->m_pkthdr.flowid = rxcd->rss_hash;
M_HASHTYPE_SET(m, M_HASHTYPE_RSS_TCP_IPV4);
break;
case VMXNET3_RCD_RSS_TYPE_IPV6:
m->m_pkthdr.flowid = rxcd->rss_hash;
M_HASHTYPE_SET(m, M_HASHTYPE_RSS_IPV6);
break;
case VMXNET3_RCD_RSS_TYPE_TCPIPV6:
m->m_pkthdr.flowid = rxcd->rss_hash;
M_HASHTYPE_SET(m, M_HASHTYPE_RSS_TCP_IPV6);
break;
default: /* VMXNET3_RCD_RSS_TYPE_NONE */
m->m_pkthdr.flowid = rxq->vxrxq_id;
M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
break;
}
#else
m->m_pkthdr.flowid = rxq->vxrxq_id;
M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
#endif
if (!rxcd->no_csum)
vmxnet3_rx_csum(rxcd, m);
if (rxcd->vlan) {
m->m_flags |= M_VLANTAG;
m->m_pkthdr.ether_vtag = rxcd->vtag;
}
rxq->vxrxq_stats.vmrxs_ipackets++;
rxq->vxrxq_stats.vmrxs_ibytes += m->m_pkthdr.len;
VMXNET3_RXQ_UNLOCK(rxq);
(*ifp->if_input)(ifp, m);
VMXNET3_RXQ_LOCK(rxq);
}
static void
vmxnet3_rxq_eof(struct vmxnet3_rxqueue *rxq)
{
struct vmxnet3_softc *sc;
struct ifnet *ifp;
struct vmxnet3_rxring *rxr;
struct vmxnet3_comp_ring *rxc;
struct vmxnet3_rxdesc *rxd;
struct vmxnet3_rxcompdesc *rxcd;
struct mbuf *m, *m_head, *m_tail;
int idx, length;
sc = rxq->vxrxq_sc;
ifp = sc->vmx_ifp;
rxc = &rxq->vxrxq_comp_ring;
VMXNET3_RXQ_LOCK_ASSERT(rxq);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
m_head = rxq->vxrxq_mhead;
rxq->vxrxq_mhead = NULL;
m_tail = rxq->vxrxq_mtail;
rxq->vxrxq_mtail = NULL;
MPASS(m_head == NULL || m_tail != NULL);
for (;;) {
rxcd = &rxc->vxcr_u.rxcd[rxc->vxcr_next];
if (rxcd->gen != rxc->vxcr_gen) {
rxq->vxrxq_mhead = m_head;
rxq->vxrxq_mtail = m_tail;
break;
}
vmxnet3_barrier(sc, VMXNET3_BARRIER_RD);
if (++rxc->vxcr_next == rxc->vxcr_ndesc) {
rxc->vxcr_next = 0;
rxc->vxcr_gen ^= 1;
}
idx = rxcd->rxd_idx;
length = rxcd->len;
if (rxcd->qid < sc->vmx_nrxqueues)
rxr = &rxq->vxrxq_cmd_ring[0];
else
rxr = &rxq->vxrxq_cmd_ring[1];
rxd = &rxr->vxrxr_rxd[idx];
m = rxr->vxrxr_rxbuf[idx].vrxb_m;
KASSERT(m != NULL, ("%s: queue %d idx %d without mbuf",
__func__, rxcd->qid, idx));
/*
* The host may skip descriptors. We detect this when this
* descriptor does not match the previous fill index. Catch
* up with the host now.
*/
if (__predict_false(rxr->vxrxr_fill != idx)) {
while (rxr->vxrxr_fill != idx) {
rxr->vxrxr_rxd[rxr->vxrxr_fill].gen =
rxr->vxrxr_gen;
vmxnet3_rxr_increment_fill(rxr);
}
}
if (rxcd->sop) {
KASSERT(rxd->btype == VMXNET3_BTYPE_HEAD,
("%s: start of frame w/o head buffer", __func__));
KASSERT(rxr == &rxq->vxrxq_cmd_ring[0],
("%s: start of frame not in ring 0", __func__));
KASSERT((idx % sc->vmx_rx_max_chain) == 0,
("%s: start of frame at unexcepted index %d (%d)",
__func__, idx, sc->vmx_rx_max_chain));
KASSERT(m_head == NULL,
("%s: duplicate start of frame?", __func__));
if (length == 0) {
/* Just ignore this descriptor. */
vmxnet3_rxq_eof_discard(rxq, rxr, idx);
goto nextp;
}
if (vmxnet3_newbuf(sc, rxr) != 0) {
rxq->vxrxq_stats.vmrxs_iqdrops++;
vmxnet3_rxq_eof_discard(rxq, rxr, idx);
if (!rxcd->eop)
vmxnet3_rxq_discard_chain(rxq);
goto nextp;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = length;
m->m_pkthdr.csum_flags = 0;
m_head = m_tail = m;
} else {
KASSERT(rxd->btype == VMXNET3_BTYPE_BODY,
("%s: non start of frame w/o body buffer", __func__));
KASSERT(m_head != NULL,
("%s: frame not started?", __func__));
if (vmxnet3_newbuf(sc, rxr) != 0) {
rxq->vxrxq_stats.vmrxs_iqdrops++;
vmxnet3_rxq_eof_discard(rxq, rxr, idx);
if (!rxcd->eop)
vmxnet3_rxq_discard_chain(rxq);
m_freem(m_head);
m_head = m_tail = NULL;
goto nextp;
}
m->m_len = length;
m_head->m_pkthdr.len += length;
m_tail->m_next = m;
m_tail = m;
}
if (rxcd->eop) {
vmxnet3_rxq_input(rxq, rxcd, m_head);
m_head = m_tail = NULL;
/* Must recheck after dropping the Rx lock. */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
}
nextp:
if (__predict_false(rxq->vxrxq_rs->update_rxhead)) {
int qid = rxcd->qid;
bus_size_t r;
idx = (idx + 1) % rxr->vxrxr_ndesc;
if (qid >= sc->vmx_nrxqueues) {
qid -= sc->vmx_nrxqueues;
r = VMXNET3_BAR0_RXH2(qid);
} else
r = VMXNET3_BAR0_RXH1(qid);
vmxnet3_write_bar0(sc, r, idx);
}
}
}
static void
vmxnet3_legacy_intr(void *xsc)
{
struct vmxnet3_softc *sc;
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_txqueue *txq;
sc = xsc;
rxq = &sc->vmx_rxq[0];
txq = &sc->vmx_txq[0];
if (sc->vmx_intr_type == VMXNET3_IT_LEGACY) {
if (vmxnet3_read_bar1(sc, VMXNET3_BAR1_INTR) == 0)
return;
}
if (sc->vmx_intr_mask_mode == VMXNET3_IMM_ACTIVE)
vmxnet3_disable_all_intrs(sc);
if (sc->vmx_ds->event != 0)
vmxnet3_evintr(sc);
VMXNET3_RXQ_LOCK(rxq);
vmxnet3_rxq_eof(rxq);
VMXNET3_RXQ_UNLOCK(rxq);
VMXNET3_TXQ_LOCK(txq);
vmxnet3_txq_eof(txq);
vmxnet3_txq_start(txq);
VMXNET3_TXQ_UNLOCK(txq);
vmxnet3_enable_all_intrs(sc);
}
static void
vmxnet3_txq_intr(void *xtxq)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txqueue *txq;
txq = xtxq;
sc = txq->vxtxq_sc;
if (sc->vmx_intr_mask_mode == VMXNET3_IMM_ACTIVE)
vmxnet3_disable_intr(sc, txq->vxtxq_intr_idx);
VMXNET3_TXQ_LOCK(txq);
vmxnet3_txq_eof(txq);
vmxnet3_txq_start(txq);
VMXNET3_TXQ_UNLOCK(txq);
vmxnet3_enable_intr(sc, txq->vxtxq_intr_idx);
}
static void
vmxnet3_rxq_intr(void *xrxq)
{
struct vmxnet3_softc *sc;
struct vmxnet3_rxqueue *rxq;
rxq = xrxq;
sc = rxq->vxrxq_sc;
if (sc->vmx_intr_mask_mode == VMXNET3_IMM_ACTIVE)
vmxnet3_disable_intr(sc, rxq->vxrxq_intr_idx);
VMXNET3_RXQ_LOCK(rxq);
vmxnet3_rxq_eof(rxq);
VMXNET3_RXQ_UNLOCK(rxq);
vmxnet3_enable_intr(sc, rxq->vxrxq_intr_idx);
}
static void
vmxnet3_event_intr(void *xsc)
{
struct vmxnet3_softc *sc;
sc = xsc;
if (sc->vmx_intr_mask_mode == VMXNET3_IMM_ACTIVE)
vmxnet3_disable_intr(sc, sc->vmx_event_intr_idx);
if (sc->vmx_ds->event != 0)
vmxnet3_evintr(sc);
vmxnet3_enable_intr(sc, sc->vmx_event_intr_idx);
}
static void
vmxnet3_txstop(struct vmxnet3_softc *sc, struct vmxnet3_txqueue *txq)
{
struct vmxnet3_txring *txr;
struct vmxnet3_txbuf *txb;
int i;
txr = &txq->vxtxq_cmd_ring;
for (i = 0; i < txr->vxtxr_ndesc; i++) {
txb = &txr->vxtxr_txbuf[i];
if (txb->vtxb_m == NULL)
continue;
bus_dmamap_sync(txr->vxtxr_txtag, txb->vtxb_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txr->vxtxr_txtag, txb->vtxb_dmamap);
m_freem(txb->vtxb_m);
txb->vtxb_m = NULL;
}
}
static void
vmxnet3_rxstop(struct vmxnet3_softc *sc, struct vmxnet3_rxqueue *rxq)
{
struct vmxnet3_rxring *rxr;
struct vmxnet3_rxbuf *rxb;
int i, j;
if (rxq->vxrxq_mhead != NULL) {
m_freem(rxq->vxrxq_mhead);
rxq->vxrxq_mhead = NULL;
rxq->vxrxq_mtail = NULL;
}
for (i = 0; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
for (j = 0; j < rxr->vxrxr_ndesc; j++) {
rxb = &rxr->vxrxr_rxbuf[j];
if (rxb->vrxb_m == NULL)
continue;
bus_dmamap_sync(rxr->vxrxr_rxtag, rxb->vrxb_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(rxr->vxrxr_rxtag, rxb->vrxb_dmamap);
m_freem(rxb->vrxb_m);
rxb->vrxb_m = NULL;
}
}
}
static void
vmxnet3_stop_rendezvous(struct vmxnet3_softc *sc)
{
struct vmxnet3_rxqueue *rxq;
struct vmxnet3_txqueue *txq;
int i;
for (i = 0; i < sc->vmx_nrxqueues; i++) {
rxq = &sc->vmx_rxq[i];
VMXNET3_RXQ_LOCK(rxq);
VMXNET3_RXQ_UNLOCK(rxq);
}
for (i = 0; i < sc->vmx_ntxqueues; i++) {
txq = &sc->vmx_txq[i];
VMXNET3_TXQ_LOCK(txq);
VMXNET3_TXQ_UNLOCK(txq);
}
}
static void
vmxnet3_stop(struct vmxnet3_softc *sc)
{
struct ifnet *ifp;
int q;
ifp = sc->vmx_ifp;
VMXNET3_CORE_LOCK_ASSERT(sc);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sc->vmx_link_active = 0;
callout_stop(&sc->vmx_tick);
/* Disable interrupts. */
vmxnet3_disable_all_intrs(sc);
vmxnet3_write_cmd(sc, VMXNET3_CMD_DISABLE);
vmxnet3_stop_rendezvous(sc);
for (q = 0; q < sc->vmx_ntxqueues; q++)
vmxnet3_txstop(sc, &sc->vmx_txq[q]);
for (q = 0; q < sc->vmx_nrxqueues; q++)
vmxnet3_rxstop(sc, &sc->vmx_rxq[q]);
vmxnet3_write_cmd(sc, VMXNET3_CMD_RESET);
}
static void
vmxnet3_txinit(struct vmxnet3_softc *sc, struct vmxnet3_txqueue *txq)
{
struct vmxnet3_txring *txr;
struct vmxnet3_comp_ring *txc;
txr = &txq->vxtxq_cmd_ring;
txr->vxtxr_head = 0;
txr->vxtxr_next = 0;
txr->vxtxr_gen = VMXNET3_INIT_GEN;
bzero(txr->vxtxr_txd,
txr->vxtxr_ndesc * sizeof(struct vmxnet3_txdesc));
txc = &txq->vxtxq_comp_ring;
txc->vxcr_next = 0;
txc->vxcr_gen = VMXNET3_INIT_GEN;
bzero(txc->vxcr_u.txcd,
txc->vxcr_ndesc * sizeof(struct vmxnet3_txcompdesc));
}
static int
vmxnet3_rxinit(struct vmxnet3_softc *sc, struct vmxnet3_rxqueue *rxq)
{
struct ifnet *ifp;
struct vmxnet3_rxring *rxr;
struct vmxnet3_comp_ring *rxc;
int i, populate, idx, frame_size, error;
ifp = sc->vmx_ifp;
frame_size = ETHER_ALIGN + sizeof(struct ether_vlan_header) +
ifp->if_mtu;
/*
* If the MTU causes us to exceed what a regular sized cluster can
* handle, we allocate a second MJUMPAGESIZE cluster after it in
* ring 0. If in use, ring 1 always contains MJUMPAGESIZE clusters.
*
* Keep rx_max_chain a divisor of the maximum Rx ring size to make
* our life easier. We do not support changing the ring size after
* the attach.
*/
if (frame_size <= MCLBYTES)
sc->vmx_rx_max_chain = 1;
else
sc->vmx_rx_max_chain = 2;
/*
* Only populate ring 1 if the configuration will take advantage
* of it. That is either when LRO is enabled or the frame size
* exceeds what ring 0 can contain.
*/
if ((ifp->if_capenable & IFCAP_LRO) == 0 &&
frame_size <= MCLBYTES + MJUMPAGESIZE)
populate = 1;
else
populate = VMXNET3_RXRINGS_PERQ;
for (i = 0; i < populate; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
rxr->vxrxr_fill = 0;
rxr->vxrxr_gen = VMXNET3_INIT_GEN;
bzero(rxr->vxrxr_rxd,
rxr->vxrxr_ndesc * sizeof(struct vmxnet3_rxdesc));
for (idx = 0; idx < rxr->vxrxr_ndesc; idx++) {
error = vmxnet3_newbuf(sc, rxr);
if (error)
return (error);
}
}
for (/**/; i < VMXNET3_RXRINGS_PERQ; i++) {
rxr = &rxq->vxrxq_cmd_ring[i];
rxr->vxrxr_fill = 0;
rxr->vxrxr_gen = 0;
bzero(rxr->vxrxr_rxd,
rxr->vxrxr_ndesc * sizeof(struct vmxnet3_rxdesc));
}
rxc = &rxq->vxrxq_comp_ring;
rxc->vxcr_next = 0;
rxc->vxcr_gen = VMXNET3_INIT_GEN;
bzero(rxc->vxcr_u.rxcd,
rxc->vxcr_ndesc * sizeof(struct vmxnet3_rxcompdesc));
return (0);
}
static int
vmxnet3_reinit_queues(struct vmxnet3_softc *sc)
{
device_t dev;
int q, error;
dev = sc->vmx_dev;
for (q = 0; q < sc->vmx_ntxqueues; q++)
vmxnet3_txinit(sc, &sc->vmx_txq[q]);
for (q = 0; q < sc->vmx_nrxqueues; q++) {
error = vmxnet3_rxinit(sc, &sc->vmx_rxq[q]);
if (error) {
device_printf(dev, "cannot populate Rx queue %d\n", q);
return (error);
}
}
return (0);
}
static int
vmxnet3_enable_device(struct vmxnet3_softc *sc)
{
int q;
if (vmxnet3_read_cmd(sc, VMXNET3_CMD_ENABLE) != 0) {
device_printf(sc->vmx_dev, "device enable command failed!\n");
return (1);
}
/* Reset the Rx queue heads. */
for (q = 0; q < sc->vmx_nrxqueues; q++) {
vmxnet3_write_bar0(sc, VMXNET3_BAR0_RXH1(q), 0);
vmxnet3_write_bar0(sc, VMXNET3_BAR0_RXH2(q), 0);
}
return (0);
}
static void
vmxnet3_reinit_rxfilters(struct vmxnet3_softc *sc)
{
struct ifnet *ifp;
ifp = sc->vmx_ifp;
vmxnet3_set_rxfilter(sc);
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
bcopy(sc->vmx_vlan_filter, sc->vmx_ds->vlan_filter,
sizeof(sc->vmx_ds->vlan_filter));
else
bzero(sc->vmx_ds->vlan_filter,
sizeof(sc->vmx_ds->vlan_filter));
vmxnet3_write_cmd(sc, VMXNET3_CMD_VLAN_FILTER);
}
static int
vmxnet3_reinit(struct vmxnet3_softc *sc)
{
vmxnet3_reinit_interface(sc);
vmxnet3_reinit_shared_data(sc);
if (vmxnet3_reinit_queues(sc) != 0)
return (ENXIO);
if (vmxnet3_enable_device(sc) != 0)
return (ENXIO);
vmxnet3_reinit_rxfilters(sc);
return (0);
}
static void
vmxnet3_init_locked(struct vmxnet3_softc *sc)
{
struct ifnet *ifp;
ifp = sc->vmx_ifp;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
vmxnet3_stop(sc);
if (vmxnet3_reinit(sc) != 0) {
vmxnet3_stop(sc);
return;
}
ifp->if_drv_flags |= IFF_DRV_RUNNING;
vmxnet3_link_status(sc);
vmxnet3_enable_all_intrs(sc);
callout_reset(&sc->vmx_tick, hz, vmxnet3_tick, sc);
}
static void
vmxnet3_init(void *xsc)
{
struct vmxnet3_softc *sc;
sc = xsc;
VMXNET3_CORE_LOCK(sc);
vmxnet3_init_locked(sc);
VMXNET3_CORE_UNLOCK(sc);
}
/*
* BMV: Much of this can go away once we finally have offsets in
* the mbuf packet header. Bug andre@.
*/
static int
vmxnet3_txq_offload_ctx(struct vmxnet3_txqueue *txq, struct mbuf *m,
int *etype, int *proto, int *start)
{
struct ether_vlan_header *evh;
int offset;
#if defined(INET)
struct ip *ip = NULL;
struct ip iphdr;
#endif
#if defined(INET6)
struct ip6_hdr *ip6 = NULL;
struct ip6_hdr ip6hdr;
#endif
evh = mtod(m, struct ether_vlan_header *);
if (evh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
/* BMV: We should handle nested VLAN tags too. */
*etype = ntohs(evh->evl_proto);
offset = sizeof(struct ether_vlan_header);
} else {
*etype = ntohs(evh->evl_encap_proto);
offset = sizeof(struct ether_header);
}
switch (*etype) {
#if defined(INET)
case ETHERTYPE_IP:
if (__predict_false(m->m_len < offset + sizeof(struct ip))) {
m_copydata(m, offset, sizeof(struct ip),
(caddr_t) &iphdr);
ip = &iphdr;
} else
ip = mtodo(m, offset);
*proto = ip->ip_p;
*start = offset + (ip->ip_hl << 2);
break;
#endif
#if defined(INET6)
case ETHERTYPE_IPV6:
if (__predict_false(m->m_len <
offset + sizeof(struct ip6_hdr))) {
m_copydata(m, offset, sizeof(struct ip6_hdr),
(caddr_t) &ip6hdr);
ip6 = &ip6hdr;
} else
ip6 = mtodo(m, offset);
*proto = -1;
*start = ip6_lasthdr(m, offset, IPPROTO_IPV6, proto);
/* Assert the network stack sent us a valid packet. */
KASSERT(*start > offset,
("%s: mbuf %p start %d offset %d proto %d", __func__, m,
*start, offset, *proto));
break;
#endif
default:
return (EINVAL);
}
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
struct tcphdr *tcp, tcphdr;
uint16_t sum;
if (__predict_false(*proto != IPPROTO_TCP)) {
/* Likely failed to correctly parse the mbuf. */
return (EINVAL);
}
txq->vxtxq_stats.vmtxs_tso++;
switch (*etype) {
#if defined(INET)
case ETHERTYPE_IP:
sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
htons(IPPROTO_TCP));
break;
#endif
#if defined(INET6)
case ETHERTYPE_IPV6:
sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
break;
#endif
default:
sum = 0;
break;
}
if (m->m_len < *start + sizeof(struct tcphdr)) {
m_copyback(m, *start + offsetof(struct tcphdr, th_sum),
sizeof(uint16_t), (caddr_t) &sum);
m_copydata(m, *start, sizeof(struct tcphdr),
(caddr_t) &tcphdr);
tcp = &tcphdr;
} else {
tcp = mtodo(m, *start);
tcp->th_sum = sum;
}
/*
* For TSO, the size of the protocol header is also
* included in the descriptor header size.
*/
*start += (tcp->th_off << 2);
} else
txq->vxtxq_stats.vmtxs_csum++;
return (0);
}
static int
vmxnet3_txq_load_mbuf(struct vmxnet3_txqueue *txq, struct mbuf **m0,
bus_dmamap_t dmap, bus_dma_segment_t segs[], int *nsegs)
{
struct vmxnet3_txring *txr;
struct mbuf *m;
bus_dma_tag_t tag;
int error;
txr = &txq->vxtxq_cmd_ring;
m = *m0;
tag = txr->vxtxr_txtag;
error = bus_dmamap_load_mbuf_sg(tag, dmap, m, segs, nsegs, 0);
if (error == 0 || error != EFBIG)
return (error);
m = m_defrag(m, M_NOWAIT);
if (m != NULL) {
*m0 = m;
error = bus_dmamap_load_mbuf_sg(tag, dmap, m, segs, nsegs, 0);
} else
error = ENOBUFS;
if (error) {
m_freem(*m0);
*m0 = NULL;
txq->vxtxq_sc->vmx_stats.vmst_defrag_failed++;
} else
txq->vxtxq_sc->vmx_stats.vmst_defragged++;
return (error);
}
static void
vmxnet3_txq_unload_mbuf(struct vmxnet3_txqueue *txq, bus_dmamap_t dmap)
{
struct vmxnet3_txring *txr;
txr = &txq->vxtxq_cmd_ring;
bus_dmamap_unload(txr->vxtxr_txtag, dmap);
}
static int
vmxnet3_txq_encap(struct vmxnet3_txqueue *txq, struct mbuf **m0)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txring *txr;
struct vmxnet3_txdesc *txd, *sop;
struct mbuf *m;
bus_dmamap_t dmap;
bus_dma_segment_t segs[VMXNET3_TX_MAXSEGS];
int i, gen, nsegs, etype, proto, start, error;
sc = txq->vxtxq_sc;
start = 0;
txd = NULL;
txr = &txq->vxtxq_cmd_ring;
dmap = txr->vxtxr_txbuf[txr->vxtxr_head].vtxb_dmamap;
error = vmxnet3_txq_load_mbuf(txq, m0, dmap, segs, &nsegs);
if (error)
return (error);
m = *m0;
M_ASSERTPKTHDR(m);
KASSERT(nsegs <= VMXNET3_TX_MAXSEGS,
("%s: mbuf %p with too many segments %d", __func__, m, nsegs));
if (VMXNET3_TXRING_AVAIL(txr) < nsegs) {
txq->vxtxq_stats.vmtxs_full++;
vmxnet3_txq_unload_mbuf(txq, dmap);
return (ENOSPC);
} else if (m->m_pkthdr.csum_flags & VMXNET3_CSUM_ALL_OFFLOAD) {
error = vmxnet3_txq_offload_ctx(txq, m, &etype, &proto, &start);
if (error) {
txq->vxtxq_stats.vmtxs_offload_failed++;
vmxnet3_txq_unload_mbuf(txq, dmap);
m_freem(m);
*m0 = NULL;
return (error);
}
}
txr->vxtxr_txbuf[txr->vxtxr_head].vtxb_m = m;
sop = &txr->vxtxr_txd[txr->vxtxr_head];
gen = txr->vxtxr_gen ^ 1; /* Owned by cpu (yet) */
for (i = 0; i < nsegs; i++) {
txd = &txr->vxtxr_txd[txr->vxtxr_head];
txd->addr = segs[i].ds_addr;
txd->len = segs[i].ds_len;
txd->gen = gen;
txd->dtype = 0;
txd->offload_mode = VMXNET3_OM_NONE;
txd->offload_pos = 0;
txd->hlen = 0;
txd->eop = 0;
txd->compreq = 0;
txd->vtag_mode = 0;
txd->vtag = 0;
if (++txr->vxtxr_head == txr->vxtxr_ndesc) {
txr->vxtxr_head = 0;
txr->vxtxr_gen ^= 1;
}
gen = txr->vxtxr_gen;
}
txd->eop = 1;
txd->compreq = 1;
if (m->m_flags & M_VLANTAG) {
sop->vtag_mode = 1;
sop->vtag = m->m_pkthdr.ether_vtag;
}
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
sop->offload_mode = VMXNET3_OM_TSO;
sop->hlen = start;
sop->offload_pos = m->m_pkthdr.tso_segsz;
} else if (m->m_pkthdr.csum_flags & (VMXNET3_CSUM_OFFLOAD |
VMXNET3_CSUM_OFFLOAD_IPV6)) {
sop->offload_mode = VMXNET3_OM_CSUM;
sop->hlen = start;
sop->offload_pos = start + m->m_pkthdr.csum_data;
}
/* Finally, change the ownership. */
vmxnet3_barrier(sc, VMXNET3_BARRIER_WR);
sop->gen ^= 1;
txq->vxtxq_ts->npending += nsegs;
if (txq->vxtxq_ts->npending >= txq->vxtxq_ts->intr_threshold) {
txq->vxtxq_ts->npending = 0;
vmxnet3_write_bar0(sc, VMXNET3_BAR0_TXH(txq->vxtxq_id),
txr->vxtxr_head);
}
return (0);
}
#ifdef VMXNET3_LEGACY_TX
static void
vmxnet3_start_locked(struct ifnet *ifp)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txqueue *txq;
struct vmxnet3_txring *txr;
struct mbuf *m_head;
int tx, avail;
sc = ifp->if_softc;
txq = &sc->vmx_txq[0];
txr = &txq->vxtxq_cmd_ring;
tx = 0;
VMXNET3_TXQ_LOCK_ASSERT(txq);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
sc->vmx_link_active == 0)
return;
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
if ((avail = VMXNET3_TXRING_AVAIL(txr)) < 2)
break;
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Assume worse case if this mbuf is the head of a chain. */
if (m_head->m_next != NULL && avail < VMXNET3_TX_MAXSEGS) {
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
break;
}
if (vmxnet3_txq_encap(txq, &m_head) != 0) {
if (m_head != NULL)
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
break;
}
tx++;
ETHER_BPF_MTAP(ifp, m_head);
}
if (tx > 0)
txq->vxtxq_watchdog = VMXNET3_WATCHDOG_TIMEOUT;
}
static void
vmxnet3_start(struct ifnet *ifp)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txqueue *txq;
sc = ifp->if_softc;
txq = &sc->vmx_txq[0];
VMXNET3_TXQ_LOCK(txq);
vmxnet3_start_locked(ifp);
VMXNET3_TXQ_UNLOCK(txq);
}
#else /* !VMXNET3_LEGACY_TX */
static int
vmxnet3_txq_mq_start_locked(struct vmxnet3_txqueue *txq, struct mbuf *m)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txring *txr;
struct buf_ring *br;
struct ifnet *ifp;
int tx, avail, error;
sc = txq->vxtxq_sc;
br = txq->vxtxq_br;
ifp = sc->vmx_ifp;
txr = &txq->vxtxq_cmd_ring;
tx = 0;
error = 0;
VMXNET3_TXQ_LOCK_ASSERT(txq);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
sc->vmx_link_active == 0) {
if (m != NULL)
error = drbr_enqueue(ifp, br, m);
return (error);
}
if (m != NULL) {
error = drbr_enqueue(ifp, br, m);
if (error)
return (error);
}
while ((avail = VMXNET3_TXRING_AVAIL(txr)) >= 2) {
m = drbr_peek(ifp, br);
if (m == NULL)
break;
/* Assume worse case if this mbuf is the head of a chain. */
if (m->m_next != NULL && avail < VMXNET3_TX_MAXSEGS) {
drbr_putback(ifp, br, m);
break;
}
if (vmxnet3_txq_encap(txq, &m) != 0) {
if (m != NULL)
drbr_putback(ifp, br, m);
else
drbr_advance(ifp, br);
break;
}
drbr_advance(ifp, br);
tx++;
ETHER_BPF_MTAP(ifp, m);
}
if (tx > 0)
txq->vxtxq_watchdog = VMXNET3_WATCHDOG_TIMEOUT;
return (0);
}
static int
vmxnet3_txq_mq_start(struct ifnet *ifp, struct mbuf *m)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txqueue *txq;
int i, ntxq, error;
sc = ifp->if_softc;
ntxq = sc->vmx_ntxqueues;
/* check if flowid is set */
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
i = m->m_pkthdr.flowid % ntxq;
else
i = curcpu % ntxq;
txq = &sc->vmx_txq[i];
if (VMXNET3_TXQ_TRYLOCK(txq) != 0) {
error = vmxnet3_txq_mq_start_locked(txq, m);
VMXNET3_TXQ_UNLOCK(txq);
} else {
error = drbr_enqueue(ifp, txq->vxtxq_br, m);
taskqueue_enqueue(sc->vmx_tq, &txq->vxtxq_defrtask);
}
return (error);
}
static void
vmxnet3_txq_tq_deferred(void *xtxq, int pending)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txqueue *txq;
txq = xtxq;
sc = txq->vxtxq_sc;
VMXNET3_TXQ_LOCK(txq);
if (!drbr_empty(sc->vmx_ifp, txq->vxtxq_br))
vmxnet3_txq_mq_start_locked(txq, NULL);
VMXNET3_TXQ_UNLOCK(txq);
}
#endif /* VMXNET3_LEGACY_TX */
static void
vmxnet3_txq_start(struct vmxnet3_txqueue *txq)
{
struct vmxnet3_softc *sc;
struct ifnet *ifp;
sc = txq->vxtxq_sc;
ifp = sc->vmx_ifp;
#ifdef VMXNET3_LEGACY_TX
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vmxnet3_start_locked(ifp);
#else
if (!drbr_empty(ifp, txq->vxtxq_br))
vmxnet3_txq_mq_start_locked(txq, NULL);
#endif
}
static void
vmxnet3_tx_start_all(struct vmxnet3_softc *sc)
{
struct vmxnet3_txqueue *txq;
int i;
VMXNET3_CORE_LOCK_ASSERT(sc);
for (i = 0; i < sc->vmx_ntxqueues; i++) {
txq = &sc->vmx_txq[i];
VMXNET3_TXQ_LOCK(txq);
vmxnet3_txq_start(txq);
VMXNET3_TXQ_UNLOCK(txq);
}
}
static void
vmxnet3_update_vlan_filter(struct vmxnet3_softc *sc, int add, uint16_t tag)
{
struct ifnet *ifp;
int idx, bit;
ifp = sc->vmx_ifp;
idx = (tag >> 5) & 0x7F;
bit = tag & 0x1F;
if (tag == 0 || tag > 4095)
return;
VMXNET3_CORE_LOCK(sc);
/* Update our private VLAN bitvector. */
if (add)
sc->vmx_vlan_filter[idx] |= (1 << bit);
else
sc->vmx_vlan_filter[idx] &= ~(1 << bit);
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
if (add)
sc->vmx_ds->vlan_filter[idx] |= (1 << bit);
else
sc->vmx_ds->vlan_filter[idx] &= ~(1 << bit);
vmxnet3_write_cmd(sc, VMXNET3_CMD_VLAN_FILTER);
}
VMXNET3_CORE_UNLOCK(sc);
}
static void
vmxnet3_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
{
if (ifp->if_softc == arg)
vmxnet3_update_vlan_filter(arg, 1, tag);
}
static void
vmxnet3_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
{
if (ifp->if_softc == arg)
vmxnet3_update_vlan_filter(arg, 0, tag);
}
static void
vmxnet3_set_rxfilter(struct vmxnet3_softc *sc)
{
struct ifnet *ifp;
struct vmxnet3_driver_shared *ds;
struct ifmultiaddr *ifma;
u_int mode;
ifp = sc->vmx_ifp;
ds = sc->vmx_ds;
mode = VMXNET3_RXMODE_UCAST | VMXNET3_RXMODE_BCAST;
if (ifp->if_flags & IFF_PROMISC)
mode |= VMXNET3_RXMODE_PROMISC;
if (ifp->if_flags & IFF_ALLMULTI)
mode |= VMXNET3_RXMODE_ALLMULTI;
else {
int cnt = 0, overflow = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
else if (cnt == VMXNET3_MULTICAST_MAX) {
overflow = 1;
break;
}
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
&sc->vmx_mcast[cnt*ETHER_ADDR_LEN], ETHER_ADDR_LEN);
cnt++;
}
if_maddr_runlock(ifp);
if (overflow != 0) {
cnt = 0;
mode |= VMXNET3_RXMODE_ALLMULTI;
} else if (cnt > 0)
mode |= VMXNET3_RXMODE_MCAST;
ds->mcast_tablelen = cnt * ETHER_ADDR_LEN;
}
ds->rxmode = mode;
vmxnet3_write_cmd(sc, VMXNET3_CMD_SET_FILTER);
vmxnet3_write_cmd(sc, VMXNET3_CMD_SET_RXMODE);
}
static int
vmxnet3_change_mtu(struct vmxnet3_softc *sc, int mtu)
{
struct ifnet *ifp;
ifp = sc->vmx_ifp;
if (mtu < VMXNET3_MIN_MTU || mtu > VMXNET3_MAX_MTU)
return (EINVAL);
ifp->if_mtu = mtu;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vmxnet3_init_locked(sc);
}
return (0);
}
static int
vmxnet3_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct vmxnet3_softc *sc;
struct ifreq *ifr;
int reinit, mask, error;
sc = ifp->if_softc;
ifr = (struct ifreq *) data;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifp->if_mtu != ifr->ifr_mtu) {
VMXNET3_CORE_LOCK(sc);
error = vmxnet3_change_mtu(sc, ifr->ifr_mtu);
VMXNET3_CORE_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
VMXNET3_CORE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
if ((ifp->if_flags ^ sc->vmx_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) {
vmxnet3_set_rxfilter(sc);
}
} else
vmxnet3_init_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
vmxnet3_stop(sc);
}
sc->vmx_if_flags = ifp->if_flags;
VMXNET3_CORE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
VMXNET3_CORE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
vmxnet3_set_rxfilter(sc);
VMXNET3_CORE_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->vmx_media, cmd);
break;
case SIOCSIFCAP:
VMXNET3_CORE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if (mask & IFCAP_TXCSUM)
ifp->if_capenable ^= IFCAP_TXCSUM;
if (mask & IFCAP_TXCSUM_IPV6)
ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
if (mask & IFCAP_TSO4)
ifp->if_capenable ^= IFCAP_TSO4;
if (mask & IFCAP_TSO6)
ifp->if_capenable ^= IFCAP_TSO6;
if (mask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6 | IFCAP_LRO |
IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWFILTER)) {
/* Changing these features requires us to reinit. */
reinit = 1;
if (mask & IFCAP_RXCSUM)
ifp->if_capenable ^= IFCAP_RXCSUM;
if (mask & IFCAP_RXCSUM_IPV6)
ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
if (mask & IFCAP_LRO)
ifp->if_capenable ^= IFCAP_LRO;
if (mask & IFCAP_VLAN_HWTAGGING)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (mask & IFCAP_VLAN_HWFILTER)
ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
} else
reinit = 0;
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vmxnet3_init_locked(sc);
}
VMXNET3_CORE_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
VMXNET3_CORE_LOCK_ASSERT_NOTOWNED(sc);
return (error);
}
#ifndef VMXNET3_LEGACY_TX
static void
vmxnet3_qflush(struct ifnet *ifp)
{
struct vmxnet3_softc *sc;
struct vmxnet3_txqueue *txq;
struct mbuf *m;
int i;
sc = ifp->if_softc;
for (i = 0; i < sc->vmx_ntxqueues; i++) {
txq = &sc->vmx_txq[i];
VMXNET3_TXQ_LOCK(txq);
while ((m = buf_ring_dequeue_sc(txq->vxtxq_br)) != NULL)
m_freem(m);
VMXNET3_TXQ_UNLOCK(txq);
}
if_qflush(ifp);
}
#endif
static int
vmxnet3_watchdog(struct vmxnet3_txqueue *txq)
{
struct vmxnet3_softc *sc;
sc = txq->vxtxq_sc;
VMXNET3_TXQ_LOCK(txq);
if (txq->vxtxq_watchdog == 0 || --txq->vxtxq_watchdog) {
VMXNET3_TXQ_UNLOCK(txq);
return (0);
}
VMXNET3_TXQ_UNLOCK(txq);
if_printf(sc->vmx_ifp, "watchdog timeout on queue %d\n",
txq->vxtxq_id);
return (1);
}
static void
vmxnet3_refresh_host_stats(struct vmxnet3_softc *sc)
{
vmxnet3_write_cmd(sc, VMXNET3_CMD_GET_STATS);
}
static uint64_t
vmxnet3_get_counter(struct ifnet *ifp, ift_counter cnt)
{
struct vmxnet3_softc *sc;
uint64_t rv;
sc = if_getsoftc(ifp);
rv = 0;
/*
* With the exception of if_ierrors, these ifnet statistics are
* only updated in the driver, so just set them to our accumulated
* values. if_ierrors is updated in ether_input() for malformed
* frames that we should have already discarded.
*/
switch (cnt) {
case IFCOUNTER_IPACKETS:
for (int i = 0; i < sc->vmx_nrxqueues; i++)
rv += sc->vmx_rxq[i].vxrxq_stats.vmrxs_ipackets;
return (rv);
case IFCOUNTER_IQDROPS:
for (int i = 0; i < sc->vmx_nrxqueues; i++)
rv += sc->vmx_rxq[i].vxrxq_stats.vmrxs_iqdrops;
return (rv);
case IFCOUNTER_IERRORS:
for (int i = 0; i < sc->vmx_nrxqueues; i++)
rv += sc->vmx_rxq[i].vxrxq_stats.vmrxs_ierrors;
return (rv);
case IFCOUNTER_OPACKETS:
for (int i = 0; i < sc->vmx_ntxqueues; i++)
rv += sc->vmx_txq[i].vxtxq_stats.vmtxs_opackets;
return (rv);
#ifndef VMXNET3_LEGACY_TX
case IFCOUNTER_OBYTES:
for (int i = 0; i < sc->vmx_ntxqueues; i++)
rv += sc->vmx_txq[i].vxtxq_stats.vmtxs_obytes;
return (rv);
case IFCOUNTER_OMCASTS:
for (int i = 0; i < sc->vmx_ntxqueues; i++)
rv += sc->vmx_txq[i].vxtxq_stats.vmtxs_omcasts;
return (rv);
#endif
default:
return (if_get_counter_default(ifp, cnt));
}
}
static void
vmxnet3_tick(void *xsc)
{
struct vmxnet3_softc *sc;
struct ifnet *ifp;
int i, timedout;
sc = xsc;
ifp = sc->vmx_ifp;
timedout = 0;
VMXNET3_CORE_LOCK_ASSERT(sc);
vmxnet3_refresh_host_stats(sc);
for (i = 0; i < sc->vmx_ntxqueues; i++)
timedout |= vmxnet3_watchdog(&sc->vmx_txq[i]);
if (timedout != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vmxnet3_init_locked(sc);
} else
callout_reset(&sc->vmx_tick, hz, vmxnet3_tick, sc);
}
static int
vmxnet3_link_is_up(struct vmxnet3_softc *sc)
{
uint32_t status;
/* Also update the link speed while here. */
status = vmxnet3_read_cmd(sc, VMXNET3_CMD_GET_LINK);
sc->vmx_link_speed = status >> 16;
return !!(status & 0x1);
}
static void
vmxnet3_link_status(struct vmxnet3_softc *sc)
{
struct ifnet *ifp;
int link;
ifp = sc->vmx_ifp;
link = vmxnet3_link_is_up(sc);
if (link != 0 && sc->vmx_link_active == 0) {
sc->vmx_link_active = 1;
if_link_state_change(ifp, LINK_STATE_UP);
} else if (link == 0 && sc->vmx_link_active != 0) {
sc->vmx_link_active = 0;
if_link_state_change(ifp, LINK_STATE_DOWN);
}
}
static void
vmxnet3_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct vmxnet3_softc *sc;
sc = ifp->if_softc;
ifmr->ifm_active = IFM_ETHER | IFM_AUTO;
ifmr->ifm_status = IFM_AVALID;
VMXNET3_CORE_LOCK(sc);
if (vmxnet3_link_is_up(sc) != 0)
ifmr->ifm_status |= IFM_ACTIVE;
else
ifmr->ifm_status |= IFM_NONE;
VMXNET3_CORE_UNLOCK(sc);
}
static int
vmxnet3_media_change(struct ifnet *ifp)
{
/* Ignore. */
return (0);
}
static void
vmxnet3_set_lladdr(struct vmxnet3_softc *sc)
{
uint32_t ml, mh;
ml = sc->vmx_lladdr[0];
ml |= sc->vmx_lladdr[1] << 8;
ml |= sc->vmx_lladdr[2] << 16;
ml |= sc->vmx_lladdr[3] << 24;
vmxnet3_write_bar1(sc, VMXNET3_BAR1_MACL, ml);
mh = sc->vmx_lladdr[4];
mh |= sc->vmx_lladdr[5] << 8;
vmxnet3_write_bar1(sc, VMXNET3_BAR1_MACH, mh);
}
static void
vmxnet3_get_lladdr(struct vmxnet3_softc *sc)
{
uint32_t ml, mh;
ml = vmxnet3_read_cmd(sc, VMXNET3_CMD_GET_MACL);
mh = vmxnet3_read_cmd(sc, VMXNET3_CMD_GET_MACH);
sc->vmx_lladdr[0] = ml;
sc->vmx_lladdr[1] = ml >> 8;
sc->vmx_lladdr[2] = ml >> 16;
sc->vmx_lladdr[3] = ml >> 24;
sc->vmx_lladdr[4] = mh;
sc->vmx_lladdr[5] = mh >> 8;
}
static void
vmxnet3_setup_txq_sysctl(struct vmxnet3_txqueue *txq,
struct sysctl_ctx_list *ctx, struct sysctl_oid_list *child)
{
struct sysctl_oid *node, *txsnode;
struct sysctl_oid_list *list, *txslist;
struct vmxnet3_txq_stats *stats;
struct UPT1_TxStats *txstats;
char namebuf[16];
stats = &txq->vxtxq_stats;
txstats = &txq->vxtxq_ts->stats;
snprintf(namebuf, sizeof(namebuf), "txq%d", txq->vxtxq_id);
node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, CTLFLAG_RD,
NULL, "Transmit Queue");
txq->vxtxq_sysctl = list = SYSCTL_CHILDREN(node);
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "opackets", CTLFLAG_RD,
&stats->vmtxs_opackets, "Transmit packets");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "obytes", CTLFLAG_RD,
&stats->vmtxs_obytes, "Transmit bytes");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "omcasts", CTLFLAG_RD,
&stats->vmtxs_omcasts, "Transmit multicasts");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum", CTLFLAG_RD,
&stats->vmtxs_csum, "Transmit checksum offloaded");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "tso", CTLFLAG_RD,
&stats->vmtxs_tso, "Transmit TCP segmentation offloaded");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ringfull", CTLFLAG_RD,
&stats->vmtxs_full, "Transmit ring full");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "offload_failed", CTLFLAG_RD,
&stats->vmtxs_offload_failed, "Transmit checksum offload failed");
/*
* Add statistics reported by the host. These are updated once
* per second.
*/
txsnode = SYSCTL_ADD_NODE(ctx, list, OID_AUTO, "hstats", CTLFLAG_RD,
NULL, "Host Statistics");
txslist = SYSCTL_CHILDREN(txsnode);
SYSCTL_ADD_UQUAD(ctx, txslist, OID_AUTO, "tso_packets", CTLFLAG_RD,
&txstats->TSO_packets, "TSO packets");
SYSCTL_ADD_UQUAD(ctx, txslist, OID_AUTO, "tso_bytes", CTLFLAG_RD,
&txstats->TSO_bytes, "TSO bytes");
SYSCTL_ADD_UQUAD(ctx, txslist, OID_AUTO, "ucast_packets", CTLFLAG_RD,
&txstats->ucast_packets, "Unicast packets");
SYSCTL_ADD_UQUAD(ctx, txslist, OID_AUTO, "unicast_bytes", CTLFLAG_RD,
&txstats->ucast_bytes, "Unicast bytes");
SYSCTL_ADD_UQUAD(ctx, txslist, OID_AUTO, "mcast_packets", CTLFLAG_RD,
&txstats->mcast_packets, "Multicast packets");
SYSCTL_ADD_UQUAD(ctx, txslist, OID_AUTO, "mcast_bytes", CTLFLAG_RD,
&txstats->mcast_bytes, "Multicast bytes");
SYSCTL_ADD_UQUAD(ctx, txslist, OID_AUTO, "error", CTLFLAG_RD,
&txstats->error, "Errors");
SYSCTL_ADD_UQUAD(ctx, txslist, OID_AUTO, "discard", CTLFLAG_RD,
&txstats->discard, "Discards");
}
static void
vmxnet3_setup_rxq_sysctl(struct vmxnet3_rxqueue *rxq,
struct sysctl_ctx_list *ctx, struct sysctl_oid_list *child)
{
struct sysctl_oid *node, *rxsnode;
struct sysctl_oid_list *list, *rxslist;
struct vmxnet3_rxq_stats *stats;
struct UPT1_RxStats *rxstats;
char namebuf[16];
stats = &rxq->vxrxq_stats;
rxstats = &rxq->vxrxq_rs->stats;
snprintf(namebuf, sizeof(namebuf), "rxq%d", rxq->vxrxq_id);
node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, CTLFLAG_RD,
NULL, "Receive Queue");
rxq->vxrxq_sysctl = list = SYSCTL_CHILDREN(node);
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ipackets", CTLFLAG_RD,
&stats->vmrxs_ipackets, "Receive packets");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ibytes", CTLFLAG_RD,
&stats->vmrxs_ibytes, "Receive bytes");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "iqdrops", CTLFLAG_RD,
&stats->vmrxs_iqdrops, "Receive drops");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ierrors", CTLFLAG_RD,
&stats->vmrxs_ierrors, "Receive errors");
/*
* Add statistics reported by the host. These are updated once
* per second.
*/
rxsnode = SYSCTL_ADD_NODE(ctx, list, OID_AUTO, "hstats", CTLFLAG_RD,
NULL, "Host Statistics");
rxslist = SYSCTL_CHILDREN(rxsnode);
SYSCTL_ADD_UQUAD(ctx, rxslist, OID_AUTO, "lro_packets", CTLFLAG_RD,
&rxstats->LRO_packets, "LRO packets");
SYSCTL_ADD_UQUAD(ctx, rxslist, OID_AUTO, "lro_bytes", CTLFLAG_RD,
&rxstats->LRO_bytes, "LRO bytes");
SYSCTL_ADD_UQUAD(ctx, rxslist, OID_AUTO, "ucast_packets", CTLFLAG_RD,
&rxstats->ucast_packets, "Unicast packets");
SYSCTL_ADD_UQUAD(ctx, rxslist, OID_AUTO, "unicast_bytes", CTLFLAG_RD,
&rxstats->ucast_bytes, "Unicast bytes");
SYSCTL_ADD_UQUAD(ctx, rxslist, OID_AUTO, "mcast_packets", CTLFLAG_RD,
&rxstats->mcast_packets, "Multicast packets");
SYSCTL_ADD_UQUAD(ctx, rxslist, OID_AUTO, "mcast_bytes", CTLFLAG_RD,
&rxstats->mcast_bytes, "Multicast bytes");
SYSCTL_ADD_UQUAD(ctx, rxslist, OID_AUTO, "bcast_packets", CTLFLAG_RD,
&rxstats->bcast_packets, "Broadcast packets");
SYSCTL_ADD_UQUAD(ctx, rxslist, OID_AUTO, "bcast_bytes", CTLFLAG_RD,
&rxstats->bcast_bytes, "Broadcast bytes");
SYSCTL_ADD_UQUAD(ctx, rxslist, OID_AUTO, "nobuffer", CTLFLAG_RD,
&rxstats->nobuffer, "No buffer");
SYSCTL_ADD_UQUAD(ctx, rxslist, OID_AUTO, "error", CTLFLAG_RD,
&rxstats->error, "Errors");
}
static void
vmxnet3_setup_debug_sysctl(struct vmxnet3_softc *sc,
struct sysctl_ctx_list *ctx, struct sysctl_oid_list *child)
{
struct sysctl_oid *node;
struct sysctl_oid_list *list;
int i;
for (i = 0; i < sc->vmx_ntxqueues; i++) {
struct vmxnet3_txqueue *txq = &sc->vmx_txq[i];
node = SYSCTL_ADD_NODE(ctx, txq->vxtxq_sysctl, OID_AUTO,
"debug", CTLFLAG_RD, NULL, "");
list = SYSCTL_CHILDREN(node);
SYSCTL_ADD_UINT(ctx, list, OID_AUTO, "cmd_head", CTLFLAG_RD,
&txq->vxtxq_cmd_ring.vxtxr_head, 0, "");
SYSCTL_ADD_UINT(ctx, list, OID_AUTO, "cmd_next", CTLFLAG_RD,
&txq->vxtxq_cmd_ring.vxtxr_next, 0, "");
SYSCTL_ADD_UINT(ctx, list, OID_AUTO, "cmd_ndesc", CTLFLAG_RD,
&txq->vxtxq_cmd_ring.vxtxr_ndesc, 0, "");
SYSCTL_ADD_INT(ctx, list, OID_AUTO, "cmd_gen", CTLFLAG_RD,
&txq->vxtxq_cmd_ring.vxtxr_gen, 0, "");
SYSCTL_ADD_UINT(ctx, list, OID_AUTO, "comp_next", CTLFLAG_RD,
&txq->vxtxq_comp_ring.vxcr_next, 0, "");
SYSCTL_ADD_UINT(ctx, list, OID_AUTO, "comp_ndesc", CTLFLAG_RD,
&txq->vxtxq_comp_ring.vxcr_ndesc, 0,"");
SYSCTL_ADD_INT(ctx, list, OID_AUTO, "comp_gen", CTLFLAG_RD,
&txq->vxtxq_comp_ring.vxcr_gen, 0, "");
}
for (i = 0; i < sc->vmx_nrxqueues; i++) {
struct vmxnet3_rxqueue *rxq = &sc->vmx_rxq[i];
node = SYSCTL_ADD_NODE(ctx, rxq->vxrxq_sysctl, OID_AUTO,
"debug", CTLFLAG_RD, NULL, "");
list = SYSCTL_CHILDREN(node);
SYSCTL_ADD_UINT(ctx, list, OID_AUTO, "cmd0_fill", CTLFLAG_RD,
&rxq->vxrxq_cmd_ring[0].vxrxr_fill, 0, "");
SYSCTL_ADD_UINT(ctx, list, OID_AUTO, "cmd0_ndesc", CTLFLAG_RD,
&rxq->vxrxq_cmd_ring[0].vxrxr_ndesc, 0, "");
SYSCTL_ADD_INT(ctx, list, OID_AUTO, "cmd0_gen", CTLFLAG_RD,
&rxq->vxrxq_cmd_ring[0].vxrxr_gen, 0, "");
SYSCTL_ADD_UINT(ctx, list, OID_AUTO, "cmd1_fill", CTLFLAG_RD,
&rxq->vxrxq_cmd_ring[1].vxrxr_fill, 0, "");
SYSCTL_ADD_UINT(ctx, list, OID_AUTO, "cmd1_ndesc", CTLFLAG_RD,
&rxq->vxrxq_cmd_ring[1].vxrxr_ndesc, 0, "");
SYSCTL_ADD_INT(ctx, list, OID_AUTO, "cmd1_gen", CTLFLAG_RD,
&rxq->vxrxq_cmd_ring[1].vxrxr_gen, 0, "");
SYSCTL_ADD_UINT(ctx, list, OID_AUTO, "comp_next", CTLFLAG_RD,
&rxq->vxrxq_comp_ring.vxcr_next, 0, "");
SYSCTL_ADD_UINT(ctx, list, OID_AUTO, "comp_ndesc", CTLFLAG_RD,
&rxq->vxrxq_comp_ring.vxcr_ndesc, 0,"");
SYSCTL_ADD_INT(ctx, list, OID_AUTO, "comp_gen", CTLFLAG_RD,
&rxq->vxrxq_comp_ring.vxcr_gen, 0, "");
}
}
static void
vmxnet3_setup_queue_sysctl(struct vmxnet3_softc *sc,
struct sysctl_ctx_list *ctx, struct sysctl_oid_list *child)
{
int i;
for (i = 0; i < sc->vmx_ntxqueues; i++)
vmxnet3_setup_txq_sysctl(&sc->vmx_txq[i], ctx, child);
for (i = 0; i < sc->vmx_nrxqueues; i++)
vmxnet3_setup_rxq_sysctl(&sc->vmx_rxq[i], ctx, child);
vmxnet3_setup_debug_sysctl(sc, ctx, child);
}
static void
vmxnet3_setup_sysctl(struct vmxnet3_softc *sc)
{
device_t dev;
struct vmxnet3_statistics *stats;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree;
struct sysctl_oid_list *child;
dev = sc->vmx_dev;
ctx = device_get_sysctl_ctx(dev);
tree = device_get_sysctl_tree(dev);
child = SYSCTL_CHILDREN(tree);
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "max_ntxqueues", CTLFLAG_RD,
&sc->vmx_max_ntxqueues, 0, "Maximum number of Tx queues");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "max_nrxqueues", CTLFLAG_RD,
&sc->vmx_max_nrxqueues, 0, "Maximum number of Rx queues");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "ntxqueues", CTLFLAG_RD,
&sc->vmx_ntxqueues, 0, "Number of Tx queues");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "nrxqueues", CTLFLAG_RD,
&sc->vmx_nrxqueues, 0, "Number of Rx queues");
stats = &sc->vmx_stats;
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "defragged", CTLFLAG_RD,
&stats->vmst_defragged, 0, "Tx mbuf chains defragged");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "defrag_failed", CTLFLAG_RD,
&stats->vmst_defrag_failed, 0,
"Tx mbuf dropped because defrag failed");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "mgetcl_failed", CTLFLAG_RD,
&stats->vmst_mgetcl_failed, 0, "mbuf cluster allocation failed");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "mbuf_load_failed", CTLFLAG_RD,
&stats->vmst_mbuf_load_failed, 0, "mbuf load segments failed");
vmxnet3_setup_queue_sysctl(sc, ctx, child);
}
static void
vmxnet3_write_bar0(struct vmxnet3_softc *sc, bus_size_t r, uint32_t v)
{
bus_space_write_4(sc->vmx_iot0, sc->vmx_ioh0, r, v);
}
static uint32_t
vmxnet3_read_bar1(struct vmxnet3_softc *sc, bus_size_t r)
{
return (bus_space_read_4(sc->vmx_iot1, sc->vmx_ioh1, r));
}
static void
vmxnet3_write_bar1(struct vmxnet3_softc *sc, bus_size_t r, uint32_t v)
{
bus_space_write_4(sc->vmx_iot1, sc->vmx_ioh1, r, v);
}
static void
vmxnet3_write_cmd(struct vmxnet3_softc *sc, uint32_t cmd)
{
vmxnet3_write_bar1(sc, VMXNET3_BAR1_CMD, cmd);
}
static uint32_t
vmxnet3_read_cmd(struct vmxnet3_softc *sc, uint32_t cmd)
{
vmxnet3_write_cmd(sc, cmd);
bus_space_barrier(sc->vmx_iot1, sc->vmx_ioh1, 0, 0,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (vmxnet3_read_bar1(sc, VMXNET3_BAR1_CMD));
}
static void
vmxnet3_enable_intr(struct vmxnet3_softc *sc, int irq)
{
vmxnet3_write_bar0(sc, VMXNET3_BAR0_IMASK(irq), 0);
}
static void
vmxnet3_disable_intr(struct vmxnet3_softc *sc, int irq)
{
vmxnet3_write_bar0(sc, VMXNET3_BAR0_IMASK(irq), 1);
}
static void
vmxnet3_enable_all_intrs(struct vmxnet3_softc *sc)
{
int i;
sc->vmx_ds->ictrl &= ~VMXNET3_ICTRL_DISABLE_ALL;
for (i = 0; i < sc->vmx_nintrs; i++)
vmxnet3_enable_intr(sc, i);
}
static void
vmxnet3_disable_all_intrs(struct vmxnet3_softc *sc)
{
int i;
sc->vmx_ds->ictrl |= VMXNET3_ICTRL_DISABLE_ALL;
for (i = 0; i < sc->vmx_nintrs; i++)
vmxnet3_disable_intr(sc, i);
}
static void
vmxnet3_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *baddr = arg;
if (error == 0)
*baddr = segs->ds_addr;
}
static int
vmxnet3_dma_malloc(struct vmxnet3_softc *sc, bus_size_t size, bus_size_t align,
struct vmxnet3_dma_alloc *dma)
{
device_t dev;
int error;
dev = sc->vmx_dev;
bzero(dma, sizeof(struct vmxnet3_dma_alloc));
error = bus_dma_tag_create(bus_get_dma_tag(dev),
align, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&dma->dma_tag);
if (error) {
device_printf(dev, "bus_dma_tag_create failed: %d\n", error);
goto fail;
}
error = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
BUS_DMA_ZERO | BUS_DMA_NOWAIT, &dma->dma_map);
if (error) {
device_printf(dev, "bus_dmamem_alloc failed: %d\n", error);
goto fail;
}
error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
size, vmxnet3_dmamap_cb, &dma->dma_paddr, BUS_DMA_NOWAIT);
if (error) {
device_printf(dev, "bus_dmamap_load failed: %d\n", error);
goto fail;
}
dma->dma_size = size;
fail:
if (error)
vmxnet3_dma_free(sc, dma);
return (error);
}
static void
vmxnet3_dma_free(struct vmxnet3_softc *sc, struct vmxnet3_dma_alloc *dma)
{
if (dma->dma_tag != NULL) {
if (dma->dma_paddr != 0) {
bus_dmamap_sync(dma->dma_tag, dma->dma_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
}
if (dma->dma_vaddr != NULL) {
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr,
dma->dma_map);
}
bus_dma_tag_destroy(dma->dma_tag);
}
bzero(dma, sizeof(struct vmxnet3_dma_alloc));
}
static int
vmxnet3_tunable_int(struct vmxnet3_softc *sc, const char *knob, int def)
{
char path[64];
snprintf(path, sizeof(path),
"hw.vmx.%d.%s", device_get_unit(sc->vmx_dev), knob);
TUNABLE_INT_FETCH(path, &def);
return (def);
}
/*
* Since this is a purely paravirtualized device, we do not have
* to worry about DMA coherency. But at times, we must make sure
* both the compiler and CPU do not reorder memory operations.
*/
static inline void
vmxnet3_barrier(struct vmxnet3_softc *sc, vmxnet3_barrier_t type)
{
switch (type) {
case VMXNET3_BARRIER_RD:
rmb();
break;
case VMXNET3_BARRIER_WR:
wmb();
break;
case VMXNET3_BARRIER_RDWR:
mb();
break;
default:
panic("%s: bad barrier type %d", __func__, type);
}
}