freebsd-nq/sys/kern/kern_proc.c
Ed Maste e380cc73ed In fill_kinfo_thread, copy the thread's name into struct kinfo_proc even
if it is empty.  Otherwise the previous thread's name would remain in the
struct and then be reported for this thread.

Submitted by:	Ryan Stone
MFC after:	1 week
2009-10-01 21:44:30 +00:00

1942 lines
47 KiB
C

/*-
* Copyright (c) 1982, 1986, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_ddb.h"
#include "opt_kdtrace.h"
#include "opt_ktrace.h"
#include "opt_kstack_pages.h"
#include "opt_stack.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/refcount.h>
#include <sys/sbuf.h>
#include <sys/sysent.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/stack.h>
#include <sys/sysctl.h>
#include <sys/filedesc.h>
#include <sys/tty.h>
#include <sys/signalvar.h>
#include <sys/sdt.h>
#include <sys/sx.h>
#include <sys/user.h>
#include <sys/jail.h>
#include <sys/vnode.h>
#include <sys/eventhandler.h>
#ifdef KTRACE
#include <sys/uio.h>
#include <sys/ktrace.h>
#endif
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/uma.h>
SDT_PROVIDER_DEFINE(proc);
SDT_PROBE_DEFINE(proc, kernel, ctor, entry);
SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
SDT_PROBE_DEFINE(proc, kernel, ctor, return);
SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
SDT_PROBE_DEFINE(proc, kernel, dtor, entry);
SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
SDT_PROBE_DEFINE(proc, kernel, dtor, return);
SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
SDT_PROBE_DEFINE(proc, kernel, init, entry);
SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
SDT_PROBE_DEFINE(proc, kernel, init, return);
SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
MALLOC_DEFINE(M_SESSION, "session", "session header");
static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
static void doenterpgrp(struct proc *, struct pgrp *);
static void orphanpg(struct pgrp *pg);
static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
int preferthread);
static void pgadjustjobc(struct pgrp *pgrp, int entering);
static void pgdelete(struct pgrp *);
static int proc_ctor(void *mem, int size, void *arg, int flags);
static void proc_dtor(void *mem, int size, void *arg);
static int proc_init(void *mem, int size, int flags);
static void proc_fini(void *mem, int size);
static void pargs_free(struct pargs *pa);
/*
* Other process lists
*/
struct pidhashhead *pidhashtbl;
u_long pidhash;
struct pgrphashhead *pgrphashtbl;
u_long pgrphash;
struct proclist allproc;
struct proclist zombproc;
struct sx allproc_lock;
struct sx proctree_lock;
struct mtx ppeers_lock;
uma_zone_t proc_zone;
uma_zone_t ithread_zone;
int kstack_pages = KSTACK_PAGES;
SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
/*
* Initialize global process hashing structures.
*/
void
procinit()
{
sx_init(&allproc_lock, "allproc");
sx_init(&proctree_lock, "proctree");
mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
LIST_INIT(&allproc);
LIST_INIT(&zombproc);
pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
proc_ctor, proc_dtor, proc_init, proc_fini,
UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uihashinit();
}
/*
* Prepare a proc for use.
*/
static int
proc_ctor(void *mem, int size, void *arg, int flags)
{
struct proc *p;
p = (struct proc *)mem;
SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
EVENTHANDLER_INVOKE(process_ctor, p);
SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
return (0);
}
/*
* Reclaim a proc after use.
*/
static void
proc_dtor(void *mem, int size, void *arg)
{
struct proc *p;
struct thread *td;
/* INVARIANTS checks go here */
p = (struct proc *)mem;
td = FIRST_THREAD_IN_PROC(p);
SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
if (td != NULL) {
#ifdef INVARIANTS
KASSERT((p->p_numthreads == 1),
("bad number of threads in exiting process"));
KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
#endif
/* Free all OSD associated to this thread. */
osd_thread_exit(td);
}
EVENTHANDLER_INVOKE(process_dtor, p);
if (p->p_ksi != NULL)
KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
}
/*
* Initialize type-stable parts of a proc (when newly created).
*/
static int
proc_init(void *mem, int size, int flags)
{
struct proc *p;
p = (struct proc *)mem;
SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
p->p_sched = (struct p_sched *)&p[1];
bzero(&p->p_mtx, sizeof(struct mtx));
mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
cv_init(&p->p_pwait, "ppwait");
TAILQ_INIT(&p->p_threads); /* all threads in proc */
EVENTHANDLER_INVOKE(process_init, p);
p->p_stats = pstats_alloc();
SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
return (0);
}
/*
* UMA should ensure that this function is never called.
* Freeing a proc structure would violate type stability.
*/
static void
proc_fini(void *mem, int size)
{
#ifdef notnow
struct proc *p;
p = (struct proc *)mem;
EVENTHANDLER_INVOKE(process_fini, p);
pstats_free(p->p_stats);
thread_free(FIRST_THREAD_IN_PROC(p));
mtx_destroy(&p->p_mtx);
if (p->p_ksi != NULL)
ksiginfo_free(p->p_ksi);
#else
panic("proc reclaimed");
#endif
}
/*
* Is p an inferior of the current process?
*/
int
inferior(p)
register struct proc *p;
{
sx_assert(&proctree_lock, SX_LOCKED);
for (; p != curproc; p = p->p_pptr)
if (p->p_pid == 0)
return (0);
return (1);
}
/*
* Locate a process by number; return only "live" processes -- i.e., neither
* zombies nor newly born but incompletely initialized processes. By not
* returning processes in the PRS_NEW state, we allow callers to avoid
* testing for that condition to avoid dereferencing p_ucred, et al.
*/
struct proc *
pfind(pid)
register pid_t pid;
{
register struct proc *p;
sx_slock(&allproc_lock);
LIST_FOREACH(p, PIDHASH(pid), p_hash)
if (p->p_pid == pid) {
if (p->p_state == PRS_NEW) {
p = NULL;
break;
}
PROC_LOCK(p);
break;
}
sx_sunlock(&allproc_lock);
return (p);
}
/*
* Locate a process group by number.
* The caller must hold proctree_lock.
*/
struct pgrp *
pgfind(pgid)
register pid_t pgid;
{
register struct pgrp *pgrp;
sx_assert(&proctree_lock, SX_LOCKED);
LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
if (pgrp->pg_id == pgid) {
PGRP_LOCK(pgrp);
return (pgrp);
}
}
return (NULL);
}
/*
* Create a new process group.
* pgid must be equal to the pid of p.
* Begin a new session if required.
*/
int
enterpgrp(p, pgid, pgrp, sess)
register struct proc *p;
pid_t pgid;
struct pgrp *pgrp;
struct session *sess;
{
struct pgrp *pgrp2;
sx_assert(&proctree_lock, SX_XLOCKED);
KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
KASSERT(p->p_pid == pgid,
("enterpgrp: new pgrp and pid != pgid"));
pgrp2 = pgfind(pgid);
KASSERT(pgrp2 == NULL,
("enterpgrp: pgrp with pgid exists"));
KASSERT(!SESS_LEADER(p),
("enterpgrp: session leader attempted setpgrp"));
mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
if (sess != NULL) {
/*
* new session
*/
mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
PROC_LOCK(p);
p->p_flag &= ~P_CONTROLT;
PROC_UNLOCK(p);
PGRP_LOCK(pgrp);
sess->s_leader = p;
sess->s_sid = p->p_pid;
refcount_init(&sess->s_count, 1);
sess->s_ttyvp = NULL;
sess->s_ttyp = NULL;
bcopy(p->p_session->s_login, sess->s_login,
sizeof(sess->s_login));
pgrp->pg_session = sess;
KASSERT(p == curproc,
("enterpgrp: mksession and p != curproc"));
} else {
pgrp->pg_session = p->p_session;
sess_hold(pgrp->pg_session);
PGRP_LOCK(pgrp);
}
pgrp->pg_id = pgid;
LIST_INIT(&pgrp->pg_members);
/*
* As we have an exclusive lock of proctree_lock,
* this should not deadlock.
*/
LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
pgrp->pg_jobc = 0;
SLIST_INIT(&pgrp->pg_sigiolst);
PGRP_UNLOCK(pgrp);
doenterpgrp(p, pgrp);
return (0);
}
/*
* Move p to an existing process group
*/
int
enterthispgrp(p, pgrp)
register struct proc *p;
struct pgrp *pgrp;
{
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
KASSERT(pgrp->pg_session == p->p_session,
("%s: pgrp's session %p, p->p_session %p.\n",
__func__,
pgrp->pg_session,
p->p_session));
KASSERT(pgrp != p->p_pgrp,
("%s: p belongs to pgrp.", __func__));
doenterpgrp(p, pgrp);
return (0);
}
/*
* Move p to a process group
*/
static void
doenterpgrp(p, pgrp)
struct proc *p;
struct pgrp *pgrp;
{
struct pgrp *savepgrp;
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
savepgrp = p->p_pgrp;
/*
* Adjust eligibility of affected pgrps to participate in job control.
* Increment eligibility counts before decrementing, otherwise we
* could reach 0 spuriously during the first call.
*/
fixjobc(p, pgrp, 1);
fixjobc(p, p->p_pgrp, 0);
PGRP_LOCK(pgrp);
PGRP_LOCK(savepgrp);
PROC_LOCK(p);
LIST_REMOVE(p, p_pglist);
p->p_pgrp = pgrp;
PROC_UNLOCK(p);
LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
PGRP_UNLOCK(savepgrp);
PGRP_UNLOCK(pgrp);
if (LIST_EMPTY(&savepgrp->pg_members))
pgdelete(savepgrp);
}
/*
* remove process from process group
*/
int
leavepgrp(p)
register struct proc *p;
{
struct pgrp *savepgrp;
sx_assert(&proctree_lock, SX_XLOCKED);
savepgrp = p->p_pgrp;
PGRP_LOCK(savepgrp);
PROC_LOCK(p);
LIST_REMOVE(p, p_pglist);
p->p_pgrp = NULL;
PROC_UNLOCK(p);
PGRP_UNLOCK(savepgrp);
if (LIST_EMPTY(&savepgrp->pg_members))
pgdelete(savepgrp);
return (0);
}
/*
* delete a process group
*/
static void
pgdelete(pgrp)
register struct pgrp *pgrp;
{
struct session *savesess;
struct tty *tp;
sx_assert(&proctree_lock, SX_XLOCKED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
/*
* Reset any sigio structures pointing to us as a result of
* F_SETOWN with our pgid.
*/
funsetownlst(&pgrp->pg_sigiolst);
PGRP_LOCK(pgrp);
tp = pgrp->pg_session->s_ttyp;
LIST_REMOVE(pgrp, pg_hash);
savesess = pgrp->pg_session;
PGRP_UNLOCK(pgrp);
/* Remove the reference to the pgrp before deallocating it. */
if (tp != NULL) {
tty_lock(tp);
tty_rel_pgrp(tp, pgrp);
}
mtx_destroy(&pgrp->pg_mtx);
free(pgrp, M_PGRP);
sess_release(savesess);
}
static void
pgadjustjobc(pgrp, entering)
struct pgrp *pgrp;
int entering;
{
PGRP_LOCK(pgrp);
if (entering)
pgrp->pg_jobc++;
else {
--pgrp->pg_jobc;
if (pgrp->pg_jobc == 0)
orphanpg(pgrp);
}
PGRP_UNLOCK(pgrp);
}
/*
* Adjust pgrp jobc counters when specified process changes process group.
* We count the number of processes in each process group that "qualify"
* the group for terminal job control (those with a parent in a different
* process group of the same session). If that count reaches zero, the
* process group becomes orphaned. Check both the specified process'
* process group and that of its children.
* entering == 0 => p is leaving specified group.
* entering == 1 => p is entering specified group.
*/
void
fixjobc(p, pgrp, entering)
register struct proc *p;
register struct pgrp *pgrp;
int entering;
{
register struct pgrp *hispgrp;
register struct session *mysession;
sx_assert(&proctree_lock, SX_LOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
/*
* Check p's parent to see whether p qualifies its own process
* group; if so, adjust count for p's process group.
*/
mysession = pgrp->pg_session;
if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
hispgrp->pg_session == mysession)
pgadjustjobc(pgrp, entering);
/*
* Check this process' children to see whether they qualify
* their process groups; if so, adjust counts for children's
* process groups.
*/
LIST_FOREACH(p, &p->p_children, p_sibling) {
hispgrp = p->p_pgrp;
if (hispgrp == pgrp ||
hispgrp->pg_session != mysession)
continue;
PROC_LOCK(p);
if (p->p_state == PRS_ZOMBIE) {
PROC_UNLOCK(p);
continue;
}
PROC_UNLOCK(p);
pgadjustjobc(hispgrp, entering);
}
}
/*
* A process group has become orphaned;
* if there are any stopped processes in the group,
* hang-up all process in that group.
*/
static void
orphanpg(pg)
struct pgrp *pg;
{
register struct proc *p;
PGRP_LOCK_ASSERT(pg, MA_OWNED);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
if (P_SHOULDSTOP(p)) {
PROC_UNLOCK(p);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
psignal(p, SIGHUP);
psignal(p, SIGCONT);
PROC_UNLOCK(p);
}
return;
}
PROC_UNLOCK(p);
}
}
void
sess_hold(struct session *s)
{
refcount_acquire(&s->s_count);
}
void
sess_release(struct session *s)
{
if (refcount_release(&s->s_count)) {
if (s->s_ttyp != NULL) {
tty_lock(s->s_ttyp);
tty_rel_sess(s->s_ttyp, s);
}
mtx_destroy(&s->s_mtx);
free(s, M_SESSION);
}
}
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
DB_SHOW_COMMAND(pgrpdump, pgrpdump)
{
register struct pgrp *pgrp;
register struct proc *p;
register int i;
for (i = 0; i <= pgrphash; i++) {
if (!LIST_EMPTY(&pgrphashtbl[i])) {
printf("\tindx %d\n", i);
LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
printf(
"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
(void *)pgrp, (long)pgrp->pg_id,
(void *)pgrp->pg_session,
pgrp->pg_session->s_count,
(void *)LIST_FIRST(&pgrp->pg_members));
LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
printf("\t\tpid %ld addr %p pgrp %p\n",
(long)p->p_pid, (void *)p,
(void *)p->p_pgrp);
}
}
}
}
}
#endif /* DDB */
/*
* Calculate the kinfo_proc members which contain process-wide
* informations.
* Must be called with the target process locked.
*/
static void
fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
{
struct thread *td;
PROC_LOCK_ASSERT(p, MA_OWNED);
kp->ki_estcpu = 0;
kp->ki_pctcpu = 0;
kp->ki_runtime = 0;
FOREACH_THREAD_IN_PROC(p, td) {
thread_lock(td);
kp->ki_pctcpu += sched_pctcpu(td);
kp->ki_runtime += cputick2usec(td->td_runtime);
kp->ki_estcpu += td->td_estcpu;
thread_unlock(td);
}
}
/*
* Clear kinfo_proc and fill in any information that is common
* to all threads in the process.
* Must be called with the target process locked.
*/
static void
fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
{
struct thread *td0;
struct tty *tp;
struct session *sp;
struct ucred *cred;
struct sigacts *ps;
PROC_LOCK_ASSERT(p, MA_OWNED);
bzero(kp, sizeof(*kp));
kp->ki_structsize = sizeof(*kp);
kp->ki_paddr = p;
kp->ki_addr =/* p->p_addr; */0; /* XXX */
kp->ki_args = p->p_args;
kp->ki_textvp = p->p_textvp;
#ifdef KTRACE
kp->ki_tracep = p->p_tracevp;
mtx_lock(&ktrace_mtx);
kp->ki_traceflag = p->p_traceflag;
mtx_unlock(&ktrace_mtx);
#endif
kp->ki_fd = p->p_fd;
kp->ki_vmspace = p->p_vmspace;
kp->ki_flag = p->p_flag;
cred = p->p_ucred;
if (cred) {
kp->ki_uid = cred->cr_uid;
kp->ki_ruid = cred->cr_ruid;
kp->ki_svuid = cred->cr_svuid;
kp->ki_cr_flags = cred->cr_flags;
/* XXX bde doesn't like KI_NGROUPS */
if (cred->cr_ngroups > KI_NGROUPS) {
kp->ki_ngroups = KI_NGROUPS;
kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
} else
kp->ki_ngroups = cred->cr_ngroups;
bcopy(cred->cr_groups, kp->ki_groups,
kp->ki_ngroups * sizeof(gid_t));
kp->ki_rgid = cred->cr_rgid;
kp->ki_svgid = cred->cr_svgid;
/* If jailed(cred), emulate the old P_JAILED flag. */
if (jailed(cred)) {
kp->ki_flag |= P_JAILED;
/* If inside the jail, use 0 as a jail ID. */
if (cred->cr_prison != curthread->td_ucred->cr_prison)
kp->ki_jid = cred->cr_prison->pr_id;
}
}
ps = p->p_sigacts;
if (ps) {
mtx_lock(&ps->ps_mtx);
kp->ki_sigignore = ps->ps_sigignore;
kp->ki_sigcatch = ps->ps_sigcatch;
mtx_unlock(&ps->ps_mtx);
}
PROC_SLOCK(p);
if (p->p_state != PRS_NEW &&
p->p_state != PRS_ZOMBIE &&
p->p_vmspace != NULL) {
struct vmspace *vm = p->p_vmspace;
kp->ki_size = vm->vm_map.size;
kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
FOREACH_THREAD_IN_PROC(p, td0) {
if (!TD_IS_SWAPPED(td0))
kp->ki_rssize += td0->td_kstack_pages;
}
kp->ki_swrss = vm->vm_swrss;
kp->ki_tsize = vm->vm_tsize;
kp->ki_dsize = vm->vm_dsize;
kp->ki_ssize = vm->vm_ssize;
} else if (p->p_state == PRS_ZOMBIE)
kp->ki_stat = SZOMB;
if (kp->ki_flag & P_INMEM)
kp->ki_sflag = PS_INMEM;
else
kp->ki_sflag = 0;
/* Calculate legacy swtime as seconds since 'swtick'. */
kp->ki_swtime = (ticks - p->p_swtick) / hz;
kp->ki_pid = p->p_pid;
kp->ki_nice = p->p_nice;
rufetch(p, &kp->ki_rusage);
kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
PROC_SUNLOCK(p);
if ((p->p_flag & P_INMEM) && p->p_stats != NULL) {
kp->ki_start = p->p_stats->p_start;
timevaladd(&kp->ki_start, &boottime);
PROC_SLOCK(p);
calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
PROC_SUNLOCK(p);
calccru(p, &kp->ki_childutime, &kp->ki_childstime);
/* Some callers want child-times in a single value */
kp->ki_childtime = kp->ki_childstime;
timevaladd(&kp->ki_childtime, &kp->ki_childutime);
}
tp = NULL;
if (p->p_pgrp) {
kp->ki_pgid = p->p_pgrp->pg_id;
kp->ki_jobc = p->p_pgrp->pg_jobc;
sp = p->p_pgrp->pg_session;
if (sp != NULL) {
kp->ki_sid = sp->s_sid;
SESS_LOCK(sp);
strlcpy(kp->ki_login, sp->s_login,
sizeof(kp->ki_login));
if (sp->s_ttyvp)
kp->ki_kiflag |= KI_CTTY;
if (SESS_LEADER(p))
kp->ki_kiflag |= KI_SLEADER;
/* XXX proctree_lock */
tp = sp->s_ttyp;
SESS_UNLOCK(sp);
}
}
if ((p->p_flag & P_CONTROLT) && tp != NULL) {
kp->ki_tdev = tty_udev(tp);
kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
if (tp->t_session)
kp->ki_tsid = tp->t_session->s_sid;
} else
kp->ki_tdev = NODEV;
if (p->p_comm[0] != '\0')
strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
if (p->p_sysent && p->p_sysent->sv_name != NULL &&
p->p_sysent->sv_name[0] != '\0')
strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
kp->ki_siglist = p->p_siglist;
kp->ki_xstat = p->p_xstat;
kp->ki_acflag = p->p_acflag;
kp->ki_lock = p->p_lock;
if (p->p_pptr)
kp->ki_ppid = p->p_pptr->p_pid;
}
/*
* Fill in information that is thread specific. Must be called with p_slock
* locked. If 'preferthread' is set, overwrite certain process-related
* fields that are maintained for both threads and processes.
*/
static void
fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
{
struct proc *p;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
thread_lock(td);
if (td->td_wmesg != NULL)
strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
else
bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
if (TD_ON_LOCK(td)) {
kp->ki_kiflag |= KI_LOCKBLOCK;
strlcpy(kp->ki_lockname, td->td_lockname,
sizeof(kp->ki_lockname));
} else {
kp->ki_kiflag &= ~KI_LOCKBLOCK;
bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
}
if (p->p_state == PRS_NORMAL) { /* approximate. */
if (TD_ON_RUNQ(td) ||
TD_CAN_RUN(td) ||
TD_IS_RUNNING(td)) {
kp->ki_stat = SRUN;
} else if (P_SHOULDSTOP(p)) {
kp->ki_stat = SSTOP;
} else if (TD_IS_SLEEPING(td)) {
kp->ki_stat = SSLEEP;
} else if (TD_ON_LOCK(td)) {
kp->ki_stat = SLOCK;
} else {
kp->ki_stat = SWAIT;
}
} else if (p->p_state == PRS_ZOMBIE) {
kp->ki_stat = SZOMB;
} else {
kp->ki_stat = SIDL;
}
/* Things in the thread */
kp->ki_wchan = td->td_wchan;
kp->ki_pri.pri_level = td->td_priority;
kp->ki_pri.pri_native = td->td_base_pri;
kp->ki_lastcpu = td->td_lastcpu;
kp->ki_oncpu = td->td_oncpu;
kp->ki_tdflags = td->td_flags;
kp->ki_tid = td->td_tid;
kp->ki_numthreads = p->p_numthreads;
kp->ki_pcb = td->td_pcb;
kp->ki_kstack = (void *)td->td_kstack;
kp->ki_slptime = (ticks - td->td_slptick) / hz;
kp->ki_pri.pri_class = td->td_pri_class;
kp->ki_pri.pri_user = td->td_user_pri;
if (preferthread) {
kp->ki_runtime = cputick2usec(td->td_runtime);
kp->ki_pctcpu = sched_pctcpu(td);
kp->ki_estcpu = td->td_estcpu;
}
/* We can't get this anymore but ps etc never used it anyway. */
kp->ki_rqindex = 0;
SIGSETOR(kp->ki_siglist, td->td_siglist);
kp->ki_sigmask = td->td_sigmask;
thread_unlock(td);
}
/*
* Fill in a kinfo_proc structure for the specified process.
* Must be called with the target process locked.
*/
void
fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
{
MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
fill_kinfo_proc_only(p, kp);
fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
fill_kinfo_aggregate(p, kp);
}
struct pstats *
pstats_alloc(void)
{
return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
}
/*
* Copy parts of p_stats; zero the rest of p_stats (statistics).
*/
void
pstats_fork(struct pstats *src, struct pstats *dst)
{
bzero(&dst->pstat_startzero,
__rangeof(struct pstats, pstat_startzero, pstat_endzero));
bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
__rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
}
void
pstats_free(struct pstats *ps)
{
free(ps, M_SUBPROC);
}
/*
* Locate a zombie process by number
*/
struct proc *
zpfind(pid_t pid)
{
struct proc *p;
sx_slock(&allproc_lock);
LIST_FOREACH(p, &zombproc, p_list)
if (p->p_pid == pid) {
PROC_LOCK(p);
break;
}
sx_sunlock(&allproc_lock);
return (p);
}
#define KERN_PROC_ZOMBMASK 0x3
#define KERN_PROC_NOTHREADS 0x4
/*
* Must be called with the process locked and will return with it unlocked.
*/
static int
sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
{
struct thread *td;
struct kinfo_proc kinfo_proc;
int error = 0;
struct proc *np;
pid_t pid = p->p_pid;
PROC_LOCK_ASSERT(p, MA_OWNED);
MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
fill_kinfo_proc(p, &kinfo_proc);
if (flags & KERN_PROC_NOTHREADS)
error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
sizeof(kinfo_proc));
else {
FOREACH_THREAD_IN_PROC(p, td) {
fill_kinfo_thread(td, &kinfo_proc, 1);
error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
sizeof(kinfo_proc));
if (error)
break;
}
}
PROC_UNLOCK(p);
if (error)
return (error);
if (flags & KERN_PROC_ZOMBMASK)
np = zpfind(pid);
else {
if (pid == 0)
return (0);
np = pfind(pid);
}
if (np == NULL)
return (ESRCH);
if (np != p) {
PROC_UNLOCK(np);
return (ESRCH);
}
PROC_UNLOCK(np);
return (0);
}
static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
{
int *name = (int*) arg1;
u_int namelen = arg2;
struct proc *p;
int flags, doingzomb, oid_number;
int error = 0;
oid_number = oidp->oid_number;
if (oid_number != KERN_PROC_ALL &&
(oid_number & KERN_PROC_INC_THREAD) == 0)
flags = KERN_PROC_NOTHREADS;
else {
flags = 0;
oid_number &= ~KERN_PROC_INC_THREAD;
}
if (oid_number == KERN_PROC_PID) {
if (namelen != 1)
return (EINVAL);
error = sysctl_wire_old_buffer(req, 0);
if (error)
return (error);
p = pfind((pid_t)name[0]);
if (!p)
return (ESRCH);
if ((error = p_cansee(curthread, p))) {
PROC_UNLOCK(p);
return (error);
}
error = sysctl_out_proc(p, req, flags);
return (error);
}
switch (oid_number) {
case KERN_PROC_ALL:
if (namelen != 0)
return (EINVAL);
break;
case KERN_PROC_PROC:
if (namelen != 0 && namelen != 1)
return (EINVAL);
break;
default:
if (namelen != 1)
return (EINVAL);
break;
}
if (!req->oldptr) {
/* overestimate by 5 procs */
error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
if (error)
return (error);
}
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sx_slock(&allproc_lock);
for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
if (!doingzomb)
p = LIST_FIRST(&allproc);
else
p = LIST_FIRST(&zombproc);
for (; p != 0; p = LIST_NEXT(p, p_list)) {
/*
* Skip embryonic processes.
*/
PROC_SLOCK(p);
if (p->p_state == PRS_NEW) {
PROC_SUNLOCK(p);
continue;
}
PROC_SUNLOCK(p);
PROC_LOCK(p);
KASSERT(p->p_ucred != NULL,
("process credential is NULL for non-NEW proc"));
/*
* Show a user only appropriate processes.
*/
if (p_cansee(curthread, p)) {
PROC_UNLOCK(p);
continue;
}
/*
* TODO - make more efficient (see notes below).
* do by session.
*/
switch (oid_number) {
case KERN_PROC_GID:
if (p->p_ucred->cr_gid != (gid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_PGRP:
/* could do this by traversing pgrp */
if (p->p_pgrp == NULL ||
p->p_pgrp->pg_id != (pid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_RGID:
if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_SESSION:
if (p->p_session == NULL ||
p->p_session->s_sid != (pid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_TTY:
if ((p->p_flag & P_CONTROLT) == 0 ||
p->p_session == NULL) {
PROC_UNLOCK(p);
continue;
}
/* XXX proctree_lock */
SESS_LOCK(p->p_session);
if (p->p_session->s_ttyp == NULL ||
tty_udev(p->p_session->s_ttyp) !=
(dev_t)name[0]) {
SESS_UNLOCK(p->p_session);
PROC_UNLOCK(p);
continue;
}
SESS_UNLOCK(p->p_session);
break;
case KERN_PROC_UID:
if (p->p_ucred->cr_uid != (uid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_RUID:
if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_PROC:
break;
default:
break;
}
error = sysctl_out_proc(p, req, flags | doingzomb);
if (error) {
sx_sunlock(&allproc_lock);
return (error);
}
}
}
sx_sunlock(&allproc_lock);
return (0);
}
struct pargs *
pargs_alloc(int len)
{
struct pargs *pa;
pa = malloc(sizeof(struct pargs) + len, M_PARGS,
M_WAITOK);
refcount_init(&pa->ar_ref, 1);
pa->ar_length = len;
return (pa);
}
static void
pargs_free(struct pargs *pa)
{
free(pa, M_PARGS);
}
void
pargs_hold(struct pargs *pa)
{
if (pa == NULL)
return;
refcount_acquire(&pa->ar_ref);
}
void
pargs_drop(struct pargs *pa)
{
if (pa == NULL)
return;
if (refcount_release(&pa->ar_ref))
pargs_free(pa);
}
/*
* This sysctl allows a process to retrieve the argument list or process
* title for another process without groping around in the address space
* of the other process. It also allow a process to set its own "process
* title to a string of its own choice.
*/
static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
{
int *name = (int*) arg1;
u_int namelen = arg2;
struct pargs *newpa, *pa;
struct proc *p;
int error = 0;
if (namelen != 1)
return (EINVAL);
p = pfind((pid_t)name[0]);
if (!p)
return (ESRCH);
if ((error = p_cansee(curthread, p)) != 0) {
PROC_UNLOCK(p);
return (error);
}
if (req->newptr && curproc != p) {
PROC_UNLOCK(p);
return (EPERM);
}
pa = p->p_args;
pargs_hold(pa);
PROC_UNLOCK(p);
if (req->oldptr != NULL && pa != NULL)
error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
pargs_drop(pa);
if (error != 0 || req->newptr == NULL)
return (error);
if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
return (ENOMEM);
newpa = pargs_alloc(req->newlen);
error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
if (error != 0) {
pargs_free(newpa);
return (error);
}
PROC_LOCK(p);
pa = p->p_args;
p->p_args = newpa;
PROC_UNLOCK(p);
pargs_drop(pa);
return (0);
}
/*
* This sysctl allows a process to retrieve the path of the executable for
* itself or another process.
*/
static int
sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
{
pid_t *pidp = (pid_t *)arg1;
unsigned int arglen = arg2;
struct proc *p;
struct vnode *vp;
char *retbuf, *freebuf;
int error, vfslocked;
if (arglen != 1)
return (EINVAL);
if (*pidp == -1) { /* -1 means this process */
p = req->td->td_proc;
} else {
p = pfind(*pidp);
if (p == NULL)
return (ESRCH);
if ((error = p_cansee(curthread, p)) != 0) {
PROC_UNLOCK(p);
return (error);
}
}
vp = p->p_textvp;
if (vp == NULL) {
if (*pidp != -1)
PROC_UNLOCK(p);
return (0);
}
vref(vp);
if (*pidp != -1)
PROC_UNLOCK(p);
error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
vrele(vp);
VFS_UNLOCK_GIANT(vfslocked);
if (error)
return (error);
error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
free(freebuf, M_TEMP);
return (error);
}
static int
sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
{
struct proc *p;
char *sv_name;
int *name;
int namelen;
int error;
namelen = arg2;
if (namelen != 1)
return (EINVAL);
name = (int *)arg1;
if ((p = pfind((pid_t)name[0])) == NULL)
return (ESRCH);
if ((error = p_cansee(curthread, p))) {
PROC_UNLOCK(p);
return (error);
}
sv_name = p->p_sysent->sv_name;
PROC_UNLOCK(p);
return (sysctl_handle_string(oidp, sv_name, 0, req));
}
#ifdef KINFO_OVMENTRY_SIZE
CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
#endif
#ifdef COMPAT_FREEBSD7
static int
sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
{
vm_map_entry_t entry, tmp_entry;
unsigned int last_timestamp;
char *fullpath, *freepath;
struct kinfo_ovmentry *kve;
struct vattr va;
struct ucred *cred;
int error, *name;
struct vnode *vp;
struct proc *p;
vm_map_t map;
struct vmspace *vm;
name = (int *)arg1;
if ((p = pfind((pid_t)name[0])) == NULL)
return (ESRCH);
if (p->p_flag & P_WEXIT) {
PROC_UNLOCK(p);
return (ESRCH);
}
if ((error = p_candebug(curthread, p))) {
PROC_UNLOCK(p);
return (error);
}
_PHOLD(p);
PROC_UNLOCK(p);
vm = vmspace_acquire_ref(p);
if (vm == NULL) {
PRELE(p);
return (ESRCH);
}
kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */
vm_map_lock_read(map);
for (entry = map->header.next; entry != &map->header;
entry = entry->next) {
vm_object_t obj, tobj, lobj;
vm_offset_t addr;
int vfslocked;
if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
continue;
bzero(kve, sizeof(*kve));
kve->kve_structsize = sizeof(*kve);
kve->kve_private_resident = 0;
obj = entry->object.vm_object;
if (obj != NULL) {
VM_OBJECT_LOCK(obj);
if (obj->shadow_count == 1)
kve->kve_private_resident =
obj->resident_page_count;
}
kve->kve_resident = 0;
addr = entry->start;
while (addr < entry->end) {
if (pmap_extract(map->pmap, addr))
kve->kve_resident++;
addr += PAGE_SIZE;
}
for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
if (tobj != obj)
VM_OBJECT_LOCK(tobj);
if (lobj != obj)
VM_OBJECT_UNLOCK(lobj);
lobj = tobj;
}
kve->kve_start = (void*)entry->start;
kve->kve_end = (void*)entry->end;
kve->kve_offset = (off_t)entry->offset;
if (entry->protection & VM_PROT_READ)
kve->kve_protection |= KVME_PROT_READ;
if (entry->protection & VM_PROT_WRITE)
kve->kve_protection |= KVME_PROT_WRITE;
if (entry->protection & VM_PROT_EXECUTE)
kve->kve_protection |= KVME_PROT_EXEC;
if (entry->eflags & MAP_ENTRY_COW)
kve->kve_flags |= KVME_FLAG_COW;
if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
last_timestamp = map->timestamp;
vm_map_unlock_read(map);
kve->kve_fileid = 0;
kve->kve_fsid = 0;
freepath = NULL;
fullpath = "";
if (lobj) {
vp = NULL;
switch (lobj->type) {
case OBJT_DEFAULT:
kve->kve_type = KVME_TYPE_DEFAULT;
break;
case OBJT_VNODE:
kve->kve_type = KVME_TYPE_VNODE;
vp = lobj->handle;
vref(vp);
break;
case OBJT_SWAP:
kve->kve_type = KVME_TYPE_SWAP;
break;
case OBJT_DEVICE:
kve->kve_type = KVME_TYPE_DEVICE;
break;
case OBJT_PHYS:
kve->kve_type = KVME_TYPE_PHYS;
break;
case OBJT_DEAD:
kve->kve_type = KVME_TYPE_DEAD;
break;
case OBJT_SG:
kve->kve_type = KVME_TYPE_SG;
break;
default:
kve->kve_type = KVME_TYPE_UNKNOWN;
break;
}
if (lobj != obj)
VM_OBJECT_UNLOCK(lobj);
kve->kve_ref_count = obj->ref_count;
kve->kve_shadow_count = obj->shadow_count;
VM_OBJECT_UNLOCK(obj);
if (vp != NULL) {
vn_fullpath(curthread, vp, &fullpath,
&freepath);
cred = curthread->td_ucred;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
vn_lock(vp, LK_SHARED | LK_RETRY);
if (VOP_GETATTR(vp, &va, cred) == 0) {
kve->kve_fileid = va.va_fileid;
kve->kve_fsid = va.va_fsid;
}
vput(vp);
VFS_UNLOCK_GIANT(vfslocked);
}
} else {
kve->kve_type = KVME_TYPE_NONE;
kve->kve_ref_count = 0;
kve->kve_shadow_count = 0;
}
strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
if (freepath != NULL)
free(freepath, M_TEMP);
error = SYSCTL_OUT(req, kve, sizeof(*kve));
vm_map_lock_read(map);
if (error)
break;
if (last_timestamp != map->timestamp) {
vm_map_lookup_entry(map, addr - 1, &tmp_entry);
entry = tmp_entry;
}
}
vm_map_unlock_read(map);
vmspace_free(vm);
PRELE(p);
free(kve, M_TEMP);
return (error);
}
#endif /* COMPAT_FREEBSD7 */
#ifdef KINFO_VMENTRY_SIZE
CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
#endif
static int
sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
{
vm_map_entry_t entry, tmp_entry;
unsigned int last_timestamp;
char *fullpath, *freepath;
struct kinfo_vmentry *kve;
struct vattr va;
struct ucred *cred;
int error, *name;
struct vnode *vp;
struct proc *p;
struct vmspace *vm;
vm_map_t map;
name = (int *)arg1;
if ((p = pfind((pid_t)name[0])) == NULL)
return (ESRCH);
if (p->p_flag & P_WEXIT) {
PROC_UNLOCK(p);
return (ESRCH);
}
if ((error = p_candebug(curthread, p))) {
PROC_UNLOCK(p);
return (error);
}
_PHOLD(p);
PROC_UNLOCK(p);
vm = vmspace_acquire_ref(p);
if (vm == NULL) {
PRELE(p);
return (ESRCH);
}
kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
map = &vm->vm_map; /* XXXRW: More locking required? */
vm_map_lock_read(map);
for (entry = map->header.next; entry != &map->header;
entry = entry->next) {
vm_object_t obj, tobj, lobj;
vm_offset_t addr;
int vfslocked;
if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
continue;
bzero(kve, sizeof(*kve));
kve->kve_private_resident = 0;
obj = entry->object.vm_object;
if (obj != NULL) {
VM_OBJECT_LOCK(obj);
if (obj->shadow_count == 1)
kve->kve_private_resident =
obj->resident_page_count;
}
kve->kve_resident = 0;
addr = entry->start;
while (addr < entry->end) {
if (pmap_extract(map->pmap, addr))
kve->kve_resident++;
addr += PAGE_SIZE;
}
for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
if (tobj != obj)
VM_OBJECT_LOCK(tobj);
if (lobj != obj)
VM_OBJECT_UNLOCK(lobj);
lobj = tobj;
}
kve->kve_start = entry->start;
kve->kve_end = entry->end;
kve->kve_offset = entry->offset;
if (entry->protection & VM_PROT_READ)
kve->kve_protection |= KVME_PROT_READ;
if (entry->protection & VM_PROT_WRITE)
kve->kve_protection |= KVME_PROT_WRITE;
if (entry->protection & VM_PROT_EXECUTE)
kve->kve_protection |= KVME_PROT_EXEC;
if (entry->eflags & MAP_ENTRY_COW)
kve->kve_flags |= KVME_FLAG_COW;
if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
last_timestamp = map->timestamp;
vm_map_unlock_read(map);
kve->kve_fileid = 0;
kve->kve_fsid = 0;
freepath = NULL;
fullpath = "";
if (lobj) {
vp = NULL;
switch (lobj->type) {
case OBJT_DEFAULT:
kve->kve_type = KVME_TYPE_DEFAULT;
break;
case OBJT_VNODE:
kve->kve_type = KVME_TYPE_VNODE;
vp = lobj->handle;
vref(vp);
break;
case OBJT_SWAP:
kve->kve_type = KVME_TYPE_SWAP;
break;
case OBJT_DEVICE:
kve->kve_type = KVME_TYPE_DEVICE;
break;
case OBJT_PHYS:
kve->kve_type = KVME_TYPE_PHYS;
break;
case OBJT_DEAD:
kve->kve_type = KVME_TYPE_DEAD;
break;
case OBJT_SG:
kve->kve_type = KVME_TYPE_SG;
break;
default:
kve->kve_type = KVME_TYPE_UNKNOWN;
break;
}
if (lobj != obj)
VM_OBJECT_UNLOCK(lobj);
kve->kve_ref_count = obj->ref_count;
kve->kve_shadow_count = obj->shadow_count;
VM_OBJECT_UNLOCK(obj);
if (vp != NULL) {
vn_fullpath(curthread, vp, &fullpath,
&freepath);
cred = curthread->td_ucred;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
vn_lock(vp, LK_SHARED | LK_RETRY);
if (VOP_GETATTR(vp, &va, cred) == 0) {
kve->kve_fileid = va.va_fileid;
kve->kve_fsid = va.va_fsid;
}
vput(vp);
VFS_UNLOCK_GIANT(vfslocked);
}
} else {
kve->kve_type = KVME_TYPE_NONE;
kve->kve_ref_count = 0;
kve->kve_shadow_count = 0;
}
strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
if (freepath != NULL)
free(freepath, M_TEMP);
/* Pack record size down */
kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
strlen(kve->kve_path) + 1;
kve->kve_structsize = roundup(kve->kve_structsize,
sizeof(uint64_t));
error = SYSCTL_OUT(req, kve, kve->kve_structsize);
vm_map_lock_read(map);
if (error)
break;
if (last_timestamp != map->timestamp) {
vm_map_lookup_entry(map, addr - 1, &tmp_entry);
entry = tmp_entry;
}
}
vm_map_unlock_read(map);
vmspace_free(vm);
PRELE(p);
free(kve, M_TEMP);
return (error);
}
#if defined(STACK) || defined(DDB)
static int
sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
{
struct kinfo_kstack *kkstp;
int error, i, *name, numthreads;
lwpid_t *lwpidarray;
struct thread *td;
struct stack *st;
struct sbuf sb;
struct proc *p;
name = (int *)arg1;
if ((p = pfind((pid_t)name[0])) == NULL)
return (ESRCH);
/* XXXRW: Not clear ESRCH is the right error during proc execve(). */
if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
PROC_UNLOCK(p);
return (ESRCH);
}
if ((error = p_candebug(curthread, p))) {
PROC_UNLOCK(p);
return (error);
}
_PHOLD(p);
PROC_UNLOCK(p);
kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
st = stack_create();
lwpidarray = NULL;
numthreads = 0;
PROC_LOCK(p);
repeat:
if (numthreads < p->p_numthreads) {
if (lwpidarray != NULL) {
free(lwpidarray, M_TEMP);
lwpidarray = NULL;
}
numthreads = p->p_numthreads;
PROC_UNLOCK(p);
lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
M_WAITOK | M_ZERO);
PROC_LOCK(p);
goto repeat;
}
i = 0;
/*
* XXXRW: During the below loop, execve(2) and countless other sorts
* of changes could have taken place. Should we check to see if the
* vmspace has been replaced, or the like, in order to prevent
* giving a snapshot that spans, say, execve(2), with some threads
* before and some after? Among other things, the credentials could
* have changed, in which case the right to extract debug info might
* no longer be assured.
*/
FOREACH_THREAD_IN_PROC(p, td) {
KASSERT(i < numthreads,
("sysctl_kern_proc_kstack: numthreads"));
lwpidarray[i] = td->td_tid;
i++;
}
numthreads = i;
for (i = 0; i < numthreads; i++) {
td = thread_find(p, lwpidarray[i]);
if (td == NULL) {
continue;
}
bzero(kkstp, sizeof(*kkstp));
(void)sbuf_new(&sb, kkstp->kkst_trace,
sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
thread_lock(td);
kkstp->kkst_tid = td->td_tid;
if (TD_IS_SWAPPED(td))
kkstp->kkst_state = KKST_STATE_SWAPPED;
else if (TD_IS_RUNNING(td))
kkstp->kkst_state = KKST_STATE_RUNNING;
else {
kkstp->kkst_state = KKST_STATE_STACKOK;
stack_save_td(st, td);
}
thread_unlock(td);
PROC_UNLOCK(p);
stack_sbuf_print(&sb, st);
sbuf_finish(&sb);
sbuf_delete(&sb);
error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
PROC_LOCK(p);
if (error)
break;
}
_PRELE(p);
PROC_UNLOCK(p);
if (lwpidarray != NULL)
free(lwpidarray, M_TEMP);
stack_destroy(st);
free(kkstp, M_TEMP);
return (error);
}
#endif
/*
* This sysctl allows a process to retrieve the full list of groups from
* itself or another process.
*/
static int
sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
{
pid_t *pidp = (pid_t *)arg1;
unsigned int arglen = arg2;
struct proc *p;
struct ucred *cred;
int error;
if (arglen != 1)
return (EINVAL);
if (*pidp == -1) { /* -1 means this process */
p = req->td->td_proc;
} else {
p = pfind(*pidp);
if (p == NULL)
return (ESRCH);
if ((error = p_cansee(curthread, p)) != 0) {
PROC_UNLOCK(p);
return (error);
}
}
cred = crhold(p->p_ucred);
if (*pidp != -1)
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, cred->cr_groups,
cred->cr_ngroups * sizeof(gid_t));
crfree(cred);
return (error);
}
SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table");
SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
"Return entire process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Return process table, no threads");
static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
sysctl_kern_proc_args, "Process argument list");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
"Process syscall vector name (ABI type)");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
"Return process table, no threads");
#ifdef COMPAT_FREEBSD7
static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
#endif
static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
#if defined(STACK) || defined(DDB)
static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
#endif
static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");