freebsd-nq/contrib/ntp/ntpd/refclock_msfees.c
Cy Schubert 2b15cb3d09 MFV ntp 4.2.8p1 (r258945, r275970, r276091, r276092, r276093, r278284)
Thanks to roberto for providing pointers to wedge this into HEAD.

Approved by:	roberto
2015-03-30 13:30:15 +00:00

1451 lines
45 KiB
C

/* refclock_ees - clock driver for the EES M201 receiver */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "ntp_types.h"
#if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS)
/* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes
* were removed as the code was overly hairy, they weren't in use
* (hence probably didn't work). Still in RCS file at cl.cam.ac.uk
*/
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "timevalops.h"
#include <ctype.h>
#if defined(HAVE_BSD_TTYS)
#include <sgtty.h>
#endif /* HAVE_BSD_TTYS */
#if defined(HAVE_SYSV_TTYS)
#include <termio.h>
#endif /* HAVE_SYSV_TTYS */
#if defined(HAVE_TERMIOS)
#include <termios.h>
#endif
#if defined(STREAM)
#include <stropts.h>
#endif
#ifdef HAVE_SYS_TERMIOS_H
# include <sys/termios.h>
#endif
#ifdef HAVE_SYS_PPSCLOCK_H
# include <sys/ppsclock.h>
#endif
#include "ntp_stdlib.h"
int dbg = 0;
/*
fudgefactor = fudgetime1;
os_delay = fudgetime2;
offset_fudge = os_delay + fudgefactor + inherent_delay;
stratumtouse = fudgeval1 & 0xf
dbg = fudgeval2;
sloppyclockflag = flags & CLK_FLAG1;
1 log smoothing summary when processing sample
4 dump the buffer from the clock
8 EIOGETKD the last n uS time stamps
if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0;
ees->dump_vals = flags & CLK_FLAG3;
ees->usealldata = flags & CLK_FLAG4;
bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0;
bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0;
bug->values[2] = (u_long)ees->status;
bug->values[3] = (u_long)ees->lastevent;
bug->values[4] = (u_long)ees->reason;
bug->values[5] = (u_long)ees->nsamples;
bug->values[6] = (u_long)ees->codestate;
bug->values[7] = (u_long)ees->day;
bug->values[8] = (u_long)ees->hour;
bug->values[9] = (u_long)ees->minute;
bug->values[10] = (u_long)ees->second;
bug->values[11] = (u_long)ees->tz;
bug->values[12] = ees->yearstart;
bug->values[13] = (ees->leaphold > current_time) ?
ees->leaphold - current_time : 0;
bug->values[14] = inherent_delay[unit].l_uf;
bug->values[15] = offset_fudge[unit].l_uf;
bug->times[0] = ees->reftime;
bug->times[1] = ees->arrvtime;
bug->times[2] = ees->lastsampletime;
bug->times[3] = ees->offset;
bug->times[4] = ees->lowoffset;
bug->times[5] = ees->highoffset;
bug->times[6] = inherent_delay[unit];
bug->times[8] = os_delay[unit];
bug->times[7] = fudgefactor[unit];
bug->times[9] = offset_fudge[unit];
bug->times[10]= ees->yearstart, 0;
*/
/* This should support the use of an EES M201 receiver with RS232
* output (modified to transmit time once per second).
*
* For the format of the message sent by the clock, see the EESM_
* definitions below.
*
* It appears to run free for an integral number of minutes, until the error
* reaches 4mS, at which point it steps at second = 01.
* It appears that sometimes it steps 4mS (say at 7 min interval),
* then the next minute it decides that it was an error, so steps back.
* On the next minute it steps forward again :-(
* This is typically 16.5uS/S then 3975uS at the 4min re-sync,
* or 9.5uS/S then 3990.5uS at a 7min re-sync,
* at which point it may lose the "00" second time stamp.
* I assume that the most accurate time is just AFTER the re-sync.
* Hence remember the last cycle interval,
*
* Can run in any one of:
*
* PPSCD PPS signal sets CD which interupts, and grabs the current TOD
* (sun) *in the interupt code*, so as to avoid problems with
* the STREAMS scheduling.
*
* It appears that it goes 16.5 uS slow each second, then every 4 mins it
* generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7)
*/
/* Definitions */
#ifndef MAXUNITS
#define MAXUNITS 4 /* maximum number of EES units permitted */
#endif
#ifndef EES232
#define EES232 "/dev/ees%d" /* Device to open to read the data */
#endif
/* Other constant stuff */
#ifndef EESPRECISION
#define EESPRECISION (-10) /* what the heck - 2**-10 = 1ms */
#endif
#ifndef EESREFID
#define EESREFID "MSF\0" /* String to identify the clock */
#endif
#ifndef EESHSREFID
#define EESHSREFID (0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */
#endif
/* Description of clock */
#define EESDESCRIPTION "EES M201 MSF Receiver"
/* Speed we run the clock port at. If this is changed the UARTDELAY
* value should be recomputed to suit.
*/
#ifndef SPEED232
#define SPEED232 B9600 /* 9600 baud */
#endif
/* What is the inherent delay for this mode of working, i.e. when is the
* data time stamped.
*/
#define SAFETY_SHIFT 10 /* Split the shift to avoid overflow */
#define BITS_TO_L_FP(bits, baud) \
(((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT)
#define INH_DELAY_CBREAK BITS_TO_L_FP(119, 9600)
#define INH_DELAY_PPS BITS_TO_L_FP( 0, 9600)
#ifndef STREAM_PP1
#define STREAM_PP1 "ppsclocd\0<-- patch space for module name1 -->"
#endif
#ifndef STREAM_PP2
#define STREAM_PP2 "ppsclock\0<-- patch space for module name2 -->"
#endif
/* Offsets of the bytes of the serial line code. The clock gives
* local time with a GMT/BST indication. The EESM_ definitions
* give offsets into ees->lastcode.
*/
#define EESM_CSEC 0 /* centiseconds - always zero in our clock */
#define EESM_SEC 1 /* seconds in BCD */
#define EESM_MIN 2 /* minutes in BCD */
#define EESM_HOUR 3 /* hours in BCD */
#define EESM_DAYWK 4 /* day of week (Sun = 0 etc) */
#define EESM_DAY 5 /* day of month in BCD */
#define EESM_MON 6 /* month in BCD */
#define EESM_YEAR 7 /* year MOD 100 in BCD */
#define EESM_LEAP 8 /* 0x0f if leap year, otherwise zero */
#define EESM_BST 9 /* 0x03 if BST, 0x00 if GMT */
#define EESM_MSFOK 10 /* 0x3f if radio good, otherwise zero */
/* followed by a frame alignment byte (0xff) /
/ which is not put into the lastcode buffer*/
/* Length of the serial time code, in characters. The first length
* is less the frame alignment byte.
*/
#define LENEESPRT (EESM_MSFOK+1)
#define LENEESCODE (LENEESPRT+1)
/* Code state. */
#define EESCS_WAIT 0 /* waiting for start of timecode */
#define EESCS_GOTSOME 1 /* have an incomplete time code buffered */
/* Default fudge factor and character to receive */
#define DEFFUDGETIME 0 /* Default user supplied fudge factor */
#ifndef DEFOSTIME
#define DEFOSTIME 0 /* Default OS delay -- passed by Make ? */
#endif
#define DEFINHTIME INH_DELAY_PPS /* inherent delay due to sample point*/
/* Limits on things. Reduce the number of samples to SAMPLEREDUCE by median
* elimination. If we're running with an accurate clock, chose the BESTSAMPLE
* as the estimated offset, otherwise average the remainder.
*/
#define FULLSHIFT 6 /* NCODES root 2 */
#define NCODES (1<< FULLSHIFT) /* 64 */
#define REDUCESHIFT (FULLSHIFT -1) /* SAMPLEREDUCE root 2 */
/* Towards the high ( Why ?) end of half */
#define BESTSAMPLE ((samplereduce * 3) /4) /* 24 */
/* Leap hold time. After a leap second the clock will no longer be
* reliable until it resynchronizes. Hope 40 minutes is enough. */
#define EESLEAPHOLD (40 * 60)
#define EES_STEP_F (1 << 24) /* the receiver steps in units of about 4ms */
#define EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/
#define EES_STEP_NOTE (1 << 21)/* Log any unexpected jumps, say .5 ms .... */
#define EES_STEP_NOTES 50 /* Only do a limited number */
#define MAX_STEP 16 /* Max number of steps to remember */
/* debug is a bit mask of debugging that is wanted */
#define DB_SYSLOG_SMPLI 0x0001
#define DB_SYSLOG_SMPLE 0x0002
#define DB_SYSLOG_SMTHI 0x0004
#define DB_SYSLOG_NSMTHE 0x0008
#define DB_SYSLOG_NSMTHI 0x0010
#define DB_SYSLOG_SMTHE 0x0020
#define DB_PRINT_EV 0x0040
#define DB_PRINT_CDT 0x0080
#define DB_PRINT_CDTC 0x0100
#define DB_SYSLOG_KEEPD 0x0800
#define DB_SYSLOG_KEEPE 0x1000
#define DB_LOG_DELTAS 0x2000
#define DB_PRINT_DELTAS 0x4000
#define DB_LOG_AWAITMORE 0x8000
#define DB_LOG_SAMPLES 0x10000
#define DB_NO_PPS 0x20000
#define DB_INC_PPS 0x40000
#define DB_DUMP_DELTAS 0x80000
struct eesunit { /* EES unit control structure. */
struct peer *peer; /* associated peer structure */
struct refclockio io; /* given to the I/O handler */
l_fp reftime; /* reference time */
l_fp lastsampletime; /* time as in txt from last EES msg */
l_fp arrvtime; /* Time at which pkt arrived */
l_fp codeoffsets[NCODES]; /* the time of arrival of 232 codes */
l_fp offset; /* chosen offset (for clkbug) */
l_fp lowoffset; /* lowest sample offset (for clkbug) */
l_fp highoffset; /* highest " " (for clkbug) */
char lastcode[LENEESCODE+6]; /* last time code we received */
u_long lasttime; /* last time clock heard from */
u_long clocklastgood; /* last time good radio seen */
u_char lencode; /* length of code in buffer */
u_char nsamples; /* number of samples we've collected */
u_char codestate; /* state of 232 code reception */
u_char unit; /* unit number for this guy */
u_char status; /* clock status */
u_char lastevent; /* last clock event */
u_char reason; /* reason for last abort */
u_char hour; /* hour of day */
u_char minute; /* minute of hour */
u_char second; /* seconds of minute */
char tz; /* timezone from clock */
u_char ttytype; /* method used */
u_char dump_vals; /* Should clock values be dumped */
u_char usealldata; /* Use ALL samples */
u_short day; /* day of year from last code */
u_long yearstart; /* start of current year */
u_long leaphold; /* time of leap hold expiry */
u_long badformat; /* number of bad format codes */
u_long baddata; /* number of invalid time codes */
u_long timestarted; /* time we started this */
long last_pps_no; /* The serial # of the last PPS */
char fix_pending; /* Is a "sync to time" pending ? */
/* Fine tuning - compensate for 4 mS ramping .... */
l_fp last_l; /* last time stamp */
u_char last_steps[MAX_STEP]; /* Most recent n steps */
int best_av_step; /* Best guess at average step */
char best_av_step_count; /* # of steps over used above */
char this_step; /* Current pos in buffer */
int last_step_late; /* How late the last step was (0-59) */
long jump_fsecs; /* # of fractions of a sec last jump */
u_long last_step; /* time of last step */
int last_step_secs; /* Number of seconds in last step */
int using_ramp; /* 1 -> noemal, -1 -> over stepped */
};
#define last_sec last_l.l_ui
#define last_sfsec last_l.l_f
#define this_uisec ((ees->arrvtime).l_ui)
#define this_sfsec ((ees->arrvtime).l_f)
#define msec(x) ((x) / (1<<22))
#define LAST_STEPS (sizeof ees->last_steps / sizeof ees->last_steps[0])
#define subms(x) ((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5)))
/* Bitmask for what methods to try to use -- currently only PPS enabled */
#define T_CBREAK 1
#define T_PPS 8
/* macros to test above */
#define is_cbreak(x) ((x)->ttytype & T_CBREAK)
#define is_pps(x) ((x)->ttytype & T_PPS)
#define is_any(x) ((x)->ttytype)
#define CODEREASON 20 /* reason codes */
/* Data space for the unit structures. Note that we allocate these on
* the fly, but never give them back. */
static struct eesunit *eesunits[MAXUNITS];
static u_char unitinuse[MAXUNITS];
/* Keep the fudge factors separately so they can be set even
* when no clock is configured. */
static l_fp inherent_delay[MAXUNITS]; /* when time stamp is taken */
static l_fp fudgefactor[MAXUNITS]; /* fudgetime1 */
static l_fp os_delay[MAXUNITS]; /* fudgetime2 */
static l_fp offset_fudge[MAXUNITS]; /* Sum of above */
static u_char stratumtouse[MAXUNITS];
static u_char sloppyclockflag[MAXUNITS];
static int deltas[60];
static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */
static l_fp onesec; /* = { 1, 0 }; */
#ifndef DUMP_BUF_SIZE /* Size of buffer to be used by dump_buf */
#define DUMP_BUF_SIZE 10112
#endif
/* ees_reset - reset the count back to zero */
#define ees_reset(ees) (ees)->nsamples = 0; \
(ees)->codestate = EESCS_WAIT
/* ees_event - record and report an event */
#define ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \
ees_report_event((ees), (evcode))
/* Find the precision of the system clock by reading it */
#define USECS 1000000
#define MINSTEP 5 /* some systems increment uS on each call */
#define MAXLOOPS (USECS/9)
/*
* Function prototypes
*/
static int msfees_start P((int unit, struct peer *peer));
static void msfees_shutdown P((int unit, struct peer *peer));
static void msfees_poll P((int unit, struct peer *peer));
static void msfees_init P((void));
static void dump_buf P((l_fp *coffs, int from, int to, char *text));
static void ees_report_event P((struct eesunit *ees, int code));
static void ees_receive P((struct recvbuf *rbufp));
static void ees_process P((struct eesunit *ees));
static int offcompare P((const void *va, const void *vb));
/*
* Transfer vector
*/
struct refclock refclock_msfees = {
msfees_start, /* start up driver */
msfees_shutdown, /* shut down driver */
msfees_poll, /* transmit poll message */
noentry, /* not used */
msfees_init, /* initialize driver */
noentry, /* not used */
NOFLAGS /* not used */
};
static void
dump_buf(
l_fp *coffs,
int from,
int to,
char *text
)
{
char buff[DUMP_BUF_SIZE + 80];
int i;
register char *ptr = buff;
snprintf(buff, sizeof(buff), text);
for (i = from; i < to; i++) {
ptr += strlen(ptr);
if ((ptr - buff) > DUMP_BUF_SIZE) {
msyslog(LOG_DEBUG, "D: %s", buff);
ptr = buff;
}
snprintf(ptr, sizeof(buff) - (ptr - buff),
" %06d", ((int)coffs[i].l_f) / 4295);
}
msyslog(LOG_DEBUG, "D: %s", buff);
}
/* msfees_init - initialize internal ees driver data */
static void
msfees_init(void)
{
register int i;
/* Just zero the data arrays */
memset((char *)eesunits, 0, sizeof eesunits);
memset((char *)unitinuse, 0, sizeof unitinuse);
acceptable_slop.l_ui = 0;
acceptable_slop.l_uf = 1 << (FRACTION_PREC -2);
onesec.l_ui = 1;
onesec.l_uf = 0;
/* Initialize fudge factors to default. */
for (i = 0; i < MAXUNITS; i++) {
fudgefactor[i].l_ui = 0;
fudgefactor[i].l_uf = DEFFUDGETIME;
os_delay[i].l_ui = 0;
os_delay[i].l_uf = DEFOSTIME;
inherent_delay[i].l_ui = 0;
inherent_delay[i].l_uf = DEFINHTIME;
offset_fudge[i] = os_delay[i];
L_ADD(&offset_fudge[i], &fudgefactor[i]);
L_ADD(&offset_fudge[i], &inherent_delay[i]);
stratumtouse[i] = 0;
sloppyclockflag[i] = 0;
}
}
/* msfees_start - open the EES devices and initialize data for processing */
static int
msfees_start(
int unit,
struct peer *peer
)
{
register struct eesunit *ees;
register int i;
int fd232 = -1;
char eesdev[20];
struct termios ttyb, *ttyp;
struct refclockproc *pp;
pp = peer->procptr;
if (unit >= MAXUNITS) {
msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)",
unit, MAXUNITS-1);
return 0;
}
if (unitinuse[unit]) {
msyslog(LOG_ERR, "ees clock: unit number %d in use", unit);
return 0;
}
/* Unit okay, attempt to open the devices. We do them both at
* once to make sure we can */
snprintf(eesdev, sizeof(eesdev), EES232, unit);
fd232 = open(eesdev, O_RDWR, 0777);
if (fd232 == -1) {
msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev);
return 0;
}
#ifdef TIOCEXCL
/* Set for exclusive use */
if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) {
msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev);
goto screwed;
}
#endif
/* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */
/* Set port characteristics. If we don't have a STREAMS module or
* a clock line discipline, cooked mode is just usable, even though it
* strips the top bit. The only EES byte which uses the top
* bit is the year, and we don't use that anyway. If we do
* have the line discipline, we choose raw mode, and the
* line discipline code will block up the messages.
*/
/* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */
ttyp = &ttyb;
if (tcgetattr(fd232, ttyp) < 0) {
msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev);
goto screwed;
}
ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL;
ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD;
ttyp->c_oflag = 0;
ttyp->c_lflag = ICANON;
ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
if (tcsetattr(fd232, TCSANOW, ttyp) < 0) {
msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev);
goto screwed;
}
if (tcflush(fd232, TCIOFLUSH) < 0) {
msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev);
goto screwed;
}
inherent_delay[unit].l_uf = INH_DELAY_PPS;
/* offset fudge (how *late* the timestamp is) = fudge + os delays */
offset_fudge[unit] = os_delay[unit];
L_ADD(&offset_fudge[unit], &fudgefactor[unit]);
L_ADD(&offset_fudge[unit], &inherent_delay[unit]);
/* Looks like this might succeed. Find memory for the structure.
* Look to see if there are any unused ones, if not we malloc() one.
*/
if (eesunits[unit] != 0) /* The one we want is okay */
ees = eesunits[unit];
else {
/* Look for an unused, but allocated struct */
for (i = 0; i < MAXUNITS; i++) {
if (!unitinuse[i] && eesunits[i] != 0)
break;
}
if (i < MAXUNITS) { /* Reclaim this one */
ees = eesunits[i];
eesunits[i] = 0;
} /* no spare -- make a new one */
else ees = (struct eesunit *) emalloc(sizeof(struct eesunit));
}
memset((char *)ees, 0, sizeof(struct eesunit));
eesunits[unit] = ees;
/* Set up the structures */
ees->peer = peer;
ees->unit = (u_char)unit;
ees->timestarted= current_time;
ees->ttytype = 0;
ees->io.clock_recv= ees_receive;
ees->io.srcclock= peer;
ees->io.datalen = 0;
ees->io.fd = fd232;
/* Okay. Push one of the two (linked into the kernel, or dynamically
* loaded) STREAMS module, and give it to the I/O code to start
* receiving stuff.
*/
#ifdef STREAM
{
int rc1;
/* Pop any existing onews first ... */
while (ioctl(fd232, I_POP, 0 ) >= 0) ;
/* Now try pushing either of the possible modules */
if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 &&
ioctl(fd232, I_PUSH, STREAM_PP2) < 0) {
msyslog(LOG_ERR,
"ees clock: Push of `%s' and `%s' to %s failed %m",
STREAM_PP1, STREAM_PP2, eesdev);
goto screwed;
}
else {
NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s",
(rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev);
ees->ttytype |= T_PPS;
}
}
#endif /* STREAM */
/* Add the clock */
if (!io_addclock(&ees->io)) {
/* Oh shit. Just close and return. */
msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev);
goto screwed;
}
/* All done. Initialize a few random peer variables, then
* return success. */
peer->precision = sys_precision;
peer->stratum = stratumtouse[unit];
if (stratumtouse[unit] <= 1) {
memcpy((char *)&pp->refid, EESREFID, 4);
if (unit > 0 && unit < 10)
((char *)&pp->refid)[3] = '0' + unit;
} else {
peer->refid = htonl(EESHSREFID);
}
unitinuse[unit] = 1;
pp->unitptr = &eesunits[unit];
pp->clockdesc = EESDESCRIPTION;
msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit);
return (1);
screwed:
if (fd232 != -1)
(void) close(fd232);
return (0);
}
/* msfees_shutdown - shut down a EES clock */
static void
msfees_shutdown(
int unit,
struct peer *peer
)
{
register struct eesunit *ees;
if (unit >= MAXUNITS) {
msyslog(LOG_ERR,
"ees clock: INTERNAL ERROR, unit number %d invalid (max %d)",
unit, MAXUNITS);
return;
}
if (!unitinuse[unit]) {
msyslog(LOG_ERR,
"ees clock: INTERNAL ERROR, unit number %d not in use", unit);
return;
}
/* Tell the I/O module to turn us off. We're history. */
ees = eesunits[unit];
io_closeclock(&ees->io);
unitinuse[unit] = 0;
}
/* ees_report_event - note the occurance of an event */
static void
ees_report_event(
struct eesunit *ees,
int code
)
{
if (ees->status != (u_char)code) {
ees->status = (u_char)code;
if (code != CEVNT_NOMINAL)
ees->lastevent = (u_char)code;
/* Should report event to trap handler in here.
* Soon...
*/
}
}
/* ees_receive - receive data from the serial interface on an EES clock */
static void
ees_receive(
struct recvbuf *rbufp
)
{
register int n_sample;
register int day;
register struct eesunit *ees;
register u_char *dpt; /* Data PoinTeR: move along ... */
register u_char *dpend; /* Points just *after* last data char */
register char *cp;
l_fp tmp;
int call_pps_sample = 0;
l_fp pps_arrvstamp;
int sincelast;
int pps_step = 0;
int suspect_4ms_step = 0;
struct ppsclockev ppsclockev;
long *ptr = (long *) &ppsclockev;
int rc;
int request;
#ifdef HAVE_CIOGETEV
request = CIOGETEV;
#endif
#ifdef HAVE_TIOCGPPSEV
request = TIOCGPPSEV;
#endif
/* Get the clock this applies to and a pointer to the data */
ees = (struct eesunit *)rbufp->recv_peer->procptr->unitptr;
dpt = (u_char *)&rbufp->recv_space;
dpend = dpt + rbufp->recv_length;
if ((dbg & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE))
printf("[%d] ", rbufp->recv_length);
/* Check out our state and process appropriately */
switch (ees->codestate) {
case EESCS_WAIT:
/* Set an initial guess at the timestamp as the recv time.
* If just running in CBREAK mode, we can't improve this.
* If we have the CLOCK Line Discipline, PPSCD, or sime such,
* then we will do better later ....
*/
ees->arrvtime = rbufp->recv_time;
ees->codestate = EESCS_GOTSOME;
ees->lencode = 0;
/*FALLSTHROUGH*/
case EESCS_GOTSOME:
cp = &(ees->lastcode[ees->lencode]);
/* Gobble the bytes until the final (possibly stripped) 0xff */
while (dpt < dpend && (*dpt & 0x7f) != 0x7f) {
*cp++ = (char)*dpt++;
ees->lencode++;
/* Oh dear -- too many bytes .. */
if (ees->lencode > LENEESPRT) {
NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
msyslog(LOG_INFO,
"I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]",
ees->lencode, dpend - dpt, LENEESPRT,
#define D(x) (ees->lastcode[x])
D(0), D(1), D(2), D(3), D(4), D(5), D(6),
D(7), D(8), D(9), D(10), D(11), D(12));
#undef D
ees->badformat++;
ees->reason = CODEREASON + 1;
ees_event(ees, CEVNT_BADREPLY);
ees_reset(ees);
return;
}
}
/* Gave up because it was end of the buffer, rather than ff */
if (dpt == dpend) {
/* Incomplete. Wait for more. */
if (dbg & DB_LOG_AWAITMORE)
msyslog(LOG_INFO,
"I: ees clock %d: %p == %p: await more",
ees->unit, dpt, dpend);
return;
}
/* This shouldn't happen ... ! */
if ((*dpt & 0x7f) != 0x7f) {
msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt);
ees->badformat++;
ees->reason = CODEREASON + 2;
ees_event(ees, CEVNT_BADREPLY);
ees_reset(ees);
return;
}
/* Skip the 0xff */
dpt++;
/* Finally, got a complete buffer. Mainline code will
* continue on. */
cp = ees->lastcode;
break;
default:
msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d",
ees->unit, ees->codestate);
ees->reason = CODEREASON + 5;
ees_event(ees, CEVNT_FAULT);
ees_reset(ees);
return;
}
/* Boy! After all that crap, the lastcode buffer now contains
* something we hope will be a valid time code. Do length
* checks and sanity checks on constant data.
*/
ees->codestate = EESCS_WAIT;
ees->lasttime = current_time;
if (ees->lencode != LENEESPRT) {
ees->badformat++;
ees->reason = CODEREASON + 6;
ees_event(ees, CEVNT_BADREPLY);
ees_reset(ees);
return;
}
cp = ees->lastcode;
/* Check that centisecond is zero */
if (cp[EESM_CSEC] != 0) {
ees->baddata++;
ees->reason = CODEREASON + 7;
ees_event(ees, CEVNT_BADREPLY);
ees_reset(ees);
return;
}
/* Check flag formats */
if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) {
ees->badformat++;
ees->reason = CODEREASON + 8;
ees_event(ees, CEVNT_BADREPLY);
ees_reset(ees);
return;
}
if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) {
ees->badformat++;
ees->reason = CODEREASON + 9;
ees_event(ees, CEVNT_BADREPLY);
ees_reset(ees);
return;
}
if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) {
ees->badformat++;
ees->reason = CODEREASON + 10;
ees_event(ees, CEVNT_BADREPLY);
ees_reset(ees);
return;
}
/* So far, so good. Compute day, hours, minutes, seconds,
* time zone. Do range checks on these.
*/
#define bcdunpack(val) ( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) )
#define istrue(x) ((x)?1:0)
ees->second = bcdunpack(cp[EESM_SEC]); /* second */
ees->minute = bcdunpack(cp[EESM_MIN]); /* minute */
ees->hour = bcdunpack(cp[EESM_HOUR]); /* hour */
day = bcdunpack(cp[EESM_DAY]); /* day of month */
switch (bcdunpack(cp[EESM_MON])) { /* month */
/* Add in lengths of all previous months. Add one more
if it is a leap year and after February.
*/
case 12: day += NOV; /*FALLSTHROUGH*/
case 11: day += OCT; /*FALLSTHROUGH*/
case 10: day += SEP; /*FALLSTHROUGH*/
case 9: day += AUG; /*FALLSTHROUGH*/
case 8: day += JUL; /*FALLSTHROUGH*/
case 7: day += JUN; /*FALLSTHROUGH*/
case 6: day += MAY; /*FALLSTHROUGH*/
case 5: day += APR; /*FALLSTHROUGH*/
case 4: day += MAR; /*FALLSTHROUGH*/
case 3: day += FEB;
if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/
case 2: day += JAN; /*FALLSTHROUGH*/
case 1: break;
default: ees->baddata++;
ees->reason = CODEREASON + 11;
ees_event(ees, CEVNT_BADDATE);
ees_reset(ees);
return;
}
ees->day = day;
/* Get timezone. The clocktime routine wants the number
* of hours to add to the delivered time to get UT.
* Currently -1 if BST flag set, 0 otherwise. This
* is the place to tweak things if double summer time
* ever happens.
*/
ees->tz = istrue(cp[EESM_BST]) ? -1 : 0;
if (ees->day > 366 || ees->day < 1 ||
ees->hour > 23 || ees->minute > 59 || ees->second > 59) {
ees->baddata++;
ees->reason = CODEREASON + 12;
ees_event(ees, CEVNT_BADDATE);
ees_reset(ees);
return;
}
n_sample = ees->nsamples;
/* Now, compute the reference time value: text -> tmp.l_ui */
if (!clocktime(ees->day, ees->hour, ees->minute, ees->second,
ees->tz, rbufp->recv_time.l_ui, &ees->yearstart,
&tmp.l_ui)) {
ees->baddata++;
ees->reason = CODEREASON + 13;
ees_event(ees, CEVNT_BADDATE);
ees_reset(ees);
return;
}
tmp.l_uf = 0;
/* DON'T use ees->arrvtime -- it may be < reftime */
ees->lastsampletime = tmp;
/* If we are synchronised to the radio, update the reference time.
* Also keep a note of when clock was last good.
*/
if (istrue(cp[EESM_MSFOK])) {
ees->reftime = tmp;
ees->clocklastgood = current_time;
}
/* Compute the offset. For the fractional part of the
* offset we use the expected delay for the message.
*/
ees->codeoffsets[n_sample].l_ui = tmp.l_ui;
ees->codeoffsets[n_sample].l_uf = 0;
/* Number of seconds since the last step */
sincelast = this_uisec - ees->last_step;
memset((char *) &ppsclockev, 0, sizeof ppsclockev);
rc = ioctl(ees->io.fd, request, (char *) &ppsclockev);
if (dbg & DB_PRINT_EV) fprintf(stderr,
"[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n",
DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees),
rc, errno, ptr[0], ptr[1], ptr[2]);
/* If we managed to get the time of arrival, process the info */
if (rc >= 0) {
int conv = -1;
pps_step = ppsclockev.serial - ees->last_pps_no;
/* Possible that PPS triggered, but text message didn't */
if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second);
if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1;
if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4;
/* allow for single loss of PPS only */
if (pps_step != 1 && pps_step != 2)
fprintf(stderr, "PPS step: %d too far off %ld (%d)\n",
ppsclockev.serial, ees->last_pps_no, pps_step);
else {
pps_arrvstamp = tval_stamp_to_lfp(ppsclockev.tv);
/* if ((ABS(time difference) - 0.25) < 0)
* then believe it ...
*/
l_fp diff;
diff = pps_arrvstamp;
conv = 0;
L_SUB(&diff, &ees->arrvtime);
if (dbg & DB_PRINT_CDT)
printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s",
DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf,
(long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf,
(long)diff.l_ui, (long)diff.l_uf,
ctime(&(ppsclockev.tv.tv_sec)));
if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
L_SUB(&diff, &acceptable_slop);
if (L_ISNEG(&diff)) { /* AOK -- pps_sample */
ees->arrvtime = pps_arrvstamp;
conv++;
call_pps_sample++;
}
/* Some loss of some signals around sec = 1 */
else if (ees->second == 1) {
diff = pps_arrvstamp;
L_ADD(&diff, &onesec);
L_SUB(&diff, &ees->arrvtime);
if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
L_SUB(&diff, &acceptable_slop);
msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s",
pps_arrvstamp.l_ui - ees->arrvtime.l_ui,
pps_arrvstamp.l_uf,
ees->arrvtime.l_uf,
diff.l_ui, diff.l_uf,
(int)ppsclockev.tv.tv_usec,
ctime(&(ppsclockev.tv.tv_sec)));
if (L_ISNEG(&diff)) { /* AOK -- pps_sample */
suspect_4ms_step |= 2;
ees->arrvtime = pps_arrvstamp;
L_ADD(&ees->arrvtime, &onesec);
conv++;
call_pps_sample++;
}
}
}
ees->last_pps_no = ppsclockev.serial;
if (dbg & DB_PRINT_CDTC)
printf(
"[%x] %08lx %08lx %d u%d (%d %d)\n",
DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui,
(long)pps_arrvstamp.l_uf, conv, ees->unit,
call_pps_sample, pps_step);
}
/* See if there has been a 4ms jump at a minute boundry */
{ l_fp delta;
#define delta_isec delta.l_ui
#define delta_ssec delta.l_i
#define delta_sfsec delta.l_f
long delta_f_abs;
delta.l_i = ees->arrvtime.l_i;
delta.l_f = ees->arrvtime.l_f;
L_SUB(&delta, &ees->last_l);
delta_f_abs = delta_sfsec;
if (delta_f_abs < 0) delta_f_abs = -delta_f_abs;
/* Dump the deltas each minute */
if (dbg & DB_DUMP_DELTAS)
{
if (/*0 <= ees->second && */
ees->second < COUNTOF(deltas))
deltas[ees->second] = delta_sfsec;
/* Dump on second 1, as second 0 sometimes missed */
if (ees->second == 1) {
char text[16 * COUNTOF(deltas)];
char *cptr=text;
int i;
for (i = 0; i < COUNTOF(deltas); i++) {
snprintf(cptr, sizeof(text) / COUNTOF(deltas),
" %d.%04d", msec(deltas[i]),
subms(deltas[i]));
cptr += strlen(cptr);
}
msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s",
msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE),
msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE),
text+1);
for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0;
}
}
/* Lets see if we have a 4 mS step at a minute boundaary */
if ( ((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) &&
(delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) &&
(ees->second == 0 || ees->second == 1 || ees->second == 2) &&
(sincelast < 0 || sincelast > 122)
) { /* 4ms jump at min boundry */
int old_sincelast;
int count=0;
int sum = 0;
/* Yes -- so compute the ramp time */
if (ees->last_step == 0) sincelast = 0;
old_sincelast = sincelast;
/* First time in, just set "ees->last_step" */
if(ees->last_step) {
int other_step = 0;
int third_step = 0;
int this_step = (sincelast + (60 /2)) / 60;
int p_step = ees->this_step;
int p;
ees->last_steps[p_step] = this_step;
p= p_step;
p_step++;
if (p_step >= LAST_STEPS) p_step = 0;
ees->this_step = p_step;
/* Find the "average" interval */
while (p != p_step) {
int this = ees->last_steps[p];
if (this == 0) break;
if (this != this_step) {
if (other_step == 0 && (
this== (this_step +2) ||
this== (this_step -2) ||
this== (this_step +1) ||
this== (this_step -1)))
other_step = this;
if (other_step != this) {
int idelta = (this_step - other_step);
if (idelta < 0) idelta = - idelta;
if (third_step == 0 && (
(idelta == 1) ? (
this == (other_step +1) ||
this == (other_step -1) ||
this == (this_step +1) ||
this == (this_step -1))
:
(
this == (this_step + other_step)/2
)
)) third_step = this;
if (third_step != this) break;
}
}
sum += this;
p--;
if (p < 0) p += LAST_STEPS;
count++;
}
msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step);
if (count != 0) sum = ((sum * 60) + (count /2)) / count;
#define SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS])
msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",
ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",
ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
#undef SV
ees->jump_fsecs = delta_sfsec;
ees->using_ramp = 1;
if (sincelast > 170)
ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs);
else ees->last_step_late = 30;
if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30;
if (ees->last_step_late < 0) ees->last_step_late = 0;
if (ees->last_step_late >= 60) ees->last_step_late = 59;
sincelast = 0;
}
else { /* First time in -- just save info */
ees->last_step_late = 30;
ees->jump_fsecs = delta_sfsec;
ees->using_ramp = 1;
sum = 4 * 60;
}
ees->last_step = this_uisec;
printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n",
ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
ees->second, old_sincelast, ees->last_step_late, count, sum,
ees->last_step_secs);
msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d",
ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second,
old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs);
if (sum) ees->last_step_secs = sum;
}
/* OK, so not a 4ms step at a minute boundry */
else {
if (suspect_4ms_step) msyslog(LOG_ERR,
"MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]",
ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec),
msec(EES_STEP_F - EES_STEP_F_GRACE),
subms(EES_STEP_F - EES_STEP_F_GRACE),
(int)msec(delta_f_abs),
(int)subms(delta_f_abs),
msec(EES_STEP_F + EES_STEP_F_GRACE),
subms(EES_STEP_F + EES_STEP_F_GRACE),
ees->second,
sincelast);
if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) {
static int ees_step_notes = EES_STEP_NOTES;
if (ees_step_notes > 0) {
ees_step_notes--;
printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n",
ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !");
msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s",
ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !");
}
}
}
}
ees->last_l = ees->arrvtime;
/* IF we have found that it's ramping
* && it's within twice the expected ramp period
* && there is a non zero step size (avoid /0 !)
* THEN we twiddle things
*/
if (ees->using_ramp &&
sincelast < (ees->last_step_secs)*2 &&
ees->last_step_secs)
{ long sec_of_ramp = sincelast + ees->last_step_late;
long fsecs;
l_fp inc;
/* Ramp time may vary, so may ramp for longer than last time */
if (sec_of_ramp > (ees->last_step_secs + 120))
sec_of_ramp = ees->last_step_secs;
/* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */
fsecs = sec_of_ramp * (ees->jump_fsecs / ees->last_step_secs);
if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR,
"[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)",
DB_LOG_DELTAS,
ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
if (dbg & DB_PRINT_DELTAS) printf(
"MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n",
ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
(long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
/* Must sign extend the result */
inc.l_i = (fsecs < 0) ? -1 : 0;
inc.l_f = fsecs;
if (dbg & DB_INC_PPS)
{ L_SUB(&pps_arrvstamp, &inc);
L_SUB(&ees->arrvtime, &inc);
}
else
{ L_ADD(&pps_arrvstamp, &inc);
L_ADD(&ees->arrvtime, &inc);
}
}
else {
if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR,
"[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x",
DB_LOG_DELTAS,
ees->unit, ees->using_ramp,
sincelast,
(ees->last_step_secs)*2,
ees->last_step_secs);
if (dbg & DB_PRINT_DELTAS) printf(
"[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n",
DB_LOG_DELTAS,
ees->unit, ees->using_ramp,
sincelast,
(ees->last_step_secs)*2,
ees->last_step_secs);
}
L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]);
L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]);
if (call_pps_sample && !(dbg & DB_NO_PPS)) {
/* Sigh -- it expects its args negated */
L_NEG(&pps_arrvstamp);
/*
* I had to disable this here, since it appears there is no pointer to the
* peer structure.
*
(void) pps_sample(peer, &pps_arrvstamp);
*/
}
/* Subtract off the local clock time stamp */
L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime);
if (dbg & DB_LOG_SAMPLES) msyslog(LOG_ERR,
"MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s",
ees->unit, DB_LOG_DELTAS, n_sample,
ees->codeoffsets[n_sample].l_f,
ees->codeoffsets[n_sample].l_f / 4295,
pps_arrvstamp.l_f,
pps_arrvstamp.l_f /4295,
(dbg & DB_NO_PPS) ? " [no PPS]" : "");
if (ees->nsamples++ == NCODES-1) ees_process(ees);
/* Done! */
}
/* offcompare - auxiliary comparison routine for offset sort */
static int
offcompare(
const void *va,
const void *vb
)
{
const l_fp *a = (const l_fp *)va;
const l_fp *b = (const l_fp *)vb;
return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
}
/* ees_process - process a pile of samples from the clock */
static void
ees_process(
struct eesunit *ees
)
{
static int last_samples = -1;
register int i, j;
register int noff;
register l_fp *coffs = ees->codeoffsets;
l_fp offset, tmp;
double dispersion; /* ++++ */
int lostsync, isinsync;
int samples = ees->nsamples;
int samplelog = 0; /* keep "gcc -Wall" happy ! */
int samplereduce = (samples + 1) / 2;
double doffset;
/* Reset things to zero so we don't have to worry later */
ees_reset(ees);
if (sloppyclockflag[ees->unit]) {
samplelog = (samples < 2) ? 0 :
(samples < 5) ? 1 :
(samples < 9) ? 2 :
(samples < 17) ? 3 :
(samples < 33) ? 4 : 5;
samplereduce = (1 << samplelog);
}
if (samples != last_samples &&
((samples != (last_samples-1)) || samples < 3)) {
msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....",
samples, last_samples, samplereduce);
last_samples = samples;
}
if (samples < 1) return;
/* If requested, dump the raw data we have in the buffer */
if (ees->dump_vals)
dump_buf(coffs, 0, samples, "Raw data is:");
/* Sort the offsets, trim off the extremes, then choose one. */
qsort(coffs, (size_t)samples, sizeof(coffs[0]), offcompare);
noff = samples;
i = 0;
while ((noff - i) > samplereduce) {
/* Trim off the sample which is further away
* from the median. We work this out by doubling
* the median, subtracting off the end samples, and
* looking at the sign of the answer, using the
* identity (c-b)-(b-a) == 2*b-a-c
*/
tmp = coffs[(noff + i)/2];
L_ADD(&tmp, &tmp);
L_SUB(&tmp, &coffs[i]);
L_SUB(&tmp, &coffs[noff-1]);
if (L_ISNEG(&tmp)) noff--; else i++;
}
/* If requested, dump the reduce data we have in the buffer */
if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced to:");
/* What we do next depends on the setting of the sloppy clock flag.
* If it is on, average the remainder to derive our estimate.
* Otherwise, just pick a representative value from the remaining stuff
*/
if (sloppyclockflag[ees->unit]) {
offset.l_ui = offset.l_uf = 0;
for (j = i; j < noff; j++)
L_ADD(&offset, &coffs[j]);
for (j = samplelog; j > 0; j--)
L_RSHIFTU(&offset);
}
else offset = coffs[i+BESTSAMPLE];
/* Compute the dispersion as the difference between the
* lowest and highest offsets that remain in the
* consideration list.
*
* It looks like MOST clocks have MOD (max error), so halve it !
*/
tmp = coffs[noff-1];
L_SUB(&tmp, &coffs[i]);
#define FRACT_SEC(n) ((1 << 30) / (n/2))
dispersion = LFPTOFP(&tmp) / 2; /* ++++ */
if (dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog(
(dbg & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO,
"I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d",
dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE),
offset.l_f / 4295, offset.l_f,
(dispersion * 1526) / 100,
(sloppyclockflag[ees->unit]) ? " by averaging" : "",
FRACT_SEC(10) / 4295,
(coffs[0].l_f) / 4295,
i,
(coffs[i].l_f) / 4295,
(coffs[samples/2].l_f) / 4295,
(coffs[i+BESTSAMPLE].l_f) / 4295,
noff-1,
(coffs[noff-1].l_f) / 4295,
(coffs[samples-1].l_f) / 4295);
/* Are we playing silly wotsits ?
* If we are using all data, see if there is a "small" delta,
* and if so, blurr this with 3/4 of the delta from the last value
*/
if (ees->usealldata && ees->offset.l_uf) {
long diff = (long) (ees->offset.l_uf - offset.l_uf);
/* is the delta small enough ? */
if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) {
int samd = (64 * 4) / samples;
long new;
if (samd < 2) samd = 2;
new = offset.l_uf + ((diff * (samd -1)) / samd);
/* Sign change -> need to fix up int part */
if ((new & 0x80000000) !=
(((long) offset.l_uf) & 0x80000000))
{ NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d",
new & 0x80000000,
((long) offset.l_uf) & 0x80000000,
new, (long) offset.l_uf,
(new < 0) ? -1 : 1);
offset.l_ui += (new < 0) ? -1 : 1;
}
dispersion /= 4;
if (dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog(
(dbg & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO,
"I: [%x] Smooth data: %ld -> %ld, dispersion now %f",
dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE),
((long) offset.l_uf) / 4295, new / 4295,
(dispersion * 1526) / 100);
offset.l_uf = (unsigned long) new;
}
else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
(dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
"[%x] No smooth as delta not %d < %ld < %d",
dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
- FRACT_SEC(100), diff, FRACT_SEC(100));
}
else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
(dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
"I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)",
dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
ees->usealldata, ees->offset.l_f, ees->offset.l_uf,
offset.l_f, ees->offset.l_f - offset.l_f);
/* Collect offset info for debugging info */
ees->offset = offset;
ees->lowoffset = coffs[i];
ees->highoffset = coffs[noff-1];
/* Determine synchronization status. Can be unsync'd either
* by a report from the clock or by a leap hold.
*
* Loss of the radio signal for a short time does not cause
* us to go unsynchronised, since the receiver keeps quite
* good time on its own. The spec says 20ms in 4 hours; the
* observed drift in our clock (Cambridge) is about a second
* a day, but even that keeps us within the inherent tolerance
* of the clock for about 15 minutes. Observation shows that
* the typical "short" outage is 3 minutes, so to allow us
* to ride out those, we will give it 5 minutes.
*/
lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0;
isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1;
/* Done. Use time of last good, synchronised code as the
* reference time, and lastsampletime as the receive time.
*/
if (ees->fix_pending) {
msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x",
ees->fix_pending, ees->unit, offset.l_i, offset.l_f);
ees->fix_pending = 0;
}
LFPTOD(&offset, doffset);
refclock_receive(ees->peer);
ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL);
}
/* msfees_poll - called by the transmit procedure */
static void
msfees_poll(
int unit,
struct peer *peer
)
{
if (unit >= MAXUNITS) {
msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid",
unit);
return;
}
if (!unitinuse[unit]) {
msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused",
unit);
return;
}
ees_process(eesunits[unit]);
if ((current_time - eesunits[unit]->lasttime) > 150)
ees_event(eesunits[unit], CEVNT_FAULT);
}
#else
NONEMPTY_TRANSLATION_UNIT
#endif /* REFCLOCK */