John Baldwin 47e2650ea4 Add support to the KTLS OCF module for AES-CBC MTE ciphersuites.
This is a simplistic approach which encrypts each TLS record in two
separate passes: one to generate the MAC and a second to encrypt.
This supports TLS 1.0 connections with implicit IVs as well as TLS
1.1+ with explicit IVs.

Reviewed by:	gallatin
Sponsored by:	Netflix
Differential Revision:	https://reviews.freebsd.org/D26730
2020-10-13 18:04:19 +00:00

737 lines
20 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2019 Netflix Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/counter.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/ktls.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <opencrypto/cryptodev.h>
struct ocf_session {
crypto_session_t sid;
crypto_session_t mac_sid;
int mac_len;
struct mtx lock;
bool implicit_iv;
/* Only used for TLS 1.0 with the implicit IV. */
#ifdef INVARIANTS
bool in_progress;
uint64_t next_seqno;
#endif
char iv[AES_BLOCK_LEN];
};
struct ocf_operation {
struct ocf_session *os;
bool done;
};
static MALLOC_DEFINE(M_KTLS_OCF, "ktls_ocf", "OCF KTLS");
SYSCTL_DECL(_kern_ipc_tls);
SYSCTL_DECL(_kern_ipc_tls_stats);
static SYSCTL_NODE(_kern_ipc_tls_stats, OID_AUTO, ocf,
CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"Kernel TLS offload via OCF stats");
static counter_u64_t ocf_tls10_cbc_crypts;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls10_cbc_crypts,
CTLFLAG_RD, &ocf_tls10_cbc_crypts,
"Total number of OCF TLS 1.0 CBC encryption operations");
static counter_u64_t ocf_tls11_cbc_crypts;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls11_cbc_crypts,
CTLFLAG_RD, &ocf_tls11_cbc_crypts,
"Total number of OCF TLS 1.1/1.2 CBC encryption operations");
static counter_u64_t ocf_tls12_gcm_crypts;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls12_gcm_crypts,
CTLFLAG_RD, &ocf_tls12_gcm_crypts,
"Total number of OCF TLS 1.2 GCM encryption operations");
static counter_u64_t ocf_tls13_gcm_crypts;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, tls13_gcm_crypts,
CTLFLAG_RD, &ocf_tls13_gcm_crypts,
"Total number of OCF TLS 1.3 GCM encryption operations");
static counter_u64_t ocf_inplace;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, inplace,
CTLFLAG_RD, &ocf_inplace,
"Total number of OCF in-place operations");
static counter_u64_t ocf_separate_output;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, separate_output,
CTLFLAG_RD, &ocf_separate_output,
"Total number of OCF operations with a separate output buffer");
static counter_u64_t ocf_retries;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats_ocf, OID_AUTO, retries, CTLFLAG_RD,
&ocf_retries,
"Number of OCF encryption operation retries");
static int
ktls_ocf_callback(struct cryptop *crp)
{
struct ocf_operation *oo;
oo = crp->crp_opaque;
mtx_lock(&oo->os->lock);
oo->done = true;
mtx_unlock(&oo->os->lock);
wakeup(oo);
return (0);
}
static int
ktls_ocf_dispatch(struct ocf_session *os, struct cryptop *crp)
{
struct ocf_operation oo;
int error;
oo.os = os;
oo.done = false;
crp->crp_opaque = &oo;
crp->crp_callback = ktls_ocf_callback;
for (;;) {
error = crypto_dispatch(crp);
if (error)
break;
mtx_lock(&os->lock);
while (!oo.done)
mtx_sleep(&oo, &os->lock, 0, "ocfktls", 0);
mtx_unlock(&os->lock);
if (crp->crp_etype != EAGAIN) {
error = crp->crp_etype;
break;
}
crp->crp_etype = 0;
crp->crp_flags &= ~CRYPTO_F_DONE;
oo.done = false;
counter_u64_add(ocf_retries, 1);
}
return (error);
}
static int
ktls_ocf_tls_cbc_encrypt(struct ktls_session *tls,
const struct tls_record_layer *hdr, uint8_t *trailer, struct iovec *iniov,
struct iovec *outiov, int iovcnt, uint64_t seqno,
uint8_t record_type __unused)
{
struct uio uio, out_uio;
struct tls_mac_data ad;
struct cryptop crp;
struct ocf_session *os;
struct iovec iov[iovcnt + 2];
struct iovec out_iov[iovcnt + 1];
int i, error;
uint16_t tls_comp_len;
uint8_t pad;
bool inplace;
os = tls->cipher;
#ifdef INVARIANTS
if (os->implicit_iv) {
mtx_lock(&os->lock);
KASSERT(!os->in_progress,
("concurrent implicit IV encryptions"));
if (os->next_seqno != seqno) {
printf("KTLS CBC: TLS records out of order. "
"Expected %ju, got %ju\n",
(uintmax_t)os->next_seqno, (uintmax_t)seqno);
mtx_unlock(&os->lock);
return (EINVAL);
}
os->in_progress = true;
mtx_unlock(&os->lock);
}
#endif
/*
* Compute the payload length.
*
* XXX: This could be easily computed O(1) from the mbuf
* fields, but we don't have those accessible here. Can
* at least compute inplace as well while we are here.
*/
tls_comp_len = 0;
inplace = true;
for (i = 0; i < iovcnt; i++) {
tls_comp_len += iniov[i].iov_len;
if (iniov[i].iov_base != outiov[i].iov_base)
inplace = false;
}
/* Initialize the AAD. */
ad.seq = htobe64(seqno);
ad.type = hdr->tls_type;
ad.tls_vmajor = hdr->tls_vmajor;
ad.tls_vminor = hdr->tls_vminor;
ad.tls_length = htons(tls_comp_len);
/* First, compute the MAC. */
iov[0].iov_base = &ad;
iov[0].iov_len = sizeof(ad);
memcpy(&iov[1], iniov, sizeof(*iniov) * iovcnt);
iov[iovcnt + 1].iov_base = trailer;
iov[iovcnt + 1].iov_len = os->mac_len;
uio.uio_iov = iov;
uio.uio_iovcnt = iovcnt + 2;
uio.uio_offset = 0;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_td = curthread;
uio.uio_resid = sizeof(ad) + tls_comp_len + os->mac_len;
crypto_initreq(&crp, os->mac_sid);
crp.crp_payload_start = 0;
crp.crp_payload_length = sizeof(ad) + tls_comp_len;
crp.crp_digest_start = crp.crp_payload_length;
crp.crp_op = CRYPTO_OP_COMPUTE_DIGEST;
crp.crp_flags = CRYPTO_F_CBIMM;
crypto_use_uio(&crp, &uio);
error = ktls_ocf_dispatch(os, &crp);
crypto_destroyreq(&crp);
if (error) {
#ifdef INVARIANTS
if (os->implicit_iv) {
mtx_lock(&os->lock);
os->in_progress = false;
mtx_unlock(&os->lock);
}
#endif
return (error);
}
/* Second, add the padding. */
pad = (unsigned)(AES_BLOCK_LEN - (tls_comp_len + os->mac_len + 1)) %
AES_BLOCK_LEN;
for (i = 0; i < pad + 1; i++)
trailer[os->mac_len + i] = pad;
/* Finally, encrypt the record. */
/*
* Don't recopy the input iovec, instead just adjust the
* trailer length and skip over the AAD vector in the uio.
*/
iov[iovcnt + 1].iov_len += pad + 1;
uio.uio_iov = iov + 1;
uio.uio_iovcnt = iovcnt + 1;
uio.uio_resid = tls_comp_len + iov[iovcnt + 1].iov_len;
KASSERT(uio.uio_resid % AES_BLOCK_LEN == 0,
("invalid encryption size"));
crypto_initreq(&crp, os->sid);
crp.crp_payload_start = 0;
crp.crp_payload_length = uio.uio_resid;
crp.crp_op = CRYPTO_OP_ENCRYPT;
crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE;
if (os->implicit_iv)
memcpy(crp.crp_iv, os->iv, AES_BLOCK_LEN);
else
memcpy(crp.crp_iv, hdr + 1, AES_BLOCK_LEN);
crypto_use_uio(&crp, &uio);
if (!inplace) {
memcpy(out_iov, outiov, sizeof(*iniov) * iovcnt);
out_iov[iovcnt] = iov[iovcnt + 1];
out_uio.uio_iov = out_iov;
out_uio.uio_iovcnt = iovcnt + 1;
out_uio.uio_offset = 0;
out_uio.uio_segflg = UIO_SYSSPACE;
out_uio.uio_td = curthread;
out_uio.uio_resid = uio.uio_resid;
crypto_use_output_uio(&crp, &out_uio);
}
if (os->implicit_iv)
counter_u64_add(ocf_tls10_cbc_crypts, 1);
else
counter_u64_add(ocf_tls11_cbc_crypts, 1);
if (inplace)
counter_u64_add(ocf_inplace, 1);
else
counter_u64_add(ocf_separate_output, 1);
error = ktls_ocf_dispatch(os, &crp);
crypto_destroyreq(&crp);
if (os->implicit_iv) {
KASSERT(os->mac_len + pad + 1 >= AES_BLOCK_LEN,
("trailer too short to read IV"));
memcpy(os->iv, trailer + os->mac_len + pad + 1 - AES_BLOCK_LEN,
AES_BLOCK_LEN);
#ifdef INVARIANTS
mtx_lock(&os->lock);
os->next_seqno = seqno + 1;
os->in_progress = false;
mtx_unlock(&os->lock);
#endif
}
return (error);
}
static int
ktls_ocf_tls12_gcm_encrypt(struct ktls_session *tls,
const struct tls_record_layer *hdr, uint8_t *trailer, struct iovec *iniov,
struct iovec *outiov, int iovcnt, uint64_t seqno,
uint8_t record_type __unused)
{
struct uio uio, out_uio, *tag_uio;
struct tls_aead_data ad;
struct cryptop crp;
struct ocf_session *os;
struct iovec iov[iovcnt + 1];
int i, error;
uint16_t tls_comp_len;
bool inplace;
os = tls->cipher;
uio.uio_iov = iniov;
uio.uio_iovcnt = iovcnt;
uio.uio_offset = 0;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_td = curthread;
out_uio.uio_iov = outiov;
out_uio.uio_iovcnt = iovcnt;
out_uio.uio_offset = 0;
out_uio.uio_segflg = UIO_SYSSPACE;
out_uio.uio_td = curthread;
crypto_initreq(&crp, os->sid);
/* Setup the IV. */
memcpy(crp.crp_iv, tls->params.iv, TLS_AEAD_GCM_LEN);
memcpy(crp.crp_iv + TLS_AEAD_GCM_LEN, hdr + 1, sizeof(uint64_t));
/* Setup the AAD. */
tls_comp_len = ntohs(hdr->tls_length) -
(AES_GMAC_HASH_LEN + sizeof(uint64_t));
ad.seq = htobe64(seqno);
ad.type = hdr->tls_type;
ad.tls_vmajor = hdr->tls_vmajor;
ad.tls_vminor = hdr->tls_vminor;
ad.tls_length = htons(tls_comp_len);
crp.crp_aad = &ad;
crp.crp_aad_length = sizeof(ad);
/* Compute payload length and determine if encryption is in place. */
inplace = true;
crp.crp_payload_start = 0;
for (i = 0; i < iovcnt; i++) {
if (iniov[i].iov_base != outiov[i].iov_base)
inplace = false;
crp.crp_payload_length += iniov[i].iov_len;
}
uio.uio_resid = crp.crp_payload_length;
out_uio.uio_resid = crp.crp_payload_length;
if (inplace)
tag_uio = &uio;
else
tag_uio = &out_uio;
/* Duplicate iovec and append vector for tag. */
memcpy(iov, tag_uio->uio_iov, iovcnt * sizeof(struct iovec));
iov[iovcnt].iov_base = trailer;
iov[iovcnt].iov_len = AES_GMAC_HASH_LEN;
tag_uio->uio_iov = iov;
tag_uio->uio_iovcnt++;
crp.crp_digest_start = tag_uio->uio_resid;
tag_uio->uio_resid += AES_GMAC_HASH_LEN;
crp.crp_op = CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST;
crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE;
crypto_use_uio(&crp, &uio);
if (!inplace)
crypto_use_output_uio(&crp, &out_uio);
counter_u64_add(ocf_tls12_gcm_crypts, 1);
if (inplace)
counter_u64_add(ocf_inplace, 1);
else
counter_u64_add(ocf_separate_output, 1);
error = ktls_ocf_dispatch(os, &crp);
crypto_destroyreq(&crp);
return (error);
}
static int
ktls_ocf_tls12_gcm_decrypt(struct ktls_session *tls,
const struct tls_record_layer *hdr, struct mbuf *m, uint64_t seqno,
int *trailer_len)
{
struct tls_aead_data ad;
struct cryptop crp;
struct ocf_session *os;
struct ocf_operation oo;
int error;
uint16_t tls_comp_len;
os = tls->cipher;
oo.os = os;
oo.done = false;
crypto_initreq(&crp, os->sid);
/* Setup the IV. */
memcpy(crp.crp_iv, tls->params.iv, TLS_AEAD_GCM_LEN);
memcpy(crp.crp_iv + TLS_AEAD_GCM_LEN, hdr + 1, sizeof(uint64_t));
/* Setup the AAD. */
tls_comp_len = ntohs(hdr->tls_length) -
(AES_GMAC_HASH_LEN + sizeof(uint64_t));
ad.seq = htobe64(seqno);
ad.type = hdr->tls_type;
ad.tls_vmajor = hdr->tls_vmajor;
ad.tls_vminor = hdr->tls_vminor;
ad.tls_length = htons(tls_comp_len);
crp.crp_aad = &ad;
crp.crp_aad_length = sizeof(ad);
crp.crp_payload_start = tls->params.tls_hlen;
crp.crp_payload_length = tls_comp_len;
crp.crp_digest_start = crp.crp_payload_start + crp.crp_payload_length;
crp.crp_op = CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST;
crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE;
crypto_use_mbuf(&crp, m);
counter_u64_add(ocf_tls12_gcm_crypts, 1);
error = ktls_ocf_dispatch(os, &crp);
crypto_destroyreq(&crp);
*trailer_len = AES_GMAC_HASH_LEN;
return (error);
}
static int
ktls_ocf_tls13_gcm_encrypt(struct ktls_session *tls,
const struct tls_record_layer *hdr, uint8_t *trailer, struct iovec *iniov,
struct iovec *outiov, int iovcnt, uint64_t seqno, uint8_t record_type)
{
struct uio uio, out_uio;
struct tls_aead_data_13 ad;
char nonce[12];
struct cryptop crp;
struct ocf_session *os;
struct iovec iov[iovcnt + 1], out_iov[iovcnt + 1];
int i, error;
bool inplace;
os = tls->cipher;
crypto_initreq(&crp, os->sid);
/* Setup the nonce. */
memcpy(nonce, tls->params.iv, tls->params.iv_len);
*(uint64_t *)(nonce + 4) ^= htobe64(seqno);
/* Setup the AAD. */
ad.type = hdr->tls_type;
ad.tls_vmajor = hdr->tls_vmajor;
ad.tls_vminor = hdr->tls_vminor;
ad.tls_length = hdr->tls_length;
crp.crp_aad = &ad;
crp.crp_aad_length = sizeof(ad);
/* Compute payload length and determine if encryption is in place. */
inplace = true;
crp.crp_payload_start = 0;
for (i = 0; i < iovcnt; i++) {
if (iniov[i].iov_base != outiov[i].iov_base)
inplace = false;
crp.crp_payload_length += iniov[i].iov_len;
}
/* Store the record type as the first byte of the trailer. */
trailer[0] = record_type;
crp.crp_payload_length++;
crp.crp_digest_start = crp.crp_payload_length;
/*
* Duplicate the input iov to append the trailer. Always
* include the full trailer as input to get the record_type
* even if only the first byte is used.
*/
memcpy(iov, iniov, iovcnt * sizeof(*iov));
iov[iovcnt].iov_base = trailer;
iov[iovcnt].iov_len = AES_GMAC_HASH_LEN + 1;
uio.uio_iov = iov;
uio.uio_iovcnt = iovcnt + 1;
uio.uio_offset = 0;
uio.uio_resid = crp.crp_payload_length + AES_GMAC_HASH_LEN;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_td = curthread;
crypto_use_uio(&crp, &uio);
if (!inplace) {
/* Duplicate the output iov to append the trailer. */
memcpy(out_iov, outiov, iovcnt * sizeof(*out_iov));
out_iov[iovcnt] = iov[iovcnt];
out_uio.uio_iov = out_iov;
out_uio.uio_iovcnt = iovcnt + 1;
out_uio.uio_offset = 0;
out_uio.uio_resid = crp.crp_payload_length +
AES_GMAC_HASH_LEN;
out_uio.uio_segflg = UIO_SYSSPACE;
out_uio.uio_td = curthread;
crypto_use_output_uio(&crp, &out_uio);
}
crp.crp_op = CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST;
crp.crp_flags = CRYPTO_F_CBIMM | CRYPTO_F_IV_SEPARATE;
memcpy(crp.crp_iv, nonce, sizeof(nonce));
counter_u64_add(ocf_tls13_gcm_crypts, 1);
if (inplace)
counter_u64_add(ocf_inplace, 1);
else
counter_u64_add(ocf_separate_output, 1);
error = ktls_ocf_dispatch(os, &crp);
crypto_destroyreq(&crp);
return (error);
}
static void
ktls_ocf_free(struct ktls_session *tls)
{
struct ocf_session *os;
os = tls->cipher;
crypto_freesession(os->sid);
mtx_destroy(&os->lock);
zfree(os, M_KTLS_OCF);
}
static int
ktls_ocf_try(struct socket *so, struct ktls_session *tls, int direction)
{
struct crypto_session_params csp, mac_csp;
struct ocf_session *os;
int error, mac_len;
memset(&csp, 0, sizeof(csp));
memset(&mac_csp, 0, sizeof(mac_csp));
mac_csp.csp_mode = CSP_MODE_NONE;
mac_len = 0;
switch (tls->params.cipher_algorithm) {
case CRYPTO_AES_NIST_GCM_16:
switch (tls->params.cipher_key_len) {
case 128 / 8:
case 256 / 8:
break;
default:
return (EINVAL);
}
/* Only TLS 1.2 and 1.3 are supported. */
if (tls->params.tls_vmajor != TLS_MAJOR_VER_ONE ||
tls->params.tls_vminor < TLS_MINOR_VER_TWO ||
tls->params.tls_vminor > TLS_MINOR_VER_THREE)
return (EPROTONOSUPPORT);
/* TLS 1.3 is not yet supported for receive. */
if (direction == KTLS_RX &&
tls->params.tls_vminor == TLS_MINOR_VER_THREE)
return (EPROTONOSUPPORT);
csp.csp_flags |= CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD;
csp.csp_mode = CSP_MODE_AEAD;
csp.csp_cipher_alg = CRYPTO_AES_NIST_GCM_16;
csp.csp_cipher_key = tls->params.cipher_key;
csp.csp_cipher_klen = tls->params.cipher_key_len;
csp.csp_ivlen = AES_GCM_IV_LEN;
break;
case CRYPTO_AES_CBC:
switch (tls->params.cipher_key_len) {
case 128 / 8:
case 256 / 8:
break;
default:
return (EINVAL);
}
switch (tls->params.auth_algorithm) {
case CRYPTO_SHA1_HMAC:
mac_len = SHA1_HASH_LEN;
break;
case CRYPTO_SHA2_256_HMAC:
mac_len = SHA2_256_HASH_LEN;
break;
case CRYPTO_SHA2_384_HMAC:
mac_len = SHA2_384_HASH_LEN;
break;
default:
return (EINVAL);
}
/* Only TLS 1.0-1.2 are supported. */
if (tls->params.tls_vmajor != TLS_MAJOR_VER_ONE ||
tls->params.tls_vminor < TLS_MINOR_VER_ZERO ||
tls->params.tls_vminor > TLS_MINOR_VER_TWO)
return (EPROTONOSUPPORT);
/* AES-CBC is not supported for receive. */
if (direction == KTLS_RX)
return (EPROTONOSUPPORT);
csp.csp_flags |= CSP_F_SEPARATE_OUTPUT;
csp.csp_mode = CSP_MODE_CIPHER;
csp.csp_cipher_alg = CRYPTO_AES_CBC;
csp.csp_cipher_key = tls->params.cipher_key;
csp.csp_cipher_klen = tls->params.cipher_key_len;
csp.csp_ivlen = AES_BLOCK_LEN;
mac_csp.csp_flags |= CSP_F_SEPARATE_OUTPUT;
mac_csp.csp_mode = CSP_MODE_DIGEST;
mac_csp.csp_auth_alg = tls->params.auth_algorithm;
mac_csp.csp_auth_key = tls->params.auth_key;
mac_csp.csp_auth_klen = tls->params.auth_key_len;
break;
default:
return (EPROTONOSUPPORT);
}
os = malloc(sizeof(*os), M_KTLS_OCF, M_NOWAIT | M_ZERO);
if (os == NULL)
return (ENOMEM);
error = crypto_newsession(&os->sid, &csp,
CRYPTO_FLAG_HARDWARE | CRYPTO_FLAG_SOFTWARE);
if (error) {
free(os, M_KTLS_OCF);
return (error);
}
if (mac_csp.csp_mode != CSP_MODE_NONE) {
error = crypto_newsession(&os->mac_sid, &mac_csp,
CRYPTO_FLAG_HARDWARE | CRYPTO_FLAG_SOFTWARE);
if (error) {
crypto_freesession(os->sid);
free(os, M_KTLS_OCF);
return (error);
}
os->mac_len = mac_len;
}
mtx_init(&os->lock, "ktls_ocf", NULL, MTX_DEF);
tls->cipher = os;
if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) {
if (direction == KTLS_TX) {
if (tls->params.tls_vminor == TLS_MINOR_VER_THREE)
tls->sw_encrypt = ktls_ocf_tls13_gcm_encrypt;
else
tls->sw_encrypt = ktls_ocf_tls12_gcm_encrypt;
} else {
tls->sw_decrypt = ktls_ocf_tls12_gcm_decrypt;
}
} else {
tls->sw_encrypt = ktls_ocf_tls_cbc_encrypt;
if (tls->params.tls_vminor == TLS_MINOR_VER_ZERO) {
os->implicit_iv = true;
memcpy(os->iv, tls->params.iv, AES_BLOCK_LEN);
}
}
tls->free = ktls_ocf_free;
return (0);
}
struct ktls_crypto_backend ocf_backend = {
.name = "OCF",
.prio = 5,
.api_version = KTLS_API_VERSION,
.try = ktls_ocf_try,
};
static int
ktls_ocf_modevent(module_t mod, int what, void *arg)
{
int error;
switch (what) {
case MOD_LOAD:
ocf_tls10_cbc_crypts = counter_u64_alloc(M_WAITOK);
ocf_tls11_cbc_crypts = counter_u64_alloc(M_WAITOK);
ocf_tls12_gcm_crypts = counter_u64_alloc(M_WAITOK);
ocf_tls13_gcm_crypts = counter_u64_alloc(M_WAITOK);
ocf_inplace = counter_u64_alloc(M_WAITOK);
ocf_separate_output = counter_u64_alloc(M_WAITOK);
ocf_retries = counter_u64_alloc(M_WAITOK);
return (ktls_crypto_backend_register(&ocf_backend));
case MOD_UNLOAD:
error = ktls_crypto_backend_deregister(&ocf_backend);
if (error)
return (error);
counter_u64_free(ocf_tls10_cbc_crypts);
counter_u64_free(ocf_tls11_cbc_crypts);
counter_u64_free(ocf_tls12_gcm_crypts);
counter_u64_free(ocf_tls13_gcm_crypts);
counter_u64_free(ocf_inplace);
counter_u64_free(ocf_separate_output);
counter_u64_free(ocf_retries);
return (0);
default:
return (EOPNOTSUPP);
}
}
static moduledata_t ktls_ocf_moduledata = {
"ktls_ocf",
ktls_ocf_modevent,
NULL
};
DECLARE_MODULE(ktls_ocf, ktls_ocf_moduledata, SI_SUB_PROTO_END, SI_ORDER_ANY);