freebsd-nq/crypto/heimdal/lib/hx509/crypto.c
Stanislav Sedov ae77177087 - Update FreeBSD Heimdal distribution to version 1.5.1. This also brings
several new kerberos related libraries and applications to FreeBSD:
  o kgetcred(1) allows one to manually get a ticket for a particular service.
  o kf(1) securily forwards ticket to another host through an authenticated
    and encrypted stream.
  o kcc(1) is an umbrella program around klist(1), kswitch(1), kgetcred(1)
    and other user kerberos operations. klist and kswitch are just symlinks
    to kcc(1) now.
  o kswitch(1) allows you to easily switch between kerberos credentials if
    you're running KCM.
  o hxtool(1) is a certificate management tool to use with PKINIT.
  o string2key(1) maps a password into key.
  o kdigest(8) is a userland tool to access the KDC's digest interface.
  o kimpersonate(8) creates a "fake" ticket for a service.

  We also now install manpages for some lirbaries that were not installed
  before, libheimntlm and libhx509.

- The new HEIMDAL version no longer supports Kerberos 4.  All users are
  recommended to switch to Kerberos 5.

- Weak ciphers are now disabled by default.  To enable DES support (used
  by telnet(8)), use "allow_weak_crypto" option in krb5.conf.

- libtelnet, pam_ksu and pam_krb5 are now compiled with error on warnings
  disabled due to the function they use (krb5_get_err_text(3)) being
  deprecated.  I plan to work on this next.

- Heimdal's KDC now require sqlite to operate.  We use the bundled version
  and install it as libheimsqlite.  If some other FreeBSD components will
  require it in the future we can rename it to libbsdsqlite and use for these
  components as well.

- This is not a latest Heimdal version, the new one was released while I was
  working on the update.  I will update it to 1.5.2 soon, as it fixes some
  important bugs and security issues.
2012-03-22 08:48:42 +00:00

3208 lines
75 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2004 - 2007 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "hx_locl.h"
struct hx509_crypto;
struct signature_alg;
struct hx509_generate_private_context {
const heim_oid *key_oid;
int isCA;
unsigned long num_bits;
};
struct hx509_private_key_ops {
const char *pemtype;
const heim_oid *key_oid;
int (*available)(const hx509_private_key,
const AlgorithmIdentifier *);
int (*get_spki)(hx509_context,
const hx509_private_key,
SubjectPublicKeyInfo *);
int (*export)(hx509_context context,
const hx509_private_key,
hx509_key_format_t,
heim_octet_string *);
int (*import)(hx509_context, const AlgorithmIdentifier *,
const void *, size_t, hx509_key_format_t,
hx509_private_key);
int (*generate_private_key)(hx509_context,
struct hx509_generate_private_context *,
hx509_private_key);
BIGNUM *(*get_internal)(hx509_context, hx509_private_key, const char *);
};
struct hx509_private_key {
unsigned int ref;
const struct signature_alg *md;
const heim_oid *signature_alg;
union {
RSA *rsa;
void *keydata;
#ifdef HAVE_OPENSSL
EC_KEY *ecdsa;
#endif
} private_key;
hx509_private_key_ops *ops;
};
/*
*
*/
struct signature_alg {
const char *name;
const heim_oid *sig_oid;
const AlgorithmIdentifier *sig_alg;
const heim_oid *key_oid;
const AlgorithmIdentifier *digest_alg;
int flags;
#define PROVIDE_CONF 0x1
#define REQUIRE_SIGNER 0x2
#define SELF_SIGNED_OK 0x4
#define SIG_DIGEST 0x100
#define SIG_PUBLIC_SIG 0x200
#define SIG_SECRET 0x400
#define RA_RSA_USES_DIGEST_INFO 0x1000000
time_t best_before; /* refuse signature made after best before date */
const EVP_MD *(*evp_md)(void);
int (*verify_signature)(hx509_context context,
const struct signature_alg *,
const Certificate *,
const AlgorithmIdentifier *,
const heim_octet_string *,
const heim_octet_string *);
int (*create_signature)(hx509_context,
const struct signature_alg *,
const hx509_private_key,
const AlgorithmIdentifier *,
const heim_octet_string *,
AlgorithmIdentifier *,
heim_octet_string *);
int digest_size;
};
static const struct signature_alg *
find_sig_alg(const heim_oid *oid);
/*
*
*/
static const heim_octet_string null_entry_oid = { 2, rk_UNCONST("\x05\x00") };
static const unsigned sha512_oid_tree[] = { 2, 16, 840, 1, 101, 3, 4, 2, 3 };
const AlgorithmIdentifier _hx509_signature_sha512_data = {
{ 9, rk_UNCONST(sha512_oid_tree) }, rk_UNCONST(&null_entry_oid)
};
static const unsigned sha384_oid_tree[] = { 2, 16, 840, 1, 101, 3, 4, 2, 2 };
const AlgorithmIdentifier _hx509_signature_sha384_data = {
{ 9, rk_UNCONST(sha384_oid_tree) }, rk_UNCONST(&null_entry_oid)
};
static const unsigned sha256_oid_tree[] = { 2, 16, 840, 1, 101, 3, 4, 2, 1 };
const AlgorithmIdentifier _hx509_signature_sha256_data = {
{ 9, rk_UNCONST(sha256_oid_tree) }, rk_UNCONST(&null_entry_oid)
};
static const unsigned sha1_oid_tree[] = { 1, 3, 14, 3, 2, 26 };
const AlgorithmIdentifier _hx509_signature_sha1_data = {
{ 6, rk_UNCONST(sha1_oid_tree) }, rk_UNCONST(&null_entry_oid)
};
static const unsigned md5_oid_tree[] = { 1, 2, 840, 113549, 2, 5 };
const AlgorithmIdentifier _hx509_signature_md5_data = {
{ 6, rk_UNCONST(md5_oid_tree) }, rk_UNCONST(&null_entry_oid)
};
static const unsigned ecPublicKey[] ={ 1, 2, 840, 10045, 2, 1 };
const AlgorithmIdentifier _hx509_signature_ecPublicKey = {
{ 6, rk_UNCONST(ecPublicKey) }, NULL
};
static const unsigned ecdsa_with_sha256_oid[] ={ 1, 2, 840, 10045, 4, 3, 2 };
const AlgorithmIdentifier _hx509_signature_ecdsa_with_sha256_data = {
{ 7, rk_UNCONST(ecdsa_with_sha256_oid) }, NULL
};
static const unsigned ecdsa_with_sha1_oid[] ={ 1, 2, 840, 10045, 4, 1 };
const AlgorithmIdentifier _hx509_signature_ecdsa_with_sha1_data = {
{ 6, rk_UNCONST(ecdsa_with_sha1_oid) }, NULL
};
static const unsigned rsa_with_sha512_oid[] ={ 1, 2, 840, 113549, 1, 1, 13 };
const AlgorithmIdentifier _hx509_signature_rsa_with_sha512_data = {
{ 7, rk_UNCONST(rsa_with_sha512_oid) }, NULL
};
static const unsigned rsa_with_sha384_oid[] ={ 1, 2, 840, 113549, 1, 1, 12 };
const AlgorithmIdentifier _hx509_signature_rsa_with_sha384_data = {
{ 7, rk_UNCONST(rsa_with_sha384_oid) }, NULL
};
static const unsigned rsa_with_sha256_oid[] ={ 1, 2, 840, 113549, 1, 1, 11 };
const AlgorithmIdentifier _hx509_signature_rsa_with_sha256_data = {
{ 7, rk_UNCONST(rsa_with_sha256_oid) }, NULL
};
static const unsigned rsa_with_sha1_oid[] ={ 1, 2, 840, 113549, 1, 1, 5 };
const AlgorithmIdentifier _hx509_signature_rsa_with_sha1_data = {
{ 7, rk_UNCONST(rsa_with_sha1_oid) }, NULL
};
static const unsigned rsa_with_md5_oid[] ={ 1, 2, 840, 113549, 1, 1, 4 };
const AlgorithmIdentifier _hx509_signature_rsa_with_md5_data = {
{ 7, rk_UNCONST(rsa_with_md5_oid) }, NULL
};
static const unsigned rsa_oid[] ={ 1, 2, 840, 113549, 1, 1, 1 };
const AlgorithmIdentifier _hx509_signature_rsa_data = {
{ 7, rk_UNCONST(rsa_oid) }, NULL
};
static const unsigned rsa_pkcs1_x509_oid[] ={ 1, 2, 752, 43, 16, 1 };
const AlgorithmIdentifier _hx509_signature_rsa_pkcs1_x509_data = {
{ 6, rk_UNCONST(rsa_pkcs1_x509_oid) }, NULL
};
static const unsigned des_rsdi_ede3_cbc_oid[] ={ 1, 2, 840, 113549, 3, 7 };
const AlgorithmIdentifier _hx509_des_rsdi_ede3_cbc_oid = {
{ 6, rk_UNCONST(des_rsdi_ede3_cbc_oid) }, NULL
};
static const unsigned aes128_cbc_oid[] ={ 2, 16, 840, 1, 101, 3, 4, 1, 2 };
const AlgorithmIdentifier _hx509_crypto_aes128_cbc_data = {
{ 9, rk_UNCONST(aes128_cbc_oid) }, NULL
};
static const unsigned aes256_cbc_oid[] ={ 2, 16, 840, 1, 101, 3, 4, 1, 42 };
const AlgorithmIdentifier _hx509_crypto_aes256_cbc_data = {
{ 9, rk_UNCONST(aes256_cbc_oid) }, NULL
};
/*
*
*/
static BIGNUM *
heim_int2BN(const heim_integer *i)
{
BIGNUM *bn;
bn = BN_bin2bn(i->data, i->length, NULL);
BN_set_negative(bn, i->negative);
return bn;
}
/*
*
*/
static int
set_digest_alg(DigestAlgorithmIdentifier *id,
const heim_oid *oid,
const void *param, size_t length)
{
int ret;
if (param) {
id->parameters = malloc(sizeof(*id->parameters));
if (id->parameters == NULL)
return ENOMEM;
id->parameters->data = malloc(length);
if (id->parameters->data == NULL) {
free(id->parameters);
id->parameters = NULL;
return ENOMEM;
}
memcpy(id->parameters->data, param, length);
id->parameters->length = length;
} else
id->parameters = NULL;
ret = der_copy_oid(oid, &id->algorithm);
if (ret) {
if (id->parameters) {
free(id->parameters->data);
free(id->parameters);
id->parameters = NULL;
}
return ret;
}
return 0;
}
#ifdef HAVE_OPENSSL
static int
heim_oid2ecnid(heim_oid *oid)
{
/*
* Now map to openssl OID fun
*/
if (der_heim_oid_cmp(oid, ASN1_OID_ID_EC_GROUP_SECP256R1) == 0)
return NID_X9_62_prime256v1;
else if (der_heim_oid_cmp(oid, ASN1_OID_ID_EC_GROUP_SECP160R1) == 0)
return NID_secp160r1;
else if (der_heim_oid_cmp(oid, ASN1_OID_ID_EC_GROUP_SECP160R2) == 0)
return NID_secp160r2;
return -1;
}
static int
parse_ECParameters(hx509_context context,
heim_octet_string *parameters, int *nid)
{
ECParameters ecparam;
size_t size;
int ret;
if (parameters == NULL) {
ret = HX509_PARSING_KEY_FAILED;
hx509_set_error_string(context, 0, ret,
"EC parameters missing");
return ret;
}
ret = decode_ECParameters(parameters->data, parameters->length,
&ecparam, &size);
if (ret) {
hx509_set_error_string(context, 0, ret,
"Failed to decode EC parameters");
return ret;
}
if (ecparam.element != choice_ECParameters_namedCurve) {
free_ECParameters(&ecparam);
hx509_set_error_string(context, 0, ret,
"EC parameters is not a named curve");
return HX509_CRYPTO_SIG_INVALID_FORMAT;
}
*nid = heim_oid2ecnid(&ecparam.u.namedCurve);
free_ECParameters(&ecparam);
if (*nid == -1) {
hx509_set_error_string(context, 0, ret,
"Failed to find matcing NID for EC curve");
return HX509_CRYPTO_SIG_INVALID_FORMAT;
}
return 0;
}
/*
*
*/
static int
ecdsa_verify_signature(hx509_context context,
const struct signature_alg *sig_alg,
const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
const AlgorithmIdentifier *digest_alg;
const SubjectPublicKeyInfo *spi;
heim_octet_string digest;
int ret;
EC_KEY *key = NULL;
int groupnid;
EC_GROUP *group;
const unsigned char *p;
long len;
digest_alg = sig_alg->digest_alg;
ret = _hx509_create_signature(context,
NULL,
digest_alg,
data,
NULL,
&digest);
if (ret)
return ret;
/* set up EC KEY */
spi = &signer->tbsCertificate.subjectPublicKeyInfo;
if (der_heim_oid_cmp(&spi->algorithm.algorithm, ASN1_OID_ID_ECPUBLICKEY) != 0)
return HX509_CRYPTO_SIG_INVALID_FORMAT;
#ifdef HAVE_OPENSSL
/*
* Find the group id
*/
ret = parse_ECParameters(context, spi->algorithm.parameters, &groupnid);
if (ret) {
der_free_octet_string(&digest);
return ret;
}
/*
* Create group, key, parse key
*/
key = EC_KEY_new();
group = EC_GROUP_new_by_curve_name(groupnid);
EC_KEY_set_group(key, group);
EC_GROUP_free(group);
p = spi->subjectPublicKey.data;
len = spi->subjectPublicKey.length / 8;
if (o2i_ECPublicKey(&key, &p, len) == NULL) {
EC_KEY_free(key);
return HX509_CRYPTO_SIG_INVALID_FORMAT;
}
#else
key = SubjectPublicKeyInfo2EC_KEY(spi);
#endif
ret = ECDSA_verify(-1, digest.data, digest.length,
sig->data, sig->length, key);
der_free_octet_string(&digest);
EC_KEY_free(key);
if (ret != 1) {
ret = HX509_CRYPTO_SIG_INVALID_FORMAT;
return ret;
}
return 0;
}
static int
ecdsa_create_signature(hx509_context context,
const struct signature_alg *sig_alg,
const hx509_private_key signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
AlgorithmIdentifier *signatureAlgorithm,
heim_octet_string *sig)
{
const AlgorithmIdentifier *digest_alg;
heim_octet_string indata;
const heim_oid *sig_oid;
unsigned int siglen;
int ret;
if (signer->ops && der_heim_oid_cmp(signer->ops->key_oid, ASN1_OID_ID_ECPUBLICKEY) != 0)
_hx509_abort("internal error passing private key to wrong ops");
sig_oid = sig_alg->sig_oid;
digest_alg = sig_alg->digest_alg;
if (signatureAlgorithm) {
ret = set_digest_alg(signatureAlgorithm, sig_oid, "\x05\x00", 2);
if (ret) {
hx509_clear_error_string(context);
goto error;
}
}
ret = _hx509_create_signature(context,
NULL,
digest_alg,
data,
NULL,
&indata);
if (ret) {
if (signatureAlgorithm)
free_AlgorithmIdentifier(signatureAlgorithm);
goto error;
}
sig->length = ECDSA_size(signer->private_key.ecdsa);
sig->data = malloc(sig->length);
if (sig->data == NULL) {
der_free_octet_string(&indata);
ret = ENOMEM;
hx509_set_error_string(context, 0, ret, "out of memory");
goto error;
}
siglen = sig->length;
ret = ECDSA_sign(-1, indata.data, indata.length,
sig->data, &siglen, signer->private_key.ecdsa);
der_free_octet_string(&indata);
if (ret != 1) {
ret = HX509_CMS_FAILED_CREATE_SIGATURE;
hx509_set_error_string(context, 0, ret,
"ECDSA sign failed: %d", ret);
goto error;
}
if (siglen > sig->length)
_hx509_abort("ECDSA signature prelen longer the output len");
sig->length = siglen;
return 0;
error:
if (signatureAlgorithm)
free_AlgorithmIdentifier(signatureAlgorithm);
return ret;
}
static int
ecdsa_available(const hx509_private_key signer,
const AlgorithmIdentifier *sig_alg)
{
const struct signature_alg *sig;
const EC_GROUP *group;
BN_CTX *bnctx = NULL;
BIGNUM *order = NULL;
int ret = 0;
if (der_heim_oid_cmp(signer->ops->key_oid, &asn1_oid_id_ecPublicKey) != 0)
_hx509_abort("internal error passing private key to wrong ops");
sig = find_sig_alg(&sig_alg->algorithm);
if (sig == NULL || sig->digest_size == 0)
return 0;
group = EC_KEY_get0_group(signer->private_key.ecdsa);
if (group == NULL)
return 0;
bnctx = BN_CTX_new();
order = BN_new();
if (order == NULL)
goto err;
if (EC_GROUP_get_order(group, order, bnctx) != 1)
goto err;
if (BN_num_bytes(order) > sig->digest_size)
ret = 1;
err:
if (bnctx)
BN_CTX_free(bnctx);
if (order)
BN_clear_free(order);
return ret;
}
#endif /* HAVE_OPENSSL */
/*
*
*/
static int
rsa_verify_signature(hx509_context context,
const struct signature_alg *sig_alg,
const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
const SubjectPublicKeyInfo *spi;
DigestInfo di;
unsigned char *to;
int tosize, retsize;
int ret;
RSA *rsa;
size_t size;
const unsigned char *p;
memset(&di, 0, sizeof(di));
spi = &signer->tbsCertificate.subjectPublicKeyInfo;
p = spi->subjectPublicKey.data;
size = spi->subjectPublicKey.length / 8;
rsa = d2i_RSAPublicKey(NULL, &p, size);
if (rsa == NULL) {
ret = ENOMEM;
hx509_set_error_string(context, 0, ret, "out of memory");
goto out;
}
tosize = RSA_size(rsa);
to = malloc(tosize);
if (to == NULL) {
ret = ENOMEM;
hx509_set_error_string(context, 0, ret, "out of memory");
goto out;
}
retsize = RSA_public_decrypt(sig->length, (unsigned char *)sig->data,
to, rsa, RSA_PKCS1_PADDING);
if (retsize <= 0) {
ret = HX509_CRYPTO_SIG_INVALID_FORMAT;
hx509_set_error_string(context, 0, ret,
"RSA public decrypt failed: %d", retsize);
free(to);
goto out;
}
if (retsize > tosize)
_hx509_abort("internal rsa decryption failure: ret > tosize");
if (sig_alg->flags & RA_RSA_USES_DIGEST_INFO) {
ret = decode_DigestInfo(to, retsize, &di, &size);
free(to);
if (ret) {
goto out;
}
/* Check for extra data inside the sigature */
if (size != (size_t)retsize) {
ret = HX509_CRYPTO_SIG_INVALID_FORMAT;
hx509_set_error_string(context, 0, ret, "size from decryption mismatch");
goto out;
}
if (sig_alg->digest_alg &&
der_heim_oid_cmp(&di.digestAlgorithm.algorithm,
&sig_alg->digest_alg->algorithm) != 0)
{
ret = HX509_CRYPTO_OID_MISMATCH;
hx509_set_error_string(context, 0, ret, "object identifier in RSA sig mismatch");
goto out;
}
/* verify that the parameters are NULL or the NULL-type */
if (di.digestAlgorithm.parameters != NULL &&
(di.digestAlgorithm.parameters->length != 2 ||
memcmp(di.digestAlgorithm.parameters->data, "\x05\x00", 2) != 0))
{
ret = HX509_CRYPTO_SIG_INVALID_FORMAT;
hx509_set_error_string(context, 0, ret, "Extra parameters inside RSA signature");
goto out;
}
ret = _hx509_verify_signature(context,
NULL,
&di.digestAlgorithm,
data,
&di.digest);
} else {
if ((size_t)retsize != data->length ||
ct_memcmp(to, data->data, retsize) != 0)
{
ret = HX509_CRYPTO_SIG_INVALID_FORMAT;
hx509_set_error_string(context, 0, ret, "RSA Signature incorrect");
goto out;
}
free(to);
}
ret = 0;
out:
free_DigestInfo(&di);
if (rsa)
RSA_free(rsa);
return ret;
}
static int
rsa_create_signature(hx509_context context,
const struct signature_alg *sig_alg,
const hx509_private_key signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
AlgorithmIdentifier *signatureAlgorithm,
heim_octet_string *sig)
{
const AlgorithmIdentifier *digest_alg;
heim_octet_string indata;
const heim_oid *sig_oid;
size_t size;
int ret;
if (signer->ops && der_heim_oid_cmp(signer->ops->key_oid, ASN1_OID_ID_PKCS1_RSAENCRYPTION) != 0)
return HX509_ALG_NOT_SUPP;
if (alg)
sig_oid = &alg->algorithm;
else
sig_oid = signer->signature_alg;
if (der_heim_oid_cmp(sig_oid, ASN1_OID_ID_PKCS1_SHA512WITHRSAENCRYPTION) == 0) {
digest_alg = hx509_signature_sha512();
} else if (der_heim_oid_cmp(sig_oid, ASN1_OID_ID_PKCS1_SHA384WITHRSAENCRYPTION) == 0) {
digest_alg = hx509_signature_sha384();
} else if (der_heim_oid_cmp(sig_oid, ASN1_OID_ID_PKCS1_SHA256WITHRSAENCRYPTION) == 0) {
digest_alg = hx509_signature_sha256();
} else if (der_heim_oid_cmp(sig_oid, ASN1_OID_ID_PKCS1_SHA1WITHRSAENCRYPTION) == 0) {
digest_alg = hx509_signature_sha1();
} else if (der_heim_oid_cmp(sig_oid, ASN1_OID_ID_PKCS1_MD5WITHRSAENCRYPTION) == 0) {
digest_alg = hx509_signature_md5();
} else if (der_heim_oid_cmp(sig_oid, ASN1_OID_ID_PKCS1_MD5WITHRSAENCRYPTION) == 0) {
digest_alg = hx509_signature_md5();
} else if (der_heim_oid_cmp(sig_oid, ASN1_OID_ID_DSA_WITH_SHA1) == 0) {
digest_alg = hx509_signature_sha1();
} else if (der_heim_oid_cmp(sig_oid, ASN1_OID_ID_PKCS1_RSAENCRYPTION) == 0) {
digest_alg = hx509_signature_sha1();
} else if (der_heim_oid_cmp(sig_oid, ASN1_OID_ID_HEIM_RSA_PKCS1_X509) == 0) {
digest_alg = NULL;
} else
return HX509_ALG_NOT_SUPP;
if (signatureAlgorithm) {
ret = set_digest_alg(signatureAlgorithm, sig_oid, "\x05\x00", 2);
if (ret) {
hx509_clear_error_string(context);
return ret;
}
}
if (digest_alg) {
DigestInfo di;
memset(&di, 0, sizeof(di));
ret = _hx509_create_signature(context,
NULL,
digest_alg,
data,
&di.digestAlgorithm,
&di.digest);
if (ret)
return ret;
ASN1_MALLOC_ENCODE(DigestInfo,
indata.data,
indata.length,
&di,
&size,
ret);
free_DigestInfo(&di);
if (ret) {
hx509_set_error_string(context, 0, ret, "out of memory");
return ret;
}
if (indata.length != size)
_hx509_abort("internal ASN.1 encoder error");
} else {
indata = *data;
}
sig->length = RSA_size(signer->private_key.rsa);
sig->data = malloc(sig->length);
if (sig->data == NULL) {
der_free_octet_string(&indata);
hx509_set_error_string(context, 0, ENOMEM, "out of memory");
return ENOMEM;
}
ret = RSA_private_encrypt(indata.length, indata.data,
sig->data,
signer->private_key.rsa,
RSA_PKCS1_PADDING);
if (indata.data != data->data)
der_free_octet_string(&indata);
if (ret <= 0) {
ret = HX509_CMS_FAILED_CREATE_SIGATURE;
hx509_set_error_string(context, 0, ret,
"RSA private encrypt failed: %d", ret);
return ret;
}
if ((size_t)ret > sig->length)
_hx509_abort("RSA signature prelen longer the output len");
sig->length = ret;
return 0;
}
static int
rsa_private_key_import(hx509_context context,
const AlgorithmIdentifier *keyai,
const void *data,
size_t len,
hx509_key_format_t format,
hx509_private_key private_key)
{
switch (format) {
case HX509_KEY_FORMAT_DER: {
const unsigned char *p = data;
private_key->private_key.rsa =
d2i_RSAPrivateKey(NULL, &p, len);
if (private_key->private_key.rsa == NULL) {
hx509_set_error_string(context, 0, HX509_PARSING_KEY_FAILED,
"Failed to parse RSA key");
return HX509_PARSING_KEY_FAILED;
}
private_key->signature_alg = ASN1_OID_ID_PKCS1_SHA1WITHRSAENCRYPTION;
break;
}
default:
return HX509_CRYPTO_KEY_FORMAT_UNSUPPORTED;
}
return 0;
}
static int
rsa_private_key2SPKI(hx509_context context,
hx509_private_key private_key,
SubjectPublicKeyInfo *spki)
{
int len, ret;
memset(spki, 0, sizeof(*spki));
len = i2d_RSAPublicKey(private_key->private_key.rsa, NULL);
spki->subjectPublicKey.data = malloc(len);
if (spki->subjectPublicKey.data == NULL) {
hx509_set_error_string(context, 0, ENOMEM, "malloc - out of memory");
return ENOMEM;
}
spki->subjectPublicKey.length = len * 8;
ret = set_digest_alg(&spki->algorithm, ASN1_OID_ID_PKCS1_RSAENCRYPTION,
"\x05\x00", 2);
if (ret) {
hx509_set_error_string(context, 0, ret, "malloc - out of memory");
free(spki->subjectPublicKey.data);
spki->subjectPublicKey.data = NULL;
spki->subjectPublicKey.length = 0;
return ret;
}
{
unsigned char *pp = spki->subjectPublicKey.data;
i2d_RSAPublicKey(private_key->private_key.rsa, &pp);
}
return 0;
}
static int
rsa_generate_private_key(hx509_context context,
struct hx509_generate_private_context *ctx,
hx509_private_key private_key)
{
BIGNUM *e;
int ret;
unsigned long bits;
static const int default_rsa_e = 65537;
static const int default_rsa_bits = 2048;
private_key->private_key.rsa = RSA_new();
if (private_key->private_key.rsa == NULL) {
hx509_set_error_string(context, 0, HX509_PARSING_KEY_FAILED,
"Failed to generate RSA key");
return HX509_PARSING_KEY_FAILED;
}
e = BN_new();
BN_set_word(e, default_rsa_e);
bits = default_rsa_bits;
if (ctx->num_bits)
bits = ctx->num_bits;
ret = RSA_generate_key_ex(private_key->private_key.rsa, bits, e, NULL);
BN_free(e);
if (ret != 1) {
hx509_set_error_string(context, 0, HX509_PARSING_KEY_FAILED,
"Failed to generate RSA key");
return HX509_PARSING_KEY_FAILED;
}
private_key->signature_alg = ASN1_OID_ID_PKCS1_SHA1WITHRSAENCRYPTION;
return 0;
}
static int
rsa_private_key_export(hx509_context context,
const hx509_private_key key,
hx509_key_format_t format,
heim_octet_string *data)
{
int ret;
data->data = NULL;
data->length = 0;
switch (format) {
case HX509_KEY_FORMAT_DER:
ret = i2d_RSAPrivateKey(key->private_key.rsa, NULL);
if (ret <= 0) {
ret = EINVAL;
hx509_set_error_string(context, 0, ret,
"Private key is not exportable");
return ret;
}
data->data = malloc(ret);
if (data->data == NULL) {
ret = ENOMEM;
hx509_set_error_string(context, 0, ret, "malloc out of memory");
return ret;
}
data->length = ret;
{
unsigned char *p = data->data;
i2d_RSAPrivateKey(key->private_key.rsa, &p);
}
break;
default:
return HX509_CRYPTO_KEY_FORMAT_UNSUPPORTED;
}
return 0;
}
static BIGNUM *
rsa_get_internal(hx509_context context,
hx509_private_key key,
const char *type)
{
if (strcasecmp(type, "rsa-modulus") == 0) {
return BN_dup(key->private_key.rsa->n);
} else if (strcasecmp(type, "rsa-exponent") == 0) {
return BN_dup(key->private_key.rsa->e);
} else
return NULL;
}
static hx509_private_key_ops rsa_private_key_ops = {
"RSA PRIVATE KEY",
ASN1_OID_ID_PKCS1_RSAENCRYPTION,
NULL,
rsa_private_key2SPKI,
rsa_private_key_export,
rsa_private_key_import,
rsa_generate_private_key,
rsa_get_internal
};
#ifdef HAVE_OPENSSL
static int
ecdsa_private_key2SPKI(hx509_context context,
hx509_private_key private_key,
SubjectPublicKeyInfo *spki)
{
memset(spki, 0, sizeof(*spki));
return ENOMEM;
}
static int
ecdsa_private_key_export(hx509_context context,
const hx509_private_key key,
hx509_key_format_t format,
heim_octet_string *data)
{
return HX509_CRYPTO_KEY_FORMAT_UNSUPPORTED;
}
static int
ecdsa_private_key_import(hx509_context context,
const AlgorithmIdentifier *keyai,
const void *data,
size_t len,
hx509_key_format_t format,
hx509_private_key private_key)
{
const unsigned char *p = data;
EC_KEY **pkey = NULL;
if (keyai->parameters) {
EC_GROUP *group;
int groupnid;
EC_KEY *key;
int ret;
ret = parse_ECParameters(context, keyai->parameters, &groupnid);
if (ret)
return ret;
key = EC_KEY_new();
if (key == NULL)
return ENOMEM;
group = EC_GROUP_new_by_curve_name(groupnid);
if (group == NULL) {
EC_KEY_free(key);
return ENOMEM;
}
EC_GROUP_set_asn1_flag(group, OPENSSL_EC_NAMED_CURVE);
if (EC_KEY_set_group(key, group) == 0) {
EC_KEY_free(key);
EC_GROUP_free(group);
return ENOMEM;
}
EC_GROUP_free(group);
pkey = &key;
}
switch (format) {
case HX509_KEY_FORMAT_DER:
private_key->private_key.ecdsa = d2i_ECPrivateKey(pkey, &p, len);
if (private_key->private_key.ecdsa == NULL) {
hx509_set_error_string(context, 0, HX509_PARSING_KEY_FAILED,
"Failed to parse EC private key");
return HX509_PARSING_KEY_FAILED;
}
private_key->signature_alg = ASN1_OID_ID_ECDSA_WITH_SHA256;
break;
default:
return HX509_CRYPTO_KEY_FORMAT_UNSUPPORTED;
}
return 0;
}
static int
ecdsa_generate_private_key(hx509_context context,
struct hx509_generate_private_context *ctx,
hx509_private_key private_key)
{
return ENOMEM;
}
static BIGNUM *
ecdsa_get_internal(hx509_context context,
hx509_private_key key,
const char *type)
{
return NULL;
}
static hx509_private_key_ops ecdsa_private_key_ops = {
"EC PRIVATE KEY",
ASN1_OID_ID_ECPUBLICKEY,
ecdsa_available,
ecdsa_private_key2SPKI,
ecdsa_private_key_export,
ecdsa_private_key_import,
ecdsa_generate_private_key,
ecdsa_get_internal
};
#endif /* HAVE_OPENSSL */
/*
*
*/
static int
dsa_verify_signature(hx509_context context,
const struct signature_alg *sig_alg,
const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
const SubjectPublicKeyInfo *spi;
DSAPublicKey pk;
DSAParams param;
size_t size;
DSA *dsa;
int ret;
spi = &signer->tbsCertificate.subjectPublicKeyInfo;
dsa = DSA_new();
if (dsa == NULL) {
hx509_set_error_string(context, 0, ENOMEM, "out of memory");
return ENOMEM;
}
ret = decode_DSAPublicKey(spi->subjectPublicKey.data,
spi->subjectPublicKey.length / 8,
&pk, &size);
if (ret)
goto out;
dsa->pub_key = heim_int2BN(&pk);
free_DSAPublicKey(&pk);
if (dsa->pub_key == NULL) {
ret = ENOMEM;
hx509_set_error_string(context, 0, ret, "out of memory");
goto out;
}
if (spi->algorithm.parameters == NULL) {
ret = HX509_CRYPTO_SIG_INVALID_FORMAT;
hx509_set_error_string(context, 0, ret, "DSA parameters missing");
goto out;
}
ret = decode_DSAParams(spi->algorithm.parameters->data,
spi->algorithm.parameters->length,
&param,
&size);
if (ret) {
hx509_set_error_string(context, 0, ret, "DSA parameters failed to decode");
goto out;
}
dsa->p = heim_int2BN(&param.p);
dsa->q = heim_int2BN(&param.q);
dsa->g = heim_int2BN(&param.g);
free_DSAParams(&param);
if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
ret = ENOMEM;
hx509_set_error_string(context, 0, ret, "out of memory");
goto out;
}
ret = DSA_verify(-1, data->data, data->length,
(unsigned char*)sig->data, sig->length,
dsa);
if (ret == 1)
ret = 0;
else if (ret == 0 || ret == -1) {
ret = HX509_CRYPTO_BAD_SIGNATURE;
hx509_set_error_string(context, 0, ret, "BAD DSA sigature");
} else {
ret = HX509_CRYPTO_SIG_INVALID_FORMAT;
hx509_set_error_string(context, 0, ret, "Invalid format of DSA sigature");
}
out:
DSA_free(dsa);
return ret;
}
#if 0
static int
dsa_parse_private_key(hx509_context context,
const void *data,
size_t len,
hx509_private_key private_key)
{
const unsigned char *p = data;
private_key->private_key.dsa =
d2i_DSAPrivateKey(NULL, &p, len);
if (private_key->private_key.dsa == NULL)
return EINVAL;
private_key->signature_alg = ASN1_OID_ID_DSA_WITH_SHA1;
return 0;
/* else */
hx509_set_error_string(context, 0, HX509_PARSING_KEY_FAILED,
"No support to parse DSA keys");
return HX509_PARSING_KEY_FAILED;
}
#endif
static int
evp_md_create_signature(hx509_context context,
const struct signature_alg *sig_alg,
const hx509_private_key signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
AlgorithmIdentifier *signatureAlgorithm,
heim_octet_string *sig)
{
size_t sigsize = EVP_MD_size(sig_alg->evp_md());
EVP_MD_CTX *ctx;
memset(sig, 0, sizeof(*sig));
if (signatureAlgorithm) {
int ret;
ret = set_digest_alg(signatureAlgorithm, sig_alg->sig_oid,
"\x05\x00", 2);
if (ret)
return ret;
}
sig->data = malloc(sigsize);
if (sig->data == NULL) {
sig->length = 0;
return ENOMEM;
}
sig->length = sigsize;
ctx = EVP_MD_CTX_create();
EVP_DigestInit_ex(ctx, sig_alg->evp_md(), NULL);
EVP_DigestUpdate(ctx, data->data, data->length);
EVP_DigestFinal_ex(ctx, sig->data, NULL);
EVP_MD_CTX_destroy(ctx);
return 0;
}
static int
evp_md_verify_signature(hx509_context context,
const struct signature_alg *sig_alg,
const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
unsigned char digest[EVP_MAX_MD_SIZE];
EVP_MD_CTX *ctx;
size_t sigsize = EVP_MD_size(sig_alg->evp_md());
if (sig->length != sigsize || sigsize > sizeof(digest)) {
hx509_set_error_string(context, 0, HX509_CRYPTO_SIG_INVALID_FORMAT,
"SHA256 sigature have wrong length");
return HX509_CRYPTO_SIG_INVALID_FORMAT;
}
ctx = EVP_MD_CTX_create();
EVP_DigestInit_ex(ctx, sig_alg->evp_md(), NULL);
EVP_DigestUpdate(ctx, data->data, data->length);
EVP_DigestFinal_ex(ctx, digest, NULL);
EVP_MD_CTX_destroy(ctx);
if (ct_memcmp(digest, sig->data, sigsize) != 0) {
hx509_set_error_string(context, 0, HX509_CRYPTO_BAD_SIGNATURE,
"Bad %s sigature", sig_alg->name);
return HX509_CRYPTO_BAD_SIGNATURE;
}
return 0;
}
#ifdef HAVE_OPENSSL
static const struct signature_alg ecdsa_with_sha256_alg = {
"ecdsa-with-sha256",
ASN1_OID_ID_ECDSA_WITH_SHA256,
&_hx509_signature_ecdsa_with_sha256_data,
ASN1_OID_ID_ECPUBLICKEY,
&_hx509_signature_sha256_data,
PROVIDE_CONF|REQUIRE_SIGNER|RA_RSA_USES_DIGEST_INFO|SIG_PUBLIC_SIG|SELF_SIGNED_OK,
0,
NULL,
ecdsa_verify_signature,
ecdsa_create_signature,
32
};
static const struct signature_alg ecdsa_with_sha1_alg = {
"ecdsa-with-sha1",
ASN1_OID_ID_ECDSA_WITH_SHA1,
&_hx509_signature_ecdsa_with_sha1_data,
ASN1_OID_ID_ECPUBLICKEY,
&_hx509_signature_sha1_data,
PROVIDE_CONF|REQUIRE_SIGNER|RA_RSA_USES_DIGEST_INFO|SIG_PUBLIC_SIG|SELF_SIGNED_OK,
0,
NULL,
ecdsa_verify_signature,
ecdsa_create_signature,
20
};
#endif
static const struct signature_alg heim_rsa_pkcs1_x509 = {
"rsa-pkcs1-x509",
ASN1_OID_ID_HEIM_RSA_PKCS1_X509,
&_hx509_signature_rsa_pkcs1_x509_data,
ASN1_OID_ID_PKCS1_RSAENCRYPTION,
NULL,
PROVIDE_CONF|REQUIRE_SIGNER|SIG_PUBLIC_SIG,
0,
NULL,
rsa_verify_signature,
rsa_create_signature,
0
};
static const struct signature_alg pkcs1_rsa_sha1_alg = {
"rsa",
ASN1_OID_ID_PKCS1_RSAENCRYPTION,
&_hx509_signature_rsa_with_sha1_data,
ASN1_OID_ID_PKCS1_RSAENCRYPTION,
NULL,
PROVIDE_CONF|REQUIRE_SIGNER|RA_RSA_USES_DIGEST_INFO|SIG_PUBLIC_SIG|SELF_SIGNED_OK,
0,
NULL,
rsa_verify_signature,
rsa_create_signature,
0
};
static const struct signature_alg rsa_with_sha512_alg = {
"rsa-with-sha512",
ASN1_OID_ID_PKCS1_SHA512WITHRSAENCRYPTION,
&_hx509_signature_rsa_with_sha512_data,
ASN1_OID_ID_PKCS1_RSAENCRYPTION,
&_hx509_signature_sha512_data,
PROVIDE_CONF|REQUIRE_SIGNER|RA_RSA_USES_DIGEST_INFO|SIG_PUBLIC_SIG|SELF_SIGNED_OK,
0,
NULL,
rsa_verify_signature,
rsa_create_signature,
0
};
static const struct signature_alg rsa_with_sha384_alg = {
"rsa-with-sha384",
ASN1_OID_ID_PKCS1_SHA384WITHRSAENCRYPTION,
&_hx509_signature_rsa_with_sha384_data,
ASN1_OID_ID_PKCS1_RSAENCRYPTION,
&_hx509_signature_sha384_data,
PROVIDE_CONF|REQUIRE_SIGNER|RA_RSA_USES_DIGEST_INFO|SIG_PUBLIC_SIG|SELF_SIGNED_OK,
0,
NULL,
rsa_verify_signature,
rsa_create_signature,
0
};
static const struct signature_alg rsa_with_sha256_alg = {
"rsa-with-sha256",
ASN1_OID_ID_PKCS1_SHA256WITHRSAENCRYPTION,
&_hx509_signature_rsa_with_sha256_data,
ASN1_OID_ID_PKCS1_RSAENCRYPTION,
&_hx509_signature_sha256_data,
PROVIDE_CONF|REQUIRE_SIGNER|RA_RSA_USES_DIGEST_INFO|SIG_PUBLIC_SIG|SELF_SIGNED_OK,
0,
NULL,
rsa_verify_signature,
rsa_create_signature,
0
};
static const struct signature_alg rsa_with_sha1_alg = {
"rsa-with-sha1",
ASN1_OID_ID_PKCS1_SHA1WITHRSAENCRYPTION,
&_hx509_signature_rsa_with_sha1_data,
ASN1_OID_ID_PKCS1_RSAENCRYPTION,
&_hx509_signature_sha1_data,
PROVIDE_CONF|REQUIRE_SIGNER|RA_RSA_USES_DIGEST_INFO|SIG_PUBLIC_SIG|SELF_SIGNED_OK,
0,
NULL,
rsa_verify_signature,
rsa_create_signature,
0
};
static const struct signature_alg rsa_with_sha1_alg_secsig = {
"rsa-with-sha1",
ASN1_OID_ID_SECSIG_SHA_1WITHRSAENCRYPTION,
&_hx509_signature_rsa_with_sha1_data,
ASN1_OID_ID_PKCS1_RSAENCRYPTION,
&_hx509_signature_sha1_data,
PROVIDE_CONF|REQUIRE_SIGNER|RA_RSA_USES_DIGEST_INFO|SIG_PUBLIC_SIG|SELF_SIGNED_OK,
0,
NULL,
rsa_verify_signature,
rsa_create_signature,
0
};
static const struct signature_alg rsa_with_md5_alg = {
"rsa-with-md5",
ASN1_OID_ID_PKCS1_MD5WITHRSAENCRYPTION,
&_hx509_signature_rsa_with_md5_data,
ASN1_OID_ID_PKCS1_RSAENCRYPTION,
&_hx509_signature_md5_data,
PROVIDE_CONF|REQUIRE_SIGNER|RA_RSA_USES_DIGEST_INFO|SIG_PUBLIC_SIG,
1230739889,
NULL,
rsa_verify_signature,
rsa_create_signature,
0
};
static const struct signature_alg dsa_sha1_alg = {
"dsa-with-sha1",
ASN1_OID_ID_DSA_WITH_SHA1,
NULL,
ASN1_OID_ID_DSA,
&_hx509_signature_sha1_data,
PROVIDE_CONF|REQUIRE_SIGNER|SIG_PUBLIC_SIG,
0,
NULL,
dsa_verify_signature,
/* create_signature */ NULL,
0
};
static const struct signature_alg sha512_alg = {
"sha-512",
ASN1_OID_ID_SHA512,
&_hx509_signature_sha512_data,
NULL,
NULL,
SIG_DIGEST,
0,
EVP_sha512,
evp_md_verify_signature,
evp_md_create_signature,
0
};
static const struct signature_alg sha384_alg = {
"sha-384",
ASN1_OID_ID_SHA512,
&_hx509_signature_sha384_data,
NULL,
NULL,
SIG_DIGEST,
0,
EVP_sha384,
evp_md_verify_signature,
evp_md_create_signature,
0
};
static const struct signature_alg sha256_alg = {
"sha-256",
ASN1_OID_ID_SHA256,
&_hx509_signature_sha256_data,
NULL,
NULL,
SIG_DIGEST,
0,
EVP_sha256,
evp_md_verify_signature,
evp_md_create_signature,
0
};
static const struct signature_alg sha1_alg = {
"sha1",
ASN1_OID_ID_SECSIG_SHA_1,
&_hx509_signature_sha1_data,
NULL,
NULL,
SIG_DIGEST,
0,
EVP_sha1,
evp_md_verify_signature,
evp_md_create_signature,
0
};
static const struct signature_alg md5_alg = {
"rsa-md5",
ASN1_OID_ID_RSA_DIGEST_MD5,
&_hx509_signature_md5_data,
NULL,
NULL,
SIG_DIGEST,
0,
EVP_md5,
evp_md_verify_signature,
NULL,
0
};
/*
* Order matter in this structure, "best" first for each "key
* compatible" type (type is ECDSA, RSA, DSA, none, etc)
*/
static const struct signature_alg *sig_algs[] = {
#ifdef HAVE_OPENSSL
&ecdsa_with_sha256_alg,
&ecdsa_with_sha1_alg,
#endif
&rsa_with_sha512_alg,
&rsa_with_sha384_alg,
&rsa_with_sha256_alg,
&rsa_with_sha1_alg,
&rsa_with_sha1_alg_secsig,
&pkcs1_rsa_sha1_alg,
&rsa_with_md5_alg,
&heim_rsa_pkcs1_x509,
&dsa_sha1_alg,
&sha512_alg,
&sha384_alg,
&sha256_alg,
&sha1_alg,
&md5_alg,
NULL
};
static const struct signature_alg *
find_sig_alg(const heim_oid *oid)
{
unsigned int i;
for (i = 0; sig_algs[i]; i++)
if (der_heim_oid_cmp(sig_algs[i]->sig_oid, oid) == 0)
return sig_algs[i];
return NULL;
}
static const AlgorithmIdentifier *
alg_for_privatekey(const hx509_private_key pk, int type)
{
const heim_oid *keytype;
unsigned int i;
if (pk->ops == NULL)
return NULL;
keytype = pk->ops->key_oid;
for (i = 0; sig_algs[i]; i++) {
if (sig_algs[i]->key_oid == NULL)
continue;
if (der_heim_oid_cmp(sig_algs[i]->key_oid, keytype) != 0)
continue;
if (pk->ops->available &&
pk->ops->available(pk, sig_algs[i]->sig_alg) == 0)
continue;
if (type == HX509_SELECT_PUBLIC_SIG)
return sig_algs[i]->sig_alg;
if (type == HX509_SELECT_DIGEST)
return sig_algs[i]->digest_alg;
return NULL;
}
return NULL;
}
/*
*
*/
static struct hx509_private_key_ops *private_algs[] = {
&rsa_private_key_ops,
#ifdef HAVE_OPENSSL
&ecdsa_private_key_ops,
#endif
NULL
};
hx509_private_key_ops *
hx509_find_private_alg(const heim_oid *oid)
{
int i;
for (i = 0; private_algs[i]; i++) {
if (private_algs[i]->key_oid == NULL)
continue;
if (der_heim_oid_cmp(private_algs[i]->key_oid, oid) == 0)
return private_algs[i];
}
return NULL;
}
/*
* Check if the algorithm `alg' have a best before date, and if it
* des, make sure the its before the time `t'.
*/
int
_hx509_signature_best_before(hx509_context context,
const AlgorithmIdentifier *alg,
time_t t)
{
const struct signature_alg *md;
md = find_sig_alg(&alg->algorithm);
if (md == NULL) {
hx509_clear_error_string(context);
return HX509_SIG_ALG_NO_SUPPORTED;
}
if (md->best_before && md->best_before < t) {
hx509_set_error_string(context, 0, HX509_CRYPTO_ALGORITHM_BEST_BEFORE,
"Algorithm %s has passed it best before date",
md->name);
return HX509_CRYPTO_ALGORITHM_BEST_BEFORE;
}
return 0;
}
int
_hx509_self_signed_valid(hx509_context context,
const AlgorithmIdentifier *alg)
{
const struct signature_alg *md;
md = find_sig_alg(&alg->algorithm);
if (md == NULL) {
hx509_clear_error_string(context);
return HX509_SIG_ALG_NO_SUPPORTED;
}
if ((md->flags & SELF_SIGNED_OK) == 0) {
hx509_set_error_string(context, 0, HX509_CRYPTO_ALGORITHM_BEST_BEFORE,
"Algorithm %s not trusted for self signatures",
md->name);
return HX509_CRYPTO_ALGORITHM_BEST_BEFORE;
}
return 0;
}
int
_hx509_verify_signature(hx509_context context,
const hx509_cert cert,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
const struct signature_alg *md;
const Certificate *signer = NULL;
if (cert)
signer = _hx509_get_cert(cert);
md = find_sig_alg(&alg->algorithm);
if (md == NULL) {
hx509_clear_error_string(context);
return HX509_SIG_ALG_NO_SUPPORTED;
}
if (signer && (md->flags & PROVIDE_CONF) == 0) {
hx509_clear_error_string(context);
return HX509_CRYPTO_SIG_NO_CONF;
}
if (signer == NULL && (md->flags & REQUIRE_SIGNER)) {
hx509_clear_error_string(context);
return HX509_CRYPTO_SIGNATURE_WITHOUT_SIGNER;
}
if (md->key_oid && signer) {
const SubjectPublicKeyInfo *spi;
spi = &signer->tbsCertificate.subjectPublicKeyInfo;
if (der_heim_oid_cmp(&spi->algorithm.algorithm, md->key_oid) != 0) {
hx509_clear_error_string(context);
return HX509_SIG_ALG_DONT_MATCH_KEY_ALG;
}
}
return (*md->verify_signature)(context, md, signer, alg, data, sig);
}
int
_hx509_create_signature(hx509_context context,
const hx509_private_key signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
AlgorithmIdentifier *signatureAlgorithm,
heim_octet_string *sig)
{
const struct signature_alg *md;
md = find_sig_alg(&alg->algorithm);
if (md == NULL) {
hx509_set_error_string(context, 0, HX509_SIG_ALG_NO_SUPPORTED,
"algorithm no supported");
return HX509_SIG_ALG_NO_SUPPORTED;
}
if (signer && (md->flags & PROVIDE_CONF) == 0) {
hx509_set_error_string(context, 0, HX509_SIG_ALG_NO_SUPPORTED,
"algorithm provides no conf");
return HX509_CRYPTO_SIG_NO_CONF;
}
return (*md->create_signature)(context, md, signer, alg, data,
signatureAlgorithm, sig);
}
int
_hx509_create_signature_bitstring(hx509_context context,
const hx509_private_key signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
AlgorithmIdentifier *signatureAlgorithm,
heim_bit_string *sig)
{
heim_octet_string os;
int ret;
ret = _hx509_create_signature(context, signer, alg,
data, signatureAlgorithm, &os);
if (ret)
return ret;
sig->data = os.data;
sig->length = os.length * 8;
return 0;
}
int
_hx509_public_encrypt(hx509_context context,
const heim_octet_string *cleartext,
const Certificate *cert,
heim_oid *encryption_oid,
heim_octet_string *ciphertext)
{
const SubjectPublicKeyInfo *spi;
unsigned char *to;
int tosize;
int ret;
RSA *rsa;
size_t size;
const unsigned char *p;
ciphertext->data = NULL;
ciphertext->length = 0;
spi = &cert->tbsCertificate.subjectPublicKeyInfo;
p = spi->subjectPublicKey.data;
size = spi->subjectPublicKey.length / 8;
rsa = d2i_RSAPublicKey(NULL, &p, size);
if (rsa == NULL) {
hx509_set_error_string(context, 0, ENOMEM, "out of memory");
return ENOMEM;
}
tosize = RSA_size(rsa);
to = malloc(tosize);
if (to == NULL) {
RSA_free(rsa);
hx509_set_error_string(context, 0, ENOMEM, "out of memory");
return ENOMEM;
}
ret = RSA_public_encrypt(cleartext->length,
(unsigned char *)cleartext->data,
to, rsa, RSA_PKCS1_PADDING);
RSA_free(rsa);
if (ret <= 0) {
free(to);
hx509_set_error_string(context, 0, HX509_CRYPTO_RSA_PUBLIC_ENCRYPT,
"RSA public encrypt failed with %d", ret);
return HX509_CRYPTO_RSA_PUBLIC_ENCRYPT;
}
if (ret > tosize)
_hx509_abort("internal rsa decryption failure: ret > tosize");
ciphertext->length = ret;
ciphertext->data = to;
ret = der_copy_oid(ASN1_OID_ID_PKCS1_RSAENCRYPTION, encryption_oid);
if (ret) {
der_free_octet_string(ciphertext);
hx509_set_error_string(context, 0, ENOMEM, "out of memory");
return ENOMEM;
}
return 0;
}
int
hx509_private_key_private_decrypt(hx509_context context,
const heim_octet_string *ciphertext,
const heim_oid *encryption_oid,
hx509_private_key p,
heim_octet_string *cleartext)
{
int ret;
cleartext->data = NULL;
cleartext->length = 0;
if (p->private_key.rsa == NULL) {
hx509_set_error_string(context, 0, HX509_PRIVATE_KEY_MISSING,
"Private RSA key missing");
return HX509_PRIVATE_KEY_MISSING;
}
cleartext->length = RSA_size(p->private_key.rsa);
cleartext->data = malloc(cleartext->length);
if (cleartext->data == NULL) {
hx509_set_error_string(context, 0, ENOMEM, "out of memory");
return ENOMEM;
}
ret = RSA_private_decrypt(ciphertext->length, ciphertext->data,
cleartext->data,
p->private_key.rsa,
RSA_PKCS1_PADDING);
if (ret <= 0) {
der_free_octet_string(cleartext);
hx509_set_error_string(context, 0, HX509_CRYPTO_RSA_PRIVATE_DECRYPT,
"Failed to decrypt using private key: %d", ret);
return HX509_CRYPTO_RSA_PRIVATE_DECRYPT;
}
if (cleartext->length < (size_t)ret)
_hx509_abort("internal rsa decryption failure: ret > tosize");
cleartext->length = ret;
return 0;
}
int
hx509_parse_private_key(hx509_context context,
const AlgorithmIdentifier *keyai,
const void *data,
size_t len,
hx509_key_format_t format,
hx509_private_key *private_key)
{
struct hx509_private_key_ops *ops;
int ret;
*private_key = NULL;
ops = hx509_find_private_alg(&keyai->algorithm);
if (ops == NULL) {
hx509_clear_error_string(context);
return HX509_SIG_ALG_NO_SUPPORTED;
}
ret = hx509_private_key_init(private_key, ops, NULL);
if (ret) {
hx509_set_error_string(context, 0, ret, "out of memory");
return ret;
}
ret = (*ops->import)(context, keyai, data, len, format, *private_key);
if (ret)
hx509_private_key_free(private_key);
return ret;
}
/*
*
*/
int
hx509_private_key2SPKI(hx509_context context,
hx509_private_key private_key,
SubjectPublicKeyInfo *spki)
{
const struct hx509_private_key_ops *ops = private_key->ops;
if (ops == NULL || ops->get_spki == NULL) {
hx509_set_error_string(context, 0, HX509_UNIMPLEMENTED_OPERATION,
"Private key have no key2SPKI function");
return HX509_UNIMPLEMENTED_OPERATION;
}
return (*ops->get_spki)(context, private_key, spki);
}
int
_hx509_generate_private_key_init(hx509_context context,
const heim_oid *oid,
struct hx509_generate_private_context **ctx)
{
*ctx = NULL;
if (der_heim_oid_cmp(oid, ASN1_OID_ID_PKCS1_RSAENCRYPTION) != 0) {
hx509_set_error_string(context, 0, EINVAL,
"private key not an RSA key");
return EINVAL;
}
*ctx = calloc(1, sizeof(**ctx));
if (*ctx == NULL) {
hx509_set_error_string(context, 0, ENOMEM, "out of memory");
return ENOMEM;
}
(*ctx)->key_oid = oid;
return 0;
}
int
_hx509_generate_private_key_is_ca(hx509_context context,
struct hx509_generate_private_context *ctx)
{
ctx->isCA = 1;
return 0;
}
int
_hx509_generate_private_key_bits(hx509_context context,
struct hx509_generate_private_context *ctx,
unsigned long bits)
{
ctx->num_bits = bits;
return 0;
}
void
_hx509_generate_private_key_free(struct hx509_generate_private_context **ctx)
{
free(*ctx);
*ctx = NULL;
}
int
_hx509_generate_private_key(hx509_context context,
struct hx509_generate_private_context *ctx,
hx509_private_key *private_key)
{
struct hx509_private_key_ops *ops;
int ret;
*private_key = NULL;
ops = hx509_find_private_alg(ctx->key_oid);
if (ops == NULL) {
hx509_clear_error_string(context);
return HX509_SIG_ALG_NO_SUPPORTED;
}
ret = hx509_private_key_init(private_key, ops, NULL);
if (ret) {
hx509_set_error_string(context, 0, ret, "out of memory");
return ret;
}
ret = (*ops->generate_private_key)(context, ctx, *private_key);
if (ret)
hx509_private_key_free(private_key);
return ret;
}
/*
*
*/
const AlgorithmIdentifier *
hx509_signature_sha512(void)
{ return &_hx509_signature_sha512_data; }
const AlgorithmIdentifier *
hx509_signature_sha384(void)
{ return &_hx509_signature_sha384_data; }
const AlgorithmIdentifier *
hx509_signature_sha256(void)
{ return &_hx509_signature_sha256_data; }
const AlgorithmIdentifier *
hx509_signature_sha1(void)
{ return &_hx509_signature_sha1_data; }
const AlgorithmIdentifier *
hx509_signature_md5(void)
{ return &_hx509_signature_md5_data; }
const AlgorithmIdentifier *
hx509_signature_ecPublicKey(void)
{ return &_hx509_signature_ecPublicKey; }
const AlgorithmIdentifier *
hx509_signature_ecdsa_with_sha256(void)
{ return &_hx509_signature_ecdsa_with_sha256_data; }
const AlgorithmIdentifier *
hx509_signature_ecdsa_with_sha1(void)
{ return &_hx509_signature_ecdsa_with_sha1_data; }
const AlgorithmIdentifier *
hx509_signature_rsa_with_sha512(void)
{ return &_hx509_signature_rsa_with_sha512_data; }
const AlgorithmIdentifier *
hx509_signature_rsa_with_sha384(void)
{ return &_hx509_signature_rsa_with_sha384_data; }
const AlgorithmIdentifier *
hx509_signature_rsa_with_sha256(void)
{ return &_hx509_signature_rsa_with_sha256_data; }
const AlgorithmIdentifier *
hx509_signature_rsa_with_sha1(void)
{ return &_hx509_signature_rsa_with_sha1_data; }
const AlgorithmIdentifier *
hx509_signature_rsa_with_md5(void)
{ return &_hx509_signature_rsa_with_md5_data; }
const AlgorithmIdentifier *
hx509_signature_rsa(void)
{ return &_hx509_signature_rsa_data; }
const AlgorithmIdentifier *
hx509_signature_rsa_pkcs1_x509(void)
{ return &_hx509_signature_rsa_pkcs1_x509_data; }
const AlgorithmIdentifier *
hx509_crypto_des_rsdi_ede3_cbc(void)
{ return &_hx509_des_rsdi_ede3_cbc_oid; }
const AlgorithmIdentifier *
hx509_crypto_aes128_cbc(void)
{ return &_hx509_crypto_aes128_cbc_data; }
const AlgorithmIdentifier *
hx509_crypto_aes256_cbc(void)
{ return &_hx509_crypto_aes256_cbc_data; }
/*
*
*/
const AlgorithmIdentifier * _hx509_crypto_default_sig_alg =
&_hx509_signature_rsa_with_sha256_data;
const AlgorithmIdentifier * _hx509_crypto_default_digest_alg =
&_hx509_signature_sha256_data;
const AlgorithmIdentifier * _hx509_crypto_default_secret_alg =
&_hx509_crypto_aes128_cbc_data;
/*
*
*/
int
hx509_private_key_init(hx509_private_key *key,
hx509_private_key_ops *ops,
void *keydata)
{
*key = calloc(1, sizeof(**key));
if (*key == NULL)
return ENOMEM;
(*key)->ref = 1;
(*key)->ops = ops;
(*key)->private_key.keydata = keydata;
return 0;
}
hx509_private_key
_hx509_private_key_ref(hx509_private_key key)
{
if (key->ref == 0)
_hx509_abort("key refcount <= 0 on ref");
key->ref++;
if (key->ref == UINT_MAX)
_hx509_abort("key refcount == UINT_MAX on ref");
return key;
}
const char *
_hx509_private_pem_name(hx509_private_key key)
{
return key->ops->pemtype;
}
int
hx509_private_key_free(hx509_private_key *key)
{
if (key == NULL || *key == NULL)
return 0;
if ((*key)->ref == 0)
_hx509_abort("key refcount == 0 on free");
if (--(*key)->ref > 0)
return 0;
if ((*key)->ops && der_heim_oid_cmp((*key)->ops->key_oid, ASN1_OID_ID_PKCS1_RSAENCRYPTION) == 0) {
if ((*key)->private_key.rsa)
RSA_free((*key)->private_key.rsa);
#ifdef HAVE_OPENSSL
} else if ((*key)->ops && der_heim_oid_cmp((*key)->ops->key_oid, ASN1_OID_ID_ECPUBLICKEY) == 0) {
if ((*key)->private_key.ecdsa)
EC_KEY_free((*key)->private_key.ecdsa);
#endif
}
(*key)->private_key.rsa = NULL;
free(*key);
*key = NULL;
return 0;
}
void
hx509_private_key_assign_rsa(hx509_private_key key, void *ptr)
{
if (key->private_key.rsa)
RSA_free(key->private_key.rsa);
key->private_key.rsa = ptr;
key->signature_alg = ASN1_OID_ID_PKCS1_SHA1WITHRSAENCRYPTION;
key->md = &pkcs1_rsa_sha1_alg;
}
int
_hx509_private_key_oid(hx509_context context,
const hx509_private_key key,
heim_oid *data)
{
int ret;
ret = der_copy_oid(key->ops->key_oid, data);
if (ret)
hx509_set_error_string(context, 0, ret, "malloc out of memory");
return ret;
}
int
_hx509_private_key_exportable(hx509_private_key key)
{
if (key->ops->export == NULL)
return 0;
return 1;
}
BIGNUM *
_hx509_private_key_get_internal(hx509_context context,
hx509_private_key key,
const char *type)
{
if (key->ops->get_internal == NULL)
return NULL;
return (*key->ops->get_internal)(context, key, type);
}
int
_hx509_private_key_export(hx509_context context,
const hx509_private_key key,
hx509_key_format_t format,
heim_octet_string *data)
{
if (key->ops->export == NULL) {
hx509_clear_error_string(context);
return HX509_UNIMPLEMENTED_OPERATION;
}
return (*key->ops->export)(context, key, format, data);
}
/*
*
*/
struct hx509cipher {
const char *name;
int flags;
#define CIPHER_WEAK 1
const heim_oid *oid;
const AlgorithmIdentifier *(*ai_func)(void);
const EVP_CIPHER *(*evp_func)(void);
int (*get_params)(hx509_context, const hx509_crypto,
const heim_octet_string *, heim_octet_string *);
int (*set_params)(hx509_context, const heim_octet_string *,
hx509_crypto, heim_octet_string *);
};
struct hx509_crypto_data {
char *name;
int flags;
#define ALLOW_WEAK 1
#define PADDING_NONE 2
#define PADDING_PKCS7 4
#define PADDING_FLAGS (2|4)
const struct hx509cipher *cipher;
const EVP_CIPHER *c;
heim_octet_string key;
heim_oid oid;
void *param;
};
/*
*
*/
static unsigned private_rc2_40_oid_data[] = { 127, 1 };
static heim_oid asn1_oid_private_rc2_40 =
{ 2, private_rc2_40_oid_data };
/*
*
*/
static int
CMSCBCParam_get(hx509_context context, const hx509_crypto crypto,
const heim_octet_string *ivec, heim_octet_string *param)
{
size_t size;
int ret;
assert(crypto->param == NULL);
if (ivec == NULL)
return 0;
ASN1_MALLOC_ENCODE(CMSCBCParameter, param->data, param->length,
ivec, &size, ret);
if (ret == 0 && size != param->length)
_hx509_abort("Internal asn1 encoder failure");
if (ret)
hx509_clear_error_string(context);
return ret;
}
static int
CMSCBCParam_set(hx509_context context, const heim_octet_string *param,
hx509_crypto crypto, heim_octet_string *ivec)
{
int ret;
if (ivec == NULL)
return 0;
ret = decode_CMSCBCParameter(param->data, param->length, ivec, NULL);
if (ret)
hx509_clear_error_string(context);
return ret;
}
struct _RC2_params {
int maximum_effective_key;
};
static int
CMSRC2CBCParam_get(hx509_context context, const hx509_crypto crypto,
const heim_octet_string *ivec, heim_octet_string *param)
{
CMSRC2CBCParameter rc2params;
const struct _RC2_params *p = crypto->param;
int maximum_effective_key = 128;
size_t size;
int ret;
memset(&rc2params, 0, sizeof(rc2params));
if (p)
maximum_effective_key = p->maximum_effective_key;
switch(maximum_effective_key) {
case 40:
rc2params.rc2ParameterVersion = 160;
break;
case 64:
rc2params.rc2ParameterVersion = 120;
break;
case 128:
rc2params.rc2ParameterVersion = 58;
break;
}
rc2params.iv = *ivec;
ASN1_MALLOC_ENCODE(CMSRC2CBCParameter, param->data, param->length,
&rc2params, &size, ret);
if (ret == 0 && size != param->length)
_hx509_abort("Internal asn1 encoder failure");
return ret;
}
static int
CMSRC2CBCParam_set(hx509_context context, const heim_octet_string *param,
hx509_crypto crypto, heim_octet_string *ivec)
{
CMSRC2CBCParameter rc2param;
struct _RC2_params *p;
size_t size;
int ret;
ret = decode_CMSRC2CBCParameter(param->data, param->length,
&rc2param, &size);
if (ret) {
hx509_clear_error_string(context);
return ret;
}
p = calloc(1, sizeof(*p));
if (p == NULL) {
free_CMSRC2CBCParameter(&rc2param);
hx509_clear_error_string(context);
return ENOMEM;
}
switch(rc2param.rc2ParameterVersion) {
case 160:
crypto->c = EVP_rc2_40_cbc();
p->maximum_effective_key = 40;
break;
case 120:
crypto->c = EVP_rc2_64_cbc();
p->maximum_effective_key = 64;
break;
case 58:
crypto->c = EVP_rc2_cbc();
p->maximum_effective_key = 128;
break;
default:
free(p);
free_CMSRC2CBCParameter(&rc2param);
return HX509_CRYPTO_SIG_INVALID_FORMAT;
}
if (ivec)
ret = der_copy_octet_string(&rc2param.iv, ivec);
free_CMSRC2CBCParameter(&rc2param);
if (ret) {
free(p);
hx509_clear_error_string(context);
} else
crypto->param = p;
return ret;
}
/*
*
*/
static const struct hx509cipher ciphers[] = {
{
"rc2-cbc",
CIPHER_WEAK,
ASN1_OID_ID_PKCS3_RC2_CBC,
NULL,
EVP_rc2_cbc,
CMSRC2CBCParam_get,
CMSRC2CBCParam_set
},
{
"rc2-cbc",
CIPHER_WEAK,
ASN1_OID_ID_RSADSI_RC2_CBC,
NULL,
EVP_rc2_cbc,
CMSRC2CBCParam_get,
CMSRC2CBCParam_set
},
{
"rc2-40-cbc",
CIPHER_WEAK,
&asn1_oid_private_rc2_40,
NULL,
EVP_rc2_40_cbc,
CMSRC2CBCParam_get,
CMSRC2CBCParam_set
},
{
"des-ede3-cbc",
0,
ASN1_OID_ID_PKCS3_DES_EDE3_CBC,
NULL,
EVP_des_ede3_cbc,
CMSCBCParam_get,
CMSCBCParam_set
},
{
"des-ede3-cbc",
0,
ASN1_OID_ID_RSADSI_DES_EDE3_CBC,
hx509_crypto_des_rsdi_ede3_cbc,
EVP_des_ede3_cbc,
CMSCBCParam_get,
CMSCBCParam_set
},
{
"aes-128-cbc",
0,
ASN1_OID_ID_AES_128_CBC,
hx509_crypto_aes128_cbc,
EVP_aes_128_cbc,
CMSCBCParam_get,
CMSCBCParam_set
},
{
"aes-192-cbc",
0,
ASN1_OID_ID_AES_192_CBC,
NULL,
EVP_aes_192_cbc,
CMSCBCParam_get,
CMSCBCParam_set
},
{
"aes-256-cbc",
0,
ASN1_OID_ID_AES_256_CBC,
hx509_crypto_aes256_cbc,
EVP_aes_256_cbc,
CMSCBCParam_get,
CMSCBCParam_set
}
};
static const struct hx509cipher *
find_cipher_by_oid(const heim_oid *oid)
{
size_t i;
for (i = 0; i < sizeof(ciphers)/sizeof(ciphers[0]); i++)
if (der_heim_oid_cmp(oid, ciphers[i].oid) == 0)
return &ciphers[i];
return NULL;
}
static const struct hx509cipher *
find_cipher_by_name(const char *name)
{
size_t i;
for (i = 0; i < sizeof(ciphers)/sizeof(ciphers[0]); i++)
if (strcasecmp(name, ciphers[i].name) == 0)
return &ciphers[i];
return NULL;
}
const heim_oid *
hx509_crypto_enctype_by_name(const char *name)
{
const struct hx509cipher *cipher;
cipher = find_cipher_by_name(name);
if (cipher == NULL)
return NULL;
return cipher->oid;
}
int
hx509_crypto_init(hx509_context context,
const char *provider,
const heim_oid *enctype,
hx509_crypto *crypto)
{
const struct hx509cipher *cipher;
*crypto = NULL;
cipher = find_cipher_by_oid(enctype);
if (cipher == NULL) {
hx509_set_error_string(context, 0, HX509_ALG_NOT_SUPP,
"Algorithm not supported");
return HX509_ALG_NOT_SUPP;
}
*crypto = calloc(1, sizeof(**crypto));
if (*crypto == NULL) {
hx509_clear_error_string(context);
return ENOMEM;
}
(*crypto)->flags = PADDING_PKCS7;
(*crypto)->cipher = cipher;
(*crypto)->c = (*cipher->evp_func)();
if (der_copy_oid(enctype, &(*crypto)->oid)) {
hx509_crypto_destroy(*crypto);
*crypto = NULL;
hx509_clear_error_string(context);
return ENOMEM;
}
return 0;
}
const char *
hx509_crypto_provider(hx509_crypto crypto)
{
return "unknown";
}
void
hx509_crypto_destroy(hx509_crypto crypto)
{
if (crypto->name)
free(crypto->name);
if (crypto->key.data)
free(crypto->key.data);
if (crypto->param)
free(crypto->param);
der_free_oid(&crypto->oid);
memset(crypto, 0, sizeof(*crypto));
free(crypto);
}
int
hx509_crypto_set_key_name(hx509_crypto crypto, const char *name)
{
return 0;
}
void
hx509_crypto_allow_weak(hx509_crypto crypto)
{
crypto->flags |= ALLOW_WEAK;
}
void
hx509_crypto_set_padding(hx509_crypto crypto, int padding_type)
{
switch (padding_type) {
case HX509_CRYPTO_PADDING_PKCS7:
crypto->flags &= ~PADDING_FLAGS;
crypto->flags |= PADDING_PKCS7;
break;
case HX509_CRYPTO_PADDING_NONE:
crypto->flags &= ~PADDING_FLAGS;
crypto->flags |= PADDING_NONE;
break;
default:
_hx509_abort("Invalid padding");
}
}
int
hx509_crypto_set_key_data(hx509_crypto crypto, const void *data, size_t length)
{
if (EVP_CIPHER_key_length(crypto->c) > (int)length)
return HX509_CRYPTO_INTERNAL_ERROR;
if (crypto->key.data) {
free(crypto->key.data);
crypto->key.data = NULL;
crypto->key.length = 0;
}
crypto->key.data = malloc(length);
if (crypto->key.data == NULL)
return ENOMEM;
memcpy(crypto->key.data, data, length);
crypto->key.length = length;
return 0;
}
int
hx509_crypto_set_random_key(hx509_crypto crypto, heim_octet_string *key)
{
if (crypto->key.data) {
free(crypto->key.data);
crypto->key.length = 0;
}
crypto->key.length = EVP_CIPHER_key_length(crypto->c);
crypto->key.data = malloc(crypto->key.length);
if (crypto->key.data == NULL) {
crypto->key.length = 0;
return ENOMEM;
}
if (RAND_bytes(crypto->key.data, crypto->key.length) <= 0) {
free(crypto->key.data);
crypto->key.data = NULL;
crypto->key.length = 0;
return HX509_CRYPTO_INTERNAL_ERROR;
}
if (key)
return der_copy_octet_string(&crypto->key, key);
else
return 0;
}
int
hx509_crypto_set_params(hx509_context context,
hx509_crypto crypto,
const heim_octet_string *param,
heim_octet_string *ivec)
{
return (*crypto->cipher->set_params)(context, param, crypto, ivec);
}
int
hx509_crypto_get_params(hx509_context context,
hx509_crypto crypto,
const heim_octet_string *ivec,
heim_octet_string *param)
{
return (*crypto->cipher->get_params)(context, crypto, ivec, param);
}
int
hx509_crypto_random_iv(hx509_crypto crypto, heim_octet_string *ivec)
{
ivec->length = EVP_CIPHER_iv_length(crypto->c);
ivec->data = malloc(ivec->length);
if (ivec->data == NULL) {
ivec->length = 0;
return ENOMEM;
}
if (RAND_bytes(ivec->data, ivec->length) <= 0) {
free(ivec->data);
ivec->data = NULL;
ivec->length = 0;
return HX509_CRYPTO_INTERNAL_ERROR;
}
return 0;
}
int
hx509_crypto_encrypt(hx509_crypto crypto,
const void *data,
const size_t length,
const heim_octet_string *ivec,
heim_octet_string **ciphertext)
{
EVP_CIPHER_CTX evp;
size_t padsize, bsize;
int ret;
*ciphertext = NULL;
if ((crypto->cipher->flags & CIPHER_WEAK) &&
(crypto->flags & ALLOW_WEAK) == 0)
return HX509_CRYPTO_ALGORITHM_BEST_BEFORE;
assert(EVP_CIPHER_iv_length(crypto->c) == (int)ivec->length);
EVP_CIPHER_CTX_init(&evp);
ret = EVP_CipherInit_ex(&evp, crypto->c, NULL,
crypto->key.data, ivec->data, 1);
if (ret != 1) {
EVP_CIPHER_CTX_cleanup(&evp);
ret = HX509_CRYPTO_INTERNAL_ERROR;
goto out;
}
*ciphertext = calloc(1, sizeof(**ciphertext));
if (*ciphertext == NULL) {
ret = ENOMEM;
goto out;
}
assert(crypto->flags & PADDING_FLAGS);
bsize = EVP_CIPHER_block_size(crypto->c);
padsize = 0;
if (crypto->flags & PADDING_NONE) {
if (bsize != 1 && (length % bsize) != 0)
return HX509_CMS_PADDING_ERROR;
} else if (crypto->flags & PADDING_PKCS7) {
if (bsize != 1)
padsize = bsize - (length % bsize);
}
(*ciphertext)->length = length + padsize;
(*ciphertext)->data = malloc(length + padsize);
if ((*ciphertext)->data == NULL) {
ret = ENOMEM;
goto out;
}
memcpy((*ciphertext)->data, data, length);
if (padsize) {
size_t i;
unsigned char *p = (*ciphertext)->data;
p += length;
for (i = 0; i < padsize; i++)
*p++ = padsize;
}
ret = EVP_Cipher(&evp, (*ciphertext)->data,
(*ciphertext)->data,
length + padsize);
if (ret != 1) {
ret = HX509_CRYPTO_INTERNAL_ERROR;
goto out;
}
ret = 0;
out:
if (ret) {
if (*ciphertext) {
if ((*ciphertext)->data) {
free((*ciphertext)->data);
}
free(*ciphertext);
*ciphertext = NULL;
}
}
EVP_CIPHER_CTX_cleanup(&evp);
return ret;
}
int
hx509_crypto_decrypt(hx509_crypto crypto,
const void *data,
const size_t length,
heim_octet_string *ivec,
heim_octet_string *clear)
{
EVP_CIPHER_CTX evp;
void *idata = NULL;
int ret;
clear->data = NULL;
clear->length = 0;
if ((crypto->cipher->flags & CIPHER_WEAK) &&
(crypto->flags & ALLOW_WEAK) == 0)
return HX509_CRYPTO_ALGORITHM_BEST_BEFORE;
if (ivec && EVP_CIPHER_iv_length(crypto->c) < (int)ivec->length)
return HX509_CRYPTO_INTERNAL_ERROR;
if (crypto->key.data == NULL)
return HX509_CRYPTO_INTERNAL_ERROR;
if (ivec)
idata = ivec->data;
EVP_CIPHER_CTX_init(&evp);
ret = EVP_CipherInit_ex(&evp, crypto->c, NULL,
crypto->key.data, idata, 0);
if (ret != 1) {
EVP_CIPHER_CTX_cleanup(&evp);
return HX509_CRYPTO_INTERNAL_ERROR;
}
clear->length = length;
clear->data = malloc(length);
if (clear->data == NULL) {
EVP_CIPHER_CTX_cleanup(&evp);
clear->length = 0;
return ENOMEM;
}
if (EVP_Cipher(&evp, clear->data, data, length) != 1) {
return HX509_CRYPTO_INTERNAL_ERROR;
}
EVP_CIPHER_CTX_cleanup(&evp);
if ((crypto->flags & PADDING_PKCS7) && EVP_CIPHER_block_size(crypto->c) > 1) {
int padsize;
unsigned char *p;
int j, bsize = EVP_CIPHER_block_size(crypto->c);
if ((int)clear->length < bsize) {
ret = HX509_CMS_PADDING_ERROR;
goto out;
}
p = clear->data;
p += clear->length - 1;
padsize = *p;
if (padsize > bsize) {
ret = HX509_CMS_PADDING_ERROR;
goto out;
}
clear->length -= padsize;
for (j = 0; j < padsize; j++) {
if (*p-- != padsize) {
ret = HX509_CMS_PADDING_ERROR;
goto out;
}
}
}
return 0;
out:
if (clear->data)
free(clear->data);
clear->data = NULL;
clear->length = 0;
return ret;
}
typedef int (*PBE_string2key_func)(hx509_context,
const char *,
const heim_octet_string *,
hx509_crypto *, heim_octet_string *,
heim_octet_string *,
const heim_oid *, const EVP_MD *);
static int
PBE_string2key(hx509_context context,
const char *password,
const heim_octet_string *parameters,
hx509_crypto *crypto,
heim_octet_string *key, heim_octet_string *iv,
const heim_oid *enc_oid,
const EVP_MD *md)
{
PKCS12_PBEParams p12params;
int passwordlen;
hx509_crypto c;
int iter, saltlen, ret;
unsigned char *salt;
passwordlen = password ? strlen(password) : 0;
if (parameters == NULL)
return HX509_ALG_NOT_SUPP;
ret = decode_PKCS12_PBEParams(parameters->data,
parameters->length,
&p12params, NULL);
if (ret)
goto out;
if (p12params.iterations)
iter = *p12params.iterations;
else
iter = 1;
salt = p12params.salt.data;
saltlen = p12params.salt.length;
if (!PKCS12_key_gen (password, passwordlen, salt, saltlen,
PKCS12_KEY_ID, iter, key->length, key->data, md)) {
ret = HX509_CRYPTO_INTERNAL_ERROR;
goto out;
}
if (!PKCS12_key_gen (password, passwordlen, salt, saltlen,
PKCS12_IV_ID, iter, iv->length, iv->data, md)) {
ret = HX509_CRYPTO_INTERNAL_ERROR;
goto out;
}
ret = hx509_crypto_init(context, NULL, enc_oid, &c);
if (ret)
goto out;
hx509_crypto_allow_weak(c);
ret = hx509_crypto_set_key_data(c, key->data, key->length);
if (ret) {
hx509_crypto_destroy(c);
goto out;
}
*crypto = c;
out:
free_PKCS12_PBEParams(&p12params);
return ret;
}
static const heim_oid *
find_string2key(const heim_oid *oid,
const EVP_CIPHER **c,
const EVP_MD **md,
PBE_string2key_func *s2k)
{
if (der_heim_oid_cmp(oid, ASN1_OID_ID_PBEWITHSHAAND40BITRC2_CBC) == 0) {
*c = EVP_rc2_40_cbc();
*md = EVP_sha1();
*s2k = PBE_string2key;
return &asn1_oid_private_rc2_40;
} else if (der_heim_oid_cmp(oid, ASN1_OID_ID_PBEWITHSHAAND128BITRC2_CBC) == 0) {
*c = EVP_rc2_cbc();
*md = EVP_sha1();
*s2k = PBE_string2key;
return ASN1_OID_ID_PKCS3_RC2_CBC;
#if 0
} else if (der_heim_oid_cmp(oid, ASN1_OID_ID_PBEWITHSHAAND40BITRC4) == 0) {
*c = EVP_rc4_40();
*md = EVP_sha1();
*s2k = PBE_string2key;
return NULL;
} else if (der_heim_oid_cmp(oid, ASN1_OID_ID_PBEWITHSHAAND128BITRC4) == 0) {
*c = EVP_rc4();
*md = EVP_sha1();
*s2k = PBE_string2key;
return ASN1_OID_ID_PKCS3_RC4;
#endif
} else if (der_heim_oid_cmp(oid, ASN1_OID_ID_PBEWITHSHAAND3_KEYTRIPLEDES_CBC) == 0) {
*c = EVP_des_ede3_cbc();
*md = EVP_sha1();
*s2k = PBE_string2key;
return ASN1_OID_ID_PKCS3_DES_EDE3_CBC;
}
return NULL;
}
/*
*
*/
int
_hx509_pbe_encrypt(hx509_context context,
hx509_lock lock,
const AlgorithmIdentifier *ai,
const heim_octet_string *content,
heim_octet_string *econtent)
{
hx509_clear_error_string(context);
return EINVAL;
}
/*
*
*/
int
_hx509_pbe_decrypt(hx509_context context,
hx509_lock lock,
const AlgorithmIdentifier *ai,
const heim_octet_string *econtent,
heim_octet_string *content)
{
const struct _hx509_password *pw;
heim_octet_string key, iv;
const heim_oid *enc_oid;
const EVP_CIPHER *c;
const EVP_MD *md;
PBE_string2key_func s2k;
int ret = 0;
size_t i;
memset(&key, 0, sizeof(key));
memset(&iv, 0, sizeof(iv));
memset(content, 0, sizeof(*content));
enc_oid = find_string2key(&ai->algorithm, &c, &md, &s2k);
if (enc_oid == NULL) {
hx509_set_error_string(context, 0, HX509_ALG_NOT_SUPP,
"String to key algorithm not supported");
ret = HX509_ALG_NOT_SUPP;
goto out;
}
key.length = EVP_CIPHER_key_length(c);
key.data = malloc(key.length);
if (key.data == NULL) {
ret = ENOMEM;
hx509_clear_error_string(context);
goto out;
}
iv.length = EVP_CIPHER_iv_length(c);
iv.data = malloc(iv.length);
if (iv.data == NULL) {
ret = ENOMEM;
hx509_clear_error_string(context);
goto out;
}
pw = _hx509_lock_get_passwords(lock);
ret = HX509_CRYPTO_INTERNAL_ERROR;
for (i = 0; i < pw->len + 1; i++) {
hx509_crypto crypto;
const char *password;
if (i < pw->len)
password = pw->val[i];
else if (i < pw->len + 1)
password = "";
else
password = NULL;
ret = (*s2k)(context, password, ai->parameters, &crypto,
&key, &iv, enc_oid, md);
if (ret)
goto out;
ret = hx509_crypto_decrypt(crypto,
econtent->data,
econtent->length,
&iv,
content);
hx509_crypto_destroy(crypto);
if (ret == 0)
goto out;
}
out:
if (key.data)
der_free_octet_string(&key);
if (iv.data)
der_free_octet_string(&iv);
return ret;
}
/*
*
*/
static int
match_keys_rsa(hx509_cert c, hx509_private_key private_key)
{
const Certificate *cert;
const SubjectPublicKeyInfo *spi;
RSAPublicKey pk;
RSA *rsa;
size_t size;
int ret;
if (private_key->private_key.rsa == NULL)
return 0;
rsa = private_key->private_key.rsa;
if (rsa->d == NULL || rsa->p == NULL || rsa->q == NULL)
return 0;
cert = _hx509_get_cert(c);
spi = &cert->tbsCertificate.subjectPublicKeyInfo;
rsa = RSA_new();
if (rsa == NULL)
return 0;
ret = decode_RSAPublicKey(spi->subjectPublicKey.data,
spi->subjectPublicKey.length / 8,
&pk, &size);
if (ret) {
RSA_free(rsa);
return 0;
}
rsa->n = heim_int2BN(&pk.modulus);
rsa->e = heim_int2BN(&pk.publicExponent);
free_RSAPublicKey(&pk);
rsa->d = BN_dup(private_key->private_key.rsa->d);
rsa->p = BN_dup(private_key->private_key.rsa->p);
rsa->q = BN_dup(private_key->private_key.rsa->q);
rsa->dmp1 = BN_dup(private_key->private_key.rsa->dmp1);
rsa->dmq1 = BN_dup(private_key->private_key.rsa->dmq1);
rsa->iqmp = BN_dup(private_key->private_key.rsa->iqmp);
if (rsa->n == NULL || rsa->e == NULL ||
rsa->d == NULL || rsa->p == NULL|| rsa->q == NULL ||
rsa->dmp1 == NULL || rsa->dmq1 == NULL) {
RSA_free(rsa);
return 0;
}
ret = RSA_check_key(rsa);
RSA_free(rsa);
return ret == 1;
}
static int
match_keys_ec(hx509_cert c, hx509_private_key private_key)
{
return 1; /* XXX use EC_KEY_check_key */
}
int
_hx509_match_keys(hx509_cert c, hx509_private_key key)
{
if (der_heim_oid_cmp(key->ops->key_oid, ASN1_OID_ID_PKCS1_RSAENCRYPTION) == 0)
return match_keys_rsa(c, key);
if (der_heim_oid_cmp(key->ops->key_oid, ASN1_OID_ID_ECPUBLICKEY) == 0)
return match_keys_ec(c, key);
return 0;
}
static const heim_oid *
find_keytype(const hx509_private_key key)
{
const struct signature_alg *md;
if (key == NULL)
return NULL;
md = find_sig_alg(key->signature_alg);
if (md == NULL)
return NULL;
return md->key_oid;
}
int
hx509_crypto_select(const hx509_context context,
int type,
const hx509_private_key source,
hx509_peer_info peer,
AlgorithmIdentifier *selected)
{
const AlgorithmIdentifier *def = NULL;
size_t i, j;
int ret, bits;
memset(selected, 0, sizeof(*selected));
if (type == HX509_SELECT_DIGEST) {
bits = SIG_DIGEST;
if (source)
def = alg_for_privatekey(source, type);
if (def == NULL)
def = _hx509_crypto_default_digest_alg;
} else if (type == HX509_SELECT_PUBLIC_SIG) {
bits = SIG_PUBLIC_SIG;
/* XXX depend on `source´ and `peer´ */
if (source)
def = alg_for_privatekey(source, type);
if (def == NULL)
def = _hx509_crypto_default_sig_alg;
} else if (type == HX509_SELECT_SECRET_ENC) {
bits = SIG_SECRET;
def = _hx509_crypto_default_secret_alg;
} else {
hx509_set_error_string(context, 0, EINVAL,
"Unknown type %d of selection", type);
return EINVAL;
}
if (peer) {
const heim_oid *keytype = NULL;
keytype = find_keytype(source);
for (i = 0; i < peer->len; i++) {
for (j = 0; sig_algs[j]; j++) {
if ((sig_algs[j]->flags & bits) != bits)
continue;
if (der_heim_oid_cmp(sig_algs[j]->sig_oid,
&peer->val[i].algorithm) != 0)
continue;
if (keytype && sig_algs[j]->key_oid &&
der_heim_oid_cmp(keytype, sig_algs[j]->key_oid))
continue;
/* found one, use that */
ret = copy_AlgorithmIdentifier(&peer->val[i], selected);
if (ret)
hx509_clear_error_string(context);
return ret;
}
if (bits & SIG_SECRET) {
const struct hx509cipher *cipher;
cipher = find_cipher_by_oid(&peer->val[i].algorithm);
if (cipher == NULL)
continue;
if (cipher->ai_func == NULL)
continue;
ret = copy_AlgorithmIdentifier(cipher->ai_func(), selected);
if (ret)
hx509_clear_error_string(context);
return ret;
}
}
}
/* use default */
ret = copy_AlgorithmIdentifier(def, selected);
if (ret)
hx509_clear_error_string(context);
return ret;
}
int
hx509_crypto_available(hx509_context context,
int type,
hx509_cert source,
AlgorithmIdentifier **val,
unsigned int *plen)
{
const heim_oid *keytype = NULL;
unsigned int len, i;
void *ptr;
int bits, ret;
*val = NULL;
if (type == HX509_SELECT_ALL) {
bits = SIG_DIGEST | SIG_PUBLIC_SIG | SIG_SECRET;
} else if (type == HX509_SELECT_DIGEST) {
bits = SIG_DIGEST;
} else if (type == HX509_SELECT_PUBLIC_SIG) {
bits = SIG_PUBLIC_SIG;
} else {
hx509_set_error_string(context, 0, EINVAL,
"Unknown type %d of available", type);
return EINVAL;
}
if (source)
keytype = find_keytype(_hx509_cert_private_key(source));
len = 0;
for (i = 0; sig_algs[i]; i++) {
if ((sig_algs[i]->flags & bits) == 0)
continue;
if (sig_algs[i]->sig_alg == NULL)
continue;
if (keytype && sig_algs[i]->key_oid &&
der_heim_oid_cmp(sig_algs[i]->key_oid, keytype))
continue;
/* found one, add that to the list */
ptr = realloc(*val, sizeof(**val) * (len + 1));
if (ptr == NULL)
goto out;
*val = ptr;
ret = copy_AlgorithmIdentifier(sig_algs[i]->sig_alg, &(*val)[len]);
if (ret)
goto out;
len++;
}
/* Add AES */
if (bits & SIG_SECRET) {
for (i = 0; i < sizeof(ciphers)/sizeof(ciphers[0]); i++) {
if (ciphers[i].flags & CIPHER_WEAK)
continue;
if (ciphers[i].ai_func == NULL)
continue;
ptr = realloc(*val, sizeof(**val) * (len + 1));
if (ptr == NULL)
goto out;
*val = ptr;
ret = copy_AlgorithmIdentifier((ciphers[i].ai_func)(), &(*val)[len]);
if (ret)
goto out;
len++;
}
}
*plen = len;
return 0;
out:
for (i = 0; i < len; i++)
free_AlgorithmIdentifier(&(*val)[i]);
free(*val);
*val = NULL;
hx509_set_error_string(context, 0, ENOMEM, "out of memory");
return ENOMEM;
}
void
hx509_crypto_free_algs(AlgorithmIdentifier *val,
unsigned int len)
{
unsigned int i;
for (i = 0; i < len; i++)
free_AlgorithmIdentifier(&val[i]);
free(val);
}