freebsd-nq/sys/dev/vr/if_vr.c
Pyun YongHyeon 6b284b784a Fix a multicast handling regression on VT6105M introduced in
vr(4) overhauling(r177050).

It seems that filtering multicast addresses with multicast CAM
entries require accessing 'CAM enable bit' for each CAM entry.
Subsequent accessing multicast CAM control register without
toggling the 'CAM enable bit' seem to no effects.
In order to fix that separate CAM setup from CAM mask configuration
and CAM entry modification. While I'm here add VLAN CAM filtering
feature which will be enabled in future(FreeBSD now can receive
VLAN id insertion/removal event from vlan(4) on the fly).

For VT6105M hardware, explicitly disable VLAN hardware tag
insertion/stripping and enable VLAN CAM filtering for VLAN id 0.
This shall make non-VLAN frames set VR_RXSTAT_VIDHIT bit in Rx
status word.

Added multicast/VLAN CAM address definition to header file.

PR:	kern/125010, kern/125024
MFC after:	1 week
2008-07-16 08:35:29 +00:00

2614 lines
67 KiB
C

/*-
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* VIA Rhine fast ethernet PCI NIC driver
*
* Supports various network adapters based on the VIA Rhine
* and Rhine II PCI controllers, including the D-Link DFE530TX.
* Datasheets are available at http://www.via.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The VIA Rhine controllers are similar in some respects to the
* the DEC tulip chips, except less complicated. The controller
* uses an MII bus and an external physical layer interface. The
* receiver has a one entry perfect filter and a 64-bit hash table
* multicast filter. Transmit and receive descriptors are similar
* to the tulip.
*
* Some Rhine chips has a serious flaw in its transmit DMA mechanism:
* transmit buffers must be longword aligned. Unfortunately,
* FreeBSD doesn't guarantee that mbufs will be filled in starting
* at longword boundaries, so we have to do a buffer copy before
* transmission.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <dev/vr/if_vrreg.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
MODULE_DEPEND(vr, pci, 1, 1, 1);
MODULE_DEPEND(vr, ether, 1, 1, 1);
MODULE_DEPEND(vr, miibus, 1, 1, 1);
/* Define to show Rx/Tx error status. */
#undef VR_SHOW_ERRORS
#define VR_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
/*
* Various supported device vendors/types, their names & quirks.
*/
#define VR_Q_NEEDALIGN (1<<0)
#define VR_Q_CSUM (1<<1)
#define VR_Q_CAM (1<<2)
static struct vr_type {
u_int16_t vr_vid;
u_int16_t vr_did;
int vr_quirks;
char *vr_name;
} vr_devs[] = {
{ VIA_VENDORID, VIA_DEVICEID_RHINE,
VR_Q_NEEDALIGN,
"VIA VT3043 Rhine I 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
VR_Q_NEEDALIGN,
"VIA VT86C100A Rhine II 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
0,
"VIA VT6102 Rhine II 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
0,
"VIA VT6105 Rhine III 10/100BaseTX" },
{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
VR_Q_CSUM | VR_Q_CAM,
"VIA VT6105M Rhine III 10/100BaseTX" },
{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
VR_Q_NEEDALIGN,
"Delta Electronics Rhine II 10/100BaseTX" },
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
VR_Q_NEEDALIGN,
"Addtron Technology Rhine II 10/100BaseTX" },
{ 0, 0, 0, NULL }
};
static int vr_probe(device_t);
static int vr_attach(device_t);
static int vr_detach(device_t);
static int vr_shutdown(device_t);
static int vr_suspend(device_t);
static int vr_resume(device_t);
static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int vr_dma_alloc(struct vr_softc *);
static void vr_dma_free(struct vr_softc *);
static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
static int vr_newbuf(struct vr_softc *, int);
#ifndef __NO_STRICT_ALIGNMENT
static __inline void vr_fixup_rx(struct mbuf *);
#endif
static void vr_rxeof(struct vr_softc *);
static void vr_txeof(struct vr_softc *);
static void vr_tick(void *);
static int vr_error(struct vr_softc *, uint16_t);
static void vr_tx_underrun(struct vr_softc *);
static void vr_intr(void *);
static void vr_start(struct ifnet *);
static void vr_start_locked(struct ifnet *);
static int vr_encap(struct vr_softc *, struct mbuf **);
static int vr_ioctl(struct ifnet *, u_long, caddr_t);
static void vr_init(void *);
static void vr_init_locked(struct vr_softc *);
static void vr_tx_start(struct vr_softc *);
static void vr_rx_start(struct vr_softc *);
static int vr_tx_stop(struct vr_softc *);
static int vr_rx_stop(struct vr_softc *);
static void vr_stop(struct vr_softc *);
static void vr_watchdog(struct vr_softc *);
static int vr_ifmedia_upd(struct ifnet *);
static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int vr_miibus_readreg(device_t, int, int);
static int vr_miibus_writereg(device_t, int, int, int);
static void vr_miibus_statchg(device_t);
static void vr_link_task(void *, int);
static void vr_cam_mask(struct vr_softc *, uint32_t, int);
static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
static void vr_set_filter(struct vr_softc *);
static void vr_reset(const struct vr_softc *);
static int vr_tx_ring_init(struct vr_softc *);
static int vr_rx_ring_init(struct vr_softc *);
static void vr_setwol(struct vr_softc *);
static void vr_clrwol(struct vr_softc *);
static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
static struct vr_tx_threshold_table {
int tx_cfg;
int bcr_cfg;
int value;
} vr_tx_threshold_tables[] = {
{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES, 64 },
{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
};
static device_method_t vr_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, vr_probe),
DEVMETHOD(device_attach, vr_attach),
DEVMETHOD(device_detach, vr_detach),
DEVMETHOD(device_shutdown, vr_shutdown),
DEVMETHOD(device_suspend, vr_suspend),
DEVMETHOD(device_resume, vr_resume),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, vr_miibus_readreg),
DEVMETHOD(miibus_writereg, vr_miibus_writereg),
DEVMETHOD(miibus_statchg, vr_miibus_statchg),
DEVMETHOD(miibus_linkchg, vr_miibus_statchg),
{ NULL, NULL }
};
static driver_t vr_driver = {
"vr",
vr_methods,
sizeof(struct vr_softc)
};
static devclass_t vr_devclass;
DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
static int
vr_miibus_readreg(device_t dev, int phy, int reg)
{
struct vr_softc *sc;
int i;
sc = device_get_softc(dev);
if (sc->vr_phyaddr != phy)
return (0);
/* Set the register address. */
CSR_WRITE_1(sc, VR_MIIADDR, reg);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
for (i = 0; i < VR_MII_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
break;
}
if (i == VR_MII_TIMEOUT)
device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
return (CSR_READ_2(sc, VR_MIIDATA));
}
static int
vr_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct vr_softc *sc;
int i;
sc = device_get_softc(dev);
if (sc->vr_phyaddr != phy)
return (0);
/* Set the register address and data to write. */
CSR_WRITE_1(sc, VR_MIIADDR, reg);
CSR_WRITE_2(sc, VR_MIIDATA, data);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
for (i = 0; i < VR_MII_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
break;
}
if (i == VR_MII_TIMEOUT)
device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
reg);
return (0);
}
static void
vr_miibus_statchg(device_t dev)
{
struct vr_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->vr_link_task);
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void
vr_link_task(void *arg, int pending)
{
struct vr_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
int lfdx, mfdx;
uint8_t cr0, cr1, fc;
sc = (struct vr_softc *)arg;
VR_LOCK(sc);
mii = device_get_softc(sc->vr_miibus);
ifp = sc->vr_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
VR_UNLOCK(sc);
return;
}
if (mii->mii_media_status & IFM_ACTIVE) {
if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
sc->vr_link = 1;
} else
sc->vr_link = 0;
if (sc->vr_link != 0) {
cr0 = CSR_READ_1(sc, VR_CR0);
cr1 = CSR_READ_1(sc, VR_CR1);
mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
if (mfdx != lfdx) {
if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
if (vr_tx_stop(sc) != 0 ||
vr_rx_stop(sc) != 0) {
device_printf(sc->vr_dev,
"%s: Tx/Rx shutdown error -- "
"resetting\n", __func__);
sc->vr_flags |= VR_F_RESTART;
VR_UNLOCK(sc);
return;
}
}
if (lfdx)
cr1 |= VR_CR1_FULLDUPLEX;
else
cr1 &= ~VR_CR1_FULLDUPLEX;
CSR_WRITE_1(sc, VR_CR1, cr1);
}
fc = 0;
#ifdef notyet
/* Configure flow-control. */
if (sc->vr_revid >= REV_ID_VT6105_A0) {
fc = CSR_READ_1(sc, VR_FLOWCR1);
fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_RXPAUSE) != 0)
fc |= VR_FLOWCR1_RXPAUSE;
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_TXPAUSE) != 0)
fc |= VR_FLOWCR1_TXPAUSE;
CSR_WRITE_1(sc, VR_FLOWCR1, fc);
} else if (sc->vr_revid >= REV_ID_VT6102_A) {
/* No Tx puase capability available for Rhine II. */
fc = CSR_READ_1(sc, VR_MISC_CR0);
fc &= ~VR_MISCCR0_RXPAUSE;
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_RXPAUSE) != 0)
fc |= VR_MISCCR0_RXPAUSE;
CSR_WRITE_1(sc, VR_MISC_CR0, fc);
}
#endif
vr_rx_start(sc);
vr_tx_start(sc);
} else {
if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
device_printf(sc->vr_dev,
"%s: Tx/Rx shutdown error -- resetting\n",
__func__);
sc->vr_flags |= VR_F_RESTART;
VR_UNLOCK(sc);
return;
}
}
VR_UNLOCK(sc);
}
static void
vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
{
if (type == VR_MCAST_CAM)
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
else
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
CSR_WRITE_4(sc, VR_CAMMASK, mask);
CSR_WRITE_1(sc, VR_CAMCTL, 0);
}
static int
vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
{
int i;
if (type == VR_MCAST_CAM) {
if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
return (EINVAL);
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
} else
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
/* Set CAM entry address. */
CSR_WRITE_1(sc, VR_CAMADDR, idx);
/* Set CAM entry data. */
if (type == VR_MCAST_CAM) {
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
} else {
CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
}
DELAY(10);
/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
for (i = 0; i < VR_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
break;
}
if (i == VR_TIMEOUT)
device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
__func__);
CSR_WRITE_1(sc, VR_CAMCTL, 0);
return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
vr_set_filter(struct vr_softc *sc)
{
struct ifnet *ifp;
int h;
uint32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
uint8_t rxfilt;
int error, mcnt;
uint32_t cam_mask;
VR_LOCK_ASSERT(sc);
ifp = sc->vr_ifp;
rxfilt = CSR_READ_1(sc, VR_RXCFG);
rxfilt = ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD | VR_RXCFG_RX_MULTI);
if (ifp->if_flags & IFF_BROADCAST)
rxfilt |= VR_RXCFG_RX_BROAD;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= VR_RXCFG_RX_MULTI;
if (ifp->if_flags & IFF_PROMISC)
rxfilt |= VR_RXCFG_RX_PROMISC;
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
return;
}
/* Now program new ones. */
error = 0;
mcnt = 0;
IF_ADDR_LOCK(ifp);
if ((sc->vr_quirks & VR_Q_CAM) != 0) {
/*
* For hardwares that have CAM capability, use
* 32 entries multicast perfect filter.
*/
cam_mask = 0;
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
error = vr_cam_data(sc, VR_MCAST_CAM, mcnt,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (error != 0) {
cam_mask = 0;
break;
}
cam_mask |= 1 << mcnt;
mcnt++;
}
vr_cam_mask(sc, VR_MCAST_CAM, cam_mask);
}
if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
/*
* If there are too many multicast addresses or
* setting multicast CAM filter failed, use hash
* table based filtering.
*/
mcnt = 0;
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
}
IF_ADDR_UNLOCK(ifp);
if (mcnt > 0)
rxfilt |= VR_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
}
static void
vr_reset(const struct vr_softc *sc)
{
int i;
/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
if (sc->vr_revid < REV_ID_VT6102_A) {
/* VT86C100A needs more delay after reset. */
DELAY(100);
}
for (i = 0; i < VR_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
break;
}
if (i == VR_TIMEOUT) {
if (sc->vr_revid < REV_ID_VT6102_A)
device_printf(sc->vr_dev, "reset never completed!\n");
else {
/* Use newer force reset command. */
device_printf(sc->vr_dev,
"Using force reset command.\n");
VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
/*
* Wait a little while for the chip to get its brains
* in order.
*/
DELAY(2000);
}
}
}
/*
* Probe for a VIA Rhine chip. Check the PCI vendor and device
* IDs against our list and return a match or NULL
*/
static struct vr_type *
vr_match(device_t dev)
{
struct vr_type *t = vr_devs;
for (t = vr_devs; t->vr_name != NULL; t++)
if ((pci_get_vendor(dev) == t->vr_vid) &&
(pci_get_device(dev) == t->vr_did))
return (t);
return (NULL);
}
/*
* Probe for a VIA Rhine chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
vr_probe(device_t dev)
{
struct vr_type *t;
t = vr_match(dev);
if (t != NULL) {
device_set_desc(dev, t->vr_name);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
vr_attach(device_t dev)
{
struct vr_softc *sc;
struct ifnet *ifp;
struct vr_type *t;
uint8_t eaddr[ETHER_ADDR_LEN];
int error, rid;
int i, pmc;
sc = device_get_softc(dev);
sc->vr_dev = dev;
t = vr_match(dev);
KASSERT(t != NULL, ("Lost if_vr device match"));
sc->vr_quirks = t->vr_quirks;
device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
TASK_INIT(&sc->vr_link_task, 0, vr_link_task, sc);
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
vr_sysctl_stats, "I", "Statistics");
error = 0;
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
sc->vr_revid = pci_get_revid(dev);
device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
sc->vr_res_id = PCIR_BAR(0);
sc->vr_res_type = SYS_RES_IOPORT;
sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
&sc->vr_res_id, RF_ACTIVE);
if (sc->vr_res == NULL) {
device_printf(dev, "couldn't map ports\n");
error = ENXIO;
goto fail;
}
/* Allocate interrupt. */
rid = 0;
sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->vr_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Allocate ifnet structure. */
ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "couldn't allocate ifnet structure\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vr_ioctl;
ifp->if_start = vr_start;
ifp->if_init = vr_init;
IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
/* Configure Tx FIFO threshold. */
sc->vr_txthresh = VR_TXTHRESH_MIN;
if (sc->vr_revid < REV_ID_VT6105_A0) {
/*
* Use store and forward mode for Rhine I/II.
* Otherwise they produce a lot of Tx underruns and
* it would take a while to get working FIFO threshold
* value.
*/
sc->vr_txthresh = VR_TXTHRESH_MAX;
}
if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
ifp->if_hwassist = VR_CSUM_FEATURES;
ifp->if_capabilities |= IFCAP_HWCSUM;
/*
* To update checksum field the hardware may need to
* store entire frames into FIFO before transmitting.
*/
sc->vr_txthresh = VR_TXTHRESH_MAX;
}
if (sc->vr_revid >= REV_ID_VT6102_A &&
pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
/* Rhine supports oversized VLAN frame. */
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/*
* Windows may put the chip in suspend mode when it
* shuts down. Be sure to kick it in the head to wake it
* up again.
*/
if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
/*
* Get station address. The way the Rhine chips work,
* you're not allowed to directly access the EEPROM once
* they've been programmed a special way. Consequently,
* we need to read the node address from the PAR0 and PAR1
* registers.
* Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
* VR_CFGC and VR_CFGD such that memory mapped IO configured
* by driver is reset to default state.
*/
VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
for (i = VR_TIMEOUT; i > 0; i--) {
DELAY(1);
if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
break;
}
if (i == 0)
device_printf(dev, "Reloading EEPROM timeout!\n");
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
/* Reset the adapter. */
vr_reset(sc);
/* Ack intr & disable further interrupts. */
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
CSR_WRITE_2(sc, VR_IMR, 0);
if (sc->vr_revid >= REV_ID_VT6102_A)
CSR_WRITE_2(sc, VR_MII_IMR, 0);
if (sc->vr_revid < REV_ID_VT6102_A) {
pci_write_config(dev, VR_PCI_MODE2,
pci_read_config(dev, VR_PCI_MODE2, 1) |
VR_MODE2_MODE10T, 1);
} else {
/* Report error instead of retrying forever. */
pci_write_config(dev, VR_PCI_MODE2,
pci_read_config(dev, VR_PCI_MODE2, 1) |
VR_MODE2_PCEROPT, 1);
/* Detect MII coding error. */
pci_write_config(dev, VR_PCI_MODE3,
pci_read_config(dev, VR_PCI_MODE3, 1) |
VR_MODE3_MIION, 1);
if (sc->vr_revid >= REV_ID_VT6105_LOM &&
sc->vr_revid < REV_ID_VT6105M_A0)
pci_write_config(dev, VR_PCI_MODE2,
pci_read_config(dev, VR_PCI_MODE2, 1) |
VR_MODE2_MODE10T, 1);
/* Enable Memory-Read-Multiple. */
if (sc->vr_revid >= REV_ID_VT6107_A1 &&
sc->vr_revid < REV_ID_VT6105M_A0)
pci_write_config(dev, VR_PCI_MODE2,
pci_read_config(dev, VR_PCI_MODE2, 1) |
VR_MODE2_MRDPL, 1);
}
/* Disable MII AUTOPOLL. */
VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
if (vr_dma_alloc(sc) != 0) {
error = ENXIO;
goto fail;
}
/* Save PHY address. */
if (sc->vr_revid >= REV_ID_VT6105_A0)
sc->vr_phyaddr = 1;
else
sc->vr_phyaddr = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
/* Do MII setup. */
if (mii_phy_probe(dev, &sc->vr_miibus,
vr_ifmedia_upd, vr_ifmedia_sts)) {
device_printf(dev, "MII without any phy!\n");
error = ENXIO;
goto fail;
}
/* Call MI attach routine. */
ether_ifattach(ifp, eaddr);
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/* Hook interrupt last to avoid having to lock softc. */
error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, vr_intr, sc, &sc->vr_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
vr_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
vr_detach(device_t dev)
{
struct vr_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->vr_ifp;
KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
#ifdef DEVICE_POLLING
if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* These should only be active if attach succeeded. */
if (device_is_attached(dev)) {
VR_LOCK(sc);
sc->vr_detach = 1;
vr_stop(sc);
VR_UNLOCK(sc);
callout_drain(&sc->vr_stat_callout);
taskqueue_drain(taskqueue_swi, &sc->vr_link_task);
ether_ifdetach(ifp);
}
if (sc->vr_miibus)
device_delete_child(dev, sc->vr_miibus);
bus_generic_detach(dev);
if (sc->vr_intrhand)
bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
if (sc->vr_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
if (sc->vr_res)
bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
sc->vr_res);
if (ifp)
if_free(ifp);
vr_dma_free(sc);
mtx_destroy(&sc->vr_mtx);
return (0);
}
struct vr_dmamap_arg {
bus_addr_t vr_busaddr;
};
static void
vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct vr_dmamap_arg *ctx;
if (error != 0)
return;
ctx = arg;
ctx->vr_busaddr = segs[0].ds_addr;
}
static int
vr_dma_alloc(struct vr_softc *sc)
{
struct vr_dmamap_arg ctx;
struct vr_txdesc *txd;
struct vr_rxdesc *rxd;
bus_size_t tx_alignment;
int error, i;
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->vr_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vr_cdata.vr_parent_tag);
if (error != 0) {
device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(
sc->vr_cdata.vr_parent_tag, /* parent */
VR_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
VR_TX_RING_SIZE, /* maxsize */
1, /* nsegments */
VR_TX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vr_cdata.vr_tx_ring_tag);
if (error != 0) {
device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(
sc->vr_cdata.vr_parent_tag, /* parent */
VR_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
VR_RX_RING_SIZE, /* maxsize */
1, /* nsegments */
VR_RX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vr_cdata.vr_rx_ring_tag);
if (error != 0) {
device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
goto fail;
}
if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
tx_alignment = sizeof(uint32_t);
else
tx_alignment = 1;
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(
sc->vr_cdata.vr_parent_tag, /* parent */
tx_alignment, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * VR_MAXFRAGS, /* maxsize */
VR_MAXFRAGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vr_cdata.vr_tx_tag);
if (error != 0) {
device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(
sc->vr_cdata.vr_parent_tag, /* parent */
VR_RX_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vr_cdata.vr_rx_tag);
if (error != 0) {
device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
(void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
if (error != 0) {
device_printf(sc->vr_dev,
"failed to allocate DMA'able memory for Tx ring\n");
goto fail;
}
ctx.vr_busaddr = 0;
error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.vr_busaddr == 0) {
device_printf(sc->vr_dev,
"failed to load DMA'able memory for Tx ring\n");
goto fail;
}
sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
(void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
if (error != 0) {
device_printf(sc->vr_dev,
"failed to allocate DMA'able memory for Rx ring\n");
goto fail;
}
ctx.vr_busaddr = 0;
error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.vr_busaddr == 0) {
device_printf(sc->vr_dev,
"failed to load DMA'able memory for Rx ring\n");
goto fail;
}
sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < VR_TX_RING_CNT; i++) {
txd = &sc->vr_cdata.vr_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->vr_dev,
"failed to create Tx dmamap\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
&sc->vr_cdata.vr_rx_sparemap)) != 0) {
device_printf(sc->vr_dev,
"failed to create spare Rx dmamap\n");
goto fail;
}
for (i = 0; i < VR_RX_RING_CNT; i++) {
rxd = &sc->vr_cdata.vr_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->vr_dev,
"failed to create Rx dmamap\n");
goto fail;
}
}
fail:
return (error);
}
static void
vr_dma_free(struct vr_softc *sc)
{
struct vr_txdesc *txd;
struct vr_rxdesc *rxd;
int i;
/* Tx ring. */
if (sc->vr_cdata.vr_tx_ring_tag) {
if (sc->vr_cdata.vr_tx_ring_map)
bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map);
if (sc->vr_cdata.vr_tx_ring_map &&
sc->vr_rdata.vr_tx_ring)
bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_rdata.vr_tx_ring,
sc->vr_cdata.vr_tx_ring_map);
sc->vr_rdata.vr_tx_ring = NULL;
sc->vr_cdata.vr_tx_ring_map = NULL;
bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
sc->vr_cdata.vr_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc->vr_cdata.vr_rx_ring_tag) {
if (sc->vr_cdata.vr_rx_ring_map)
bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_cdata.vr_rx_ring_map);
if (sc->vr_cdata.vr_rx_ring_map &&
sc->vr_rdata.vr_rx_ring)
bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_rdata.vr_rx_ring,
sc->vr_cdata.vr_rx_ring_map);
sc->vr_rdata.vr_rx_ring = NULL;
sc->vr_cdata.vr_rx_ring_map = NULL;
bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
sc->vr_cdata.vr_rx_ring_tag = NULL;
}
/* Tx buffers. */
if (sc->vr_cdata.vr_tx_tag) {
for (i = 0; i < VR_TX_RING_CNT; i++) {
txd = &sc->vr_cdata.vr_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
sc->vr_cdata.vr_tx_tag = NULL;
}
/* Rx buffers. */
if (sc->vr_cdata.vr_rx_tag) {
for (i = 0; i < VR_RX_RING_CNT; i++) {
rxd = &sc->vr_cdata.vr_rxdesc[i];
if (rxd->rx_dmamap) {
bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->vr_cdata.vr_rx_sparemap) {
bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
sc->vr_cdata.vr_rx_sparemap);
sc->vr_cdata.vr_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
sc->vr_cdata.vr_rx_tag = NULL;
}
if (sc->vr_cdata.vr_parent_tag) {
bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
sc->vr_cdata.vr_parent_tag = NULL;
}
}
/*
* Initialize the transmit descriptors.
*/
static int
vr_tx_ring_init(struct vr_softc *sc)
{
struct vr_ring_data *rd;
struct vr_txdesc *txd;
bus_addr_t addr;
int i;
sc->vr_cdata.vr_tx_prod = 0;
sc->vr_cdata.vr_tx_cons = 0;
sc->vr_cdata.vr_tx_cnt = 0;
sc->vr_cdata.vr_tx_pkts = 0;
rd = &sc->vr_rdata;
bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
for (i = 0; i < VR_TX_RING_CNT; i++) {
if (i == VR_TX_RING_CNT - 1)
addr = VR_TX_RING_ADDR(sc, 0);
else
addr = VR_TX_RING_ADDR(sc, i + 1);
rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
txd = &sc->vr_cdata.vr_txdesc[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
vr_rx_ring_init(struct vr_softc *sc)
{
struct vr_ring_data *rd;
struct vr_rxdesc *rxd;
bus_addr_t addr;
int i;
sc->vr_cdata.vr_rx_cons = 0;
rd = &sc->vr_rdata;
bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
for (i = 0; i < VR_RX_RING_CNT; i++) {
rxd = &sc->vr_cdata.vr_rxdesc[i];
rxd->rx_m = NULL;
rxd->desc = &rd->vr_rx_ring[i];
if (i == VR_RX_RING_CNT - 1)
addr = VR_RX_RING_ADDR(sc, 0);
else
addr = VR_RX_RING_ADDR(sc, i + 1);
rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
if (vr_newbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_cdata.vr_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static __inline void
vr_discard_rxbuf(struct vr_rxdesc *rxd)
{
struct vr_desc *desc;
desc = rxd->desc;
desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
desc->vr_status = htole32(VR_RXSTAT_OWN);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* Note: the length fields are only 11 bits wide, which means the
* largest size we can specify is 2047. This is important because
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
* overflow the field and make a mess.
*/
static int
vr_newbuf(struct vr_softc *sc, int idx)
{
struct vr_desc *desc;
struct vr_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, sizeof(uint64_t));
if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc->vr_cdata.vr_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
sc->vr_cdata.vr_rx_sparemap = map;
bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = rxd->desc;
desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
desc->vr_status = htole32(VR_RXSTAT_OWN);
return (0);
}
#ifndef __NO_STRICT_ALIGNMENT
static __inline void
vr_fixup_rx(struct mbuf *m)
{
uint16_t *src, *dst;
int i;
src = mtod(m, uint16_t *);
dst = src - 1;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= ETHER_ALIGN;
}
#endif
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
vr_rxeof(struct vr_softc *sc)
{
struct vr_rxdesc *rxd;
struct mbuf *m;
struct ifnet *ifp;
struct vr_desc *cur_rx;
int cons, prog, total_len;
uint32_t rxstat, rxctl;
VR_LOCK_ASSERT(sc);
ifp = sc->vr_ifp;
cons = sc->vr_cdata.vr_rx_cons;
bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_cdata.vr_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
rxstat = le32toh(cur_rx->vr_status);
rxctl = le32toh(cur_rx->vr_ctl);
if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
break;
prog++;
rxd = &sc->vr_cdata.vr_rxdesc[cons];
m = rxd->rx_m;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
* We don't support SG in Rx path yet, so discard
* partial frame.
*/
if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
(rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
(VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
ifp->if_ierrors++;
sc->vr_stat.rx_errors++;
if (rxstat & VR_RXSTAT_CRCERR)
sc->vr_stat.rx_crc_errors++;
if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
sc->vr_stat.rx_alignment++;
if (rxstat & VR_RXSTAT_FIFOOFLOW)
sc->vr_stat.rx_fifo_overflows++;
if (rxstat & VR_RXSTAT_GIANT)
sc->vr_stat.rx_giants++;
if (rxstat & VR_RXSTAT_RUNT)
sc->vr_stat.rx_runts++;
if (rxstat & VR_RXSTAT_BUFFERR)
sc->vr_stat.rx_no_buffers++;
#ifdef VR_SHOW_ERRORS
device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
__func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
#endif
vr_discard_rxbuf(rxd);
continue;
}
if (vr_newbuf(sc, cons) != 0) {
ifp->if_iqdrops++;
sc->vr_stat.rx_errors++;
sc->vr_stat.rx_no_mbufs++;
vr_discard_rxbuf(rxd);
continue;
}
/*
* XXX The VIA Rhine chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len = VR_RXBYTES(rxstat);
total_len -= ETHER_CRC_LEN;
m->m_pkthdr.len = m->m_len = total_len;
#ifndef __NO_STRICT_ALIGNMENT
/*
* RX buffers must be 32-bit aligned.
* Ignore the alignment problems on the non-strict alignment
* platform. The performance hit incurred due to unaligned
* accesses is much smaller than the hit produced by forcing
* buffer copies all the time.
*/
vr_fixup_rx(m);
#endif
m->m_pkthdr.rcvif = ifp;
ifp->if_ipackets++;
sc->vr_stat.rx_ok++;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
(rxstat & VR_RXSTAT_FRAG) == 0 &&
(rxctl & VR_RXCTL_IP) != 0) {
/* Checksum is valid for non-fragmented IP packets. */
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
m->m_pkthdr.csum_data = 0xffff;
}
}
}
VR_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
VR_LOCK(sc);
}
if (prog > 0) {
sc->vr_cdata.vr_rx_cons = cons;
bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
sc->vr_cdata.vr_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
vr_txeof(struct vr_softc *sc)
{
struct vr_txdesc *txd;
struct vr_desc *cur_tx;
struct ifnet *ifp;
uint32_t txctl, txstat;
int cons, prod;
VR_LOCK_ASSERT(sc);
cons = sc->vr_cdata.vr_tx_cons;
prod = sc->vr_cdata.vr_tx_prod;
if (cons == prod)
return;
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
ifp = sc->vr_ifp;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
txctl = le32toh(cur_tx->vr_ctl);
txstat = le32toh(cur_tx->vr_status);
if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
break;
sc->vr_cdata.vr_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* Only the first descriptor in the chain is valid. */
if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
continue;
txd = &sc->vr_cdata.vr_txdesc[cons];
KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
__func__));
if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
ifp->if_oerrors++;
sc->vr_stat.tx_errors++;
if ((txstat & VR_TXSTAT_ABRT) != 0) {
/* Give up and restart Tx. */
sc->vr_stat.tx_abort++;
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
VR_INC(cons, VR_TX_RING_CNT);
sc->vr_cdata.vr_tx_cons = cons;
if (vr_tx_stop(sc) != 0) {
device_printf(sc->vr_dev,
"%s: Tx shutdown error -- "
"resetting\n", __func__);
sc->vr_flags |= VR_F_RESTART;
return;
}
vr_tx_start(sc);
break;
}
if ((sc->vr_revid < REV_ID_VT3071_A &&
(txstat & VR_TXSTAT_UNDERRUN)) ||
(txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
sc->vr_stat.tx_underrun++;
/* Retry and restart Tx. */
sc->vr_cdata.vr_tx_cnt++;
sc->vr_cdata.vr_tx_cons = cons;
cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
vr_tx_underrun(sc);
return;
}
if ((txstat & VR_TXSTAT_DEFER) != 0) {
ifp->if_collisions++;
sc->vr_stat.tx_collisions++;
}
if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
ifp->if_collisions++;
sc->vr_stat.tx_late_collisions++;
}
} else {
sc->vr_stat.tx_ok++;
ifp->if_opackets++;
}
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
if (sc->vr_revid < REV_ID_VT3071_A) {
ifp->if_collisions +=
(txstat & VR_TXSTAT_COLLCNT) >> 3;
sc->vr_stat.tx_collisions +=
(txstat & VR_TXSTAT_COLLCNT) >> 3;
} else {
ifp->if_collisions += (txstat & 0x0f);
sc->vr_stat.tx_collisions += (txstat & 0x0f);
}
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
sc->vr_cdata.vr_tx_cons = cons;
if (sc->vr_cdata.vr_tx_cnt == 0)
sc->vr_watchdog_timer = 0;
}
static void
vr_tick(void *xsc)
{
struct vr_softc *sc;
struct mii_data *mii;
sc = (struct vr_softc *)xsc;
VR_LOCK_ASSERT(sc);
if ((sc->vr_flags & VR_F_RESTART) != 0) {
device_printf(sc->vr_dev, "restarting\n");
sc->vr_stat.num_restart++;
vr_stop(sc);
vr_reset(sc);
vr_init_locked(sc);
sc->vr_flags &= ~VR_F_RESTART;
}
mii = device_get_softc(sc->vr_miibus);
mii_tick(mii);
vr_watchdog(sc);
callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
}
#ifdef DEVICE_POLLING
static poll_handler_t vr_poll;
static poll_handler_t vr_poll_locked;
static void
vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct vr_softc *sc;
sc = ifp->if_softc;
VR_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
vr_poll_locked(ifp, cmd, count);
VR_UNLOCK(sc);
}
static void
vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct vr_softc *sc;
sc = ifp->if_softc;
VR_LOCK_ASSERT(sc);
sc->rxcycles = count;
vr_rxeof(sc);
vr_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vr_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) {
uint16_t status;
/* Also check status register. */
status = CSR_READ_2(sc, VR_ISR);
if (status)
CSR_WRITE_2(sc, VR_ISR, status);
if ((status & VR_INTRS) == 0)
return;
if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
VR_ISR_STATSOFLOW)) != 0) {
if (vr_error(sc, status) != 0)
return;
}
if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
#ifdef VR_SHOW_ERRORS
device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
__func__, status, VR_ISR_ERR_BITS);
#endif
vr_rx_start(sc);
}
}
}
#endif /* DEVICE_POLLING */
/* Back off the transmit threshold. */
static void
vr_tx_underrun(struct vr_softc *sc)
{
int thresh;
device_printf(sc->vr_dev, "Tx underrun -- ");
if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
thresh = sc->vr_txthresh;
sc->vr_txthresh++;
if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
sc->vr_txthresh = VR_TXTHRESH_MAX;
printf("using store and forward mode\n");
} else
printf("increasing Tx threshold(%d -> %d)\n",
vr_tx_threshold_tables[thresh].value,
vr_tx_threshold_tables[thresh + 1].value);
} else
printf("\n");
sc->vr_stat.tx_underrun++;
if (vr_tx_stop(sc) != 0) {
device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
"resetting\n", __func__);
sc->vr_flags |= VR_F_RESTART;
return;
}
vr_tx_start(sc);
}
static void
vr_intr(void *arg)
{
struct vr_softc *sc;
struct ifnet *ifp;
uint16_t status;
sc = (struct vr_softc *)arg;
VR_LOCK(sc);
if (sc->vr_suspended != 0)
goto done_locked;
status = CSR_READ_2(sc, VR_ISR);
if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
goto done_locked;
ifp = sc->vr_ifp;
#ifdef DEVICE_POLLING
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
goto done_locked;
#endif
/* Suppress unwanted interrupts. */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
(sc->vr_flags & VR_F_RESTART) != 0) {
CSR_WRITE_2(sc, VR_IMR, 0);
CSR_WRITE_2(sc, VR_ISR, status);
goto done_locked;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, VR_IMR, 0x0000);
for (; (status & VR_INTRS) != 0;) {
CSR_WRITE_2(sc, VR_ISR, status);
if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
VR_ISR_STATSOFLOW)) != 0) {
if (vr_error(sc, status) != 0) {
VR_UNLOCK(sc);
return;
}
}
vr_rxeof(sc);
if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
#ifdef VR_SHOW_ERRORS
device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
__func__, status, VR_ISR_ERR_BITS);
#endif
/* Restart Rx if RxDMA SM was stopped. */
vr_rx_start(sc);
}
vr_txeof(sc);
status = CSR_READ_2(sc, VR_ISR);
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vr_start_locked(ifp);
done_locked:
VR_UNLOCK(sc);
}
static int
vr_error(struct vr_softc *sc, uint16_t status)
{
uint16_t pcis;
status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
if ((status & VR_ISR_BUSERR) != 0) {
status &= ~VR_ISR_BUSERR;
sc->vr_stat.bus_errors++;
/* Disable further interrupts. */
CSR_WRITE_2(sc, VR_IMR, 0);
pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
"resetting\n", pcis);
pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
sc->vr_flags |= VR_F_RESTART;
return (EAGAIN);
}
if ((status & VR_ISR_LINKSTAT2) != 0) {
/* Link state change, duplex changes etc. */
status &= ~VR_ISR_LINKSTAT2;
}
if ((status & VR_ISR_STATSOFLOW) != 0) {
status &= ~VR_ISR_STATSOFLOW;
if (sc->vr_revid >= REV_ID_VT6105M_A0) {
/* Update MIB counters. */
}
}
if (status != 0)
device_printf(sc->vr_dev,
"unhandled interrupt, status = 0x%04x\n", status);
return (0);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
vr_encap(struct vr_softc *sc, struct mbuf **m_head)
{
struct vr_txdesc *txd;
struct vr_desc *desc;
struct mbuf *m;
bus_dma_segment_t txsegs[VR_MAXFRAGS];
uint32_t csum_flags, txctl;
int error, i, nsegs, prod, si;
int padlen;
VR_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
/*
* Some VIA Rhine wants packet buffers to be longword
* aligned, but very often our mbufs aren't. Rather than
* waste time trying to decide when to copy and when not
* to copy, just do it all the time.
*/
if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
m = m_defrag(*m_head, M_DONTWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
/*
* The Rhine chip doesn't auto-pad, so we have to make
* sure to pad short frames out to the minimum frame length
* ourselves.
*/
if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
m = *m_head;
padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_DONTWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
m = m_defrag(m, M_DONTWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
}
/*
* Manually pad short frames, and zero the pad space
* to avoid leaking data.
*/
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
m->m_pkthdr.len += padlen;
m->m_len = m->m_pkthdr.len;
*m_head = m;
}
prod = sc->vr_cdata.vr_tx_prod;
txd = &sc->vr_cdata.vr_txdesc[prod];
error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, VR_MAXFRAGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check number of available descriptors. */
if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
return (ENOBUFS);
}
txd->tx_m = *m_head;
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
/* Set checksum offload. */
csum_flags = 0;
if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
csum_flags |= VR_TXCTL_IPCSUM;
if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
csum_flags |= VR_TXCTL_TCPCSUM;
if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
csum_flags |= VR_TXCTL_UDPCSUM;
}
/*
* Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
* is required for all descriptors regardless of single or
* multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
* the first descriptor for a multi-fragmented frames. Without
* that VIA Rhine chip generates Tx underrun interrupts and can't
* send any frames.
*/
si = prod;
for (i = 0; i < nsegs; i++) {
desc = &sc->vr_rdata.vr_tx_ring[prod];
desc->vr_status = 0;
txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
if (i == 0)
txctl |= VR_TXCTL_FIRSTFRAG;
desc->vr_ctl = htole32(txctl);
desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
sc->vr_cdata.vr_tx_cnt++;
VR_INC(prod, VR_TX_RING_CNT);
}
/* Update producer index. */
sc->vr_cdata.vr_tx_prod = prod;
prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
desc = &sc->vr_rdata.vr_tx_ring[prod];
/*
* Set EOP on the last desciptor and reuqest Tx completion
* interrupt for every VR_TX_INTR_THRESH-th frames.
*/
VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
if (sc->vr_cdata.vr_tx_pkts == 0)
desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
else
desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
/* Lastly turn the first descriptor ownership to hardware. */
desc = &sc->vr_rdata.vr_tx_ring[si];
desc->vr_status |= htole32(VR_TXSTAT_OWN);
/* Sync descriptors. */
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
sc->vr_cdata.vr_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
vr_start(struct ifnet *ifp)
{
struct vr_softc *sc;
sc = ifp->if_softc;
VR_LOCK(sc);
vr_start_locked(ifp);
VR_UNLOCK(sc);
}
static void
vr_start_locked(struct ifnet *ifp)
{
struct vr_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
VR_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || sc->vr_link == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (vr_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Tell the chip to start transmitting. */
VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
/* Set a timeout in case the chip goes out to lunch. */
sc->vr_watchdog_timer = 5;
}
}
static void
vr_init(void *xsc)
{
struct vr_softc *sc;
sc = (struct vr_softc *)xsc;
VR_LOCK(sc);
vr_init_locked(sc);
VR_UNLOCK(sc);
}
static void
vr_init_locked(struct vr_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
bus_addr_t addr;
int i;
VR_LOCK_ASSERT(sc);
ifp = sc->vr_ifp;
mii = device_get_softc(sc->vr_miibus);
/* Cancel pending I/O and free all RX/TX buffers. */
vr_stop(sc);
vr_reset(sc);
/* Set our station address. */
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
/* Set DMA size. */
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
/*
* BCR0 and BCR1 can override the RXCFG and TXCFG registers,
* so we must set both.
*/
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
/* Init circular RX list. */
if (vr_rx_ring_init(sc) != 0) {
device_printf(sc->vr_dev,
"initialization failed: no memory for rx buffers\n");
vr_stop(sc);
return;
}
/* Init tx descriptors. */
vr_tx_ring_init(sc);
if ((sc->vr_quirks & VR_Q_CAM) != 0) {
uint8_t vcam[2] = { 0, 0 };
/* Disable VLAN hardware tag insertion/stripping. */
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
/* Disable VLAN hardware filtering. */
VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
/* Disable all CAM entries. */
vr_cam_mask(sc, VR_MCAST_CAM, 0);
vr_cam_mask(sc, VR_VLAN_CAM, 0);
/* Enable the first VLAN CAM. */
vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
vr_cam_mask(sc, VR_VLAN_CAM, 1);
}
/*
* Set up receive filter.
*/
vr_set_filter(sc);
/*
* Load the address of the RX ring.
*/
addr = VR_RX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
/*
* Load the address of the TX ring.
*/
addr = VR_TX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
/* Default : full-duplex, no Tx poll. */
CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
/* Set flow-control parameters for Rhine III. */
if (sc->vr_revid >= REV_ID_VT6105_A0) {
/* Rx buffer count available for incoming packet. */
CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT);
/*
* Tx pause low threshold : 16 free receive buffers
* Tx pause XON high threshold : 48 free receive buffers
*/
CSR_WRITE_1(sc, VR_FLOWCR1,
VR_FLOWCR1_TXLO16 | VR_FLOWCR1_TXHI48 | VR_FLOWCR1_XONXOFF);
/* Set Tx pause timer. */
CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
}
/* Enable receiver and transmitter. */
CSR_WRITE_1(sc, VR_CR0,
VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
#ifdef DEVICE_POLLING
/*
* Disable interrupts if we are polling.
*/
if (ifp->if_capenable & IFCAP_POLLING)
CSR_WRITE_2(sc, VR_IMR, 0);
else
#endif
/*
* Enable interrupts and disable MII intrs.
*/
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
if (sc->vr_revid > REV_ID_VT6102_A)
CSR_WRITE_2(sc, VR_MII_IMR, 0);
sc->vr_link = 0;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
}
/*
* Set media options.
*/
static int
vr_ifmedia_upd(struct ifnet *ifp)
{
struct vr_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
VR_LOCK(sc);
mii = device_get_softc(sc->vr_miibus);
if (mii->mii_instance) {
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
VR_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct vr_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->vr_miibus);
VR_LOCK(sc);
mii_pollstat(mii);
VR_UNLOCK(sc);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static int
vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct vr_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (command) {
case SIOCSIFFLAGS:
VR_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->vr_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI))
vr_set_filter(sc);
} else {
if (sc->vr_detach == 0)
vr_init_locked(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
vr_stop(sc);
}
sc->vr_if_flags = ifp->if_flags;
VR_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
VR_LOCK(sc);
vr_set_filter(sc);
VR_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->vr_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(vr_poll, ifp);
if (error != 0)
break;
VR_LOCK(sc);
/* Disable interrupts. */
CSR_WRITE_2(sc, VR_IMR, 0x0000);
ifp->if_capenable |= IFCAP_POLLING;
VR_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
VR_LOCK(sc);
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
ifp->if_capenable &= ~IFCAP_POLLING;
VR_UNLOCK(sc);
}
}
#endif /* DEVICE_POLLING */
if ((mask & IFCAP_TXCSUM) != 0 &&
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
ifp->if_hwassist |= VR_CSUM_FEATURES;
else
ifp->if_hwassist &= ~VR_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(IFCAP_RXCSUM & ifp->if_capabilities) != 0)
ifp->if_capenable ^= IFCAP_RXCSUM;
if ((mask & IFCAP_WOL_UCAST) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_UCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
vr_watchdog(struct vr_softc *sc)
{
struct ifnet *ifp;
VR_LOCK_ASSERT(sc);
if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
return;
ifp = sc->vr_ifp;
/*
* Reclaim first as we don't request interrupt for every packets.
*/
vr_txeof(sc);
if (sc->vr_cdata.vr_tx_cnt == 0)
return;
if (sc->vr_link == 0) {
if (bootverbose)
if_printf(sc->vr_ifp, "watchdog timeout "
"(missed link)\n");
ifp->if_oerrors++;
vr_init_locked(sc);
return;
}
ifp->if_oerrors++;
if_printf(ifp, "watchdog timeout\n");
vr_stop(sc);
vr_reset(sc);
vr_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vr_start_locked(ifp);
}
static void
vr_tx_start(struct vr_softc *sc)
{
bus_addr_t addr;
uint8_t cmd;
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_TX_ON) == 0) {
addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
cmd |= VR_CR0_TX_ON;
CSR_WRITE_1(sc, VR_CR0, cmd);
}
if (sc->vr_cdata.vr_tx_cnt != 0) {
sc->vr_watchdog_timer = 5;
VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
}
}
static void
vr_rx_start(struct vr_softc *sc)
{
bus_addr_t addr;
uint8_t cmd;
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_RX_ON) == 0) {
addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
cmd |= VR_CR0_RX_ON;
CSR_WRITE_1(sc, VR_CR0, cmd);
}
CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
}
static int
vr_tx_stop(struct vr_softc *sc)
{
int i;
uint8_t cmd;
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_TX_ON) != 0) {
cmd &= ~VR_CR0_TX_ON;
CSR_WRITE_1(sc, VR_CR0, cmd);
for (i = VR_TIMEOUT; i > 0; i--) {
DELAY(5);
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_TX_ON) == 0)
break;
}
if (i == 0)
return (ETIMEDOUT);
}
return (0);
}
static int
vr_rx_stop(struct vr_softc *sc)
{
int i;
uint8_t cmd;
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_RX_ON) != 0) {
cmd &= ~VR_CR0_RX_ON;
CSR_WRITE_1(sc, VR_CR0, cmd);
for (i = VR_TIMEOUT; i > 0; i--) {
DELAY(5);
cmd = CSR_READ_1(sc, VR_CR0);
if ((cmd & VR_CR0_RX_ON) == 0)
break;
}
if (i == 0)
return (ETIMEDOUT);
}
return (0);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
vr_stop(struct vr_softc *sc)
{
struct vr_txdesc *txd;
struct vr_rxdesc *rxd;
struct ifnet *ifp;
int i;
VR_LOCK_ASSERT(sc);
ifp = sc->vr_ifp;
sc->vr_watchdog_timer = 0;
callout_stop(&sc->vr_stat_callout);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
if (vr_rx_stop(sc) != 0)
device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
if (vr_tx_stop(sc) != 0)
device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
/* Clear pending interrupts. */
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
CSR_WRITE_2(sc, VR_IMR, 0x0000);
CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < VR_RX_RING_CNT; i++) {
rxd = &sc->vr_cdata.vr_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < VR_TX_RING_CNT; i++) {
txd = &sc->vr_cdata.vr_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
vr_shutdown(device_t dev)
{
return (vr_suspend(dev));
}
static int
vr_suspend(device_t dev)
{
struct vr_softc *sc;
sc = device_get_softc(dev);
VR_LOCK(sc);
vr_stop(sc);
vr_setwol(sc);
sc->vr_suspended = 1;
VR_UNLOCK(sc);
return (0);
}
static int
vr_resume(device_t dev)
{
struct vr_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
VR_LOCK(sc);
ifp = sc->vr_ifp;
vr_clrwol(sc);
vr_reset(sc);
if (ifp->if_flags & IFF_UP)
vr_init_locked(sc);
sc->vr_suspended = 0;
VR_UNLOCK(sc);
return (0);
}
static void
vr_setwol(struct vr_softc *sc)
{
struct ifnet *ifp;
int pmc;
uint16_t pmstat;
uint8_t v;
VR_LOCK_ASSERT(sc);
if (sc->vr_revid < REV_ID_VT6102_A ||
pci_find_extcap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
return;
ifp = sc->vr_ifp;
/* Clear WOL configuration. */
CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
if (sc->vr_revid > REV_ID_VT6105_B0) {
/* Newer Rhine III supports two additional patterns. */
CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
}
if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
/*
* It seems that multicast wakeup frames require programming pattern
* registers and valid CRC as well as pattern mask for each pattern.
* While it's possible to setup such a pattern it would complicate
* WOL configuration so ignore multicast wakeup frames.
*/
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
v = CSR_READ_1(sc, VR_STICKHW);
CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
}
/* Put hardware into sleep. */
v = CSR_READ_1(sc, VR_STICKHW);
v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
CSR_WRITE_1(sc, VR_STICKHW, v);
/* Request PME if WOL is requested. */
pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}
static void
vr_clrwol(struct vr_softc *sc)
{
uint8_t v;
VR_LOCK_ASSERT(sc);
if (sc->vr_revid < REV_ID_VT6102_A)
return;
/* Take hardware out of sleep. */
v = CSR_READ_1(sc, VR_STICKHW);
v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
CSR_WRITE_1(sc, VR_STICKHW, v);
/* Clear WOL configuration as WOL may interfere normal operation. */
CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
CSR_WRITE_1(sc, VR_WOLCFG_CLR,
VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
if (sc->vr_revid > REV_ID_VT6105_B0) {
/* Newer Rhine III supports two additional patterns. */
CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
}
}
static int
vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct vr_softc *sc;
struct vr_statistics *stat;
int error;
int result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (result == 1) {
sc = (struct vr_softc *)arg1;
stat = &sc->vr_stat;
printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
printf("Outbound good frames : %ju\n",
(uintmax_t)stat->tx_ok);
printf("Inbound good frames : %ju\n",
(uintmax_t)stat->rx_ok);
printf("Outbound errors : %u\n", stat->tx_errors);
printf("Inbound errors : %u\n", stat->rx_errors);
printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
printf("Inbound FIFO overflows : %d\n",
stat->rx_fifo_overflows);
printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
printf("Inbound frame alignment errors : %u\n",
stat->rx_alignment);
printf("Inbound giant frames : %u\n", stat->rx_giants);
printf("Inbound runt frames : %u\n", stat->rx_runts);
printf("Outbound aborted with excessive collisions : %u\n",
stat->tx_abort);
printf("Outbound collisions : %u\n", stat->tx_collisions);
printf("Outbound late collisions : %u\n",
stat->tx_late_collisions);
printf("Outbound underrun : %u\n", stat->tx_underrun);
printf("PCI bus errors : %u\n", stat->bus_errors);
printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
stat->num_restart);
}
return (error);
}