freebsd-nq/sys/dev/ath/if_ath.c
Adrian Chadd e7200579b8 Add the new channel width change field to the ath(4) driver.
This is not entirely correct as it simply resets the channel, flushing
whatever is in the TX/RX queue.  This can and will break aggregation
BAW tracking.  But the alternative (HT40 frames being sent with the hardware
in HT20 mode) is even worse.

There's still a small window between the htinfo being received (and the ni_chw
field being updated) which could cause problems.  I'll look at fleshing this
out in follow-up commits.

PR:		kern/166286
2012-03-25 03:14:31 +00:00

6862 lines
192 KiB
C

/*-
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for the Atheros Wireless LAN controller.
*
* This software is derived from work of Atsushi Onoe; his contribution
* is greatly appreciated.
*/
#include "opt_inet.h"
#include "opt_ath.h"
/*
* This is needed for register operations which are performed
* by the driver - eg, calls to ath_hal_gettsf32().
*
* It's also required for any AH_DEBUG checks in here, eg the
* module dependencies.
*/
#include "opt_ah.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/priv.h>
#include <sys/module.h>
#include <sys/ktr.h>
#include <sys/smp.h> /* for mp_ncpus */
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_llc.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#ifdef IEEE80211_SUPPORT_TDMA
#include <net80211/ieee80211_tdma.h>
#endif
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <dev/ath/if_athvar.h>
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
#include <dev/ath/ath_hal/ah_diagcodes.h>
#include <dev/ath/if_ath_debug.h>
#include <dev/ath/if_ath_misc.h>
#include <dev/ath/if_ath_tx.h>
#include <dev/ath/if_ath_sysctl.h>
#include <dev/ath/if_ath_led.h>
#include <dev/ath/if_ath_keycache.h>
#include <dev/ath/if_athdfs.h>
#ifdef ATH_TX99_DIAG
#include <dev/ath/ath_tx99/ath_tx99.h>
#endif
#define ATH_KTR_INTR KTR_SPARE4
#define ATH_KTR_ERR KTR_SPARE3
/*
* ATH_BCBUF determines the number of vap's that can transmit
* beacons and also (currently) the number of vap's that can
* have unique mac addresses/bssid. When staggering beacons
* 4 is probably a good max as otherwise the beacons become
* very closely spaced and there is limited time for cab q traffic
* to go out. You can burst beacons instead but that is not good
* for stations in power save and at some point you really want
* another radio (and channel).
*
* The limit on the number of mac addresses is tied to our use of
* the U/L bit and tracking addresses in a byte; it would be
* worthwhile to allow more for applications like proxy sta.
*/
CTASSERT(ATH_BCBUF <= 8);
static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void ath_vap_delete(struct ieee80211vap *);
static void ath_init(void *);
static void ath_stop_locked(struct ifnet *);
static void ath_stop(struct ifnet *);
static void ath_start(struct ifnet *);
static int ath_reset_vap(struct ieee80211vap *, u_long);
static int ath_media_change(struct ifnet *);
static void ath_watchdog(void *);
static int ath_ioctl(struct ifnet *, u_long, caddr_t);
static void ath_fatal_proc(void *, int);
static void ath_bmiss_vap(struct ieee80211vap *);
static void ath_bmiss_proc(void *, int);
static void ath_key_update_begin(struct ieee80211vap *);
static void ath_key_update_end(struct ieee80211vap *);
static void ath_update_mcast(struct ifnet *);
static void ath_update_promisc(struct ifnet *);
static void ath_mode_init(struct ath_softc *);
static void ath_setslottime(struct ath_softc *);
static void ath_updateslot(struct ifnet *);
static int ath_beaconq_setup(struct ath_hal *);
static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
static void ath_beacon_update(struct ieee80211vap *, int item);
static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
static void ath_beacon_proc(void *, int);
static struct ath_buf *ath_beacon_generate(struct ath_softc *,
struct ieee80211vap *);
static void ath_bstuck_proc(void *, int);
static void ath_reset_proc(void *, int);
static void ath_beacon_return(struct ath_softc *, struct ath_buf *);
static void ath_beacon_free(struct ath_softc *);
static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
static void ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *, ath_bufhead *);
static int ath_desc_alloc(struct ath_softc *);
static void ath_desc_free(struct ath_softc *);
static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
const uint8_t [IEEE80211_ADDR_LEN]);
static void ath_node_cleanup(struct ieee80211_node *);
static void ath_node_free(struct ieee80211_node *);
static void ath_node_getsignal(const struct ieee80211_node *,
int8_t *, int8_t *);
static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
int subtype, int rssi, int nf);
static void ath_setdefantenna(struct ath_softc *, u_int);
static void ath_rx_proc(struct ath_softc *sc, int);
static void ath_rx_tasklet(void *, int);
static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
static int ath_tx_setup(struct ath_softc *, int, int);
static int ath_wme_update(struct ieee80211com *);
static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
static void ath_tx_cleanup(struct ath_softc *);
static void ath_tx_proc_q0(void *, int);
static void ath_tx_proc_q0123(void *, int);
static void ath_tx_proc(void *, int);
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
static void ath_stoprecv(struct ath_softc *, int);
static int ath_startrecv(struct ath_softc *);
static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
static void ath_scan_start(struct ieee80211com *);
static void ath_scan_end(struct ieee80211com *);
static void ath_set_channel(struct ieee80211com *);
static void ath_update_chw(struct ieee80211com *);
static void ath_calibrate(void *);
static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static void ath_setup_stationkey(struct ieee80211_node *);
static void ath_newassoc(struct ieee80211_node *, int);
static int ath_setregdomain(struct ieee80211com *,
struct ieee80211_regdomain *, int,
struct ieee80211_channel []);
static void ath_getradiocaps(struct ieee80211com *, int, int *,
struct ieee80211_channel []);
static int ath_getchannels(struct ath_softc *);
static int ath_rate_setup(struct ath_softc *, u_int mode);
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
static void ath_announce(struct ath_softc *);
static void ath_dfs_tasklet(void *, int);
#ifdef IEEE80211_SUPPORT_TDMA
static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
u_int32_t bintval);
static void ath_tdma_bintvalsetup(struct ath_softc *sc,
const struct ieee80211_tdma_state *tdma);
static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
static void ath_tdma_update(struct ieee80211_node *ni,
const struct ieee80211_tdma_param *tdma, int);
static void ath_tdma_beacon_send(struct ath_softc *sc,
struct ieee80211vap *vap);
#define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */
#define TDMA_LPF_LEN 6
#define TDMA_DUMMY_MARKER 0x127
#define TDMA_EP_MUL(x, mul) ((x) * (mul))
#define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
#define TDMA_LPF(x, y, len) \
((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
#define TDMA_SAMPLE(x, y) do { \
x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \
} while (0)
#define TDMA_EP_RND(x,mul) \
((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
#define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
#endif /* IEEE80211_SUPPORT_TDMA */
SYSCTL_DECL(_hw_ath);
/* XXX validate sysctl values */
static int ath_longcalinterval = 30; /* long cals every 30 secs */
SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
0, "long chip calibration interval (secs)");
static int ath_shortcalinterval = 100; /* short cals every 100 ms */
SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
0, "short chip calibration interval (msecs)");
static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */
SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
0, "reset chip calibration results (secs)");
static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */
SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
0, "ANI calibration (msecs)");
static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
0, "rx buffers allocated");
TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
0, "tx buffers allocated");
TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
static int ath_bstuck_threshold = 4; /* max missed beacons */
SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
0, "max missed beacon xmits before chip reset");
MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
#define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
#define HAL_MODE_HT40 \
(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
int
ath_attach(u_int16_t devid, struct ath_softc *sc)
{
struct ifnet *ifp;
struct ieee80211com *ic;
struct ath_hal *ah = NULL;
HAL_STATUS status;
int error = 0, i;
u_int wmodes;
uint8_t macaddr[IEEE80211_ADDR_LEN];
int rx_chainmask, tx_chainmask;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not if_alloc()\n");
error = ENOSPC;
goto bad;
}
ic = ifp->if_l2com;
/* set these up early for if_printf use */
if_initname(ifp, device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev));
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
sc->sc_eepromdata, &status);
if (ah == NULL) {
if_printf(ifp, "unable to attach hardware; HAL status %u\n",
status);
error = ENXIO;
goto bad;
}
sc->sc_ah = ah;
sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
#ifdef ATH_DEBUG
sc->sc_debug = ath_debug;
#endif
/*
* Check if the MAC has multi-rate retry support.
* We do this by trying to setup a fake extended
* descriptor. MAC's that don't have support will
* return false w/o doing anything. MAC's that do
* support it will return true w/o doing anything.
*/
sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
/*
* Check if the device has hardware counters for PHY
* errors. If so we need to enable the MIB interrupt
* so we can act on stat triggers.
*/
if (ath_hal_hwphycounters(ah))
sc->sc_needmib = 1;
/*
* Get the hardware key cache size.
*/
sc->sc_keymax = ath_hal_keycachesize(ah);
if (sc->sc_keymax > ATH_KEYMAX) {
if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
ATH_KEYMAX, sc->sc_keymax);
sc->sc_keymax = ATH_KEYMAX;
}
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < sc->sc_keymax; i++)
ath_hal_keyreset(ah, i);
/*
* Collect the default channel list.
*/
error = ath_getchannels(sc);
if (error != 0)
goto bad;
/*
* Setup rate tables for all potential media types.
*/
ath_rate_setup(sc, IEEE80211_MODE_11A);
ath_rate_setup(sc, IEEE80211_MODE_11B);
ath_rate_setup(sc, IEEE80211_MODE_11G);
ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
ath_rate_setup(sc, IEEE80211_MODE_11NA);
ath_rate_setup(sc, IEEE80211_MODE_11NG);
ath_rate_setup(sc, IEEE80211_MODE_HALF);
ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
/* NB: setup here so ath_rate_update is happy */
ath_setcurmode(sc, IEEE80211_MODE_11A);
/*
* Allocate tx+rx descriptors and populate the lists.
*/
error = ath_desc_alloc(sc);
if (error != 0) {
if_printf(ifp, "failed to allocate descriptors: %d\n", error);
goto bad;
}
callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
ATH_TXBUF_LOCK_INIT(sc);
sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->sc_tq);
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
"%s taskq", ifp->if_xname);
TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
* priority. Note that the hal handles resetting
* these queues at the needed time.
*
* XXX PS-Poll
*/
sc->sc_bhalq = ath_beaconq_setup(ah);
if (sc->sc_bhalq == (u_int) -1) {
if_printf(ifp, "unable to setup a beacon xmit queue!\n");
error = EIO;
goto bad2;
}
sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
if (sc->sc_cabq == NULL) {
if_printf(ifp, "unable to setup CAB xmit queue!\n");
error = EIO;
goto bad2;
}
/* NB: insure BK queue is the lowest priority h/w queue */
if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
ieee80211_wme_acnames[WME_AC_BK]);
error = EIO;
goto bad2;
}
if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
!ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
!ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
/*
* Not enough hardware tx queues to properly do WME;
* just punt and assign them all to the same h/w queue.
* We could do a better job of this if, for example,
* we allocate queues when we switch from station to
* AP mode.
*/
if (sc->sc_ac2q[WME_AC_VI] != NULL)
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
if (sc->sc_ac2q[WME_AC_BE] != NULL)
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
}
/*
* Special case certain configurations. Note the
* CAB queue is handled by these specially so don't
* include them when checking the txq setup mask.
*/
switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
case 0x01:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
break;
case 0x0f:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
break;
default:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
break;
}
/*
* Setup rate control. Some rate control modules
* call back to change the anntena state so expose
* the necessary entry points.
* XXX maybe belongs in struct ath_ratectrl?
*/
sc->sc_setdefantenna = ath_setdefantenna;
sc->sc_rc = ath_rate_attach(sc);
if (sc->sc_rc == NULL) {
error = EIO;
goto bad2;
}
/* Attach DFS module */
if (! ath_dfs_attach(sc)) {
device_printf(sc->sc_dev,
"%s: unable to attach DFS\n", __func__);
error = EIO;
goto bad2;
}
/* Start DFS processing tasklet */
TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
/* Configure LED state */
sc->sc_blinking = 0;
sc->sc_ledstate = 1;
sc->sc_ledon = 0; /* low true */
sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
/*
* Don't setup hardware-based blinking.
*
* Although some NICs may have this configured in the
* default reset register values, the user may wish
* to alter which pins have which function.
*
* The reference driver attaches the MAC network LED to GPIO1 and
* the MAC power LED to GPIO2. However, the DWA-552 cardbus
* NIC has these reversed.
*/
sc->sc_hardled = (1 == 0);
sc->sc_led_net_pin = -1;
sc->sc_led_pwr_pin = -1;
/*
* Auto-enable soft led processing for IBM cards and for
* 5211 minipci cards. Users can also manually enable/disable
* support with a sysctl.
*/
sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
ath_led_config(sc);
ath_hal_setledstate(ah, HAL_LED_INIT);
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
ifp->if_start = ath_start;
ifp->if_ioctl = ath_ioctl;
ifp->if_init = ath_init;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
/* XXX not right but it's not used anywhere important */
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps =
IEEE80211_C_STA /* station mode */
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
| IEEE80211_C_HOSTAP /* hostap mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_AHDEMO /* adhoc demo mode */
| IEEE80211_C_WDS /* 4-address traffic works */
| IEEE80211_C_MBSS /* mesh point link mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
| IEEE80211_C_BGSCAN /* capable of bg scanning */
| IEEE80211_C_TXFRAG /* handle tx frags */
#ifdef ATH_ENABLE_DFS
| IEEE80211_C_DFS /* Enable radar detection */
#endif
;
/*
* Query the hal to figure out h/w crypto support.
*/
if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
/*
* Check if h/w does the MIC and/or whether the
* separate key cache entries are required to
* handle both tx+rx MIC keys.
*/
if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
/*
* If the h/w supports storing tx+rx MIC keys
* in one cache slot automatically enable use.
*/
if (ath_hal_hastkipsplit(ah) ||
!ath_hal_settkipsplit(ah, AH_FALSE))
sc->sc_splitmic = 1;
/*
* If the h/w can do TKIP MIC together with WME then
* we use it; otherwise we force the MIC to be done
* in software by the net80211 layer.
*/
if (ath_hal_haswmetkipmic(ah))
sc->sc_wmetkipmic = 1;
}
sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
/*
* Check for multicast key search support.
*/
if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
!ath_hal_getmcastkeysearch(sc->sc_ah)) {
ath_hal_setmcastkeysearch(sc->sc_ah, 1);
}
sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
/*
* Mark key cache slots associated with global keys
* as in use. If we knew TKIP was not to be used we
* could leave the +32, +64, and +32+64 slots free.
*/
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
setbit(sc->sc_keymap, i);
setbit(sc->sc_keymap, i+64);
if (sc->sc_splitmic) {
setbit(sc->sc_keymap, i+32);
setbit(sc->sc_keymap, i+32+64);
}
}
/*
* TPC support can be done either with a global cap or
* per-packet support. The latter is not available on
* all parts. We're a bit pedantic here as all parts
* support a global cap.
*/
if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
ic->ic_caps |= IEEE80211_C_TXPMGT;
/*
* Mark WME capability only if we have sufficient
* hardware queues to do proper priority scheduling.
*/
if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
ic->ic_caps |= IEEE80211_C_WME;
/*
* Check for misc other capabilities.
*/
if (ath_hal_hasbursting(ah))
ic->ic_caps |= IEEE80211_C_BURST;
sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
if (ath_hal_hasfastframes(ah))
ic->ic_caps |= IEEE80211_C_FF;
wmodes = ath_hal_getwirelessmodes(ah);
if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
ic->ic_caps |= IEEE80211_C_TURBOP;
#ifdef IEEE80211_SUPPORT_TDMA
if (ath_hal_macversion(ah) > 0x78) {
ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
ic->ic_tdma_update = ath_tdma_update;
}
#endif
/*
* TODO: enforce that at least this many frames are available
* in the txbuf list before allowing data frames (raw or
* otherwise) to be transmitted.
*/
sc->sc_txq_data_minfree = 10;
/*
* Leave this as default to maintain legacy behaviour.
* Shortening the cabq/mcastq may end up causing some
* undesirable behaviour.
*/
sc->sc_txq_mcastq_maxdepth = ath_txbuf;
/*
* Allow the TX and RX chainmasks to be overridden by
* environment variables and/or device.hints.
*
* This must be done early - before the hardware is
* calibrated or before the 802.11n stream calculation
* is done.
*/
if (resource_int_value(device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev), "rx_chainmask",
&rx_chainmask) == 0) {
device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
rx_chainmask);
(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
}
if (resource_int_value(device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev), "tx_chainmask",
&tx_chainmask) == 0) {
device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
tx_chainmask);
(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
}
/*
* The if_ath 11n support is completely not ready for normal use.
* Enabling this option will likely break everything and everything.
* Don't think of doing that unless you know what you're doing.
*/
#ifdef ATH_ENABLE_11N
/*
* Query HT capabilities
*/
if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
(wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
int rxs, txs;
device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */
| IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */
| IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */
| IEEE80211_HTCAP_MAXAMSDU_3839
/* max A-MSDU length */
| IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */
;
/*
* Enable short-GI for HT20 only if the hardware
* advertises support.
* Notably, anything earlier than the AR9287 doesn't.
*/
if ((ath_hal_getcapability(ah,
HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
(wmodes & HAL_MODE_HT20)) {
device_printf(sc->sc_dev,
"[HT] enabling short-GI in 20MHz mode\n");
ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
}
if (wmodes & HAL_MODE_HT40)
ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
| IEEE80211_HTCAP_SHORTGI40;
/*
* TX/RX streams need to be taken into account when
* negotiating which MCS rates it'll receive and
* what MCS rates are available for TX.
*/
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
ic->ic_txstream = txs;
ic->ic_rxstream = rxs;
device_printf(sc->sc_dev,
"[HT] %d RX streams; %d TX streams\n", rxs, txs);
}
#endif
/*
* Check if the hardware requires PCI register serialisation.
* Some of the Owl based MACs require this.
*/
if (mp_ncpus > 1 &&
ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
0, NULL) == HAL_OK) {
sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
device_printf(sc->sc_dev,
"Enabling register serialisation\n");
}
/*
* Indicate we need the 802.11 header padded to a
* 32-bit boundary for 4-address and QoS frames.
*/
ic->ic_flags |= IEEE80211_F_DATAPAD;
/*
* Query the hal about antenna support.
*/
sc->sc_defant = ath_hal_getdefantenna(ah);
/*
* Not all chips have the VEOL support we want to
* use with IBSS beacons; check here for it.
*/
sc->sc_hasveol = ath_hal_hasveol(ah);
/* get mac address from hardware */
ath_hal_getmac(ah, macaddr);
if (sc->sc_hasbmask)
ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
/* NB: used to size node table key mapping array */
ic->ic_max_keyix = sc->sc_keymax;
/* call MI attach routine. */
ieee80211_ifattach(ic, macaddr);
ic->ic_setregdomain = ath_setregdomain;
ic->ic_getradiocaps = ath_getradiocaps;
sc->sc_opmode = HAL_M_STA;
/* override default methods */
ic->ic_newassoc = ath_newassoc;
ic->ic_updateslot = ath_updateslot;
ic->ic_wme.wme_update = ath_wme_update;
ic->ic_vap_create = ath_vap_create;
ic->ic_vap_delete = ath_vap_delete;
ic->ic_raw_xmit = ath_raw_xmit;
ic->ic_update_mcast = ath_update_mcast;
ic->ic_update_promisc = ath_update_promisc;
ic->ic_node_alloc = ath_node_alloc;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = ath_node_free;
sc->sc_node_cleanup = ic->ic_node_cleanup;
ic->ic_node_cleanup = ath_node_cleanup;
ic->ic_node_getsignal = ath_node_getsignal;
ic->ic_scan_start = ath_scan_start;
ic->ic_scan_end = ath_scan_end;
ic->ic_set_channel = ath_set_channel;
ic->ic_update_chw = ath_update_chw;
/* 802.11n specific - but just override anyway */
sc->sc_addba_request = ic->ic_addba_request;
sc->sc_addba_response = ic->ic_addba_response;
sc->sc_addba_stop = ic->ic_addba_stop;
sc->sc_bar_response = ic->ic_bar_response;
sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
ic->ic_addba_request = ath_addba_request;
ic->ic_addba_response = ath_addba_response;
ic->ic_addba_response_timeout = ath_addba_response_timeout;
ic->ic_addba_stop = ath_addba_stop;
ic->ic_bar_response = ath_bar_response;
ieee80211_radiotap_attach(ic,
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
ATH_TX_RADIOTAP_PRESENT,
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
ATH_RX_RADIOTAP_PRESENT);
/*
* Setup dynamic sysctl's now that country code and
* regdomain are available from the hal.
*/
ath_sysctlattach(sc);
ath_sysctl_stats_attach(sc);
ath_sysctl_hal_attach(sc);
if (bootverbose)
ieee80211_announce(ic);
ath_announce(sc);
return 0;
bad2:
ath_tx_cleanup(sc);
ath_desc_free(sc);
bad:
if (ah)
ath_hal_detach(ah);
if (ifp != NULL)
if_free(ifp);
sc->sc_invalid = 1;
return error;
}
int
ath_detach(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
/*
* NB: the order of these is important:
* o stop the chip so no more interrupts will fire
* o call the 802.11 layer before detaching the hal to
* insure callbacks into the driver to delete global
* key cache entries can be handled
* o free the taskqueue which drains any pending tasks
* o reclaim the tx queue data structures after calling
* the 802.11 layer as we'll get called back to reclaim
* node state and potentially want to use them
* o to cleanup the tx queues the hal is called, so detach
* it last
* Other than that, it's straightforward...
*/
ath_stop(ifp);
ieee80211_ifdetach(ifp->if_l2com);
taskqueue_free(sc->sc_tq);
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->detach(sc->sc_tx99);
#endif
ath_rate_detach(sc->sc_rc);
ath_dfs_detach(sc);
ath_desc_free(sc);
ath_tx_cleanup(sc);
ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */
if_free(ifp);
return 0;
}
/*
* MAC address handling for multiple BSS on the same radio.
* The first vap uses the MAC address from the EEPROM. For
* subsequent vap's we set the U/L bit (bit 1) in the MAC
* address and use the next six bits as an index.
*/
static void
assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
{
int i;
if (clone && sc->sc_hasbmask) {
/* NB: we only do this if h/w supports multiple bssid */
for (i = 0; i < 8; i++)
if ((sc->sc_bssidmask & (1<<i)) == 0)
break;
if (i != 0)
mac[0] |= (i << 2)|0x2;
} else
i = 0;
sc->sc_bssidmask |= 1<<i;
sc->sc_hwbssidmask[0] &= ~mac[0];
if (i == 0)
sc->sc_nbssid0++;
}
static void
reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
{
int i = mac[0] >> 2;
uint8_t mask;
if (i != 0 || --sc->sc_nbssid0 == 0) {
sc->sc_bssidmask &= ~(1<<i);
/* recalculate bssid mask from remaining addresses */
mask = 0xff;
for (i = 1; i < 8; i++)
if (sc->sc_bssidmask & (1<<i))
mask &= ~((i<<2)|0x2);
sc->sc_hwbssidmask[0] |= mask;
}
}
/*
* Assign a beacon xmit slot. We try to space out
* assignments so when beacons are staggered the
* traffic coming out of the cab q has maximal time
* to go out before the next beacon is scheduled.
*/
static int
assign_bslot(struct ath_softc *sc)
{
u_int slot, free;
free = 0;
for (slot = 0; slot < ATH_BCBUF; slot++)
if (sc->sc_bslot[slot] == NULL) {
if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
return slot;
free = slot;
/* NB: keep looking for a double slot */
}
return free;
}
static struct ieee80211vap *
ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac0[IEEE80211_ADDR_LEN])
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_vap *avp;
struct ieee80211vap *vap;
uint8_t mac[IEEE80211_ADDR_LEN];
int needbeacon, error;
enum ieee80211_opmode ic_opmode;
avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
M_80211_VAP, M_WAITOK | M_ZERO);
needbeacon = 0;
IEEE80211_ADDR_COPY(mac, mac0);
ATH_LOCK(sc);
ic_opmode = opmode; /* default to opmode of new vap */
switch (opmode) {
case IEEE80211_M_STA:
if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */
device_printf(sc->sc_dev, "only 1 sta vap supported\n");
goto bad;
}
if (sc->sc_nvaps) {
/*
* With multiple vaps we must fall back
* to s/w beacon miss handling.
*/
flags |= IEEE80211_CLONE_NOBEACONS;
}
if (flags & IEEE80211_CLONE_NOBEACONS) {
/*
* Station mode w/o beacons are implemented w/ AP mode.
*/
ic_opmode = IEEE80211_M_HOSTAP;
}
break;
case IEEE80211_M_IBSS:
if (sc->sc_nvaps != 0) { /* XXX only 1 for now */
device_printf(sc->sc_dev,
"only 1 ibss vap supported\n");
goto bad;
}
needbeacon = 1;
break;
case IEEE80211_M_AHDEMO:
#ifdef IEEE80211_SUPPORT_TDMA
if (flags & IEEE80211_CLONE_TDMA) {
if (sc->sc_nvaps != 0) {
device_printf(sc->sc_dev,
"only 1 tdma vap supported\n");
goto bad;
}
needbeacon = 1;
flags |= IEEE80211_CLONE_NOBEACONS;
}
/* fall thru... */
#endif
case IEEE80211_M_MONITOR:
if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
/*
* Adopt existing mode. Adding a monitor or ahdemo
* vap to an existing configuration is of dubious
* value but should be ok.
*/
/* XXX not right for monitor mode */
ic_opmode = ic->ic_opmode;
}
break;
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
needbeacon = 1;
break;
case IEEE80211_M_WDS:
if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
device_printf(sc->sc_dev,
"wds not supported in sta mode\n");
goto bad;
}
/*
* Silently remove any request for a unique
* bssid; WDS vap's always share the local
* mac address.
*/
flags &= ~IEEE80211_CLONE_BSSID;
if (sc->sc_nvaps == 0)
ic_opmode = IEEE80211_M_HOSTAP;
else
ic_opmode = ic->ic_opmode;
break;
default:
device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
goto bad;
}
/*
* Check that a beacon buffer is available; the code below assumes it.
*/
if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
device_printf(sc->sc_dev, "no beacon buffer available\n");
goto bad;
}
/* STA, AHDEMO? */
if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
}
vap = &avp->av_vap;
/* XXX can't hold mutex across if_alloc */
ATH_UNLOCK(sc);
error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
bssid, mac);
ATH_LOCK(sc);
if (error != 0) {
device_printf(sc->sc_dev, "%s: error %d creating vap\n",
__func__, error);
goto bad2;
}
/* h/w crypto support */
vap->iv_key_alloc = ath_key_alloc;
vap->iv_key_delete = ath_key_delete;
vap->iv_key_set = ath_key_set;
vap->iv_key_update_begin = ath_key_update_begin;
vap->iv_key_update_end = ath_key_update_end;
/* override various methods */
avp->av_recv_mgmt = vap->iv_recv_mgmt;
vap->iv_recv_mgmt = ath_recv_mgmt;
vap->iv_reset = ath_reset_vap;
vap->iv_update_beacon = ath_beacon_update;
avp->av_newstate = vap->iv_newstate;
vap->iv_newstate = ath_newstate;
avp->av_bmiss = vap->iv_bmiss;
vap->iv_bmiss = ath_bmiss_vap;
/* Set default parameters */
/*
* Anything earlier than some AR9300 series MACs don't
* support a smaller MPDU density.
*/
vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
/*
* All NICs can handle the maximum size, however
* AR5416 based MACs can only TX aggregates w/ RTS
* protection when the total aggregate size is <= 8k.
* However, for now that's enforced by the TX path.
*/
vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
avp->av_bslot = -1;
if (needbeacon) {
/*
* Allocate beacon state and setup the q for buffered
* multicast frames. We know a beacon buffer is
* available because we checked above.
*/
avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
/*
* Assign the vap to a beacon xmit slot. As above
* this cannot fail to find a free one.
*/
avp->av_bslot = assign_bslot(sc);
KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
("beacon slot %u not empty", avp->av_bslot));
sc->sc_bslot[avp->av_bslot] = vap;
sc->sc_nbcnvaps++;
}
if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
/*
* Multple vaps are to transmit beacons and we
* have h/w support for TSF adjusting; enable
* use of staggered beacons.
*/
sc->sc_stagbeacons = 1;
}
ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
}
ic->ic_opmode = ic_opmode;
if (opmode != IEEE80211_M_WDS) {
sc->sc_nvaps++;
if (opmode == IEEE80211_M_STA)
sc->sc_nstavaps++;
if (opmode == IEEE80211_M_MBSS)
sc->sc_nmeshvaps++;
}
switch (ic_opmode) {
case IEEE80211_M_IBSS:
sc->sc_opmode = HAL_M_IBSS;
break;
case IEEE80211_M_STA:
sc->sc_opmode = HAL_M_STA;
break;
case IEEE80211_M_AHDEMO:
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA) {
sc->sc_tdma = 1;
/* NB: disable tsf adjust */
sc->sc_stagbeacons = 0;
}
/*
* NB: adhoc demo mode is a pseudo mode; to the hal it's
* just ap mode.
*/
/* fall thru... */
#endif
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
sc->sc_opmode = HAL_M_HOSTAP;
break;
case IEEE80211_M_MONITOR:
sc->sc_opmode = HAL_M_MONITOR;
break;
default:
/* XXX should not happen */
break;
}
if (sc->sc_hastsfadd) {
/*
* Configure whether or not TSF adjust should be done.
*/
ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
}
if (flags & IEEE80211_CLONE_NOBEACONS) {
/*
* Enable s/w beacon miss handling.
*/
sc->sc_swbmiss = 1;
}
ATH_UNLOCK(sc);
/* complete setup */
ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
return vap;
bad2:
reclaim_address(sc, mac);
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
bad:
free(avp, M_80211_VAP);
ATH_UNLOCK(sc);
return NULL;
}
static void
ath_vap_delete(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
struct ath_vap *avp = ATH_VAP(vap);
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Quiesce the hardware while we remove the vap. In
* particular we need to reclaim all references to
* the vap state by any frames pending on the tx queues.
*/
ath_hal_intrset(ah, 0); /* disable interrupts */
ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */
/* XXX Do all frames from all vaps/nodes need draining here? */
ath_stoprecv(sc, 1); /* stop recv side */
}
ieee80211_vap_detach(vap);
/*
* XXX Danger Will Robinson! Danger!
*
* Because ieee80211_vap_detach() can queue a frame (the station
* diassociate message?) after we've drained the TXQ and
* flushed the software TXQ, we will end up with a frame queued
* to a node whose vap is about to be freed.
*
* To work around this, flush the hardware/software again.
* This may be racy - the ath task may be running and the packet
* may be being scheduled between sw->hw txq. Tsk.
*
* TODO: figure out why a new node gets allocated somewhere around
* here (after the ath_tx_swq() call; and after an ath_stop_locked()
* call!)
*/
ath_draintxq(sc, ATH_RESET_DEFAULT);
ATH_LOCK(sc);
/*
* Reclaim beacon state. Note this must be done before
* the vap instance is reclaimed as we may have a reference
* to it in the buffer for the beacon frame.
*/
if (avp->av_bcbuf != NULL) {
if (avp->av_bslot != -1) {
sc->sc_bslot[avp->av_bslot] = NULL;
sc->sc_nbcnvaps--;
}
ath_beacon_return(sc, avp->av_bcbuf);
avp->av_bcbuf = NULL;
if (sc->sc_nbcnvaps == 0) {
sc->sc_stagbeacons = 0;
if (sc->sc_hastsfadd)
ath_hal_settsfadjust(sc->sc_ah, 0);
}
/*
* Reclaim any pending mcast frames for the vap.
*/
ath_tx_draintxq(sc, &avp->av_mcastq);
ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
}
/*
* Update bookkeeping.
*/
if (vap->iv_opmode == IEEE80211_M_STA) {
sc->sc_nstavaps--;
if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
sc->sc_swbmiss = 0;
} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_MBSS) {
reclaim_address(sc, vap->iv_myaddr);
ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
if (vap->iv_opmode == IEEE80211_M_MBSS)
sc->sc_nmeshvaps--;
}
if (vap->iv_opmode != IEEE80211_M_WDS)
sc->sc_nvaps--;
#ifdef IEEE80211_SUPPORT_TDMA
/* TDMA operation ceases when the last vap is destroyed */
if (sc->sc_tdma && sc->sc_nvaps == 0) {
sc->sc_tdma = 0;
sc->sc_swbmiss = 0;
}
#endif
free(avp, M_80211_VAP);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Restart rx+tx machines if still running (RUNNING will
* be reset if we just destroyed the last vap).
*/
if (ath_startrecv(sc) != 0)
if_printf(ifp, "%s: unable to restart recv logic\n",
__func__);
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
ath_hal_intrset(ah, sc->sc_imask);
}
ATH_UNLOCK(sc);
}
void
ath_suspend(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
if (ic->ic_opmode == IEEE80211_M_STA)
ath_stop(ifp);
else
ieee80211_suspend_all(ic);
/*
* NB: don't worry about putting the chip in low power
* mode; pci will power off our socket on suspend and
* CardBus detaches the device.
*/
}
/*
* Reset the key cache since some parts do not reset the
* contents on resume. First we clear all entries, then
* re-load keys that the 802.11 layer assumes are setup
* in h/w.
*/
static void
ath_reset_keycache(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
int i;
for (i = 0; i < sc->sc_keymax; i++)
ath_hal_keyreset(ah, i);
ieee80211_crypto_reload_keys(ic);
}
void
ath_resume(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
/*
* Must reset the chip before we reload the
* keycache as we were powered down on suspend.
*/
ath_hal_reset(ah, sc->sc_opmode,
sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
AH_FALSE, &status);
ath_reset_keycache(sc);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
/* Restore the LED configuration */
ath_led_config(sc);
ath_hal_setledstate(ah, HAL_LED_INIT);
if (sc->sc_resume_up) {
if (ic->ic_opmode == IEEE80211_M_STA) {
ath_init(sc);
ath_hal_setledstate(ah, HAL_LED_RUN);
/*
* Program the beacon registers using the last rx'd
* beacon frame and enable sync on the next beacon
* we see. This should handle the case where we
* wakeup and find the same AP and also the case where
* we wakeup and need to roam. For the latter we
* should get bmiss events that trigger a roam.
*/
ath_beacon_config(sc, NULL);
sc->sc_syncbeacon = 1;
} else
ieee80211_resume_all(ic);
}
/* XXX beacons ? */
}
void
ath_shutdown(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
ath_stop(ifp);
/* NB: no point powering down chip as we're about to reboot */
}
/*
* Interrupt handler. Most of the actual processing is deferred.
*/
void
ath_intr(void *arg)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ath_hal *ah = sc->sc_ah;
HAL_INT status = 0;
uint32_t txqs;
/*
* If we're inside a reset path, just print a warning and
* clear the ISR. The reset routine will finish it for us.
*/
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt) {
HAL_INT status;
ath_hal_getisr(ah, &status); /* clear ISR */
ath_hal_intrset(ah, 0); /* disable further intr's */
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: in reset, ignoring: status=0x%x\n",
__func__, status);
ATH_PCU_UNLOCK(sc);
return;
}
if (sc->sc_invalid) {
/*
* The hardware is not ready/present, don't touch anything.
* Note this can happen early on if the IRQ is shared.
*/
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
ATH_PCU_UNLOCK(sc);
return;
}
if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */
ATH_PCU_UNLOCK(sc);
return;
}
if ((ifp->if_flags & IFF_UP) == 0 ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
HAL_INT status;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
__func__, ifp->if_flags);
ath_hal_getisr(ah, &status); /* clear ISR */
ath_hal_intrset(ah, 0); /* disable further intr's */
ATH_PCU_UNLOCK(sc);
return;
}
/*
* Figure out the reason(s) for the interrupt. Note
* that the hal returns a pseudo-ISR that may include
* bits we haven't explicitly enabled so we mask the
* value to insure we only process bits we requested.
*/
ath_hal_getisr(ah, &status); /* NB: clears ISR too */
DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
#ifdef ATH_KTR_INTR_DEBUG
CTR5(ATH_KTR_INTR,
"ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
ah->ah_intrstate[0],
ah->ah_intrstate[1],
ah->ah_intrstate[2],
ah->ah_intrstate[3],
ah->ah_intrstate[6]);
#endif
status &= sc->sc_imask; /* discard unasked for bits */
/* Short-circuit un-handled interrupts */
if (status == 0x0) {
ATH_PCU_UNLOCK(sc);
return;
}
/*
* Take a note that we're inside the interrupt handler, so
* the reset routines know to wait.
*/
sc->sc_intr_cnt++;
ATH_PCU_UNLOCK(sc);
/*
* Handle the interrupt. We won't run concurrent with the reset
* or channel change routines as they'll wait for sc_intr_cnt
* to be 0 before continuing.
*/
if (status & HAL_INT_FATAL) {
sc->sc_stats.ast_hardware++;
ath_hal_intrset(ah, 0); /* disable intr's until reset */
ath_fatal_proc(sc, 0);
} else {
if (status & HAL_INT_SWBA) {
/*
* Software beacon alert--time to send a beacon.
* Handle beacon transmission directly; deferring
* this is too slow to meet timing constraints
* under load.
*/
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma) {
if (sc->sc_tdmaswba == 0) {
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap =
TAILQ_FIRST(&ic->ic_vaps);
ath_tdma_beacon_send(sc, vap);
sc->sc_tdmaswba =
vap->iv_tdma->tdma_bintval;
} else
sc->sc_tdmaswba--;
} else
#endif
{
ath_beacon_proc(sc, 0);
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* Schedule the rx taskq in case there's no
* traffic so any frames held on the staging
* queue are aged and potentially flushed.
*/
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
#endif
}
}
if (status & HAL_INT_RXEOL) {
int imask;
CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
ATH_PCU_LOCK(sc);
/*
* NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work at
* least on older hardware revs.
*/
sc->sc_stats.ast_rxeol++;
/*
* Disable RXEOL/RXORN - prevent an interrupt
* storm until the PCU logic can be reset.
* In case the interface is reset some other
* way before "sc_kickpcu" is called, don't
* modify sc_imask - that way if it is reset
* by a call to ath_reset() somehow, the
* interrupt mask will be correctly reprogrammed.
*/
imask = sc->sc_imask;
imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
ath_hal_intrset(ah, imask);
/*
* Only blank sc_rxlink if we've not yet kicked
* the PCU.
*
* This isn't entirely correct - the correct solution
* would be to have a PCU lock and engage that for
* the duration of the PCU fiddling; which would include
* running the RX process. Otherwise we could end up
* messing up the RX descriptor chain and making the
* RX desc list much shorter.
*/
if (! sc->sc_kickpcu)
sc->sc_rxlink = NULL;
sc->sc_kickpcu = 1;
/*
* Enqueue an RX proc, to handled whatever
* is in the RX queue.
* This will then kick the PCU.
*/
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
ATH_PCU_UNLOCK(sc);
}
if (status & HAL_INT_TXURN) {
sc->sc_stats.ast_txurn++;
/* bump tx trigger level */
ath_hal_updatetxtriglevel(ah, AH_TRUE);
}
if (status & HAL_INT_RX) {
sc->sc_stats.ast_rx_intr++;
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
}
if (status & HAL_INT_TX) {
sc->sc_stats.ast_tx_intr++;
/*
* Grab all the currently set bits in the HAL txq bitmap
* and blank them. This is the only place we should be
* doing this.
*/
ATH_PCU_LOCK(sc);
txqs = 0xffffffff;
ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
sc->sc_txq_active |= txqs;
taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
ATH_PCU_UNLOCK(sc);
}
if (status & HAL_INT_BMISS) {
sc->sc_stats.ast_bmiss++;
taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
}
if (status & HAL_INT_GTT)
sc->sc_stats.ast_tx_timeout++;
if (status & HAL_INT_CST)
sc->sc_stats.ast_tx_cst++;
if (status & HAL_INT_MIB) {
sc->sc_stats.ast_mib++;
ATH_PCU_LOCK(sc);
/*
* Disable interrupts until we service the MIB
* interrupt; otherwise it will continue to fire.
*/
ath_hal_intrset(ah, 0);
/*
* Let the hal handle the event. We assume it will
* clear whatever condition caused the interrupt.
*/
ath_hal_mibevent(ah, &sc->sc_halstats);
/*
* Don't reset the interrupt if we've just
* kicked the PCU, or we may get a nested
* RXEOL before the rxproc has had a chance
* to run.
*/
if (sc->sc_kickpcu == 0)
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
}
if (status & HAL_INT_RXORN) {
/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
sc->sc_stats.ast_rxorn++;
}
}
ATH_PCU_LOCK(sc);
sc->sc_intr_cnt--;
ATH_PCU_UNLOCK(sc);
}
static void
ath_fatal_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
u_int32_t *state;
u_int32_t len;
void *sp;
if_printf(ifp, "hardware error; resetting\n");
/*
* Fatal errors are unrecoverable. Typically these
* are caused by DMA errors. Collect h/w state from
* the hal so we can diagnose what's going on.
*/
if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
state = sp;
if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
state[0], state[1] , state[2], state[3],
state[4], state[5]);
}
ath_reset(ifp, ATH_RESET_NOLOSS);
}
static void
ath_bmiss_vap(struct ieee80211vap *vap)
{
/*
* Workaround phantom bmiss interrupts by sanity-checking
* the time of our last rx'd frame. If it is within the
* beacon miss interval then ignore the interrupt. If it's
* truly a bmiss we'll get another interrupt soon and that'll
* be dispatched up for processing. Note this applies only
* for h/w beacon miss events.
*/
if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
u_int64_t lastrx = sc->sc_lastrx;
u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
/* XXX should take a locked ref to iv_bss */
u_int bmisstimeout =
vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
__func__, (unsigned long long) tsf,
(unsigned long long)(tsf - lastrx),
(unsigned long long) lastrx, bmisstimeout);
if (tsf - lastrx <= bmisstimeout) {
sc->sc_stats.ast_bmiss_phantom++;
return;
}
}
ATH_VAP(vap)->av_bmiss(vap);
}
static int
ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
{
uint32_t rsize;
void *sp;
if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
return 0;
KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
*hangs = *(uint32_t *)sp;
return 1;
}
static void
ath_bmiss_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t hangs;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
ath_reset(ifp, ATH_RESET_NOLOSS);
} else
ieee80211_beacon_miss(ifp->if_l2com);
}
/*
* Handle TKIP MIC setup to deal hardware that doesn't do MIC
* calcs together with WME. If necessary disable the crypto
* hardware and mark the 802.11 state so keys will be setup
* with the MIC work done in software.
*/
static void
ath_settkipmic(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
if (ic->ic_flags & IEEE80211_F_WME) {
ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
} else {
ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
}
}
}
static void
ath_init(void *arg)
{
struct ath_softc *sc = (struct ath_softc *) arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
__func__, ifp->if_flags);
ATH_LOCK(sc);
/*
* Stop anything previously setup. This is safe
* whether this is the first time through or not.
*/
ath_stop_locked(ifp);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
ath_settkipmic(sc);
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
if_printf(ifp, "unable to reset hardware; hal status %u\n",
status);
ATH_UNLOCK(sc);
return;
}
ath_chan_change(sc, ic->ic_curchan);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
/*
* Likewise this is set during reset so update
* state cached in the driver.
*/
sc->sc_diversity = ath_hal_getdiversity(ah);
sc->sc_lastlongcal = 0;
sc->sc_resetcal = 1;
sc->sc_lastcalreset = 0;
sc->sc_lastani = 0;
sc->sc_lastshortcal = 0;
sc->sc_doresetcal = AH_FALSE;
/*
* Beacon timers were cleared here; give ath_newstate()
* a hint that the beacon timers should be poked when
* things transition to the RUN state.
*/
sc->sc_beacons = 0;
/*
* Initial aggregation settings.
*/
sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
/*
* Setup the hardware after reset: the key cache
* is filled as needed and the receive engine is
* set going. Frame transmit is handled entirely
* in the frame output path; there's nothing to do
* here except setup the interrupt mask.
*/
if (ath_startrecv(sc) != 0) {
if_printf(ifp, "unable to start recv logic\n");
ATH_UNLOCK(sc);
return;
}
/*
* Enable interrupts.
*/
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
| HAL_INT_RXEOL | HAL_INT_RXORN
| HAL_INT_FATAL | HAL_INT_GLOBAL;
/*
* Enable MIB interrupts when there are hardware phy counters.
* Note we only do this (at the moment) for station mode.
*/
if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
sc->sc_imask |= HAL_INT_MIB;
/* Enable global TX timeout and carrier sense timeout if available */
if (ath_hal_gtxto_supported(ah))
sc->sc_imask |= HAL_INT_GTT;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
__func__, sc->sc_imask);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
ath_hal_intrset(ah, sc->sc_imask);
ATH_UNLOCK(sc);
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->start(sc->sc_tx99);
else
#endif
ieee80211_start_all(ic); /* start all vap's */
}
static void
ath_stop_locked(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
__func__, sc->sc_invalid, ifp->if_flags);
ATH_LOCK_ASSERT(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Shutdown the hardware and driver:
* reset 802.11 state machine
* turn off timers
* disable interrupts
* turn off the radio
* clear transmit machinery
* clear receive machinery
* drain and release tx queues
* reclaim beacon resources
* power down hardware
*
* Note that some of this work is not possible if the
* hardware is gone (invalid).
*/
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->stop(sc->sc_tx99);
#endif
callout_stop(&sc->sc_wd_ch);
sc->sc_wd_timer = 0;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
if (!sc->sc_invalid) {
if (sc->sc_softled) {
callout_stop(&sc->sc_ledtimer);
ath_hal_gpioset(ah, sc->sc_ledpin,
!sc->sc_ledon);
sc->sc_blinking = 0;
}
ath_hal_intrset(ah, 0);
}
ath_draintxq(sc, ATH_RESET_DEFAULT);
if (!sc->sc_invalid) {
ath_stoprecv(sc, 1);
ath_hal_phydisable(ah);
} else
sc->sc_rxlink = NULL;
ath_beacon_free(sc); /* XXX not needed */
}
}
#define MAX_TXRX_ITERATIONS 1000
static void
ath_txrx_stop_locked(struct ath_softc *sc)
{
int i = MAX_TXRX_ITERATIONS;
ATH_UNLOCK_ASSERT(sc);
ATH_PCU_LOCK_ASSERT(sc);
/*
* Sleep until all the pending operations have completed.
*
* The caller must ensure that reset has been incremented
* or the pending operations may continue being queued.
*/
while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
sc->sc_txstart_cnt || sc->sc_intr_cnt) {
if (i <= 0)
break;
msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
i--;
}
if (i <= 0)
device_printf(sc->sc_dev,
"%s: didn't finish after %d iterations\n",
__func__, MAX_TXRX_ITERATIONS);
}
#undef MAX_TXRX_ITERATIONS
#if 0
static void
ath_txrx_stop(struct ath_softc *sc)
{
ATH_UNLOCK_ASSERT(sc);
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_PCU_LOCK(sc);
ath_txrx_stop_locked(sc);
ATH_PCU_UNLOCK(sc);
}
#endif
static void
ath_txrx_start(struct ath_softc *sc)
{
taskqueue_unblock(sc->sc_tq);
}
/*
* Grab the reset lock, and wait around until noone else
* is trying to do anything with it.
*
* This is totally horrible but we can't hold this lock for
* long enough to do TX/RX or we end up with net80211/ip stack
* LORs and eventual deadlock.
*
* "dowait" signals whether to spin, waiting for the reset
* lock count to reach 0. This should (for now) only be used
* during the reset path, as the rest of the code may not
* be locking-reentrant enough to behave correctly.
*
* Another, cleaner way should be found to serialise all of
* these operations.
*/
#define MAX_RESET_ITERATIONS 10
static int
ath_reset_grablock(struct ath_softc *sc, int dowait)
{
int w = 0;
int i = MAX_RESET_ITERATIONS;
ATH_PCU_LOCK_ASSERT(sc);
do {
if (sc->sc_inreset_cnt == 0) {
w = 1;
break;
}
if (dowait == 0) {
w = 0;
break;
}
ATH_PCU_UNLOCK(sc);
pause("ath_reset_grablock", 1);
i--;
ATH_PCU_LOCK(sc);
} while (i > 0);
/*
* We always increment the refcounter, regardless
* of whether we succeeded to get it in an exclusive
* way.
*/
sc->sc_inreset_cnt++;
if (i <= 0)
device_printf(sc->sc_dev,
"%s: didn't finish after %d iterations\n",
__func__, MAX_RESET_ITERATIONS);
if (w == 0)
device_printf(sc->sc_dev,
"%s: warning, recursive reset path!\n",
__func__);
return w;
}
#undef MAX_RESET_ITERATIONS
/*
* XXX TODO: write ath_reset_releaselock
*/
static void
ath_stop(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
ATH_LOCK(sc);
ath_stop_locked(ifp);
ATH_UNLOCK(sc);
}
/*
* Reset the hardware w/o losing operational state. This is
* basically a more efficient way of doing ath_stop, ath_init,
* followed by state transitions to the current 802.11
* operational state. Used to recover from various errors and
* to reset or reload hardware state.
*/
int
ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
int i;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_UNLOCK_ASSERT(sc);
/* Try to (stop any further TX/RX from occuring */
taskqueue_block(sc->sc_tq);
ATH_PCU_LOCK(sc);
ath_hal_intrset(ah, 0); /* disable interrupts */
ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */
if (ath_reset_grablock(sc, 1) == 0) {
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
__func__);
}
ATH_PCU_UNLOCK(sc);
/*
* Should now wait for pending TX/RX to complete
* and block future ones from occuring. This needs to be
* done before the TX queue is drained.
*/
ath_draintxq(sc, reset_type); /* stop xmit side */
/*
* Regardless of whether we're doing a no-loss flush or
* not, stop the PCU and handle what's in the RX queue.
* That way frames aren't dropped which shouldn't be.
*/
ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
ath_rx_proc(sc, 0);
ath_settkipmic(sc); /* configure TKIP MIC handling */
/* NB: indicate channel change so we do a full reset */
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
__func__, status);
sc->sc_diversity = ath_hal_getdiversity(ah);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
if (ath_startrecv(sc) != 0) /* restart recv */
if_printf(ifp, "%s: unable to start recv logic\n", __func__);
/*
* We may be doing a reset in response to an ioctl
* that changes the channel so update any state that
* might change as a result.
*/
ath_chan_change(sc, ic->ic_curchan);
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
/*
* Release the reset lock and re-enable interrupts here.
* If an interrupt was being processed in ath_intr(),
* it would disable interrupts at this point. So we have
* to atomically enable interrupts and decrement the
* reset counter - this way ath_intr() doesn't end up
* disabling interrupts without a corresponding enable
* in the rest or channel change path.
*/
ATH_PCU_LOCK(sc);
sc->sc_inreset_cnt--;
/* XXX only do this if sc_inreset_cnt == 0? */
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
/*
* TX and RX can be started here. If it were started with
* sc_inreset_cnt > 0, the TX and RX path would abort.
* Thus if this is a nested call through the reset or
* channel change code, TX completion will occur but
* RX completion and ath_start / ath_tx_start will not
* run.
*/
/* Restart TX/RX as needed */
ath_txrx_start(sc);
/* XXX Restart TX completion and pending TX */
if (reset_type == ATH_RESET_NOLOSS) {
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
ATH_TXQ_LOCK(&sc->sc_txq[i]);
ath_txq_restart_dma(sc, &sc->sc_txq[i]);
ath_txq_sched(sc, &sc->sc_txq[i]);
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
}
}
}
/*
* This may have been set during an ath_start() call which
* set this once it detected a concurrent TX was going on.
* So, clear it.
*/
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
/* Handle any frames in the TX queue */
/*
* XXX should this be done by the caller, rather than
* ath_reset() ?
*/
ath_start(ifp); /* restart xmit */
return 0;
}
static int
ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
switch (cmd) {
case IEEE80211_IOC_TXPOWER:
/*
* If per-packet TPC is enabled, then we have nothing
* to do; otherwise we need to force the global limit.
* All this can happen directly; no need to reset.
*/
if (!ath_hal_gettpc(ah))
ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
return 0;
}
/* XXX? Full or NOLOSS? */
return ath_reset(ifp, ATH_RESET_FULL);
}
struct ath_buf *
_ath_getbuf_locked(struct ath_softc *sc)
{
struct ath_buf *bf;
ATH_TXBUF_LOCK_ASSERT(sc);
bf = TAILQ_FIRST(&sc->sc_txbuf);
if (bf == NULL) {
sc->sc_stats.ast_tx_getnobuf++;
} else {
if (bf->bf_flags & ATH_BUF_BUSY) {
sc->sc_stats.ast_tx_getbusybuf++;
bf = NULL;
}
}
if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
else
bf = NULL;
if (bf == NULL) {
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
"out of xmit buffers" : "xmit buffer busy");
return NULL;
}
/* Valid bf here; clear some basic fields */
bf->bf_next = NULL; /* XXX just to be sure */
bf->bf_last = NULL; /* XXX again, just to be sure */
bf->bf_comp = NULL; /* XXX again, just to be sure */
bzero(&bf->bf_state, sizeof(bf->bf_state));
return bf;
}
/*
* When retrying a software frame, buffers marked ATH_BUF_BUSY
* can't be thrown back on the queue as they could still be
* in use by the hardware.
*
* This duplicates the buffer, or returns NULL.
*
* The descriptor is also copied but the link pointers and
* the DMA segments aren't copied; this frame should thus
* be again passed through the descriptor setup/chain routines
* so the link is correct.
*
* The caller must free the buffer using ath_freebuf().
*
* XXX TODO: this call shouldn't fail as it'll cause packet loss
* XXX in the TX pathway when retries are needed.
* XXX Figure out how to keep some buffers free, or factor the
* XXX number of busy buffers into the xmit path (ath_start())
* XXX so we don't over-commit.
*/
struct ath_buf *
ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
{
struct ath_buf *tbf;
tbf = ath_getbuf(sc);
if (tbf == NULL)
return NULL; /* XXX failure? Why? */
/* Copy basics */
tbf->bf_next = NULL;
tbf->bf_nseg = bf->bf_nseg;
tbf->bf_txflags = bf->bf_txflags;
tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
tbf->bf_status = bf->bf_status;
tbf->bf_m = bf->bf_m;
tbf->bf_node = bf->bf_node;
/* will be setup by the chain/setup function */
tbf->bf_lastds = NULL;
/* for now, last == self */
tbf->bf_last = tbf;
tbf->bf_comp = bf->bf_comp;
/* NOTE: DMA segments will be setup by the setup/chain functions */
/* The caller has to re-init the descriptor + links */
/* Copy state */
memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
return tbf;
}
struct ath_buf *
ath_getbuf(struct ath_softc *sc)
{
struct ath_buf *bf;
ATH_TXBUF_LOCK(sc);
bf = _ath_getbuf_locked(sc);
ATH_TXBUF_UNLOCK(sc);
if (bf == NULL) {
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
sc->sc_stats.ast_tx_qstop++;
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
}
return bf;
}
static void
ath_start(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct ath_buf *bf;
struct mbuf *m, *next;
ath_bufhead frags;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
return;
/* XXX is it ok to hold the ATH_LOCK here? */
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt > 0) {
device_printf(sc->sc_dev,
"%s: sc_inreset_cnt > 0; bailing\n", __func__);
ATH_PCU_UNLOCK(sc);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
return;
}
sc->sc_txstart_cnt++;
ATH_PCU_UNLOCK(sc);
for (;;) {
/*
* Grab a TX buffer and associated resources.
*/
bf = ath_getbuf(sc);
if (bf == NULL)
break;
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL) {
ATH_TXBUF_LOCK(sc);
TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
ATH_TXBUF_UNLOCK(sc);
break;
}
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
/*
* Check for fragmentation. If this frame
* has been broken up verify we have enough
* buffers to send all the fragments so all
* go out or none...
*/
TAILQ_INIT(&frags);
if ((m->m_flags & M_FRAG) &&
!ath_txfrag_setup(sc, &frags, m, ni)) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: out of txfrag buffers\n", __func__);
sc->sc_stats.ast_tx_nofrag++;
ifp->if_oerrors++;
ath_freetx(m);
goto bad;
}
ifp->if_opackets++;
nextfrag:
/*
* Pass the frame to the h/w for transmission.
* Fragmented frames have each frag chained together
* with m_nextpkt. We know there are sufficient ath_buf's
* to send all the frags because of work done by
* ath_txfrag_setup. We leave m_nextpkt set while
* calling ath_tx_start so it can use it to extend the
* the tx duration to cover the subsequent frag and
* so it can reclaim all the mbufs in case of an error;
* ath_tx_start clears m_nextpkt once it commits to
* handing the frame to the hardware.
*/
next = m->m_nextpkt;
if (ath_tx_start(sc, ni, bf, m)) {
bad:
ifp->if_oerrors++;
reclaim:
bf->bf_m = NULL;
bf->bf_node = NULL;
ATH_TXBUF_LOCK(sc);
TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
ath_txfrag_cleanup(sc, &frags, ni);
ATH_TXBUF_UNLOCK(sc);
if (ni != NULL)
ieee80211_free_node(ni);
continue;
}
if (next != NULL) {
/*
* Beware of state changing between frags.
* XXX check sta power-save state?
*/
if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: flush fragmented packet, state %s\n",
__func__,
ieee80211_state_name[ni->ni_vap->iv_state]);
ath_freetx(next);
goto reclaim;
}
m = next;
bf = TAILQ_FIRST(&frags);
KASSERT(bf != NULL, ("no buf for txfrag"));
TAILQ_REMOVE(&frags, bf, bf_list);
goto nextfrag;
}
sc->sc_wd_timer = 5;
}
ATH_PCU_LOCK(sc);
sc->sc_txstart_cnt--;
ATH_PCU_UNLOCK(sc);
}
static int
ath_media_change(struct ifnet *ifp)
{
int error = ieee80211_media_change(ifp);
/* NB: only the fixed rate can change and that doesn't need a reset */
return (error == ENETRESET ? 0 : error);
}
/*
* Block/unblock tx+rx processing while a key change is done.
* We assume the caller serializes key management operations
* so we only need to worry about synchronization with other
* uses that originate in the driver.
*/
static void
ath_key_update_begin(struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
taskqueue_block(sc->sc_tq);
IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
}
static void
ath_key_update_end(struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
IF_UNLOCK(&ifp->if_snd);
taskqueue_unblock(sc->sc_tq);
}
/*
* Calculate the receive filter according to the
* operating mode and state:
*
* o always accept unicast, broadcast, and multicast traffic
* o accept PHY error frames when hardware doesn't have MIB support
* to count and we need them for ANI (sta mode only until recently)
* and we are not scanning (ANI is disabled)
* NB: older hal's add rx filter bits out of sight and we need to
* blindly preserve them
* o probe request frames are accepted only when operating in
* hostap, adhoc, mesh, or monitor modes
* o enable promiscuous mode
* - when in monitor mode
* - if interface marked PROMISC (assumes bridge setting is filtered)
* o accept beacons:
* - when operating in station mode for collecting rssi data when
* the station is otherwise quiet, or
* - when operating in adhoc mode so the 802.11 layer creates
* node table entries for peers,
* - when scanning
* - when doing s/w beacon miss (e.g. for ap+sta)
* - when operating in ap mode in 11g to detect overlapping bss that
* require protection
* - when operating in mesh mode to detect neighbors
* o accept control frames:
* - when in monitor mode
* XXX HT protection for 11n
*/
static u_int32_t
ath_calcrxfilter(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
u_int32_t rfilt;
rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
if (!sc->sc_needmib && !sc->sc_scanning)
rfilt |= HAL_RX_FILTER_PHYERR;
if (ic->ic_opmode != IEEE80211_M_STA)
rfilt |= HAL_RX_FILTER_PROBEREQ;
/* XXX ic->ic_monvaps != 0? */
if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
rfilt |= HAL_RX_FILTER_PROM;
if (ic->ic_opmode == IEEE80211_M_STA ||
ic->ic_opmode == IEEE80211_M_IBSS ||
sc->sc_swbmiss || sc->sc_scanning)
rfilt |= HAL_RX_FILTER_BEACON;
/*
* NB: We don't recalculate the rx filter when
* ic_protmode changes; otherwise we could do
* this only when ic_protmode != NONE.
*/
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
rfilt |= HAL_RX_FILTER_BEACON;
/*
* Enable hardware PS-POLL RX only for hostap mode;
* STA mode sends PS-POLL frames but never
* receives them.
*/
if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
0, NULL) == HAL_OK &&
ic->ic_opmode == IEEE80211_M_HOSTAP)
rfilt |= HAL_RX_FILTER_PSPOLL;
if (sc->sc_nmeshvaps) {
rfilt |= HAL_RX_FILTER_BEACON;
if (sc->sc_hasbmatch)
rfilt |= HAL_RX_FILTER_BSSID;
else
rfilt |= HAL_RX_FILTER_PROM;
}
if (ic->ic_opmode == IEEE80211_M_MONITOR)
rfilt |= HAL_RX_FILTER_CONTROL;
/*
* Enable RX of compressed BAR frames only when doing
* 802.11n. Required for A-MPDU.
*/
if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
rfilt |= HAL_RX_FILTER_COMPBAR;
/*
* Enable radar PHY errors if requested by the
* DFS module.
*/
if (sc->sc_dodfs)
rfilt |= HAL_RX_FILTER_PHYRADAR;
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
__func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
return rfilt;
}
static void
ath_update_promisc(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
u_int32_t rfilt;
/* configure rx filter */
rfilt = ath_calcrxfilter(sc);
ath_hal_setrxfilter(sc->sc_ah, rfilt);
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
}
static void
ath_update_mcast(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
u_int32_t mfilt[2];
/* calculate and install multicast filter */
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
struct ifmultiaddr *ifma;
/*
* Merge multicast addresses to form the hardware filter.
*/
mfilt[0] = mfilt[1] = 0;
if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
caddr_t dl;
u_int32_t val;
u_int8_t pos;
/* calculate XOR of eight 6bit values */
dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
val = LE_READ_4(dl + 0);
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
val = LE_READ_4(dl + 3);
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
pos &= 0x3f;
mfilt[pos / 32] |= (1 << (pos % 32));
}
if_maddr_runlock(ifp);
} else
mfilt[0] = mfilt[1] = ~0;
ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
__func__, mfilt[0], mfilt[1]);
}
static void
ath_mode_init(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
/* configure rx filter */
rfilt = ath_calcrxfilter(sc);
ath_hal_setrxfilter(ah, rfilt);
/* configure operational mode */
ath_hal_setopmode(ah);
/* handle any link-level address change */
ath_hal_setmac(ah, IF_LLADDR(ifp));
/* calculate and install multicast filter */
ath_update_mcast(ifp);
}
/*
* Set the slot time based on the current setting.
*/
static void
ath_setslottime(struct ath_softc *sc)
{
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
u_int usec;
if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
usec = 13;
else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
usec = 21;
else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
/* honor short/long slot time only in 11g */
/* XXX shouldn't honor on pure g or turbo g channel */
if (ic->ic_flags & IEEE80211_F_SHSLOT)
usec = HAL_SLOT_TIME_9;
else
usec = HAL_SLOT_TIME_20;
} else
usec = HAL_SLOT_TIME_9;
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
__func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
ath_hal_setslottime(ah, usec);
sc->sc_updateslot = OK;
}
/*
* Callback from the 802.11 layer to update the
* slot time based on the current setting.
*/
static void
ath_updateslot(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
/*
* When not coordinating the BSS, change the hardware
* immediately. For other operation we defer the change
* until beacon updates have propagated to the stations.
*/
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_MBSS)
sc->sc_updateslot = UPDATE;
else
ath_setslottime(sc);
}
/*
* Setup a h/w transmit queue for beacons.
*/
static int
ath_beaconq_setup(struct ath_hal *ah)
{
HAL_TXQ_INFO qi;
memset(&qi, 0, sizeof(qi));
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
/* NB: for dynamic turbo, don't enable any other interrupts */
qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
}
/*
* Setup the transmit queue parameters for the beacon queue.
*/
static int
ath_beaconq_config(struct ath_softc *sc)
{
#define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_MBSS) {
/*
* Always burst out beacon and CAB traffic.
*/
qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
} else {
struct wmeParams *wmep =
&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
/*
* Adhoc mode; important thing is to use 2x cwmin.
*/
qi.tqi_aifs = wmep->wmep_aifsn;
qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
}
if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
device_printf(sc->sc_dev, "unable to update parameters for "
"beacon hardware queue!\n");
return 0;
} else {
ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
return 1;
}
#undef ATH_EXPONENT_TO_VALUE
}
/*
* Allocate and setup an initial beacon frame.
*/
static int
ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ath_vap *avp = ATH_VAP(vap);
struct ath_buf *bf;
struct mbuf *m;
int error;
bf = avp->av_bcbuf;
DPRINTF(sc, ATH_DEBUG_NODE, "%s: bf_m=%p, bf_node=%p\n",
__func__, bf->bf_m, bf->bf_node);
if (bf->bf_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
bf->bf_m = NULL;
}
if (bf->bf_node != NULL) {
ieee80211_free_node(bf->bf_node);
bf->bf_node = NULL;
}
/*
* NB: the beacon data buffer must be 32-bit aligned;
* we assume the mbuf routines will return us something
* with this alignment (perhaps should assert).
*/
m = ieee80211_beacon_alloc(ni, &avp->av_boff);
if (m == NULL) {
device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
sc->sc_stats.ast_be_nombuf++;
return ENOMEM;
}
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
bf->bf_segs, &bf->bf_nseg,
BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
__func__, error);
m_freem(m);
return error;
}
/*
* Calculate a TSF adjustment factor required for staggered
* beacons. Note that we assume the format of the beacon
* frame leaves the tstamp field immediately following the
* header.
*/
if (sc->sc_stagbeacons && avp->av_bslot > 0) {
uint64_t tsfadjust;
struct ieee80211_frame *wh;
/*
* The beacon interval is in TU's; the TSF is in usecs.
* We figure out how many TU's to add to align the timestamp
* then convert to TSF units and handle byte swapping before
* inserting it in the frame. The hardware will then add this
* each time a beacon frame is sent. Note that we align vap's
* 1..N and leave vap 0 untouched. This means vap 0 has a
* timestamp in one beacon interval while the others get a
* timstamp aligned to the next interval.
*/
tsfadjust = ni->ni_intval *
(ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
__func__, sc->sc_stagbeacons ? "stagger" : "burst",
avp->av_bslot, ni->ni_intval,
(long long unsigned) le64toh(tsfadjust));
wh = mtod(m, struct ieee80211_frame *);
memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
}
bf->bf_m = m;
bf->bf_node = ieee80211_ref_node(ni);
return 0;
}
/*
* Setup the beacon frame for transmit.
*/
static void
ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
{
#define USE_SHPREAMBLE(_ic) \
(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
== IEEE80211_F_SHPREAMBLE)
struct ieee80211_node *ni = bf->bf_node;
struct ieee80211com *ic = ni->ni_ic;
struct mbuf *m = bf->bf_m;
struct ath_hal *ah = sc->sc_ah;
struct ath_desc *ds;
int flags, antenna;
const HAL_RATE_TABLE *rt;
u_int8_t rix, rate;
DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
__func__, m, m->m_len);
/* setup descriptors */
ds = bf->bf_desc;
bf->bf_last = bf;
bf->bf_lastds = ds;
flags = HAL_TXDESC_NOACK;
if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
ds->ds_link = bf->bf_daddr; /* self-linked */
flags |= HAL_TXDESC_VEOL;
/*
* Let hardware handle antenna switching.
*/
antenna = sc->sc_txantenna;
} else {
ds->ds_link = 0;
/*
* Switch antenna every 4 beacons.
* XXX assumes two antenna
*/
if (sc->sc_txantenna != 0)
antenna = sc->sc_txantenna;
else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
else
antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
}
KASSERT(bf->bf_nseg == 1,
("multi-segment beacon frame; nseg %u", bf->bf_nseg));
ds->ds_data = bf->bf_segs[0].ds_addr;
/*
* Calculate rate code.
* XXX everything at min xmit rate
*/
rix = 0;
rt = sc->sc_currates;
rate = rt->info[rix].rateCode;
if (USE_SHPREAMBLE(ic))
rate |= rt->info[rix].shortPreamble;
ath_hal_setuptxdesc(ah, ds
, m->m_len + IEEE80211_CRC_LEN /* frame length */
, sizeof(struct ieee80211_frame)/* header length */
, HAL_PKT_TYPE_BEACON /* Atheros packet type */
, ni->ni_txpower /* txpower XXX */
, rate, 1 /* series 0 rate/tries */
, HAL_TXKEYIX_INVALID /* no encryption */
, antenna /* antenna mode */
, flags /* no ack, veol for beacons */
, 0 /* rts/cts rate */
, 0 /* rts/cts duration */
);
/* NB: beacon's BufLen must be a multiple of 4 bytes */
ath_hal_filltxdesc(ah, ds
, roundup(m->m_len, 4) /* buffer length */
, AH_TRUE /* first segment */
, AH_TRUE /* last segment */
, ds /* first descriptor */
);
#if 0
ath_desc_swap(ds);
#endif
#undef USE_SHPREAMBLE
}
static void
ath_beacon_update(struct ieee80211vap *vap, int item)
{
struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
setbit(bo->bo_flags, item);
}
/*
* Append the contents of src to dst; both queues
* are assumed to be locked.
*/
static void
ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
{
ATH_TXQ_LOCK_ASSERT(dst);
ATH_TXQ_LOCK_ASSERT(src);
TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
dst->axq_link = src->axq_link;
src->axq_link = NULL;
dst->axq_depth += src->axq_depth;
dst->axq_aggr_depth += src->axq_aggr_depth;
src->axq_depth = 0;
src->axq_aggr_depth = 0;
}
/*
* Transmit a beacon frame at SWBA. Dynamic updates to the
* frame contents are done as needed and the slot time is
* also adjusted based on current state.
*/
static void
ath_beacon_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ath_hal *ah = sc->sc_ah;
struct ieee80211vap *vap;
struct ath_buf *bf;
int slot, otherant;
uint32_t bfaddr;
DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
__func__, pending);
/*
* Check if the previous beacon has gone out. If
* not don't try to post another, skip this period
* and wait for the next. Missed beacons indicate
* a problem and should not occur. If we miss too
* many consecutive beacons reset the device.
*/
if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
sc->sc_bmisscount++;
sc->sc_stats.ast_be_missed++;
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: missed %u consecutive beacons\n",
__func__, sc->sc_bmisscount);
if (sc->sc_bmisscount >= ath_bstuck_threshold)
taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
return;
}
if (sc->sc_bmisscount != 0) {
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: resume beacon xmit after %u misses\n",
__func__, sc->sc_bmisscount);
sc->sc_bmisscount = 0;
}
if (sc->sc_stagbeacons) { /* staggered beacons */
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
uint32_t tsftu;
tsftu = ath_hal_gettsf32(ah) >> 10;
/* XXX lintval */
slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
bfaddr = 0;
if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
bf = ath_beacon_generate(sc, vap);
if (bf != NULL)
bfaddr = bf->bf_daddr;
}
} else { /* burst'd beacons */
uint32_t *bflink = &bfaddr;
for (slot = 0; slot < ATH_BCBUF; slot++) {
vap = sc->sc_bslot[slot];
if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
bf = ath_beacon_generate(sc, vap);
if (bf != NULL) {
*bflink = bf->bf_daddr;
bflink = &bf->bf_desc->ds_link;
}
}
}
*bflink = 0; /* terminate list */
}
/*
* Handle slot time change when a non-ERP station joins/leaves
* an 11g network. The 802.11 layer notifies us via callback,
* we mark updateslot, then wait one beacon before effecting
* the change. This gives associated stations at least one
* beacon interval to note the state change.
*/
/* XXX locking */
if (sc->sc_updateslot == UPDATE) {
sc->sc_updateslot = COMMIT; /* commit next beacon */
sc->sc_slotupdate = slot;
} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
ath_setslottime(sc); /* commit change to h/w */
/*
* Check recent per-antenna transmit statistics and flip
* the default antenna if noticeably more frames went out
* on the non-default antenna.
* XXX assumes 2 anntenae
*/
if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
otherant = sc->sc_defant & 1 ? 2 : 1;
if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
ath_setdefantenna(sc, otherant);
sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
}
if (bfaddr != 0) {
/*
* Stop any current dma and put the new frame on the queue.
* This should never fail since we check above that no frames
* are still pending on the queue.
*/
if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: beacon queue %u did not stop?\n",
__func__, sc->sc_bhalq);
}
/* NB: cabq traffic should already be queued and primed */
ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
ath_hal_txstart(ah, sc->sc_bhalq);
sc->sc_stats.ast_be_xmit++;
}
}
static struct ath_buf *
ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
{
struct ath_vap *avp = ATH_VAP(vap);
struct ath_txq *cabq = sc->sc_cabq;
struct ath_buf *bf;
struct mbuf *m;
int nmcastq, error;
KASSERT(vap->iv_state >= IEEE80211_S_RUN,
("not running, state %d", vap->iv_state));
KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
/*
* Update dynamic beacon contents. If this returns
* non-zero then we need to remap the memory because
* the beacon frame changed size (probably because
* of the TIM bitmap).
*/
bf = avp->av_bcbuf;
m = bf->bf_m;
/* XXX lock mcastq? */
nmcastq = avp->av_mcastq.axq_depth;
if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
/* XXX too conservative? */
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
bf->bf_segs, &bf->bf_nseg,
BUS_DMA_NOWAIT);
if (error != 0) {
if_printf(vap->iv_ifp,
"%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
__func__, error);
return NULL;
}
}
if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: cabq did not drain, mcastq %u cabq %u\n",
__func__, nmcastq, cabq->axq_depth);
sc->sc_stats.ast_cabq_busy++;
if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
/*
* CABQ traffic from a previous vap is still pending.
* We must drain the q before this beacon frame goes
* out as otherwise this vap's stations will get cab
* frames from a different vap.
* XXX could be slow causing us to miss DBA
*/
ath_tx_draintxq(sc, cabq);
}
}
ath_beacon_setup(sc, bf);
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
/*
* Enable the CAB queue before the beacon queue to
* insure cab frames are triggered by this beacon.
*/
if (avp->av_boff.bo_tim[4] & 1) {
struct ath_hal *ah = sc->sc_ah;
/* NB: only at DTIM */
ATH_TXQ_LOCK(cabq);
ATH_TXQ_LOCK(&avp->av_mcastq);
if (nmcastq) {
struct ath_buf *bfm;
/*
* Move frames from the s/w mcast q to the h/w cab q.
* XXX MORE_DATA bit
*/
bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q);
if (cabq->axq_link != NULL) {
*cabq->axq_link = bfm->bf_daddr;
} else
ath_hal_puttxbuf(ah, cabq->axq_qnum,
bfm->bf_daddr);
ath_txqmove(cabq, &avp->av_mcastq);
sc->sc_stats.ast_cabq_xmit += nmcastq;
}
/* NB: gated by beacon so safe to start here */
if (! TAILQ_EMPTY(&(cabq->axq_q)))
ath_hal_txstart(ah, cabq->axq_qnum);
ATH_TXQ_UNLOCK(&avp->av_mcastq);
ATH_TXQ_UNLOCK(cabq);
}
return bf;
}
static void
ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
{
struct ath_vap *avp = ATH_VAP(vap);
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
struct mbuf *m;
int error;
KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
/*
* Update dynamic beacon contents. If this returns
* non-zero then we need to remap the memory because
* the beacon frame changed size (probably because
* of the TIM bitmap).
*/
bf = avp->av_bcbuf;
m = bf->bf_m;
if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
/* XXX too conservative? */
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
bf->bf_segs, &bf->bf_nseg,
BUS_DMA_NOWAIT);
if (error != 0) {
if_printf(vap->iv_ifp,
"%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
__func__, error);
return;
}
}
ath_beacon_setup(sc, bf);
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
/* NB: caller is known to have already stopped tx dma */
ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
ath_hal_txstart(ah, sc->sc_bhalq);
}
/*
* Reset the hardware, with no loss.
*
* This can't be used for a general case reset.
*/
static void
ath_reset_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
#if 0
if_printf(ifp, "%s: resetting\n", __func__);
#endif
ath_reset(ifp, ATH_RESET_NOLOSS);
}
/*
* Reset the hardware after detecting beacons have stopped.
*/
static void
ath_bstuck_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t hangs = 0;
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
sc->sc_bmisscount);
sc->sc_stats.ast_bstuck++;
/*
* This assumes that there's no simultaneous channel mode change
* occuring.
*/
ath_reset(ifp, ATH_RESET_NOLOSS);
}
/*
* Reclaim beacon resources and return buffer to the pool.
*/
static void
ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
{
DPRINTF(sc, ATH_DEBUG_NODE, "%s: free bf=%p, bf_m=%p, bf_node=%p\n",
__func__, bf, bf->bf_m, bf->bf_node);
if (bf->bf_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
bf->bf_m = NULL;
}
if (bf->bf_node != NULL) {
ieee80211_free_node(bf->bf_node);
bf->bf_node = NULL;
}
TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
}
/*
* Reclaim beacon resources.
*/
static void
ath_beacon_free(struct ath_softc *sc)
{
struct ath_buf *bf;
TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
DPRINTF(sc, ATH_DEBUG_NODE,
"%s: free bf=%p, bf_m=%p, bf_node=%p\n",
__func__, bf, bf->bf_m, bf->bf_node);
if (bf->bf_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
bf->bf_m = NULL;
}
if (bf->bf_node != NULL) {
ieee80211_free_node(bf->bf_node);
bf->bf_node = NULL;
}
}
}
/*
* Configure the beacon and sleep timers.
*
* When operating as an AP this resets the TSF and sets
* up the hardware to notify us when we need to issue beacons.
*
* When operating in station mode this sets up the beacon
* timers according to the timestamp of the last received
* beacon and the current TSF, configures PCF and DTIM
* handling, programs the sleep registers so the hardware
* will wakeup in time to receive beacons, and configures
* the beacon miss handling so we'll receive a BMISS
* interrupt when we stop seeing beacons from the AP
* we've associated with.
*/
static void
ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
{
#define TSF_TO_TU(_h,_l) \
((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
#define FUDGE 2
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct ieee80211_node *ni;
u_int32_t nexttbtt, intval, tsftu;
u_int64_t tsf;
if (vap == NULL)
vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */
ni = ieee80211_ref_node(vap->iv_bss);
/* extract tstamp from last beacon and convert to TU */
nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
LE_READ_4(ni->ni_tstamp.data));
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_MBSS) {
/*
* For multi-bss ap/mesh support beacons are either staggered
* evenly over N slots or burst together. For the former
* arrange for the SWBA to be delivered for each slot.
* Slots that are not occupied will generate nothing.
*/
/* NB: the beacon interval is kept internally in TU's */
intval = ni->ni_intval & HAL_BEACON_PERIOD;
if (sc->sc_stagbeacons)
intval /= ATH_BCBUF;
} else {
/* NB: the beacon interval is kept internally in TU's */
intval = ni->ni_intval & HAL_BEACON_PERIOD;
}
if (nexttbtt == 0) /* e.g. for ap mode */
nexttbtt = intval;
else if (intval) /* NB: can be 0 for monitor mode */
nexttbtt = roundup(nexttbtt, intval);
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
__func__, nexttbtt, intval, ni->ni_intval);
if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
HAL_BEACON_STATE bs;
int dtimperiod, dtimcount;
int cfpperiod, cfpcount;
/*
* Setup dtim and cfp parameters according to
* last beacon we received (which may be none).
*/
dtimperiod = ni->ni_dtim_period;
if (dtimperiod <= 0) /* NB: 0 if not known */
dtimperiod = 1;
dtimcount = ni->ni_dtim_count;
if (dtimcount >= dtimperiod) /* NB: sanity check */
dtimcount = 0; /* XXX? */
cfpperiod = 1; /* NB: no PCF support yet */
cfpcount = 0;
/*
* Pull nexttbtt forward to reflect the current
* TSF and calculate dtim+cfp state for the result.
*/
tsf = ath_hal_gettsf64(ah);
tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
do {
nexttbtt += intval;
if (--dtimcount < 0) {
dtimcount = dtimperiod - 1;
if (--cfpcount < 0)
cfpcount = cfpperiod - 1;
}
} while (nexttbtt < tsftu);
memset(&bs, 0, sizeof(bs));
bs.bs_intval = intval;
bs.bs_nexttbtt = nexttbtt;
bs.bs_dtimperiod = dtimperiod*intval;
bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
bs.bs_cfpmaxduration = 0;
#if 0
/*
* The 802.11 layer records the offset to the DTIM
* bitmap while receiving beacons; use it here to
* enable h/w detection of our AID being marked in
* the bitmap vector (to indicate frames for us are
* pending at the AP).
* XXX do DTIM handling in s/w to WAR old h/w bugs
* XXX enable based on h/w rev for newer chips
*/
bs.bs_timoffset = ni->ni_timoff;
#endif
/*
* Calculate the number of consecutive beacons to miss
* before taking a BMISS interrupt.
* Note that we clamp the result to at most 10 beacons.
*/
bs.bs_bmissthreshold = vap->iv_bmissthreshold;
if (bs.bs_bmissthreshold > 10)
bs.bs_bmissthreshold = 10;
else if (bs.bs_bmissthreshold <= 0)
bs.bs_bmissthreshold = 1;
/*
* Calculate sleep duration. The configuration is
* given in ms. We insure a multiple of the beacon
* period is used. Also, if the sleep duration is
* greater than the DTIM period then it makes senses
* to make it a multiple of that.
*
* XXX fixed at 100ms
*/
bs.bs_sleepduration =
roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
if (bs.bs_sleepduration > bs.bs_dtimperiod)
bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
, __func__
, tsf, tsftu
, bs.bs_intval
, bs.bs_nexttbtt
, bs.bs_dtimperiod
, bs.bs_nextdtim
, bs.bs_bmissthreshold
, bs.bs_sleepduration
, bs.bs_cfpperiod
, bs.bs_cfpmaxduration
, bs.bs_cfpnext
, bs.bs_timoffset
);
ath_hal_intrset(ah, 0);
ath_hal_beacontimers(ah, &bs);
sc->sc_imask |= HAL_INT_BMISS;
ath_hal_intrset(ah, sc->sc_imask);
} else {
ath_hal_intrset(ah, 0);
if (nexttbtt == intval)
intval |= HAL_BEACON_RESET_TSF;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
/*
* In IBSS mode enable the beacon timers but only
* enable SWBA interrupts if we need to manually
* prepare beacon frames. Otherwise we use a
* self-linked tx descriptor and let the hardware
* deal with things.
*/
intval |= HAL_BEACON_ENA;
if (!sc->sc_hasveol)
sc->sc_imask |= HAL_INT_SWBA;
if ((intval & HAL_BEACON_RESET_TSF) == 0) {
/*
* Pull nexttbtt forward to reflect
* the current TSF.
*/
tsf = ath_hal_gettsf64(ah);
tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
do {
nexttbtt += intval;
} while (nexttbtt < tsftu);
}
ath_beaconq_config(sc);
} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_MBSS) {
/*
* In AP/mesh mode we enable the beacon timers
* and SWBA interrupts to prepare beacon frames.
*/
intval |= HAL_BEACON_ENA;
sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
ath_beaconq_config(sc);
}
ath_hal_beaconinit(ah, nexttbtt, intval);
sc->sc_bmisscount = 0;
ath_hal_intrset(ah, sc->sc_imask);
/*
* When using a self-linked beacon descriptor in
* ibss mode load it once here.
*/
if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
ath_beacon_start_adhoc(sc, vap);
}
sc->sc_syncbeacon = 0;
ieee80211_free_node(ni);
#undef FUDGE
#undef TSF_TO_TU
}
static void
ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *paddr = (bus_addr_t*) arg;
KASSERT(error == 0, ("error %u on bus_dma callback", error));
*paddr = segs->ds_addr;
}
static int
ath_descdma_setup(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head,
const char *name, int nbuf, int ndesc)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
struct ifnet *ifp = sc->sc_ifp;
uint8_t *ds;
struct ath_buf *bf;
int i, bsize, error;
int desc_len;
desc_len = sizeof(struct ath_desc);
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
__func__, name, nbuf, ndesc);
dd->dd_name = name;
dd->dd_desc_len = desc_len * nbuf * ndesc;
/*
* Merlin work-around:
* Descriptors that cross the 4KB boundary can't be used.
* Assume one skipped descriptor per 4KB page.
*/
if (! ath_hal_split4ktrans(sc->sc_ah)) {
int numdescpage = 4096 / (desc_len * ndesc);
dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
}
/*
* Setup DMA descriptor area.
*/
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */
PAGE_SIZE, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
dd->dd_desc_len, /* maxsize */
1, /* nsegments */
dd->dd_desc_len, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&dd->dd_dmat);
if (error != 0) {
if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
return error;
}
/* allocate descriptors */
error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
if (error != 0) {
if_printf(ifp, "unable to create dmamap for %s descriptors, "
"error %u\n", dd->dd_name, error);
goto fail0;
}
error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
&dd->dd_dmamap);
if (error != 0) {
if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
"error %u\n", nbuf * ndesc, dd->dd_name, error);
goto fail1;
}
error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
dd->dd_desc, dd->dd_desc_len,
ath_load_cb, &dd->dd_desc_paddr,
BUS_DMA_NOWAIT);
if (error != 0) {
if_printf(ifp, "unable to map %s descriptors, error %u\n",
dd->dd_name, error);
goto fail2;
}
ds = (uint8_t *) dd->dd_desc;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
__func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
(caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
/* allocate rx buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
if (bf == NULL) {
if_printf(ifp, "malloc of %s buffers failed, size %u\n",
dd->dd_name, bsize);
goto fail3;
}
dd->dd_bufptr = bf;
TAILQ_INIT(head);
for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
bf->bf_desc = (struct ath_desc *) ds;
bf->bf_daddr = DS2PHYS(dd, ds);
if (! ath_hal_split4ktrans(sc->sc_ah)) {
/*
* Merlin WAR: Skip descriptor addresses which
* cause 4KB boundary crossing along any point
* in the descriptor.
*/
if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
desc_len * ndesc)) {
/* Start at the next page */
ds += 0x1000 - (bf->bf_daddr & 0xFFF);
bf->bf_desc = (struct ath_desc *) ds;
bf->bf_daddr = DS2PHYS(dd, ds);
}
}
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
&bf->bf_dmamap);
if (error != 0) {
if_printf(ifp, "unable to create dmamap for %s "
"buffer %u, error %u\n", dd->dd_name, i, error);
ath_descdma_cleanup(sc, dd, head);
return error;
}
bf->bf_lastds = bf->bf_desc; /* Just an initial value */
TAILQ_INSERT_TAIL(head, bf, bf_list);
}
return 0;
fail3:
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
fail2:
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
fail1:
bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
fail0:
bus_dma_tag_destroy(dd->dd_dmat);
memset(dd, 0, sizeof(*dd));
return error;
#undef DS2PHYS
#undef ATH_DESC_4KB_BOUND_CHECK
}
static void
ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head)
{
struct ath_buf *bf;
struct ieee80211_node *ni;
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
bus_dma_tag_destroy(dd->dd_dmat);
TAILQ_FOREACH(bf, head, bf_list) {
if (bf->bf_m) {
m_freem(bf->bf_m);
bf->bf_m = NULL;
}
if (bf->bf_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
bf->bf_dmamap = NULL;
}
ni = bf->bf_node;
bf->bf_node = NULL;
if (ni != NULL) {
/*
* Reclaim node reference.
*/
ieee80211_free_node(ni);
}
}
TAILQ_INIT(head);
free(dd->dd_bufptr, M_ATHDEV);
memset(dd, 0, sizeof(*dd));
}
static int
ath_desc_alloc(struct ath_softc *sc)
{
int error;
error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
"rx", ath_rxbuf, 1);
if (error != 0)
return error;
error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
"tx", ath_txbuf, ATH_TXDESC);
if (error != 0) {
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
return error;
}
error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
"beacon", ATH_BCBUF, 1);
if (error != 0) {
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
return error;
}
return 0;
}
static void
ath_desc_free(struct ath_softc *sc)
{
if (sc->sc_bdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
if (sc->sc_txdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
if (sc->sc_rxdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
}
static struct ieee80211_node *
ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ieee80211com *ic = vap->iv_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
struct ath_node *an;
an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
if (an == NULL) {
/* XXX stat+msg */
return NULL;
}
ath_rate_node_init(sc, an);
/* Setup the mutex - there's no associd yet so set the name to NULL */
snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
device_get_nameunit(sc->sc_dev), an);
mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
/* XXX setup ath_tid */
ath_tx_tid_init(sc, an);
DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
return &an->an_node;
}
static void
ath_node_cleanup(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
ath_tx_node_flush(sc, ATH_NODE(ni));
ath_rate_node_cleanup(sc, ATH_NODE(ni));
sc->sc_node_cleanup(ni);
}
static void
ath_node_free(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
mtx_destroy(&ATH_NODE(ni)->an_mtx);
sc->sc_node_free(ni);
}
static void
ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
*rssi = ic->ic_node_getrssi(ni);
if (ni->ni_chan != IEEE80211_CHAN_ANYC)
*noise = ath_hal_getchannoise(ah, ni->ni_chan);
else
*noise = -95; /* nominally correct */
}
static int
ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_hal *ah = sc->sc_ah;
int error;
struct mbuf *m;
struct ath_desc *ds;
m = bf->bf_m;
if (m == NULL) {
/*
* NB: by assigning a page to the rx dma buffer we
* implicitly satisfy the Atheros requirement that
* this buffer be cache-line-aligned and sized to be
* multiple of the cache line size. Not doing this
* causes weird stuff to happen (for the 5210 at least).
*/
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: no mbuf/cluster\n", __func__);
sc->sc_stats.ast_rx_nombuf++;
return ENOMEM;
}
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
bf->bf_dmamap, m,
bf->bf_segs, &bf->bf_nseg,
BUS_DMA_NOWAIT);
if (error != 0) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
__func__, error);
sc->sc_stats.ast_rx_busdma++;
m_freem(m);
return error;
}
KASSERT(bf->bf_nseg == 1,
("multi-segment packet; nseg %u", bf->bf_nseg));
bf->bf_m = m;
}
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
/*
* Setup descriptors. For receive we always terminate
* the descriptor list with a self-linked entry so we'll
* not get overrun under high load (as can happen with a
* 5212 when ANI processing enables PHY error frames).
*
* To insure the last descriptor is self-linked we create
* each descriptor as self-linked and add it to the end. As
* each additional descriptor is added the previous self-linked
* entry is ``fixed'' naturally. This should be safe even
* if DMA is happening. When processing RX interrupts we
* never remove/process the last, self-linked, entry on the
* descriptor list. This insures the hardware always has
* someplace to write a new frame.
*/
/*
* 11N: we can no longer afford to self link the last descriptor.
* MAC acknowledges BA status as long as it copies frames to host
* buffer (or rx fifo). This can incorrectly acknowledge packets
* to a sender if last desc is self-linked.
*/
ds = bf->bf_desc;
if (sc->sc_rxslink)
ds->ds_link = bf->bf_daddr; /* link to self */
else
ds->ds_link = 0; /* terminate the list */
ds->ds_data = bf->bf_segs[0].ds_addr;
ath_hal_setuprxdesc(ah, ds
, m->m_len /* buffer size */
, 0
);
if (sc->sc_rxlink != NULL)
*sc->sc_rxlink = bf->bf_daddr;
sc->sc_rxlink = &ds->ds_link;
return 0;
}
/*
* Extend 15-bit time stamp from rx descriptor to
* a full 64-bit TSF using the specified TSF.
*/
static __inline u_int64_t
ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf)
{
if ((tsf & 0x7fff) < rstamp)
tsf -= 0x8000;
return ((tsf &~ 0x7fff) | rstamp);
}
/*
* Extend 32-bit time stamp from rx descriptor to
* a full 64-bit TSF using the specified TSF.
*/
static __inline u_int64_t
ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf)
{
u_int32_t tsf_low = tsf & 0xffffffff;
u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp;
if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000))
tsf64 -= 0x100000000ULL;
if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000))
tsf64 += 0x100000000ULL;
return tsf64;
}
/*
* Extend the TSF from the RX descriptor to a full 64 bit TSF.
* Earlier hardware versions only wrote the low 15 bits of the
* TSF into the RX descriptor; later versions (AR5416 and up)
* include the 32 bit TSF value.
*/
static __inline u_int64_t
ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf)
{
if (sc->sc_rxtsf32)
return ath_extend_tsf32(rstamp, tsf);
else
return ath_extend_tsf15(rstamp, tsf);
}
/*
* Intercept management frames to collect beacon rssi data
* and to do ibss merges.
*/
static void
ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
int subtype, int rssi, int nf)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
/*
* Call up first so subsequent work can use information
* potentially stored in the node (e.g. for ibss merge).
*/
ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_BEACON:
/* update rssi statistics for use by the hal */
/* XXX unlocked check against vap->iv_bss? */
ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
if (sc->sc_syncbeacon &&
ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
/*
* Resync beacon timers using the tsf of the beacon
* frame we just received.
*/
ath_beacon_config(sc, vap);
}
/* fall thru... */
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
if (vap->iv_opmode == IEEE80211_M_IBSS &&
vap->iv_state == IEEE80211_S_RUN) {
uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
uint64_t tsf = ath_extend_tsf(sc, rstamp,
ath_hal_gettsf64(sc->sc_ah));
/*
* Handle ibss merge as needed; check the tsf on the
* frame before attempting the merge. The 802.11 spec
* says the station should change it's bssid to match
* the oldest station with the same ssid, where oldest
* is determined by the tsf. Note that hardware
* reconfiguration happens through callback to
* ath_newstate as the state machine will go from
* RUN -> RUN when this happens.
*/
if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
DPRINTF(sc, ATH_DEBUG_STATE,
"ibss merge, rstamp %u tsf %ju "
"tstamp %ju\n", rstamp, (uintmax_t)tsf,
(uintmax_t)ni->ni_tstamp.tsf);
(void) ieee80211_ibss_merge(ni);
}
}
break;
}
}
/*
* Set the default antenna.
*/
static void
ath_setdefantenna(struct ath_softc *sc, u_int antenna)
{
struct ath_hal *ah = sc->sc_ah;
/* XXX block beacon interrupts */
ath_hal_setdefantenna(ah, antenna);
if (sc->sc_defant != antenna)
sc->sc_stats.ast_ant_defswitch++;
sc->sc_defant = antenna;
sc->sc_rxotherant = 0;
}
static void
ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
{
#define CHAN_HT20 htole32(IEEE80211_CHAN_HT20)
#define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U)
#define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D)
#define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
struct ath_softc *sc = ifp->if_softc;
const HAL_RATE_TABLE *rt;
uint8_t rix;
rt = sc->sc_currates;
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
rix = rt->rateCodeToIndex[rs->rs_rate];
sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
#ifdef AH_SUPPORT_AR5416
sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */
struct ieee80211com *ic = ifp->if_l2com;
if ((rs->rs_flags & HAL_RX_2040) == 0)
sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
else
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
if ((rs->rs_flags & HAL_RX_GI) == 0)
sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
}
#endif
sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
if (rs->rs_status & HAL_RXERR_CRC)
sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
/* XXX propagate other error flags from descriptor */
sc->sc_rx_th.wr_antnoise = nf;
sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
sc->sc_rx_th.wr_antenna = rs->rs_antenna;
#undef CHAN_HT
#undef CHAN_HT20
#undef CHAN_HT40U
#undef CHAN_HT40D
}
static void
ath_handle_micerror(struct ieee80211com *ic,
struct ieee80211_frame *wh, int keyix)
{
struct ieee80211_node *ni;
/* XXX recheck MIC to deal w/ chips that lie */
/* XXX discard MIC errors on !data frames */
ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
if (ni != NULL) {
ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
ieee80211_free_node(ni);
}
}
/*
* Only run the RX proc if it's not already running.
* Since this may get run as part of the reset/flush path,
* the task can't clash with an existing, running tasklet.
*/
static void
ath_rx_tasklet(void *arg, int npending)
{
struct ath_softc *sc = arg;
CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending);
DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt > 0) {
device_printf(sc->sc_dev,
"%s: sc_inreset_cnt > 0; skipping\n", __func__);
ATH_PCU_UNLOCK(sc);
return;
}
ATH_PCU_UNLOCK(sc);
ath_rx_proc(sc, 1);
}
static void
ath_rx_proc(struct ath_softc *sc, int resched)
{
#define PA2DESC(_sc, _pa) \
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
struct ath_buf *bf;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
struct ath_desc *ds;
struct ath_rx_status *rs;
struct mbuf *m;
struct ieee80211_node *ni;
int len, type, ngood;
HAL_STATUS status;
int16_t nf;
u_int64_t tsf, rstamp;
int npkts = 0;
/* XXX we must not hold the ATH_LOCK here */
ATH_UNLOCK_ASSERT(sc);
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_PCU_LOCK(sc);
sc->sc_rxproc_cnt++;
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
ngood = 0;
nf = ath_hal_getchannoise(ah, sc->sc_curchan);
sc->sc_stats.ast_rx_noise = nf;
tsf = ath_hal_gettsf64(ah);
do {
bf = TAILQ_FIRST(&sc->sc_rxbuf);
if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */
if_printf(ifp, "%s: no buffer!\n", __func__);
break;
} else if (bf == NULL) {
/*
* End of List:
* this can happen for non-self-linked RX chains
*/
sc->sc_stats.ast_rx_hitqueueend++;
break;
}
m = bf->bf_m;
if (m == NULL) { /* NB: shouldn't happen */
/*
* If mbuf allocation failed previously there
* will be no mbuf; try again to re-populate it.
*/
/* XXX make debug msg */
if_printf(ifp, "%s: no mbuf!\n", __func__);
TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
goto rx_next;
}
ds = bf->bf_desc;
if (ds->ds_link == bf->bf_daddr) {
/* NB: never process the self-linked entry at the end */
sc->sc_stats.ast_rx_hitqueueend++;
break;
}
/* XXX sync descriptor memory */
/*
* Must provide the virtual address of the current
* descriptor, the physical address, and the virtual
* address of the next descriptor in the h/w chain.
* This allows the HAL to look ahead to see if the
* hardware is done with a descriptor by checking the
* done bit in the following descriptor and the address
* of the current descriptor the DMA engine is working
* on. All this is necessary because of our use of
* a self-linked list to avoid rx overruns.
*/
rs = &bf->bf_status.ds_rxstat;
status = ath_hal_rxprocdesc(ah, ds,
bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
ath_printrxbuf(sc, bf, 0, status == HAL_OK);
#endif
if (status == HAL_EINPROGRESS)
break;
TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
npkts++;
/*
* Calculate the correct 64 bit TSF given
* the TSF64 register value and rs_tstamp.
*/
rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
/* These aren't specifically errors */
#ifdef AH_SUPPORT_AR5416
if (rs->rs_flags & HAL_RX_GI)
sc->sc_stats.ast_rx_halfgi++;
if (rs->rs_flags & HAL_RX_2040)
sc->sc_stats.ast_rx_2040++;
if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
sc->sc_stats.ast_rx_pre_crc_err++;
if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
sc->sc_stats.ast_rx_post_crc_err++;
if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
sc->sc_stats.ast_rx_decrypt_busy_err++;
if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
sc->sc_stats.ast_rx_hi_rx_chain++;
#endif /* AH_SUPPORT_AR5416 */
if (rs->rs_status != 0) {
if (rs->rs_status & HAL_RXERR_CRC)
sc->sc_stats.ast_rx_crcerr++;
if (rs->rs_status & HAL_RXERR_FIFO)
sc->sc_stats.ast_rx_fifoerr++;
if (rs->rs_status & HAL_RXERR_PHY) {
sc->sc_stats.ast_rx_phyerr++;
/* Process DFS radar events */
if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
(rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
/* Since we're touching the frame data, sync it */
bus_dmamap_sync(sc->sc_dmat,
bf->bf_dmamap,
BUS_DMASYNC_POSTREAD);
/* Now pass it to the radar processing code */
ath_dfs_process_phy_err(sc, mtod(m, char *), rstamp, rs);
}
/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
if (rs->rs_phyerr < 64)
sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
goto rx_error; /* NB: don't count in ierrors */
}
if (rs->rs_status & HAL_RXERR_DECRYPT) {
/*
* Decrypt error. If the error occurred
* because there was no hardware key, then
* let the frame through so the upper layers
* can process it. This is necessary for 5210
* parts which have no way to setup a ``clear''
* key cache entry.
*
* XXX do key cache faulting
*/
if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
goto rx_accept;
sc->sc_stats.ast_rx_badcrypt++;
}
if (rs->rs_status & HAL_RXERR_MIC) {
sc->sc_stats.ast_rx_badmic++;
/*
* Do minimal work required to hand off
* the 802.11 header for notification.
*/
/* XXX frag's and qos frames */
len = rs->rs_datalen;
if (len >= sizeof (struct ieee80211_frame)) {
bus_dmamap_sync(sc->sc_dmat,
bf->bf_dmamap,
BUS_DMASYNC_POSTREAD);
ath_handle_micerror(ic,
mtod(m, struct ieee80211_frame *),
sc->sc_splitmic ?
rs->rs_keyix-32 : rs->rs_keyix);
}
}
ifp->if_ierrors++;
rx_error:
/*
* Cleanup any pending partial frame.
*/
if (sc->sc_rxpending != NULL) {
m_freem(sc->sc_rxpending);
sc->sc_rxpending = NULL;
}
/*
* When a tap is present pass error frames
* that have been requested. By default we
* pass decrypt+mic errors but others may be
* interesting (e.g. crc).
*/
if (ieee80211_radiotap_active(ic) &&
(rs->rs_status & sc->sc_monpass)) {
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
BUS_DMASYNC_POSTREAD);
/* NB: bpf needs the mbuf length setup */
len = rs->rs_datalen;
m->m_pkthdr.len = m->m_len = len;
bf->bf_m = NULL;
ath_rx_tap(ifp, m, rs, rstamp, nf);
ieee80211_radiotap_rx_all(ic, m);
m_freem(m);
}
/* XXX pass MIC errors up for s/w reclaculation */
goto rx_next;
}
rx_accept:
/*
* Sync and unmap the frame. At this point we're
* committed to passing the mbuf somewhere so clear
* bf_m; this means a new mbuf must be allocated
* when the rx descriptor is setup again to receive
* another frame.
*/
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
bf->bf_m = NULL;
len = rs->rs_datalen;
m->m_len = len;
if (rs->rs_more) {
/*
* Frame spans multiple descriptors; save
* it for the next completed descriptor, it
* will be used to construct a jumbogram.
*/
if (sc->sc_rxpending != NULL) {
/* NB: max frame size is currently 2 clusters */
sc->sc_stats.ast_rx_toobig++;
m_freem(sc->sc_rxpending);
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
sc->sc_rxpending = m;
goto rx_next;
} else if (sc->sc_rxpending != NULL) {
/*
* This is the second part of a jumbogram,
* chain it to the first mbuf, adjust the
* frame length, and clear the rxpending state.
*/
sc->sc_rxpending->m_next = m;
sc->sc_rxpending->m_pkthdr.len += len;
m = sc->sc_rxpending;
sc->sc_rxpending = NULL;
} else {
/*
* Normal single-descriptor receive; setup
* the rcvif and packet length.
*/
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
}
/*
* Validate rs->rs_antenna.
*
* Some users w/ AR9285 NICs have reported crashes
* here because rs_antenna field is bogusly large.
* Let's enforce the maximum antenna limit of 8
* (and it shouldn't be hard coded, but that's a
* separate problem) and if there's an issue, print
* out an error and adjust rs_antenna to something
* sensible.
*
* This code should be removed once the actual
* root cause of the issue has been identified.
* For example, it may be that the rs_antenna
* field is only valid for the lsat frame of
* an aggregate and it just happens that it is
* "mostly" right. (This is a general statement -
* the majority of the statistics are only valid
* for the last frame in an aggregate.
*/
if (rs->rs_antenna > 7) {
device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
__func__, rs->rs_antenna);
#ifdef ATH_DEBUG
ath_printrxbuf(sc, bf, 0, status == HAL_OK);
#endif /* ATH_DEBUG */
rs->rs_antenna = 0; /* XXX better than nothing */
}
ifp->if_ipackets++;
sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
/*
* Populate the rx status block. When there are bpf
* listeners we do the additional work to provide
* complete status. Otherwise we fill in only the
* material required by ieee80211_input. Note that
* noise setting is filled in above.
*/
if (ieee80211_radiotap_active(ic))
ath_rx_tap(ifp, m, rs, rstamp, nf);
/*
* From this point on we assume the frame is at least
* as large as ieee80211_frame_min; verify that.
*/
if (len < IEEE80211_MIN_LEN) {
if (!ieee80211_radiotap_active(ic)) {
DPRINTF(sc, ATH_DEBUG_RECV,
"%s: short packet %d\n", __func__, len);
sc->sc_stats.ast_rx_tooshort++;
} else {
/* NB: in particular this captures ack's */
ieee80211_radiotap_rx_all(ic, m);
}
m_freem(m);
goto rx_next;
}
if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
const HAL_RATE_TABLE *rt = sc->sc_currates;
uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
}
m_adj(m, -IEEE80211_CRC_LEN);
/*
* Locate the node for sender, track state, and then
* pass the (referenced) node up to the 802.11 layer
* for its use.
*/
ni = ieee80211_find_rxnode_withkey(ic,
mtod(m, const struct ieee80211_frame_min *),
rs->rs_keyix == HAL_RXKEYIX_INVALID ?
IEEE80211_KEYIX_NONE : rs->rs_keyix);
sc->sc_lastrs = rs;
#ifdef AH_SUPPORT_AR5416
if (rs->rs_isaggr)
sc->sc_stats.ast_rx_agg++;
#endif /* AH_SUPPORT_AR5416 */
if (ni != NULL) {
/*
* Only punt packets for ampdu reorder processing for
* 11n nodes; net80211 enforces that M_AMPDU is only
* set for 11n nodes.
*/
if (ni->ni_flags & IEEE80211_NODE_HT)
m->m_flags |= M_AMPDU;
/*
* Sending station is known, dispatch directly.
*/
type = ieee80211_input(ni, m, rs->rs_rssi, nf);
ieee80211_free_node(ni);
/*
* Arrange to update the last rx timestamp only for
* frames from our ap when operating in station mode.
* This assumes the rx key is always setup when
* associated.
*/
if (ic->ic_opmode == IEEE80211_M_STA &&
rs->rs_keyix != HAL_RXKEYIX_INVALID)
ngood++;
} else {
type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
}
/*
* Track rx rssi and do any rx antenna management.
*/
ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
if (sc->sc_diversity) {
/*
* When using fast diversity, change the default rx
* antenna if diversity chooses the other antenna 3
* times in a row.
*/
if (sc->sc_defant != rs->rs_antenna) {
if (++sc->sc_rxotherant >= 3)
ath_setdefantenna(sc, rs->rs_antenna);
} else
sc->sc_rxotherant = 0;
}
/* Newer school diversity - kite specific for now */
/* XXX perhaps migrate the normal diversity code to this? */
if ((ah)->ah_rxAntCombDiversity)
(*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz);
if (sc->sc_softled) {
/*
* Blink for any data frame. Otherwise do a
* heartbeat-style blink when idle. The latter
* is mainly for station mode where we depend on
* periodic beacon frames to trigger the poll event.
*/
if (type == IEEE80211_FC0_TYPE_DATA) {
const HAL_RATE_TABLE *rt = sc->sc_currates;
ath_led_event(sc,
rt->rateCodeToIndex[rs->rs_rate]);
} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
ath_led_event(sc, 0);
}
rx_next:
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
} while (ath_rxbuf_init(sc, bf) == 0);
/* rx signal state monitoring */
ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
if (ngood)
sc->sc_lastrx = tsf;
CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
/* Queue DFS tasklet if needed */
if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
/*
* Now that all the RX frames were handled that
* need to be handled, kick the PCU if there's
* been an RXEOL condition.
*/
ATH_PCU_LOCK(sc);
if (resched && sc->sc_kickpcu) {
CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu");
device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
__func__, npkts);
/* XXX rxslink? */
/*
* XXX can we hold the PCU lock here?
* Are there any net80211 buffer calls involved?
*/
bf = TAILQ_FIRST(&sc->sc_rxbuf);
ath_hal_putrxbuf(ah, bf->bf_daddr);
ath_hal_rxena(ah); /* enable recv descriptors */
ath_mode_init(sc); /* set filters, etc. */
ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
ath_hal_intrset(ah, sc->sc_imask);
sc->sc_kickpcu = 0;
}
ATH_PCU_UNLOCK(sc);
/* XXX check this inside of IF_LOCK? */
if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
#ifdef IEEE80211_SUPPORT_SUPERG
ieee80211_ff_age_all(ic, 100);
#endif
if (!IFQ_IS_EMPTY(&ifp->if_snd))
ath_start(ifp);
}
#undef PA2DESC
ATH_PCU_LOCK(sc);
sc->sc_rxproc_cnt--;
ATH_PCU_UNLOCK(sc);
}
static void
ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
{
txq->axq_qnum = qnum;
txq->axq_ac = 0;
txq->axq_depth = 0;
txq->axq_aggr_depth = 0;
txq->axq_intrcnt = 0;
txq->axq_link = NULL;
txq->axq_softc = sc;
TAILQ_INIT(&txq->axq_q);
TAILQ_INIT(&txq->axq_tidq);
ATH_TXQ_LOCK_INIT(sc, txq);
}
/*
* Setup a h/w transmit queue.
*/
static struct ath_txq *
ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
int qnum;
memset(&qi, 0, sizeof(qi));
qi.tqi_subtype = subtype;
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
/*
* Enable interrupts only for EOL and DESC conditions.
* We mark tx descriptors to receive a DESC interrupt
* when a tx queue gets deep; otherwise waiting for the
* EOL to reap descriptors. Note that this is done to
* reduce interrupt load and this only defers reaping
* descriptors, never transmitting frames. Aside from
* reducing interrupts this also permits more concurrency.
* The only potential downside is if the tx queue backs
* up in which case the top half of the kernel may backup
* due to a lack of tx descriptors.
*/
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
if (qnum == -1) {
/*
* NB: don't print a message, this happens
* normally on parts with too few tx queues
*/
return NULL;
}
if (qnum >= N(sc->sc_txq)) {
device_printf(sc->sc_dev,
"hal qnum %u out of range, max %zu!\n",
qnum, N(sc->sc_txq));
ath_hal_releasetxqueue(ah, qnum);
return NULL;
}
if (!ATH_TXQ_SETUP(sc, qnum)) {
ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
sc->sc_txqsetup |= 1<<qnum;
}
return &sc->sc_txq[qnum];
#undef N
}
/*
* Setup a hardware data transmit queue for the specified
* access control. The hal may not support all requested
* queues in which case it will return a reference to a
* previously setup queue. We record the mapping from ac's
* to h/w queues for use by ath_tx_start and also track
* the set of h/w queues being used to optimize work in the
* transmit interrupt handler and related routines.
*/
static int
ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ath_txq *txq;
if (ac >= N(sc->sc_ac2q)) {
device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
ac, N(sc->sc_ac2q));
return 0;
}
txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
if (txq != NULL) {
txq->axq_ac = ac;
sc->sc_ac2q[ac] = txq;
return 1;
} else
return 0;
#undef N
}
/*
* Update WME parameters for a transmit queue.
*/
static int
ath_txq_update(struct ath_softc *sc, int ac)
{
#define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
#define ATH_TXOP_TO_US(v) (v<<5)
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_txq *txq = sc->sc_ac2q[ac];
struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma) {
/*
* AIFS is zero so there's no pre-transmit wait. The
* burst time defines the slot duration and is configured
* through net80211. The QCU is setup to not do post-xmit
* back off, lockout all lower-priority QCU's, and fire
* off the DMA beacon alert timer which is setup based
* on the slot configuration.
*/
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE
| HAL_TXQ_TXEOLINT_ENABLE
| HAL_TXQ_DBA_GATED
| HAL_TXQ_BACKOFF_DISABLE
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
;
qi.tqi_aifs = 0;
/* XXX +dbaprep? */
qi.tqi_readyTime = sc->sc_tdmaslotlen;
qi.tqi_burstTime = qi.tqi_readyTime;
} else {
#endif
/*
* XXX shouldn't this just use the default flags
* used in the previous queue setup?
*/
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXDESCINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE
| HAL_TXQ_TXEOLINT_ENABLE
;
qi.tqi_aifs = wmep->wmep_aifsn;
qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
qi.tqi_readyTime = 0;
qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
#ifdef IEEE80211_SUPPORT_TDMA
}
#endif
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
__func__, txq->axq_qnum, qi.tqi_qflags,
qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
if_printf(ifp, "unable to update hardware queue "
"parameters for %s traffic!\n",
ieee80211_wme_acnames[ac]);
return 0;
} else {
ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
return 1;
}
#undef ATH_TXOP_TO_US
#undef ATH_EXPONENT_TO_VALUE
}
/*
* Callback from the 802.11 layer to update WME parameters.
*/
static int
ath_wme_update(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
return !ath_txq_update(sc, WME_AC_BE) ||
!ath_txq_update(sc, WME_AC_BK) ||
!ath_txq_update(sc, WME_AC_VI) ||
!ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
}
/*
* Reclaim resources for a setup queue.
*/
static void
ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
{
ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
ATH_TXQ_LOCK_DESTROY(txq);
sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
}
/*
* Reclaim all tx queue resources.
*/
static void
ath_tx_cleanup(struct ath_softc *sc)
{
int i;
ATH_TXBUF_LOCK_DESTROY(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
}
/*
* Return h/w rate index for an IEEE rate (w/o basic rate bit)
* using the current rates in sc_rixmap.
*/
int
ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
{
int rix = sc->sc_rixmap[rate];
/* NB: return lowest rix for invalid rate */
return (rix == 0xff ? 0 : rix);
}
static void
ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
struct ath_buf *bf)
{
struct ieee80211_node *ni = bf->bf_node;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
int sr, lr, pri;
if (ts->ts_status == 0) {
u_int8_t txant = ts->ts_antenna;
sc->sc_stats.ast_ant_tx[txant]++;
sc->sc_ant_tx[txant]++;
if (ts->ts_finaltsi != 0)
sc->sc_stats.ast_tx_altrate++;
pri = M_WME_GETAC(bf->bf_m);
if (pri >= WME_AC_VO)
ic->ic_wme.wme_hipri_traffic++;
if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
ni->ni_inact = ni->ni_inact_reload;
} else {
if (ts->ts_status & HAL_TXERR_XRETRY)
sc->sc_stats.ast_tx_xretries++;
if (ts->ts_status & HAL_TXERR_FIFO)
sc->sc_stats.ast_tx_fifoerr++;
if (ts->ts_status & HAL_TXERR_FILT)
sc->sc_stats.ast_tx_filtered++;
if (ts->ts_status & HAL_TXERR_XTXOP)
sc->sc_stats.ast_tx_xtxop++;
if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
sc->sc_stats.ast_tx_timerexpired++;
if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
sc->sc_stats.ast_tx_data_underrun++;
if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
sc->sc_stats.ast_tx_delim_underrun++;
if (bf->bf_m->m_flags & M_FF)
sc->sc_stats.ast_ff_txerr++;
}
/* XXX when is this valid? */
if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
sc->sc_stats.ast_tx_desccfgerr++;
sr = ts->ts_shortretry;
lr = ts->ts_longretry;
sc->sc_stats.ast_tx_shortretry += sr;
sc->sc_stats.ast_tx_longretry += lr;
}
/*
* The default completion. If fail is 1, this means
* "please don't retry the frame, and just return -1 status
* to the net80211 stack.
*/
void
ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
{
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
int st;
if (fail == 1)
st = -1;
else
st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ?
ts->ts_status : HAL_TXERR_XRETRY;
if (bf->bf_state.bfs_dobaw)
device_printf(sc->sc_dev,
"%s: bf %p: seqno %d: dobaw should've been cleared!\n",
__func__,
bf,
SEQNO(bf->bf_state.bfs_seqno));
if (bf->bf_next != NULL)
device_printf(sc->sc_dev,
"%s: bf %p: seqno %d: bf_next not NULL!\n",
__func__,
bf,
SEQNO(bf->bf_state.bfs_seqno));
/*
* Do any tx complete callback. Note this must
* be done before releasing the node reference.
* This will free the mbuf, release the net80211
* node and recycle the ath_buf.
*/
ath_tx_freebuf(sc, bf, st);
}
/*
* Update rate control with the given completion status.
*/
void
ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
int nframes, int nbad)
{
struct ath_node *an;
/* Only for unicast frames */
if (ni == NULL)
return;
an = ATH_NODE(ni);
if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
ATH_NODE_LOCK(an);
ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
ATH_NODE_UNLOCK(an);
}
}
/*
* Update the busy status of the last frame on the free list.
* When doing TDMA, the busy flag tracks whether the hardware
* currently points to this buffer or not, and thus gated DMA
* may restart by re-reading the last descriptor in this
* buffer.
*
* This should be called in the completion function once one
* of the buffers has been used.
*/
static void
ath_tx_update_busy(struct ath_softc *sc)
{
struct ath_buf *last;
/*
* Since the last frame may still be marked
* as ATH_BUF_BUSY, unmark it here before
* finishing the frame processing.
* Since we've completed a frame (aggregate
* or otherwise), the hardware has moved on
* and is no longer referencing the previous
* descriptor.
*/
ATH_TXBUF_LOCK_ASSERT(sc);
last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
if (last != NULL)
last->bf_flags &= ~ATH_BUF_BUSY;
}
/*
* Process completed xmit descriptors from the specified queue.
* Kick the packet scheduler if needed. This can occur from this
* particular task.
*/
static int
ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
struct ath_desc *ds;
struct ath_tx_status *ts;
struct ieee80211_node *ni;
struct ath_node *an;
int nacked;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
__func__, txq->axq_qnum,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
txq->axq_link);
nacked = 0;
for (;;) {
ATH_TXQ_LOCK(txq);
txq->axq_intrcnt = 0; /* reset periodic desc intr count */
bf = TAILQ_FIRST(&txq->axq_q);
if (bf == NULL) {
ATH_TXQ_UNLOCK(txq);
break;
}
ds = bf->bf_lastds; /* XXX must be setup correctly! */
ts = &bf->bf_status.ds_txstat;
status = ath_hal_txprocdesc(ah, ds, ts);
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
status == HAL_OK);
#endif
if (status == HAL_EINPROGRESS) {
ATH_TXQ_UNLOCK(txq);
break;
}
ATH_TXQ_REMOVE(txq, bf, bf_list);
#ifdef IEEE80211_SUPPORT_TDMA
if (txq->axq_depth > 0) {
/*
* More frames follow. Mark the buffer busy
* so it's not re-used while the hardware may
* still re-read the link field in the descriptor.
*
* Use the last buffer in an aggregate as that
* is where the hardware may be - intermediate
* descriptors won't be "busy".
*/
bf->bf_last->bf_flags |= ATH_BUF_BUSY;
} else
#else
if (txq->axq_depth == 0)
#endif
txq->axq_link = NULL;
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth--;
ni = bf->bf_node;
/*
* If unicast frame was ack'd update RSSI,
* including the last rx time used to
* workaround phantom bmiss interrupts.
*/
if (ni != NULL && ts->ts_status == 0 &&
((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) {
nacked++;
sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
ts->ts_rssi);
}
ATH_TXQ_UNLOCK(txq);
/* If unicast frame, update general statistics */
if (ni != NULL) {
an = ATH_NODE(ni);
/* update statistics */
ath_tx_update_stats(sc, ts, bf);
}
/*
* Call the completion handler.
* The completion handler is responsible for
* calling the rate control code.
*
* Frames with no completion handler get the
* rate control code called here.
*/
if (bf->bf_comp == NULL) {
if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
(bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
/*
* XXX assume this isn't an aggregate
* frame.
*/
ath_tx_update_ratectrl(sc, ni,
bf->bf_state.bfs_rc, ts,
bf->bf_state.bfs_pktlen, 1,
(ts->ts_status == 0 ? 0 : 1));
}
ath_tx_default_comp(sc, bf, 0);
} else
bf->bf_comp(sc, bf, 0);
}
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* Flush fast-frame staging queue when traffic slows.
*/
if (txq->axq_depth <= 1)
ieee80211_ff_flush(ic, txq->axq_ac);
#endif
/* Kick the TXQ scheduler */
if (dosched) {
ATH_TXQ_LOCK(txq);
ath_txq_sched(sc, txq);
ATH_TXQ_UNLOCK(txq);
}
return nacked;
}
#define TXQACTIVE(t, q) ( (t) & (1 << (q)))
/*
* Deferred processing of transmit interrupt; special-cased
* for a single hardware transmit queue (e.g. 5210 and 5211).
*/
static void
ath_tx_proc_q0(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
/* XXX why is lastrx updated in tx code? */
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
ath_tx_processq(sc, sc->sc_cabq, 1);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ath_start(ifp);
}
/*
* Deferred processing of transmit interrupt; special-cased
* for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
*/
static void
ath_tx_proc_q0123(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
int nacked;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
/*
* Process each active queue.
*/
nacked = 0;
if (TXQACTIVE(txqs, 0))
nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
if (TXQACTIVE(txqs, 1))
nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
if (TXQACTIVE(txqs, 2))
nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
if (TXQACTIVE(txqs, 3))
nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
ath_tx_processq(sc, sc->sc_cabq, 1);
if (nacked)
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ath_start(ifp);
}
/*
* Deferred processing of transmit interrupt.
*/
static void
ath_tx_proc(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
int i, nacked;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
/*
* Process each active queue.
*/
nacked = 0;
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
if (nacked)
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
/* XXX check this inside of IF_LOCK? */
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ath_start(ifp);
}
#undef TXQACTIVE
/*
* Return a buffer to the pool and update the 'busy' flag on the
* previous 'tail' entry.
*
* This _must_ only be called when the buffer is involved in a completed
* TX. The logic is that if it was part of an active TX, the previous
* buffer on the list is now not involved in a halted TX DMA queue, waiting
* for restart (eg for TDMA.)
*
* The caller must free the mbuf and recycle the node reference.
*/
void
ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
{
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
ATH_TXBUF_LOCK(sc);
ath_tx_update_busy(sc);
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
ATH_TXBUF_UNLOCK(sc);
}
/*
* This is currently used by ath_tx_draintxq() and
* ath_tx_tid_free_pkts().
*
* It recycles a single ath_buf.
*/
void
ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
{
struct ieee80211_node *ni = bf->bf_node;
struct mbuf *m0 = bf->bf_m;
bf->bf_node = NULL;
bf->bf_m = NULL;
/* Free the buffer, it's not needed any longer */
ath_freebuf(sc, bf);
if (ni != NULL) {
/*
* Do any callback and reclaim the node reference.
*/
if (m0->m_flags & M_TXCB)
ieee80211_process_callback(ni, m0, status);
ieee80211_free_node(ni);
}
m_freem(m0);
/*
* XXX the buffer used to be freed -after-, but the DMA map was
* freed where ath_freebuf() now is. I've no idea what this
* will do.
*/
}
void
ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
{
#ifdef ATH_DEBUG
struct ath_hal *ah = sc->sc_ah;
#endif
struct ath_buf *bf;
u_int ix;
/*
* NB: this assumes output has been stopped and
* we do not need to block ath_tx_proc
*/
ATH_TXBUF_LOCK(sc);
bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
if (bf != NULL)
bf->bf_flags &= ~ATH_BUF_BUSY;
ATH_TXBUF_UNLOCK(sc);
for (ix = 0;; ix++) {
ATH_TXQ_LOCK(txq);
bf = TAILQ_FIRST(&txq->axq_q);
if (bf == NULL) {
txq->axq_link = NULL;
ATH_TXQ_UNLOCK(txq);
break;
}
ATH_TXQ_REMOVE(txq, bf, bf_list);
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth--;
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RESET) {
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
ath_hal_txprocdesc(ah, bf->bf_lastds,
&bf->bf_status.ds_txstat) == HAL_OK);
ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
bf->bf_m->m_len, 0, -1);
}
#endif /* ATH_DEBUG */
/*
* Since we're now doing magic in the completion
* functions, we -must- call it for aggregation
* destinations or BAW tracking will get upset.
*/
/*
* Clear ATH_BUF_BUSY; the completion handler
* will free the buffer.
*/
ATH_TXQ_UNLOCK(txq);
bf->bf_flags &= ~ATH_BUF_BUSY;
if (bf->bf_comp)
bf->bf_comp(sc, bf, 1);
else
ath_tx_default_comp(sc, bf, 1);
}
/*
* Drain software queued frames which are on
* active TIDs.
*/
ath_tx_txq_drain(sc, txq);
}
static void
ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
__func__, txq->axq_qnum,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
txq->axq_link);
(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
}
static int
ath_stoptxdma(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int i;
/* XXX return value */
if (sc->sc_invalid)
return 0;
if (!sc->sc_invalid) {
/* don't touch the hardware if marked invalid */
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
__func__, sc->sc_bhalq,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
NULL);
(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_stopdma(sc, &sc->sc_txq[i]);
}
return 1;
}
/*
* Drain the transmit queues and reclaim resources.
*/
static void
ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
{
#ifdef ATH_DEBUG
struct ath_hal *ah = sc->sc_ah;
#endif
struct ifnet *ifp = sc->sc_ifp;
int i;
(void) ath_stoptxdma(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
/*
* XXX TODO: should we just handle the completed TX frames
* here, whether or not the reset is a full one or not?
*/
if (ATH_TXQ_SETUP(sc, i)) {
if (reset_type == ATH_RESET_NOLOSS)
ath_tx_processq(sc, &sc->sc_txq[i], 0);
else
ath_tx_draintxq(sc, &sc->sc_txq[i]);
}
}
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RESET) {
struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
if (bf != NULL && bf->bf_m != NULL) {
ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
ath_hal_txprocdesc(ah, bf->bf_lastds,
&bf->bf_status.ds_txstat) == HAL_OK);
ieee80211_dump_pkt(ifp->if_l2com,
mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
0, -1);
}
}
#endif /* ATH_DEBUG */
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
}
/*
* Disable the receive h/w in preparation for a reset.
*/
static void
ath_stoprecv(struct ath_softc *sc, int dodelay)
{
#define PA2DESC(_sc, _pa) \
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
struct ath_hal *ah = sc->sc_ah;
ath_hal_stoppcurecv(ah); /* disable PCU */
ath_hal_setrxfilter(ah, 0); /* clear recv filter */
ath_hal_stopdmarecv(ah); /* disable DMA engine */
if (dodelay)
DELAY(3000); /* 3ms is long enough for 1 frame */
#ifdef ATH_DEBUG
if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
struct ath_buf *bf;
u_int ix;
device_printf(sc->sc_dev,
"%s: rx queue %p, link %p\n",
__func__,
(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah),
sc->sc_rxlink);
ix = 0;
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
struct ath_desc *ds = bf->bf_desc;
struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
ath_printrxbuf(sc, bf, ix, status == HAL_OK);
ix++;
}
}
#endif
if (sc->sc_rxpending != NULL) {
m_freem(sc->sc_rxpending);
sc->sc_rxpending = NULL;
}
sc->sc_rxlink = NULL; /* just in case */
#undef PA2DESC
}
/*
* Enable the receive h/w following a reset.
*/
static int
ath_startrecv(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
sc->sc_rxlink = NULL;
sc->sc_rxpending = NULL;
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
int error = ath_rxbuf_init(sc, bf);
if (error != 0) {
DPRINTF(sc, ATH_DEBUG_RECV,
"%s: ath_rxbuf_init failed %d\n",
__func__, error);
return error;
}
}
bf = TAILQ_FIRST(&sc->sc_rxbuf);
ath_hal_putrxbuf(ah, bf->bf_daddr);
ath_hal_rxena(ah); /* enable recv descriptors */
ath_mode_init(sc); /* set filters, etc. */
ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
return 0;
}
/*
* Update internal state after a channel change.
*/
static void
ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
{
enum ieee80211_phymode mode;
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
mode = ieee80211_chan2mode(chan);
if (mode != sc->sc_curmode)
ath_setcurmode(sc, mode);
sc->sc_curchan = chan;
}
/*
* Set/change channels. If the channel is really being changed,
* it's done by resetting the chip. To accomplish this we must
* first cleanup any pending DMA, then restart stuff after a la
* ath_init.
*/
static int
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
int ret = 0;
/* Treat this as an interface reset */
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_UNLOCK_ASSERT(sc);
/* (Try to) stop TX/RX from occuring */
taskqueue_block(sc->sc_tq);
ATH_PCU_LOCK(sc);
ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */
ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */
if (ath_reset_grablock(sc, 1) == 0) {
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
__func__);
}
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
__func__, ieee80211_chan2ieee(ic, chan),
chan->ic_freq, chan->ic_flags);
if (chan != sc->sc_curchan) {
HAL_STATUS status;
/*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
#if 0
ath_hal_intrset(ah, 0); /* disable interrupts */
#endif
ath_stoprecv(sc, 1); /* turn off frame recv */
/*
* First, handle completed TX/RX frames.
*/
ath_rx_proc(sc, 0);
ath_draintxq(sc, ATH_RESET_NOLOSS);
/*
* Next, flush the non-scheduled frames.
*/
ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */
if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
if_printf(ifp, "%s: unable to reset "
"channel %u (%u MHz, flags 0x%x), hal status %u\n",
__func__, ieee80211_chan2ieee(ic, chan),
chan->ic_freq, chan->ic_flags, status);
ret = EIO;
goto finish;
}
sc->sc_diversity = ath_hal_getdiversity(ah);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, chan);
/*
* Re-enable rx framework.
*/
if (ath_startrecv(sc) != 0) {
if_printf(ifp, "%s: unable to restart recv logic\n",
__func__);
ret = EIO;
goto finish;
}
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
ath_chan_change(sc, chan);
/*
* Reset clears the beacon timers; reset them
* here if needed.
*/
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
/*
* Re-enable interrupts.
*/
#if 0
ath_hal_intrset(ah, sc->sc_imask);
#endif
}
finish:
ATH_PCU_LOCK(sc);
sc->sc_inreset_cnt--;
/* XXX only do this if sc_inreset_cnt == 0? */
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
ath_txrx_start(sc);
/* XXX ath_start? */
return ret;
}
/*
* Periodically recalibrate the PHY to account
* for temperature/environment changes.
*/
static void
ath_calibrate(void *arg)
{
struct ath_softc *sc = arg;
struct ath_hal *ah = sc->sc_ah;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
HAL_BOOL longCal, isCalDone;
HAL_BOOL aniCal, shortCal = AH_FALSE;
int nextcal;
if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */
goto restart;
longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
if (sc->sc_doresetcal)
shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
if (aniCal) {
sc->sc_stats.ast_ani_cal++;
sc->sc_lastani = ticks;
ath_hal_ani_poll(ah, sc->sc_curchan);
}
if (longCal) {
sc->sc_stats.ast_per_cal++;
sc->sc_lastlongcal = ticks;
if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
/*
* Rfgain is out of bounds, reset the chip
* to load new gain values.
*/
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
"%s: rfgain change\n", __func__);
sc->sc_stats.ast_per_rfgain++;
sc->sc_resetcal = 0;
sc->sc_doresetcal = AH_TRUE;
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
return;
}
/*
* If this long cal is after an idle period, then
* reset the data collection state so we start fresh.
*/
if (sc->sc_resetcal) {
(void) ath_hal_calreset(ah, sc->sc_curchan);
sc->sc_lastcalreset = ticks;
sc->sc_lastshortcal = ticks;
sc->sc_resetcal = 0;
sc->sc_doresetcal = AH_TRUE;
}
}
/* Only call if we're doing a short/long cal, not for ANI calibration */
if (shortCal || longCal) {
if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
if (longCal) {
/*
* Calibrate noise floor data again in case of change.
*/
ath_hal_process_noisefloor(ah);
}
} else {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: calibration of channel %u failed\n",
__func__, sc->sc_curchan->ic_freq);
sc->sc_stats.ast_per_calfail++;
}
if (shortCal)
sc->sc_lastshortcal = ticks;
}
if (!isCalDone) {
restart:
/*
* Use a shorter interval to potentially collect multiple
* data samples required to complete calibration. Once
* we're told the work is done we drop back to a longer
* interval between requests. We're more aggressive doing
* work when operating as an AP to improve operation right
* after startup.
*/
sc->sc_lastshortcal = ticks;
nextcal = ath_shortcalinterval*hz/1000;
if (sc->sc_opmode != HAL_M_HOSTAP)
nextcal *= 10;
sc->sc_doresetcal = AH_TRUE;
} else {
/* nextcal should be the shortest time for next event */
nextcal = ath_longcalinterval*hz;
if (sc->sc_lastcalreset == 0)
sc->sc_lastcalreset = sc->sc_lastlongcal;
else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
sc->sc_resetcal = 1; /* setup reset next trip */
sc->sc_doresetcal = AH_FALSE;
}
/* ANI calibration may occur more often than short/long/resetcal */
if (ath_anicalinterval > 0)
nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
if (nextcal != 0) {
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
__func__, nextcal, isCalDone ? "" : "!");
callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
} else {
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
__func__);
/* NB: don't rearm timer */
}
}
static void
ath_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
/* XXX calibration timer? */
ATH_LOCK(sc);
sc->sc_scanning = 1;
sc->sc_syncbeacon = 0;
rfilt = ath_calcrxfilter(sc);
ATH_UNLOCK(sc);
ATH_PCU_LOCK(sc);
ath_hal_setrxfilter(ah, rfilt);
ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
__func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
}
static void
ath_scan_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
ATH_LOCK(sc);
sc->sc_scanning = 0;
rfilt = ath_calcrxfilter(sc);
ATH_UNLOCK(sc);
ATH_PCU_LOCK(sc);
ath_hal_setrxfilter(ah, rfilt);
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
ath_hal_process_noisefloor(ah);
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt, ether_sprintf(sc->sc_curbssid),
sc->sc_curaid);
}
/*
* For now, just do a channel change.
*
* Later, we'll go through the hard slog of suspending tx/rx, changing rate
* control state and resetting the hardware without dropping frames out
* of the queue.
*
* The unfortunate trouble here is making absolutely sure that the
* channel width change has propagated enough so the hardware
* absolutely isn't handed bogus frames for it's current operating
* mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
* does occur in parallel, we need to make certain we've blocked
* any further ongoing TX (and RX, that can cause raw TX)
* before we do this.
*/
static void
ath_update_chw(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
ath_set_channel(ic);
}
static void
ath_set_channel(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
(void) ath_chan_set(sc, ic->ic_curchan);
/*
* If we are returning to our bss channel then mark state
* so the next recv'd beacon's tsf will be used to sync the
* beacon timers. Note that since we only hear beacons in
* sta/ibss mode this has no effect in other operating modes.
*/
ATH_LOCK(sc);
if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
sc->sc_syncbeacon = 1;
ATH_UNLOCK(sc);
}
/*
* Walk the vap list and check if there any vap's in RUN state.
*/
static int
ath_isanyrunningvaps(struct ieee80211vap *this)
{
struct ieee80211com *ic = this->iv_ic;
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
return 1;
}
return 0;
}
static int
ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct ieee80211com *ic = vap->iv_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_vap *avp = ATH_VAP(vap);
struct ath_hal *ah = sc->sc_ah;
struct ieee80211_node *ni = NULL;
int i, error, stamode;
u_int32_t rfilt;
int csa_run_transition = 0;
static const HAL_LED_STATE leds[] = {
HAL_LED_INIT, /* IEEE80211_S_INIT */
HAL_LED_SCAN, /* IEEE80211_S_SCAN */
HAL_LED_AUTH, /* IEEE80211_S_AUTH */
HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
HAL_LED_RUN, /* IEEE80211_S_CAC */
HAL_LED_RUN, /* IEEE80211_S_RUN */
HAL_LED_RUN, /* IEEE80211_S_CSA */
HAL_LED_RUN, /* IEEE80211_S_SLEEP */
};
DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate]);
/*
* net80211 _should_ have the comlock asserted at this point.
* There are some comments around the calls to vap->iv_newstate
* which indicate that it (newstate) may end up dropping the
* lock. This and the subsequent lock assert check after newstate
* are an attempt to catch these and figure out how/why.
*/
IEEE80211_LOCK_ASSERT(ic);
if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
csa_run_transition = 1;
callout_drain(&sc->sc_cal_ch);
ath_hal_setledstate(ah, leds[nstate]); /* set LED */
if (nstate == IEEE80211_S_SCAN) {
/*
* Scanning: turn off beacon miss and don't beacon.
* Mark beacon state so when we reach RUN state we'll
* [re]setup beacons. Unblock the task q thread so
* deferred interrupt processing is done.
*/
ath_hal_intrset(ah,
sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
sc->sc_beacons = 0;
taskqueue_unblock(sc->sc_tq);
}
ni = ieee80211_ref_node(vap->iv_bss);
rfilt = ath_calcrxfilter(sc);
stamode = (vap->iv_opmode == IEEE80211_M_STA ||
vap->iv_opmode == IEEE80211_M_AHDEMO ||
vap->iv_opmode == IEEE80211_M_IBSS);
if (stamode && nstate == IEEE80211_S_RUN) {
sc->sc_curaid = ni->ni_associd;
IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
}
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
ath_hal_setrxfilter(ah, rfilt);
/* XXX is this to restore keycache on resume? */
if (vap->iv_opmode != IEEE80211_M_STA &&
(vap->iv_flags & IEEE80211_F_PRIVACY)) {
for (i = 0; i < IEEE80211_WEP_NKID; i++)
if (ath_hal_keyisvalid(ah, i))
ath_hal_keysetmac(ah, i, ni->ni_bssid);
}
/*
* Invoke the parent method to do net80211 work.
*/
error = avp->av_newstate(vap, nstate, arg);
if (error != 0)
goto bad;
/*
* See above: ensure av_newstate() doesn't drop the lock
* on us.
*/
IEEE80211_LOCK_ASSERT(ic);
if (nstate == IEEE80211_S_RUN) {
/* NB: collect bss node again, it may have changed */
ieee80211_free_node(ni);
ni = ieee80211_ref_node(vap->iv_bss);
DPRINTF(sc, ATH_DEBUG_STATE,
"%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
"capinfo 0x%04x chan %d\n", __func__,
vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
switch (vap->iv_opmode) {
#ifdef IEEE80211_SUPPORT_TDMA
case IEEE80211_M_AHDEMO:
if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
break;
/* fall thru... */
#endif
case IEEE80211_M_HOSTAP:
case IEEE80211_M_IBSS:
case IEEE80211_M_MBSS:
/*
* Allocate and setup the beacon frame.
*
* Stop any previous beacon DMA. This may be
* necessary, for example, when an ibss merge
* causes reconfiguration; there will be a state
* transition from RUN->RUN that means we may
* be called with beacon transmission active.
*/
ath_hal_stoptxdma(ah, sc->sc_bhalq);
error = ath_beacon_alloc(sc, ni);
if (error != 0)
goto bad;
/*
* If joining an adhoc network defer beacon timer
* configuration to the next beacon frame so we
* have a current TSF to use. Otherwise we're
* starting an ibss/bss so there's no need to delay;
* if this is the first vap moving to RUN state, then
* beacon state needs to be [re]configured.
*/
if (vap->iv_opmode == IEEE80211_M_IBSS &&
ni->ni_tstamp.tsf != 0) {
sc->sc_syncbeacon = 1;
} else if (!sc->sc_beacons) {
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA)
ath_tdma_config(sc, vap);
else
#endif
ath_beacon_config(sc, vap);
sc->sc_beacons = 1;
}
break;
case IEEE80211_M_STA:
/*
* Defer beacon timer configuration to the next
* beacon frame so we have a current TSF to use
* (any TSF collected when scanning is likely old).
* However if it's due to a CSA -> RUN transition,
* force a beacon update so we pick up a lack of
* beacons from an AP in CAC and thus force a
* scan.
*/
sc->sc_syncbeacon = 1;
if (csa_run_transition)
ath_beacon_config(sc, vap);
break;
case IEEE80211_M_MONITOR:
/*
* Monitor mode vaps have only INIT->RUN and RUN->RUN
* transitions so we must re-enable interrupts here to
* handle the case of a single monitor mode vap.
*/
ath_hal_intrset(ah, sc->sc_imask);
break;
case IEEE80211_M_WDS:
break;
default:
break;
}
/*
* Let the hal process statistics collected during a
* scan so it can provide calibrated noise floor data.
*/
ath_hal_process_noisefloor(ah);
/*
* Reset rssi stats; maybe not the best place...
*/
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
/*
* Finally, start any timers and the task q thread
* (in case we didn't go through SCAN state).
*/
if (ath_longcalinterval != 0) {
/* start periodic recalibration timer */
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
} else {
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
"%s: calibration disabled\n", __func__);
}
taskqueue_unblock(sc->sc_tq);
} else if (nstate == IEEE80211_S_INIT) {
/*
* If there are no vaps left in RUN state then
* shutdown host/driver operation:
* o disable interrupts
* o disable the task queue thread
* o mark beacon processing as stopped
*/
if (!ath_isanyrunningvaps(vap)) {
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
/* disable interrupts */
ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
taskqueue_block(sc->sc_tq);
sc->sc_beacons = 0;
}
#ifdef IEEE80211_SUPPORT_TDMA
ath_hal_setcca(ah, AH_TRUE);
#endif
}
bad:
ieee80211_free_node(ni);
return error;
}
/*
* Allocate a key cache slot to the station so we can
* setup a mapping from key index to node. The key cache
* slot is needed for managing antenna state and for
* compression when stations do not use crypto. We do
* it uniliaterally here; if crypto is employed this slot
* will be reassigned.
*/
static void
ath_setup_stationkey(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
ieee80211_keyix keyix, rxkeyix;
/* XXX should take a locked ref to vap->iv_bss */
if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
/*
* Key cache is full; we'll fall back to doing
* the more expensive lookup in software. Note
* this also means no h/w compression.
*/
/* XXX msg+statistic */
} else {
/* XXX locking? */
ni->ni_ucastkey.wk_keyix = keyix;
ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
/* NB: must mark device key to get called back on delete */
ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
/* NB: this will create a pass-thru key entry */
ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
}
}
/*
* Setup driver-specific state for a newly associated node.
* Note that we're called also on a re-associate, the isnew
* param tells us if this is the first time or not.
*/
static void
ath_newassoc(struct ieee80211_node *ni, int isnew)
{
struct ath_node *an = ATH_NODE(ni);
struct ieee80211vap *vap = ni->ni_vap;
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
const struct ieee80211_txparam *tp = ni->ni_txparms;
an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
ath_rate_newassoc(sc, an, isnew);
if (isnew &&
(vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
ath_setup_stationkey(ni);
}
static int
ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
int nchans, struct ieee80211_channel chans[])
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
"%s: rd %u cc %u location %c%s\n",
__func__, reg->regdomain, reg->country, reg->location,
reg->ecm ? " ecm" : "");
status = ath_hal_set_channels(ah, chans, nchans,
reg->country, reg->regdomain);
if (status != HAL_OK) {
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
__func__, status);
return EINVAL; /* XXX */
}
return 0;
}
static void
ath_getradiocaps(struct ieee80211com *ic,
int maxchans, int *nchans, struct ieee80211_channel chans[])
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
__func__, SKU_DEBUG, CTRY_DEFAULT);
/* XXX check return */
(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
}
static int
ath_getchannels(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
/*
* Collect channel set based on EEPROM contents.
*/
status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
&ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
if (status != HAL_OK) {
if_printf(ifp, "%s: unable to collect channel list from hal, "
"status %d\n", __func__, status);
return EINVAL;
}
(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */
/* XXX map Atheros sku's to net80211 SKU's */
/* XXX net80211 types too small */
ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */
ic->ic_regdomain.isocc[1] = ' ';
ic->ic_regdomain.ecm = 1;
ic->ic_regdomain.location = 'I';
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
"%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
__func__, sc->sc_eerd, sc->sc_eecc,
ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
return 0;
}
static int
ath_rate_setup(struct ath_softc *sc, u_int mode)
{
struct ath_hal *ah = sc->sc_ah;
const HAL_RATE_TABLE *rt;
switch (mode) {
case IEEE80211_MODE_11A:
rt = ath_hal_getratetable(ah, HAL_MODE_11A);
break;
case IEEE80211_MODE_HALF:
rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
break;
case IEEE80211_MODE_QUARTER:
rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
break;
case IEEE80211_MODE_11B:
rt = ath_hal_getratetable(ah, HAL_MODE_11B);
break;
case IEEE80211_MODE_11G:
rt = ath_hal_getratetable(ah, HAL_MODE_11G);
break;
case IEEE80211_MODE_TURBO_A:
rt = ath_hal_getratetable(ah, HAL_MODE_108A);
break;
case IEEE80211_MODE_TURBO_G:
rt = ath_hal_getratetable(ah, HAL_MODE_108G);
break;
case IEEE80211_MODE_STURBO_A:
rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
break;
case IEEE80211_MODE_11NA:
rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
break;
case IEEE80211_MODE_11NG:
rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
break;
default:
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
__func__, mode);
return 0;
}
sc->sc_rates[mode] = rt;
return (rt != NULL);
}
static void
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/* NB: on/off times from the Atheros NDIS driver, w/ permission */
static const struct {
u_int rate; /* tx/rx 802.11 rate */
u_int16_t timeOn; /* LED on time (ms) */
u_int16_t timeOff; /* LED off time (ms) */
} blinkrates[] = {
{ 108, 40, 10 },
{ 96, 44, 11 },
{ 72, 50, 13 },
{ 48, 57, 14 },
{ 36, 67, 16 },
{ 24, 80, 20 },
{ 22, 100, 25 },
{ 18, 133, 34 },
{ 12, 160, 40 },
{ 10, 200, 50 },
{ 6, 240, 58 },
{ 4, 267, 66 },
{ 2, 400, 100 },
{ 0, 500, 130 },
/* XXX half/quarter rates */
};
const HAL_RATE_TABLE *rt;
int i, j;
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
rt = sc->sc_rates[mode];
KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
for (i = 0; i < rt->rateCount; i++) {
uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
if (rt->info[i].phy != IEEE80211_T_HT)
sc->sc_rixmap[ieeerate] = i;
else
sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
}
memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
for (i = 0; i < N(sc->sc_hwmap); i++) {
if (i >= rt->rateCount) {
sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
continue;
}
sc->sc_hwmap[i].ieeerate =
rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
if (rt->info[i].phy == IEEE80211_T_HT)
sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
if (rt->info[i].shortPreamble ||
rt->info[i].phy == IEEE80211_T_OFDM)
sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
for (j = 0; j < N(blinkrates)-1; j++)
if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
break;
/* NB: this uses the last entry if the rate isn't found */
/* XXX beware of overlow */
sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
}
sc->sc_currates = rt;
sc->sc_curmode = mode;
/*
* All protection frames are transmited at 2Mb/s for
* 11g, otherwise at 1Mb/s.
*/
if (mode == IEEE80211_MODE_11G)
sc->sc_protrix = ath_tx_findrix(sc, 2*2);
else
sc->sc_protrix = ath_tx_findrix(sc, 2*1);
/* NB: caller is responsible for resetting rate control state */
#undef N
}
static void
ath_watchdog(void *arg)
{
struct ath_softc *sc = arg;
int do_reset = 0;
if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
struct ifnet *ifp = sc->sc_ifp;
uint32_t hangs;
if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
hangs != 0) {
if_printf(ifp, "%s hang detected (0x%x)\n",
hangs & 0xff ? "bb" : "mac", hangs);
} else
if_printf(ifp, "device timeout\n");
do_reset = 1;
ifp->if_oerrors++;
sc->sc_stats.ast_watchdog++;
}
/*
* We can't hold the lock across the ath_reset() call.
*
* And since this routine can't hold a lock and sleep,
* do the reset deferred.
*/
if (do_reset) {
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
}
callout_schedule(&sc->sc_wd_ch, hz);
}
#ifdef ATH_DIAGAPI
/*
* Diagnostic interface to the HAL. This is used by various
* tools to do things like retrieve register contents for
* debugging. The mechanism is intentionally opaque so that
* it can change frequently w/o concern for compatiblity.
*/
static int
ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
{
struct ath_hal *ah = sc->sc_ah;
u_int id = ad->ad_id & ATH_DIAG_ID;
void *indata = NULL;
void *outdata = NULL;
u_int32_t insize = ad->ad_in_size;
u_int32_t outsize = ad->ad_out_size;
int error = 0;
if (ad->ad_id & ATH_DIAG_IN) {
/*
* Copy in data.
*/
indata = malloc(insize, M_TEMP, M_NOWAIT);
if (indata == NULL) {
error = ENOMEM;
goto bad;
}
error = copyin(ad->ad_in_data, indata, insize);
if (error)
goto bad;
}
if (ad->ad_id & ATH_DIAG_DYN) {
/*
* Allocate a buffer for the results (otherwise the HAL
* returns a pointer to a buffer where we can read the
* results). Note that we depend on the HAL leaving this
* pointer for us to use below in reclaiming the buffer;
* may want to be more defensive.
*/
outdata = malloc(outsize, M_TEMP, M_NOWAIT);
if (outdata == NULL) {
error = ENOMEM;
goto bad;
}
}
if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
if (outsize < ad->ad_out_size)
ad->ad_out_size = outsize;
if (outdata != NULL)
error = copyout(outdata, ad->ad_out_data,
ad->ad_out_size);
} else {
error = EINVAL;
}
bad:
if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
free(indata, M_TEMP);
if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
free(outdata, M_TEMP);
return error;
}
#endif /* ATH_DIAGAPI */
static int
ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
#define IS_RUNNING(ifp) \
((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *)data;
const HAL_RATE_TABLE *rt;
int error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
ATH_LOCK(sc);
if (IS_RUNNING(ifp)) {
/*
* To avoid rescanning another access point,
* do not call ath_init() here. Instead,
* only reflect promisc mode settings.
*/
ath_mode_init(sc);
} else if (ifp->if_flags & IFF_UP) {
/*
* Beware of being called during attach/detach
* to reset promiscuous mode. In that case we
* will still be marked UP but not RUNNING.
* However trying to re-init the interface
* is the wrong thing to do as we've already
* torn down much of our state. There's
* probably a better way to deal with this.
*/
if (!sc->sc_invalid)
ath_init(sc); /* XXX lose error */
} else {
ath_stop_locked(ifp);
#ifdef notyet
/* XXX must wakeup in places like ath_vap_delete */
if (!sc->sc_invalid)
ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
#endif
}
ATH_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGATHSTATS:
/* NB: embed these numbers to get a consistent view */
sc->sc_stats.ast_tx_packets = ifp->if_opackets;
sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
#ifdef IEEE80211_SUPPORT_TDMA
sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
#endif
rt = sc->sc_currates;
sc->sc_stats.ast_tx_rate =
rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
return copyout(&sc->sc_stats,
ifr->ifr_data, sizeof (sc->sc_stats));
case SIOCZATHSTATS:
error = priv_check(curthread, PRIV_DRIVER);
if (error == 0)
memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
break;
#ifdef ATH_DIAGAPI
case SIOCGATHDIAG:
error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
break;
case SIOCGATHPHYERR:
error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
break;
#endif
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return error;
#undef IS_RUNNING
}
/*
* Announce various information on device/driver attach.
*/
static void
ath_announce(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ath_hal *ah = sc->sc_ah;
if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
if (bootverbose) {
int i;
for (i = 0; i <= WME_AC_VO; i++) {
struct ath_txq *txq = sc->sc_ac2q[i];
if_printf(ifp, "Use hw queue %u for %s traffic\n",
txq->axq_qnum, ieee80211_wme_acnames[i]);
}
if_printf(ifp, "Use hw queue %u for CAB traffic\n",
sc->sc_cabq->axq_qnum);
if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
}
if (ath_rxbuf != ATH_RXBUF)
if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
if (ath_txbuf != ATH_TXBUF)
if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
if (sc->sc_mcastkey && bootverbose)
if_printf(ifp, "using multicast key search\n");
}
#ifdef IEEE80211_SUPPORT_TDMA
static void
ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
{
struct ath_hal *ah = sc->sc_ah;
HAL_BEACON_TIMERS bt;
bt.bt_intval = bintval | HAL_BEACON_ENA;
bt.bt_nexttbtt = nexttbtt;
bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
bt.bt_nextatim = nexttbtt+1;
/* Enables TBTT, DBA, SWBA timers by default */
bt.bt_flags = 0;
ath_hal_beaconsettimers(ah, &bt);
}
/*
* Calculate the beacon interval. This is periodic in the
* superframe for the bss. We assume each station is configured
* identically wrt transmit rate so the guard time we calculate
* above will be the same on all stations. Note we need to
* factor in the xmit time because the hardware will schedule
* a frame for transmit if the start of the frame is within
* the burst time. When we get hardware that properly kills
* frames in the PCU we can reduce/eliminate the guard time.
*
* Roundup to 1024 is so we have 1 TU buffer in the guard time
* to deal with the granularity of the nexttbtt timer. 11n MAC's
* with 1us timer granularity should allow us to reduce/eliminate
* this.
*/
static void
ath_tdma_bintvalsetup(struct ath_softc *sc,
const struct ieee80211_tdma_state *tdma)
{
/* copy from vap state (XXX check all vaps have same value?) */
sc->sc_tdmaslotlen = tdma->tdma_slotlen;
sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
tdma->tdma_slotcnt, 1024);
sc->sc_tdmabintval >>= 10; /* TSF -> TU */
if (sc->sc_tdmabintval & 1)
sc->sc_tdmabintval++;
if (tdma->tdma_slot == 0) {
/*
* Only slot 0 beacons; other slots respond.
*/
sc->sc_imask |= HAL_INT_SWBA;
sc->sc_tdmaswba = 0; /* beacon immediately */
} else {
/* XXX all vaps must be slot 0 or slot !0 */
sc->sc_imask &= ~HAL_INT_SWBA;
}
}
/*
* Max 802.11 overhead. This assumes no 4-address frames and
* the encapsulation done by ieee80211_encap (llc). We also
* include potential crypto overhead.
*/
#define IEEE80211_MAXOVERHEAD \
(sizeof(struct ieee80211_qosframe) \
+ sizeof(struct llc) \
+ IEEE80211_ADDR_LEN \
+ IEEE80211_WEP_IVLEN \
+ IEEE80211_WEP_KIDLEN \
+ IEEE80211_WEP_CRCLEN \
+ IEEE80211_WEP_MICLEN \
+ IEEE80211_CRC_LEN)
/*
* Setup initially for tdma operation. Start the beacon
* timers and enable SWBA if we are slot 0. Otherwise
* we wait for slot 0 to arrive so we can sync up before
* starting to transmit.
*/
static void
ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
{
struct ath_hal *ah = sc->sc_ah;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
const struct ieee80211_txparam *tp;
const struct ieee80211_tdma_state *tdma = NULL;
int rix;
if (vap == NULL) {
vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */
if (vap == NULL) {
if_printf(ifp, "%s: no vaps?\n", __func__);
return;
}
}
/* XXX should take a locked ref to iv_bss */
tp = vap->iv_bss->ni_txparms;
/*
* Calculate the guard time for each slot. This is the
* time to send a maximal-size frame according to the
* fixed/lowest transmit rate. Note that the interface
* mtu does not include the 802.11 overhead so we must
* tack that on (ath_hal_computetxtime includes the
* preamble and plcp in it's calculation).
*/
tdma = vap->iv_tdma;
if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
rix = ath_tx_findrix(sc, tp->ucastrate);
else
rix = ath_tx_findrix(sc, tp->mcastrate);
/* XXX short preamble assumed */
sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
ath_hal_intrset(ah, 0);
ath_beaconq_config(sc); /* setup h/w beacon q */
if (sc->sc_setcca)
ath_hal_setcca(ah, AH_FALSE); /* disable CCA */
ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */
ath_tdma_settimers(sc, sc->sc_tdmabintval,
sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
sc->sc_syncbeacon = 0;
sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
ath_hal_intrset(ah, sc->sc_imask);
DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
"bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
sc->sc_tdmadbaprep);
}
/*
* Update tdma operation. Called from the 802.11 layer
* when a beacon is received from the TDMA station operating
* in the slot immediately preceding us in the bss. Use
* the rx timestamp for the beacon frame to update our
* beacon timers so we follow their schedule. Note that
* by using the rx timestamp we implicitly include the
* propagation delay in our schedule.
*/
static void
ath_tdma_update(struct ieee80211_node *ni,
const struct ieee80211_tdma_param *tdma, int changed)
{
#define TSF_TO_TU(_h,_l) \
((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
#define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10)
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
const HAL_RATE_TABLE *rt = sc->sc_currates;
u_int64_t tsf, rstamp, nextslot, nexttbtt;
u_int32_t txtime, nextslottu;
int32_t tudelta, tsfdelta;
const struct ath_rx_status *rs;
int rix;
sc->sc_stats.ast_tdma_update++;
/*
* Check for and adopt configuration changes.
*/
if (changed != 0) {
const struct ieee80211_tdma_state *ts = vap->iv_tdma;
ath_tdma_bintvalsetup(sc, ts);
if (changed & TDMA_UPDATE_SLOTLEN)
ath_wme_update(ic);
DPRINTF(sc, ATH_DEBUG_TDMA,
"%s: adopt slot %u slotcnt %u slotlen %u us "
"bintval %u TU\n", __func__,
ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
sc->sc_tdmabintval);
/* XXX right? */
ath_hal_intrset(ah, sc->sc_imask);
/* NB: beacon timers programmed below */
}
/* extend rx timestamp to 64 bits */
rs = sc->sc_lastrs;
tsf = ath_hal_gettsf64(ah);
rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
/*
* The rx timestamp is set by the hardware on completing
* reception (at the point where the rx descriptor is DMA'd
* to the host). To find the start of our next slot we
* must adjust this time by the time required to send
* the packet just received.
*/
rix = rt->rateCodeToIndex[rs->rs_rate];
txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
rt->info[rix].shortPreamble);
/* NB: << 9 is to cvt to TU and /2 */
nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
/*
* Retrieve the hardware NextTBTT in usecs
* and calculate the difference between what the
* other station thinks and what we have programmed. This
* lets us figure how to adjust our timers to match. The
* adjustments are done by pulling the TSF forward and possibly
* rewriting the beacon timers.
*/
nexttbtt = ath_hal_getnexttbtt(ah);
tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
"tsfdelta %d avg +%d/-%d\n", tsfdelta,
TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
if (tsfdelta < 0) {
TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
tsfdelta = -tsfdelta % 1024;
nextslottu++;
} else if (tsfdelta > 0) {
TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
tsfdelta = 1024 - (tsfdelta % 1024);
nextslottu++;
} else {
TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
}
tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt);
/*
* Copy sender's timetstamp into tdma ie so they can
* calculate roundtrip time. We submit a beacon frame
* below after any timer adjustment. The frame goes out
* at the next TBTT so the sender can calculate the
* roundtrip by inspecting the tdma ie in our beacon frame.
*
* NB: This tstamp is subtlely preserved when
* IEEE80211_BEACON_TDMA is marked (e.g. when the
* slot position changes) because ieee80211_add_tdma
* skips over the data.
*/
memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
&ni->ni_tstamp.data, 8);
#if 0
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
"tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
(unsigned long long) tsf, (unsigned long long) nextslot,
(int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
#endif
/*
* Adjust the beacon timers only when pulling them forward
* or when going back by less than the beacon interval.
* Negative jumps larger than the beacon interval seem to
* cause the timers to stop and generally cause instability.
* This basically filters out jumps due to missed beacons.
*/
if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
sc->sc_stats.ast_tdma_timers++;
}
if (tsfdelta > 0) {
ath_hal_adjusttsf(ah, tsfdelta);
sc->sc_stats.ast_tdma_tsf++;
}
ath_tdma_beacon_send(sc, vap); /* prepare response */
#undef TU_TO_TSF
#undef TSF_TO_TU
}
/*
* Transmit a beacon frame at SWBA. Dynamic updates
* to the frame contents are done as needed.
*/
static void
ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
int otherant;
/*
* Check if the previous beacon has gone out. If
* not don't try to post another, skip this period
* and wait for the next. Missed beacons indicate
* a problem and should not occur. If we miss too
* many consecutive beacons reset the device.
*/
if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
sc->sc_bmisscount++;
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: missed %u consecutive beacons\n",
__func__, sc->sc_bmisscount);
if (sc->sc_bmisscount >= ath_bstuck_threshold)
taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
return;
}
if (sc->sc_bmisscount != 0) {
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: resume beacon xmit after %u misses\n",
__func__, sc->sc_bmisscount);
sc->sc_bmisscount = 0;
}
/*
* Check recent per-antenna transmit statistics and flip
* the default antenna if noticeably more frames went out
* on the non-default antenna.
* XXX assumes 2 anntenae
*/
if (!sc->sc_diversity) {
otherant = sc->sc_defant & 1 ? 2 : 1;
if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
ath_setdefantenna(sc, otherant);
sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
}
bf = ath_beacon_generate(sc, vap);
if (bf != NULL) {
/*
* Stop any current dma and put the new frame on the queue.
* This should never fail since we check above that no frames
* are still pending on the queue.
*/
if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: beacon queue %u did not stop?\n",
__func__, sc->sc_bhalq);
/* NB: the HAL still stops DMA, so proceed */
}
ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
ath_hal_txstart(ah, sc->sc_bhalq);
sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */
/*
* Record local TSF for our last send for use
* in arbitrating slot collisions.
*/
/* XXX should take a locked ref to iv_bss */
vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
}
}
#endif /* IEEE80211_SUPPORT_TDMA */
static void
ath_dfs_tasklet(void *p, int npending)
{
struct ath_softc *sc = (struct ath_softc *) p;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/*
* If previous processing has found a radar event,
* signal this to the net80211 layer to begin DFS
* processing.
*/
if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
/* DFS event found, initiate channel change */
/*
* XXX doesn't currently tell us whether the event
* XXX was found in the primary or extension
* XXX channel!
*/
IEEE80211_LOCK(ic);
ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
IEEE80211_UNLOCK(ic);
}
}
MODULE_VERSION(if_ath, 1);
MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */
#if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
MODULE_DEPEND(if_ath, alq, 1, 1, 1);
#endif