freebsd-nq/sys/dev/urtwn/if_urtwn.c
2016-04-18 00:28:25 +00:00

5499 lines
143 KiB
C

/* $OpenBSD: if_urtwn.c,v 1.16 2011/02/10 17:26:40 jakemsr Exp $ */
/*-
* Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2014 Kevin Lo <kevlo@FreeBSD.org>
* Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188EU/RTL8188RU/RTL8192CU.
*/
#include "opt_wlan.h"
#include "opt_urtwn.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#include <sys/kdb.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_input.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_ratectl.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usb_device.h>
#include "usbdevs.h"
#include <dev/usb/usb_debug.h>
#include <dev/urtwn/if_urtwnreg.h>
#include <dev/urtwn/if_urtwnvar.h>
#ifdef USB_DEBUG
enum {
URTWN_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
URTWN_DEBUG_RECV = 0x00000002, /* basic recv operation */
URTWN_DEBUG_STATE = 0x00000004, /* 802.11 state transitions */
URTWN_DEBUG_RA = 0x00000008, /* f/w rate adaptation setup */
URTWN_DEBUG_USB = 0x00000010, /* usb requests */
URTWN_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */
URTWN_DEBUG_BEACON = 0x00000040, /* beacon handling */
URTWN_DEBUG_INTR = 0x00000080, /* ISR */
URTWN_DEBUG_TEMP = 0x00000100, /* temperature calibration */
URTWN_DEBUG_ROM = 0x00000200, /* various ROM info */
URTWN_DEBUG_KEY = 0x00000400, /* crypto keys management */
URTWN_DEBUG_TXPWR = 0x00000800, /* dump Tx power values */
URTWN_DEBUG_RSSI = 0x00001000, /* dump RSSI lookups */
URTWN_DEBUG_ANY = 0xffffffff
};
#define URTWN_DPRINTF(_sc, _m, ...) do { \
if ((_sc)->sc_debug & (_m)) \
device_printf((_sc)->sc_dev, __VA_ARGS__); \
} while(0)
#else
#define URTWN_DPRINTF(_sc, _m, ...) do { (void) sc; } while (0)
#endif
#define IEEE80211_HAS_ADDR4(wh) IEEE80211_IS_DSTODS(wh)
static int urtwn_enable_11n = 1;
TUNABLE_INT("hw.usb.urtwn.enable_11n", &urtwn_enable_11n);
/* various supported device vendors/products */
static const STRUCT_USB_HOST_ID urtwn_devs[] = {
#define URTWN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
#define URTWN_RTL8188E_DEV(v,p) \
{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, URTWN_RTL8188E) }
#define URTWN_RTL8188E 1
URTWN_DEV(ABOCOM, RTL8188CU_1),
URTWN_DEV(ABOCOM, RTL8188CU_2),
URTWN_DEV(ABOCOM, RTL8192CU),
URTWN_DEV(ASUS, RTL8192CU),
URTWN_DEV(ASUS, USBN10NANO),
URTWN_DEV(AZUREWAVE, RTL8188CE_1),
URTWN_DEV(AZUREWAVE, RTL8188CE_2),
URTWN_DEV(AZUREWAVE, RTL8188CU),
URTWN_DEV(BELKIN, F7D2102),
URTWN_DEV(BELKIN, RTL8188CU),
URTWN_DEV(BELKIN, RTL8192CU),
URTWN_DEV(CHICONY, RTL8188CUS_1),
URTWN_DEV(CHICONY, RTL8188CUS_2),
URTWN_DEV(CHICONY, RTL8188CUS_3),
URTWN_DEV(CHICONY, RTL8188CUS_4),
URTWN_DEV(CHICONY, RTL8188CUS_5),
URTWN_DEV(COREGA, RTL8192CU),
URTWN_DEV(DLINK, RTL8188CU),
URTWN_DEV(DLINK, RTL8192CU_1),
URTWN_DEV(DLINK, RTL8192CU_2),
URTWN_DEV(DLINK, RTL8192CU_3),
URTWN_DEV(DLINK, DWA131B),
URTWN_DEV(EDIMAX, EW7811UN),
URTWN_DEV(EDIMAX, RTL8192CU),
URTWN_DEV(FEIXUN, RTL8188CU),
URTWN_DEV(FEIXUN, RTL8192CU),
URTWN_DEV(GUILLEMOT, HWNUP150),
URTWN_DEV(HAWKING, RTL8192CU),
URTWN_DEV(HP3, RTL8188CU),
URTWN_DEV(NETGEAR, WNA1000M),
URTWN_DEV(NETGEAR, RTL8192CU),
URTWN_DEV(NETGEAR4, RTL8188CU),
URTWN_DEV(NOVATECH, RTL8188CU),
URTWN_DEV(PLANEX2, RTL8188CU_1),
URTWN_DEV(PLANEX2, RTL8188CU_2),
URTWN_DEV(PLANEX2, RTL8188CU_3),
URTWN_DEV(PLANEX2, RTL8188CU_4),
URTWN_DEV(PLANEX2, RTL8188CUS),
URTWN_DEV(PLANEX2, RTL8192CU),
URTWN_DEV(REALTEK, RTL8188CE_0),
URTWN_DEV(REALTEK, RTL8188CE_1),
URTWN_DEV(REALTEK, RTL8188CTV),
URTWN_DEV(REALTEK, RTL8188CU_0),
URTWN_DEV(REALTEK, RTL8188CU_1),
URTWN_DEV(REALTEK, RTL8188CU_2),
URTWN_DEV(REALTEK, RTL8188CU_3),
URTWN_DEV(REALTEK, RTL8188CU_COMBO),
URTWN_DEV(REALTEK, RTL8188CUS),
URTWN_DEV(REALTEK, RTL8188RU_1),
URTWN_DEV(REALTEK, RTL8188RU_2),
URTWN_DEV(REALTEK, RTL8188RU_3),
URTWN_DEV(REALTEK, RTL8191CU),
URTWN_DEV(REALTEK, RTL8192CE),
URTWN_DEV(REALTEK, RTL8192CU),
URTWN_DEV(SITECOMEU, RTL8188CU_1),
URTWN_DEV(SITECOMEU, RTL8188CU_2),
URTWN_DEV(SITECOMEU, RTL8192CU),
URTWN_DEV(TRENDNET, RTL8188CU),
URTWN_DEV(TRENDNET, RTL8192CU),
URTWN_DEV(ZYXEL, RTL8192CU),
/* URTWN_RTL8188E */
URTWN_RTL8188E_DEV(ABOCOM, RTL8188EU),
URTWN_RTL8188E_DEV(DLINK, DWA123D1),
URTWN_RTL8188E_DEV(DLINK, DWA125D1),
URTWN_RTL8188E_DEV(ELECOM, WDC150SU2M),
URTWN_RTL8188E_DEV(REALTEK, RTL8188ETV),
URTWN_RTL8188E_DEV(REALTEK, RTL8188EU),
#undef URTWN_RTL8188E_DEV
#undef URTWN_DEV
};
static device_probe_t urtwn_match;
static device_attach_t urtwn_attach;
static device_detach_t urtwn_detach;
static usb_callback_t urtwn_bulk_tx_callback;
static usb_callback_t urtwn_bulk_rx_callback;
static void urtwn_sysctlattach(struct urtwn_softc *);
static void urtwn_drain_mbufq(struct urtwn_softc *);
static usb_error_t urtwn_do_request(struct urtwn_softc *,
struct usb_device_request *, void *);
static struct ieee80211vap *urtwn_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void urtwn_vap_delete(struct ieee80211vap *);
static struct mbuf * urtwn_rx_copy_to_mbuf(struct urtwn_softc *,
struct r92c_rx_stat *, int);
static struct mbuf * urtwn_report_intr(struct usb_xfer *,
struct urtwn_data *);
static struct mbuf * urtwn_rxeof(struct urtwn_softc *, uint8_t *, int);
static void urtwn_r88e_ratectl_tx_complete(struct urtwn_softc *,
void *);
static struct ieee80211_node *urtwn_rx_frame(struct urtwn_softc *,
struct mbuf *, int8_t *);
static void urtwn_txeof(struct urtwn_softc *, struct urtwn_data *,
int);
static int urtwn_alloc_list(struct urtwn_softc *,
struct urtwn_data[], int, int);
static int urtwn_alloc_rx_list(struct urtwn_softc *);
static int urtwn_alloc_tx_list(struct urtwn_softc *);
static void urtwn_free_list(struct urtwn_softc *,
struct urtwn_data data[], int);
static void urtwn_free_rx_list(struct urtwn_softc *);
static void urtwn_free_tx_list(struct urtwn_softc *);
static struct urtwn_data * _urtwn_getbuf(struct urtwn_softc *);
static struct urtwn_data * urtwn_getbuf(struct urtwn_softc *);
static usb_error_t urtwn_write_region_1(struct urtwn_softc *, uint16_t,
uint8_t *, int);
static usb_error_t urtwn_write_1(struct urtwn_softc *, uint16_t, uint8_t);
static usb_error_t urtwn_write_2(struct urtwn_softc *, uint16_t, uint16_t);
static usb_error_t urtwn_write_4(struct urtwn_softc *, uint16_t, uint32_t);
static usb_error_t urtwn_read_region_1(struct urtwn_softc *, uint16_t,
uint8_t *, int);
static uint8_t urtwn_read_1(struct urtwn_softc *, uint16_t);
static uint16_t urtwn_read_2(struct urtwn_softc *, uint16_t);
static uint32_t urtwn_read_4(struct urtwn_softc *, uint16_t);
static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t,
const void *, int);
static void urtwn_cmdq_cb(void *, int);
static int urtwn_cmd_sleepable(struct urtwn_softc *, const void *,
size_t, CMD_FUNC_PROTO);
static void urtwn_r92c_rf_write(struct urtwn_softc *, int,
uint8_t, uint32_t);
static void urtwn_r88e_rf_write(struct urtwn_softc *, int,
uint8_t, uint32_t);
static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t);
static int urtwn_llt_write(struct urtwn_softc *, uint32_t,
uint32_t);
static int urtwn_efuse_read_next(struct urtwn_softc *, uint8_t *);
static int urtwn_efuse_read_data(struct urtwn_softc *, uint8_t *,
uint8_t, uint8_t);
#ifdef USB_DEBUG
static void urtwn_dump_rom_contents(struct urtwn_softc *,
uint8_t *, uint16_t);
#endif
static int urtwn_efuse_read(struct urtwn_softc *, uint8_t *,
uint16_t);
static int urtwn_efuse_switch_power(struct urtwn_softc *);
static int urtwn_read_chipid(struct urtwn_softc *);
static int urtwn_read_rom(struct urtwn_softc *);
static int urtwn_r88e_read_rom(struct urtwn_softc *);
static int urtwn_ra_init(struct urtwn_softc *);
static void urtwn_init_beacon(struct urtwn_softc *,
struct urtwn_vap *);
static int urtwn_setup_beacon(struct urtwn_softc *,
struct ieee80211_node *);
static void urtwn_update_beacon(struct ieee80211vap *, int);
static int urtwn_tx_beacon(struct urtwn_softc *sc,
struct urtwn_vap *);
static int urtwn_key_alloc(struct ieee80211vap *,
struct ieee80211_key *, ieee80211_keyix *,
ieee80211_keyix *);
static void urtwn_key_set_cb(struct urtwn_softc *,
union sec_param *);
static void urtwn_key_del_cb(struct urtwn_softc *,
union sec_param *);
static int urtwn_key_set(struct ieee80211vap *,
const struct ieee80211_key *);
static int urtwn_key_delete(struct ieee80211vap *,
const struct ieee80211_key *);
static void urtwn_tsf_task_adhoc(void *, int);
static void urtwn_tsf_sync_enable(struct urtwn_softc *,
struct ieee80211vap *);
static void urtwn_get_tsf(struct urtwn_softc *, uint64_t *);
static void urtwn_set_led(struct urtwn_softc *, int, int);
static void urtwn_set_mode(struct urtwn_softc *, uint8_t);
static void urtwn_ibss_recv_mgmt(struct ieee80211_node *,
struct mbuf *, int,
const struct ieee80211_rx_stats *, int, int);
static int urtwn_newstate(struct ieee80211vap *,
enum ieee80211_state, int);
static void urtwn_calib_to(void *);
static void urtwn_calib_cb(struct urtwn_softc *,
union sec_param *);
static void urtwn_watchdog(void *);
static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t);
static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *);
static int8_t urtwn_r88e_get_rssi(struct urtwn_softc *, int, void *);
static int urtwn_tx_data(struct urtwn_softc *,
struct ieee80211_node *, struct mbuf *,
struct urtwn_data *);
static int urtwn_tx_raw(struct urtwn_softc *,
struct ieee80211_node *, struct mbuf *,
struct urtwn_data *,
const struct ieee80211_bpf_params *);
static void urtwn_tx_start(struct urtwn_softc *, struct mbuf *,
uint8_t, struct urtwn_data *);
static int urtwn_transmit(struct ieee80211com *, struct mbuf *);
static void urtwn_start(struct urtwn_softc *);
static void urtwn_parent(struct ieee80211com *);
static int urtwn_r92c_power_on(struct urtwn_softc *);
static int urtwn_r88e_power_on(struct urtwn_softc *);
static void urtwn_r92c_power_off(struct urtwn_softc *);
static void urtwn_r88e_power_off(struct urtwn_softc *);
static int urtwn_llt_init(struct urtwn_softc *);
#ifndef URTWN_WITHOUT_UCODE
static void urtwn_fw_reset(struct urtwn_softc *);
static void urtwn_r88e_fw_reset(struct urtwn_softc *);
static int urtwn_fw_loadpage(struct urtwn_softc *, int,
const uint8_t *, int);
static int urtwn_load_firmware(struct urtwn_softc *);
#endif
static int urtwn_dma_init(struct urtwn_softc *);
static int urtwn_mac_init(struct urtwn_softc *);
static void urtwn_bb_init(struct urtwn_softc *);
static void urtwn_rf_init(struct urtwn_softc *);
static void urtwn_cam_init(struct urtwn_softc *);
static int urtwn_cam_write(struct urtwn_softc *, uint32_t,
uint32_t);
static void urtwn_pa_bias_init(struct urtwn_softc *);
static void urtwn_rxfilter_init(struct urtwn_softc *);
static void urtwn_edca_init(struct urtwn_softc *);
static void urtwn_write_txpower(struct urtwn_softc *, int,
uint16_t[]);
static void urtwn_get_txpower(struct urtwn_softc *, int,
struct ieee80211_channel *,
struct ieee80211_channel *, uint16_t[]);
static void urtwn_r88e_get_txpower(struct urtwn_softc *, int,
struct ieee80211_channel *,
struct ieee80211_channel *, uint16_t[]);
static void urtwn_set_txpower(struct urtwn_softc *,
struct ieee80211_channel *,
struct ieee80211_channel *);
static void urtwn_set_rx_bssid_all(struct urtwn_softc *, int);
static void urtwn_set_gain(struct urtwn_softc *, uint8_t);
static void urtwn_scan_start(struct ieee80211com *);
static void urtwn_scan_end(struct ieee80211com *);
static void urtwn_set_channel(struct ieee80211com *);
static int urtwn_wme_update(struct ieee80211com *);
static void urtwn_update_slot(struct ieee80211com *);
static void urtwn_update_slot_cb(struct urtwn_softc *,
union sec_param *);
static void urtwn_update_aifs(struct urtwn_softc *, uint8_t);
static void urtwn_set_promisc(struct urtwn_softc *);
static void urtwn_update_promisc(struct ieee80211com *);
static void urtwn_update_mcast(struct ieee80211com *);
static struct ieee80211_node *urtwn_node_alloc(struct ieee80211vap *,
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void urtwn_newassoc(struct ieee80211_node *, int);
static void urtwn_node_free(struct ieee80211_node *);
static void urtwn_set_chan(struct urtwn_softc *,
struct ieee80211_channel *,
struct ieee80211_channel *);
static void urtwn_iq_calib(struct urtwn_softc *);
static void urtwn_lc_calib(struct urtwn_softc *);
static void urtwn_temp_calib(struct urtwn_softc *);
static int urtwn_init(struct urtwn_softc *);
static void urtwn_stop(struct urtwn_softc *);
static void urtwn_abort_xfers(struct urtwn_softc *);
static int urtwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void urtwn_ms_delay(struct urtwn_softc *);
/* Aliases. */
#define urtwn_bb_write urtwn_write_4
#define urtwn_bb_read urtwn_read_4
static const struct usb_config urtwn_config[URTWN_N_TRANSFER] = {
[URTWN_BULK_RX] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = URTWN_RXBUFSZ,
.flags = {
.pipe_bof = 1,
.short_xfer_ok = 1
},
.callback = urtwn_bulk_rx_callback,
},
[URTWN_BULK_TX_BE] = {
.type = UE_BULK,
.endpoint = 0x03,
.direction = UE_DIR_OUT,
.bufsize = URTWN_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.force_short_xfer = 1
},
.callback = urtwn_bulk_tx_callback,
.timeout = URTWN_TX_TIMEOUT, /* ms */
},
[URTWN_BULK_TX_BK] = {
.type = UE_BULK,
.endpoint = 0x03,
.direction = UE_DIR_OUT,
.bufsize = URTWN_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.force_short_xfer = 1,
},
.callback = urtwn_bulk_tx_callback,
.timeout = URTWN_TX_TIMEOUT, /* ms */
},
[URTWN_BULK_TX_VI] = {
.type = UE_BULK,
.endpoint = 0x02,
.direction = UE_DIR_OUT,
.bufsize = URTWN_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.force_short_xfer = 1
},
.callback = urtwn_bulk_tx_callback,
.timeout = URTWN_TX_TIMEOUT, /* ms */
},
[URTWN_BULK_TX_VO] = {
.type = UE_BULK,
.endpoint = 0x02,
.direction = UE_DIR_OUT,
.bufsize = URTWN_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.force_short_xfer = 1
},
.callback = urtwn_bulk_tx_callback,
.timeout = URTWN_TX_TIMEOUT, /* ms */
},
};
static const struct wme_to_queue {
uint16_t reg;
uint8_t qid;
} wme2queue[WME_NUM_AC] = {
{ R92C_EDCA_BE_PARAM, URTWN_BULK_TX_BE},
{ R92C_EDCA_BK_PARAM, URTWN_BULK_TX_BK},
{ R92C_EDCA_VI_PARAM, URTWN_BULK_TX_VI},
{ R92C_EDCA_VO_PARAM, URTWN_BULK_TX_VO}
};
static int
urtwn_match(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != URTWN_CONFIG_INDEX)
return (ENXIO);
if (uaa->info.bIfaceIndex != URTWN_IFACE_INDEX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(urtwn_devs, sizeof(urtwn_devs), uaa));
}
static void
urtwn_update_chw(struct ieee80211com *ic)
{
}
static int
urtwn_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
{
/* We're driving this ourselves (eventually); don't involve net80211 */
return (0);
}
static int
urtwn_attach(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
struct urtwn_softc *sc = device_get_softc(self);
struct ieee80211com *ic = &sc->sc_ic;
uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)];
int error;
device_set_usb_desc(self);
sc->sc_udev = uaa->device;
sc->sc_dev = self;
if (USB_GET_DRIVER_INFO(uaa) == URTWN_RTL8188E)
sc->chip |= URTWN_CHIP_88E;
#ifdef USB_DEBUG
int debug;
if (resource_int_value(device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev), "debug", &debug) == 0)
sc->sc_debug = debug;
#endif
mtx_init(&sc->sc_mtx, device_get_nameunit(self),
MTX_NETWORK_LOCK, MTX_DEF);
URTWN_CMDQ_LOCK_INIT(sc);
URTWN_NT_LOCK_INIT(sc);
callout_init(&sc->sc_calib_to, 0);
callout_init(&sc->sc_watchdog_ch, 0);
mbufq_init(&sc->sc_snd, ifqmaxlen);
sc->sc_iface_index = URTWN_IFACE_INDEX;
error = usbd_transfer_setup(uaa->device, &sc->sc_iface_index,
sc->sc_xfer, urtwn_config, URTWN_N_TRANSFER, sc, &sc->sc_mtx);
if (error) {
device_printf(self, "could not allocate USB transfers, "
"err=%s\n", usbd_errstr(error));
goto detach;
}
URTWN_LOCK(sc);
error = urtwn_read_chipid(sc);
if (error) {
device_printf(sc->sc_dev, "unsupported test chip\n");
URTWN_UNLOCK(sc);
goto detach;
}
/* Determine number of Tx/Rx chains. */
if (sc->chip & URTWN_CHIP_92C) {
sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2;
sc->nrxchains = 2;
} else {
sc->ntxchains = 1;
sc->nrxchains = 1;
}
if (sc->chip & URTWN_CHIP_88E)
error = urtwn_r88e_read_rom(sc);
else
error = urtwn_read_rom(sc);
if (error != 0) {
device_printf(sc->sc_dev, "%s: cannot read rom, error %d\n",
__func__, error);
URTWN_UNLOCK(sc);
goto detach;
}
device_printf(sc->sc_dev, "MAC/BB RTL%s, RF 6052 %dT%dR\n",
(sc->chip & URTWN_CHIP_92C) ? "8192CU" :
(sc->chip & URTWN_CHIP_88E) ? "8188EU" :
(sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" :
(sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" :
"8188CUS", sc->ntxchains, sc->nrxchains);
URTWN_UNLOCK(sc);
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(self);
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_IBSS /* adhoc mode */
| IEEE80211_C_HOSTAP /* hostap mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
#if 0
| IEEE80211_C_BGSCAN /* capable of bg scanning */
#endif
| IEEE80211_C_WPA /* 802.11i */
| IEEE80211_C_WME /* 802.11e */
| IEEE80211_C_SWAMSDUTX /* Do software A-MSDU TX */
| IEEE80211_C_FF /* Atheros fast-frames */
;
ic->ic_cryptocaps =
IEEE80211_CRYPTO_WEP |
IEEE80211_CRYPTO_TKIP |
IEEE80211_CRYPTO_AES_CCM;
/* Assume they're all 11n capable for now */
if (urtwn_enable_11n) {
device_printf(self, "enabling 11n\n");
ic->ic_htcaps = IEEE80211_HTC_HT |
#if 0
IEEE80211_HTC_AMPDU |
#endif
IEEE80211_HTC_AMSDU |
IEEE80211_HTCAP_MAXAMSDU_3839 |
IEEE80211_HTCAP_SMPS_OFF;
/* no HT40 just yet */
// ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40;
/* XXX TODO: verify chains versus streams for urtwn */
ic->ic_txstream = sc->ntxchains;
ic->ic_rxstream = sc->nrxchains;
}
memset(bands, 0, sizeof(bands));
setbit(bands, IEEE80211_MODE_11B);
setbit(bands, IEEE80211_MODE_11G);
if (urtwn_enable_11n)
setbit(bands, IEEE80211_MODE_11NG);
ieee80211_init_channels(ic, NULL, bands);
ieee80211_ifattach(ic);
ic->ic_raw_xmit = urtwn_raw_xmit;
ic->ic_scan_start = urtwn_scan_start;
ic->ic_scan_end = urtwn_scan_end;
ic->ic_set_channel = urtwn_set_channel;
ic->ic_transmit = urtwn_transmit;
ic->ic_parent = urtwn_parent;
ic->ic_vap_create = urtwn_vap_create;
ic->ic_vap_delete = urtwn_vap_delete;
ic->ic_wme.wme_update = urtwn_wme_update;
ic->ic_updateslot = urtwn_update_slot;
ic->ic_update_promisc = urtwn_update_promisc;
ic->ic_update_mcast = urtwn_update_mcast;
if (sc->chip & URTWN_CHIP_88E) {
ic->ic_node_alloc = urtwn_node_alloc;
ic->ic_newassoc = urtwn_newassoc;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = urtwn_node_free;
}
ic->ic_update_chw = urtwn_update_chw;
ic->ic_ampdu_enable = urtwn_ampdu_enable;
ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr,
sizeof(sc->sc_txtap), URTWN_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
URTWN_RX_RADIOTAP_PRESENT);
TASK_INIT(&sc->cmdq_task, 0, urtwn_cmdq_cb, sc);
urtwn_sysctlattach(sc);
if (bootverbose)
ieee80211_announce(ic);
return (0);
detach:
urtwn_detach(self);
return (ENXIO); /* failure */
}
static void
urtwn_sysctlattach(struct urtwn_softc *sc)
{
#ifdef USB_DEBUG
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
SYSCTL_ADD_U32(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
"control debugging printfs");
#endif
}
static int
urtwn_detach(device_t self)
{
struct urtwn_softc *sc = device_get_softc(self);
struct ieee80211com *ic = &sc->sc_ic;
unsigned int x;
/* Prevent further ioctls. */
URTWN_LOCK(sc);
sc->sc_flags |= URTWN_DETACHED;
URTWN_UNLOCK(sc);
urtwn_stop(sc);
callout_drain(&sc->sc_watchdog_ch);
callout_drain(&sc->sc_calib_to);
/* stop all USB transfers */
usbd_transfer_unsetup(sc->sc_xfer, URTWN_N_TRANSFER);
/* Prevent further allocations from RX/TX data lists. */
URTWN_LOCK(sc);
STAILQ_INIT(&sc->sc_tx_active);
STAILQ_INIT(&sc->sc_tx_inactive);
STAILQ_INIT(&sc->sc_tx_pending);
STAILQ_INIT(&sc->sc_rx_active);
STAILQ_INIT(&sc->sc_rx_inactive);
URTWN_UNLOCK(sc);
/* drain USB transfers */
for (x = 0; x != URTWN_N_TRANSFER; x++)
usbd_transfer_drain(sc->sc_xfer[x]);
/* Free data buffers. */
URTWN_LOCK(sc);
urtwn_free_tx_list(sc);
urtwn_free_rx_list(sc);
URTWN_UNLOCK(sc);
if (ic->ic_softc == sc) {
ieee80211_draintask(ic, &sc->cmdq_task);
ieee80211_ifdetach(ic);
}
URTWN_NT_LOCK_DESTROY(sc);
URTWN_CMDQ_LOCK_DESTROY(sc);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static void
urtwn_drain_mbufq(struct urtwn_softc *sc)
{
struct mbuf *m;
struct ieee80211_node *ni;
URTWN_ASSERT_LOCKED(sc);
while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
ieee80211_free_node(ni);
m_freem(m);
}
}
static usb_error_t
urtwn_do_request(struct urtwn_softc *sc, struct usb_device_request *req,
void *data)
{
usb_error_t err;
int ntries = 10;
URTWN_ASSERT_LOCKED(sc);
while (ntries--) {
err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
req, data, 0, NULL, 250 /* ms */);
if (err == 0)
break;
URTWN_DPRINTF(sc, URTWN_DEBUG_USB,
"%s: control request failed, %s (retries left: %d)\n",
__func__, usbd_errstr(err), ntries);
usb_pause_mtx(&sc->sc_mtx, hz / 100);
}
return (err);
}
static struct ieee80211vap *
urtwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct urtwn_softc *sc = ic->ic_softc;
struct urtwn_vap *uvp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return (NULL);
uvp = malloc(sizeof(struct urtwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
vap = &uvp->vap;
/* enable s/w bmiss handling for sta mode */
if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
/* out of memory */
free(uvp, M_80211_VAP);
return (NULL);
}
if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_IBSS)
urtwn_init_beacon(sc, uvp);
/* override state transition machine */
uvp->newstate = vap->iv_newstate;
vap->iv_newstate = urtwn_newstate;
vap->iv_update_beacon = urtwn_update_beacon;
vap->iv_key_alloc = urtwn_key_alloc;
vap->iv_key_set = urtwn_key_set;
vap->iv_key_delete = urtwn_key_delete;
/* 802.11n parameters */
vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_16;
vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
if (opmode == IEEE80211_M_IBSS) {
uvp->recv_mgmt = vap->iv_recv_mgmt;
vap->iv_recv_mgmt = urtwn_ibss_recv_mgmt;
TASK_INIT(&uvp->tsf_task_adhoc, 0, urtwn_tsf_task_adhoc, vap);
}
if (URTWN_CHIP_HAS_RATECTL(sc))
ieee80211_ratectl_init(vap);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change,
ieee80211_media_status, mac);
ic->ic_opmode = opmode;
return (vap);
}
static void
urtwn_vap_delete(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct urtwn_softc *sc = ic->ic_softc;
struct urtwn_vap *uvp = URTWN_VAP(vap);
if (uvp->bcn_mbuf != NULL)
m_freem(uvp->bcn_mbuf);
if (vap->iv_opmode == IEEE80211_M_IBSS)
ieee80211_draintask(ic, &uvp->tsf_task_adhoc);
if (URTWN_CHIP_HAS_RATECTL(sc))
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
free(uvp, M_80211_VAP);
}
static struct mbuf *
urtwn_rx_copy_to_mbuf(struct urtwn_softc *sc, struct r92c_rx_stat *stat,
int totlen)
{
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m;
uint32_t rxdw0;
int pktlen;
/*
* don't pass packets to the ieee80211 framework if the driver isn't
* RUNNING.
*/
if (!(sc->sc_flags & URTWN_RUNNING))
return (NULL);
rxdw0 = le32toh(stat->rxdw0);
if (rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR)) {
/*
* This should not happen since we setup our Rx filter
* to not receive these frames.
*/
URTWN_DPRINTF(sc, URTWN_DEBUG_RECV,
"%s: RX flags error (%s)\n", __func__,
rxdw0 & R92C_RXDW0_CRCERR ? "CRC" : "ICV");
goto fail;
}
pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
if (pktlen < sizeof(struct ieee80211_frame_ack)) {
URTWN_DPRINTF(sc, URTWN_DEBUG_RECV,
"%s: frame is too short: %d\n", __func__, pktlen);
goto fail;
}
if (__predict_false(totlen > MCLBYTES)) {
/* convert to m_getjcl if this happens */
device_printf(sc->sc_dev, "%s: frame too long: %d (%d)\n",
__func__, pktlen, totlen);
goto fail;
}
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (__predict_false(m == NULL)) {
device_printf(sc->sc_dev, "%s: could not allocate RX mbuf\n",
__func__);
goto fail;
}
/* Finalize mbuf. */
memcpy(mtod(m, uint8_t *), (uint8_t *)stat, totlen);
m->m_pkthdr.len = m->m_len = totlen;
return (m);
fail:
counter_u64_add(ic->ic_ierrors, 1);
return (NULL);
}
static struct mbuf *
urtwn_report_intr(struct usb_xfer *xfer, struct urtwn_data *data)
{
struct urtwn_softc *sc = data->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct r92c_rx_stat *stat;
uint8_t *buf;
int len;
usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
if (len < sizeof(*stat)) {
counter_u64_add(ic->ic_ierrors, 1);
return (NULL);
}
buf = data->buf;
stat = (struct r92c_rx_stat *)buf;
/*
* For 88E chips we can tie the FF flushing here;
* this is where we do know exactly how deep the
* transmit queue is.
*
* But it won't work for R92 chips, so we can't
* take the easy way out.
*/
if (sc->chip & URTWN_CHIP_88E) {
int report_sel = MS(le32toh(stat->rxdw3), R88E_RXDW3_RPT);
switch (report_sel) {
case R88E_RXDW3_RPT_RX:
return (urtwn_rxeof(sc, buf, len));
case R88E_RXDW3_RPT_TX1:
urtwn_r88e_ratectl_tx_complete(sc, &stat[1]);
break;
default:
URTWN_DPRINTF(sc, URTWN_DEBUG_INTR,
"%s: case %d was not handled\n", __func__,
report_sel);
break;
}
} else
return (urtwn_rxeof(sc, buf, len));
return (NULL);
}
static struct mbuf *
urtwn_rxeof(struct urtwn_softc *sc, uint8_t *buf, int len)
{
struct r92c_rx_stat *stat;
struct mbuf *m, *m0 = NULL, *prevm = NULL;
uint32_t rxdw0;
int totlen, pktlen, infosz, npkts;
/* Get the number of encapsulated frames. */
stat = (struct r92c_rx_stat *)buf;
npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT);
URTWN_DPRINTF(sc, URTWN_DEBUG_RECV,
"%s: Rx %d frames in one chunk\n", __func__, npkts);
/* Process all of them. */
while (npkts-- > 0) {
if (len < sizeof(*stat))
break;
stat = (struct r92c_rx_stat *)buf;
rxdw0 = le32toh(stat->rxdw0);
pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
if (pktlen == 0)
break;
infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
/* Make sure everything fits in xfer. */
totlen = sizeof(*stat) + infosz + pktlen;
if (totlen > len)
break;
m = urtwn_rx_copy_to_mbuf(sc, stat, totlen);
if (m0 == NULL)
m0 = m;
if (prevm == NULL)
prevm = m;
else {
prevm->m_next = m;
prevm = m;
}
/* Next chunk is 128-byte aligned. */
totlen = (totlen + 127) & ~127;
buf += totlen;
len -= totlen;
}
return (m0);
}
static void
urtwn_r88e_ratectl_tx_complete(struct urtwn_softc *sc, void *arg)
{
struct r88e_tx_rpt_ccx *rpt = arg;
struct ieee80211vap *vap;
struct ieee80211_node *ni;
uint8_t macid;
int ntries;
macid = MS(rpt->rptb1, R88E_RPTB1_MACID);
ntries = MS(rpt->rptb2, R88E_RPTB2_RETRY_CNT);
URTWN_NT_LOCK(sc);
ni = sc->node_list[macid];
if (ni != NULL) {
vap = ni->ni_vap;
URTWN_DPRINTF(sc, URTWN_DEBUG_INTR, "%s: frame for macid %d was"
"%s sent (%d retries)\n", __func__, macid,
(rpt->rptb1 & R88E_RPTB1_PKT_OK) ? "" : " not",
ntries);
if (rpt->rptb1 & R88E_RPTB1_PKT_OK) {
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_SUCCESS, &ntries, NULL);
} else {
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_FAILURE, &ntries, NULL);
}
} else {
URTWN_DPRINTF(sc, URTWN_DEBUG_INTR, "%s: macid %d, ni is NULL\n",
__func__, macid);
}
URTWN_NT_UNLOCK(sc);
}
static struct ieee80211_node *
urtwn_rx_frame(struct urtwn_softc *sc, struct mbuf *m, int8_t *rssi_p)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame_min *wh;
struct r92c_rx_stat *stat;
uint32_t rxdw0, rxdw3;
uint8_t rate, cipher;
int8_t rssi = -127;
int infosz;
stat = mtod(m, struct r92c_rx_stat *);
rxdw0 = le32toh(stat->rxdw0);
rxdw3 = le32toh(stat->rxdw3);
rate = MS(rxdw3, R92C_RXDW3_RATE);
cipher = MS(rxdw0, R92C_RXDW0_CIPHER);
infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
/* Get RSSI from PHY status descriptor if present. */
if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
if (sc->chip & URTWN_CHIP_88E)
rssi = urtwn_r88e_get_rssi(sc, rate, &stat[1]);
else
rssi = urtwn_get_rssi(sc, rate, &stat[1]);
URTWN_DPRINTF(sc, URTWN_DEBUG_RSSI, "%s: rssi=%d\n", __func__, rssi);
/* Update our average RSSI. */
urtwn_update_avgrssi(sc, rate, rssi);
}
if (ieee80211_radiotap_active(ic)) {
struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
urtwn_get_tsf(sc, &tap->wr_tsft);
if (__predict_false(le32toh((uint32_t)tap->wr_tsft) <
le32toh(stat->rxdw5))) {
tap->wr_tsft = le32toh(tap->wr_tsft >> 32) - 1;
tap->wr_tsft = (uint64_t)htole32(tap->wr_tsft) << 32;
} else
tap->wr_tsft &= 0xffffffff00000000;
tap->wr_tsft += stat->rxdw5;
/* XXX 20/40? */
/* XXX shortgi? */
/* Map HW rate index to 802.11 rate. */
if (!(rxdw3 & R92C_RXDW3_HT)) {
tap->wr_rate = ridx2rate[rate];
} else if (rate >= 12) { /* MCS0~15. */
/* Bit 7 set means HT MCS instead of rate. */
tap->wr_rate = 0x80 | (rate - 12);
}
/* XXX TODO: this isn't right; should use the last good RSSI */
tap->wr_dbm_antsignal = rssi;
tap->wr_dbm_antnoise = URTWN_NOISE_FLOOR;
}
*rssi_p = rssi;
/* Drop descriptor. */
m_adj(m, sizeof(*stat) + infosz);
wh = mtod(m, struct ieee80211_frame_min *);
if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
cipher != R92C_CAM_ALGO_NONE) {
m->m_flags |= M_WEP;
}
if (m->m_len >= sizeof(*wh))
return (ieee80211_find_rxnode(ic, wh));
return (NULL);
}
static void
urtwn_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct urtwn_softc *sc = usbd_xfer_softc(xfer);
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct mbuf *m = NULL, *next;
struct urtwn_data *data;
int8_t nf, rssi;
URTWN_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data == NULL)
goto tr_setup;
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
m = urtwn_report_intr(xfer, data);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
data = STAILQ_FIRST(&sc->sc_rx_inactive);
if (data == NULL) {
KASSERT(m == NULL, ("mbuf isn't NULL"));
goto finish;
}
STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
usbd_xfer_set_frame_data(xfer, 0, data->buf,
usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
/*
* To avoid LOR we should unlock our private mutex here to call
* ieee80211_input() because here is at the end of a USB
* callback and safe to unlock.
*/
while (m != NULL) {
next = m->m_next;
m->m_next = NULL;
ni = urtwn_rx_frame(sc, m, &rssi);
/* Store a global last-good RSSI */
if (rssi != -127)
sc->last_rssi = rssi;
URTWN_UNLOCK(sc);
nf = URTWN_NOISE_FLOOR;
if (ni != NULL) {
if (rssi != -127)
URTWN_NODE(ni)->last_rssi = rssi;
if (ni->ni_flags & IEEE80211_NODE_HT)
m->m_flags |= M_AMPDU;
(void)ieee80211_input(ni, m,
URTWN_NODE(ni)->last_rssi - nf, nf);
ieee80211_free_node(ni);
} else {
/* Use last good global RSSI */
(void)ieee80211_input_all(ic, m,
sc->last_rssi - nf, nf);
}
URTWN_LOCK(sc);
m = next;
}
break;
default:
/* needs it to the inactive queue due to a error. */
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
}
if (error != USB_ERR_CANCELLED) {
usbd_xfer_set_stall(xfer);
counter_u64_add(ic->ic_ierrors, 1);
goto tr_setup;
}
break;
}
finish:
/* Finished receive; age anything left on the FF queue by a little bump */
/*
* XXX TODO: just make this a callout timer schedule so we can
* flush the FF staging queue if we're approaching idle.
*/
#ifdef IEEE80211_SUPPORT_SUPERG
URTWN_UNLOCK(sc);
ieee80211_ff_age_all(ic, 1);
URTWN_LOCK(sc);
#endif
/* Kick-start more transmit in case we stalled */
urtwn_start(sc);
}
static void
urtwn_txeof(struct urtwn_softc *sc, struct urtwn_data *data, int status)
{
URTWN_ASSERT_LOCKED(sc);
if (data->ni != NULL) /* not a beacon frame */
ieee80211_tx_complete(data->ni, data->m, status);
if (sc->sc_tx_n_active > 0)
sc->sc_tx_n_active--;
data->ni = NULL;
data->m = NULL;
sc->sc_txtimer = 0;
STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
}
static int
urtwn_alloc_list(struct urtwn_softc *sc, struct urtwn_data data[],
int ndata, int maxsz)
{
int i, error;
for (i = 0; i < ndata; i++) {
struct urtwn_data *dp = &data[i];
dp->sc = sc;
dp->m = NULL;
dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT);
if (dp->buf == NULL) {
device_printf(sc->sc_dev,
"could not allocate buffer\n");
error = ENOMEM;
goto fail;
}
dp->ni = NULL;
}
return (0);
fail:
urtwn_free_list(sc, data, ndata);
return (error);
}
static int
urtwn_alloc_rx_list(struct urtwn_softc *sc)
{
int error, i;
error = urtwn_alloc_list(sc, sc->sc_rx, URTWN_RX_LIST_COUNT,
URTWN_RXBUFSZ);
if (error != 0)
return (error);
STAILQ_INIT(&sc->sc_rx_active);
STAILQ_INIT(&sc->sc_rx_inactive);
for (i = 0; i < URTWN_RX_LIST_COUNT; i++)
STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next);
return (0);
}
static int
urtwn_alloc_tx_list(struct urtwn_softc *sc)
{
int error, i;
error = urtwn_alloc_list(sc, sc->sc_tx, URTWN_TX_LIST_COUNT,
URTWN_TXBUFSZ);
if (error != 0)
return (error);
STAILQ_INIT(&sc->sc_tx_active);
STAILQ_INIT(&sc->sc_tx_inactive);
STAILQ_INIT(&sc->sc_tx_pending);
for (i = 0; i < URTWN_TX_LIST_COUNT; i++)
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next);
return (0);
}
static void
urtwn_free_list(struct urtwn_softc *sc, struct urtwn_data data[], int ndata)
{
int i;
for (i = 0; i < ndata; i++) {
struct urtwn_data *dp = &data[i];
if (dp->buf != NULL) {
free(dp->buf, M_USBDEV);
dp->buf = NULL;
}
if (dp->ni != NULL) {
ieee80211_free_node(dp->ni);
dp->ni = NULL;
}
}
}
static void
urtwn_free_rx_list(struct urtwn_softc *sc)
{
urtwn_free_list(sc, sc->sc_rx, URTWN_RX_LIST_COUNT);
}
static void
urtwn_free_tx_list(struct urtwn_softc *sc)
{
urtwn_free_list(sc, sc->sc_tx, URTWN_TX_LIST_COUNT);
}
static void
urtwn_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct urtwn_softc *sc = usbd_xfer_softc(xfer);
#ifdef IEEE80211_SUPPORT_SUPERG
struct ieee80211com *ic = &sc->sc_ic;
#endif
struct urtwn_data *data;
URTWN_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)){
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_tx_active);
if (data == NULL)
goto tr_setup;
STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
urtwn_txeof(sc, data, 0);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
data = STAILQ_FIRST(&sc->sc_tx_pending);
if (data == NULL) {
URTWN_DPRINTF(sc, URTWN_DEBUG_XMIT,
"%s: empty pending queue\n", __func__);
sc->sc_tx_n_active = 0;
goto finish;
}
STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
usbd_transfer_submit(xfer);
sc->sc_tx_n_active++;
break;
default:
data = STAILQ_FIRST(&sc->sc_tx_active);
if (data == NULL)
goto tr_setup;
STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
urtwn_txeof(sc, data, 1);
if (error != USB_ERR_CANCELLED) {
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
finish:
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* If the TX active queue drops below a certain
* threshold, ensure we age fast-frames out so they're
* transmitted.
*/
if (sc->sc_tx_n_active <= 1) {
/* XXX ew - net80211 should defer this for us! */
/*
* Note: this sc_tx_n_active currently tracks
* the number of pending transmit submissions
* and not the actual depth of the TX frames
* pending to the hardware. That means that
* we're going to end up with some sub-optimal
* aggregation behaviour.
*/
/*
* XXX TODO: just make this a callout timer schedule so we can
* flush the FF staging queue if we're approaching idle.
*/
URTWN_UNLOCK(sc);
ieee80211_ff_flush(ic, WME_AC_VO);
ieee80211_ff_flush(ic, WME_AC_VI);
ieee80211_ff_flush(ic, WME_AC_BE);
ieee80211_ff_flush(ic, WME_AC_BK);
URTWN_LOCK(sc);
}
#endif
/* Kick-start more transmit */
urtwn_start(sc);
}
static struct urtwn_data *
_urtwn_getbuf(struct urtwn_softc *sc)
{
struct urtwn_data *bf;
bf = STAILQ_FIRST(&sc->sc_tx_inactive);
if (bf != NULL)
STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
else {
URTWN_DPRINTF(sc, URTWN_DEBUG_XMIT,
"%s: out of xmit buffers\n", __func__);
}
return (bf);
}
static struct urtwn_data *
urtwn_getbuf(struct urtwn_softc *sc)
{
struct urtwn_data *bf;
URTWN_ASSERT_LOCKED(sc);
bf = _urtwn_getbuf(sc);
if (bf == NULL) {
URTWN_DPRINTF(sc, URTWN_DEBUG_XMIT, "%s: stop queue\n",
__func__);
}
return (bf);
}
static usb_error_t
urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = R92C_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return (urtwn_do_request(sc, &req, buf));
}
static usb_error_t
urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val)
{
return (urtwn_write_region_1(sc, addr, &val, sizeof(val)));
}
static usb_error_t
urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val)
{
val = htole16(val);
return (urtwn_write_region_1(sc, addr, (uint8_t *)&val, sizeof(val)));
}
static usb_error_t
urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val)
{
val = htole32(val);
return (urtwn_write_region_1(sc, addr, (uint8_t *)&val, sizeof(val)));
}
static usb_error_t
urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = R92C_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return (urtwn_do_request(sc, &req, buf));
}
static uint8_t
urtwn_read_1(struct urtwn_softc *sc, uint16_t addr)
{
uint8_t val;
if (urtwn_read_region_1(sc, addr, &val, 1) != 0)
return (0xff);
return (val);
}
static uint16_t
urtwn_read_2(struct urtwn_softc *sc, uint16_t addr)
{
uint16_t val;
if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0)
return (0xffff);
return (le16toh(val));
}
static uint32_t
urtwn_read_4(struct urtwn_softc *sc, uint16_t addr)
{
uint32_t val;
if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0)
return (0xffffffff);
return (le32toh(val));
}
static int
urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len)
{
struct r92c_fw_cmd cmd;
usb_error_t error;
int ntries;
if (!(sc->sc_flags & URTWN_FW_LOADED)) {
URTWN_DPRINTF(sc, URTWN_DEBUG_FIRMWARE, "%s: firmware "
"was not loaded; command (id %d) will be discarded\n",
__func__, id);
return (0);
}
/* Wait for current FW box to be empty. */
for (ntries = 0; ntries < 100; ntries++) {
if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << sc->fwcur)))
break;
urtwn_ms_delay(sc);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"could not send firmware command\n");
return (ETIMEDOUT);
}
memset(&cmd, 0, sizeof(cmd));
cmd.id = id;
if (len > 3)
cmd.id |= R92C_CMD_FLAG_EXT;
KASSERT(len <= sizeof(cmd.msg), ("urtwn_fw_cmd\n"));
memcpy(cmd.msg, buf, len);
/* Write the first word last since that will trigger the FW. */
error = urtwn_write_region_1(sc, R92C_HMEBOX_EXT(sc->fwcur),
(uint8_t *)&cmd + 4, 2);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
error = urtwn_write_region_1(sc, R92C_HMEBOX(sc->fwcur),
(uint8_t *)&cmd + 0, 4);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
return (0);
}
static void
urtwn_cmdq_cb(void *arg, int pending)
{
struct urtwn_softc *sc = arg;
struct urtwn_cmdq *item;
/*
* Device must be powered on (via urtwn_power_on())
* before any command may be sent.
*/
URTWN_LOCK(sc);
if (!(sc->sc_flags & URTWN_RUNNING)) {
URTWN_UNLOCK(sc);
return;
}
URTWN_CMDQ_LOCK(sc);
while (sc->cmdq[sc->cmdq_first].func != NULL) {
item = &sc->cmdq[sc->cmdq_first];
sc->cmdq_first = (sc->cmdq_first + 1) % URTWN_CMDQ_SIZE;
URTWN_CMDQ_UNLOCK(sc);
item->func(sc, &item->data);
URTWN_CMDQ_LOCK(sc);
memset(item, 0, sizeof (*item));
}
URTWN_CMDQ_UNLOCK(sc);
URTWN_UNLOCK(sc);
}
static int
urtwn_cmd_sleepable(struct urtwn_softc *sc, const void *ptr, size_t len,
CMD_FUNC_PROTO)
{
struct ieee80211com *ic = &sc->sc_ic;
KASSERT(len <= sizeof(union sec_param), ("buffer overflow"));
URTWN_CMDQ_LOCK(sc);
if (sc->cmdq[sc->cmdq_last].func != NULL) {
device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__);
URTWN_CMDQ_UNLOCK(sc);
return (EAGAIN);
}
if (ptr != NULL)
memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len);
sc->cmdq[sc->cmdq_last].func = func;
sc->cmdq_last = (sc->cmdq_last + 1) % URTWN_CMDQ_SIZE;
URTWN_CMDQ_UNLOCK(sc);
ieee80211_runtask(ic, &sc->cmdq_task);
return (0);
}
static __inline void
urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val)
{
sc->sc_rf_write(sc, chain, addr, val);
}
static void
urtwn_r92c_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr,
uint32_t val)
{
urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
SM(R92C_LSSI_PARAM_ADDR, addr) |
SM(R92C_LSSI_PARAM_DATA, val));
}
static void
urtwn_r88e_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr,
uint32_t val)
{
urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
SM(R88E_LSSI_PARAM_ADDR, addr) |
SM(R92C_LSSI_PARAM_DATA, val));
}
static uint32_t
urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr)
{
uint32_t reg[R92C_MAX_CHAINS], val;
reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
if (chain != 0)
reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
urtwn_ms_delay(sc);
urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
R92C_HSSI_PARAM2_READ_EDGE);
urtwn_ms_delay(sc);
urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
urtwn_ms_delay(sc);
if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI)
val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
else
val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
return (MS(val, R92C_LSSI_READBACK_DATA));
}
static int
urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
{
usb_error_t error;
int ntries;
error = urtwn_write_4(sc, R92C_LLT_INIT,
SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
SM(R92C_LLT_INIT_ADDR, addr) |
SM(R92C_LLT_INIT_DATA, data));
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
/* Wait for write operation to complete. */
for (ntries = 0; ntries < 20; ntries++) {
if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
R92C_LLT_INIT_OP_NO_ACTIVE)
return (0);
urtwn_ms_delay(sc);
}
return (ETIMEDOUT);
}
static int
urtwn_efuse_read_next(struct urtwn_softc *sc, uint8_t *val)
{
uint32_t reg;
usb_error_t error;
int ntries;
if (sc->last_rom_addr >= URTWN_EFUSE_MAX_LEN)
return (EFAULT);
reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
reg = RW(reg, R92C_EFUSE_CTRL_ADDR, sc->last_rom_addr);
reg &= ~R92C_EFUSE_CTRL_VALID;
error = urtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
/* Wait for read operation to complete. */
for (ntries = 0; ntries < 100; ntries++) {
reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
if (reg & R92C_EFUSE_CTRL_VALID)
break;
urtwn_ms_delay(sc);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"could not read efuse byte at address 0x%x\n",
sc->last_rom_addr);
return (ETIMEDOUT);
}
*val = MS(reg, R92C_EFUSE_CTRL_DATA);
sc->last_rom_addr++;
return (0);
}
static int
urtwn_efuse_read_data(struct urtwn_softc *sc, uint8_t *rom, uint8_t off,
uint8_t msk)
{
uint8_t reg;
int i, error;
for (i = 0; i < 4; i++) {
if (msk & (1 << i))
continue;
error = urtwn_efuse_read_next(sc, &reg);
if (error != 0)
return (error);
URTWN_DPRINTF(sc, URTWN_DEBUG_ROM, "rom[0x%03X] == 0x%02X\n",
off * 8 + i * 2, reg);
rom[off * 8 + i * 2 + 0] = reg;
error = urtwn_efuse_read_next(sc, &reg);
if (error != 0)
return (error);
URTWN_DPRINTF(sc, URTWN_DEBUG_ROM, "rom[0x%03X] == 0x%02X\n",
off * 8 + i * 2 + 1, reg);
rom[off * 8 + i * 2 + 1] = reg;
}
return (0);
}
#ifdef USB_DEBUG
static void
urtwn_dump_rom_contents(struct urtwn_softc *sc, uint8_t *rom, uint16_t size)
{
int i;
/* Dump ROM contents. */
device_printf(sc->sc_dev, "%s:", __func__);
for (i = 0; i < size; i++) {
if (i % 32 == 0)
printf("\n%03X: ", i);
else if (i % 4 == 0)
printf(" ");
printf("%02X", rom[i]);
}
printf("\n");
}
#endif
static int
urtwn_efuse_read(struct urtwn_softc *sc, uint8_t *rom, uint16_t size)
{
#define URTWN_CHK(res) do { \
if ((error = res) != 0) \
goto end; \
} while(0)
uint8_t msk, off, reg;
int error;
URTWN_CHK(urtwn_efuse_switch_power(sc));
/* Read full ROM image. */
sc->last_rom_addr = 0;
memset(rom, 0xff, size);
URTWN_CHK(urtwn_efuse_read_next(sc, &reg));
while (reg != 0xff) {
/* check for extended header */
if ((sc->chip & URTWN_CHIP_88E) && (reg & 0x1f) == 0x0f) {
off = reg >> 5;
URTWN_CHK(urtwn_efuse_read_next(sc, &reg));
if ((reg & 0x0f) != 0x0f)
off = ((reg & 0xf0) >> 1) | off;
else
continue;
} else
off = reg >> 4;
msk = reg & 0xf;
URTWN_CHK(urtwn_efuse_read_data(sc, rom, off, msk));
URTWN_CHK(urtwn_efuse_read_next(sc, &reg));
}
end:
#ifdef USB_DEBUG
if (sc->sc_debug & URTWN_DEBUG_ROM)
urtwn_dump_rom_contents(sc, rom, size);
#endif
urtwn_write_1(sc, R92C_EFUSE_ACCESS, R92C_EFUSE_ACCESS_OFF);
if (error != 0) {
device_printf(sc->sc_dev, "%s: error while reading ROM\n",
__func__);
}
return (error);
#undef URTWN_CHK
}
static int
urtwn_efuse_switch_power(struct urtwn_softc *sc)
{
usb_error_t error;
uint32_t reg;
error = urtwn_write_1(sc, R92C_EFUSE_ACCESS, R92C_EFUSE_ACCESS_ON);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL);
if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
error = urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
}
reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
error = urtwn_write_2(sc, R92C_SYS_FUNC_EN,
reg | R92C_SYS_FUNC_EN_ELDR);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
}
reg = urtwn_read_2(sc, R92C_SYS_CLKR);
if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
(R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
error = urtwn_write_2(sc, R92C_SYS_CLKR,
reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
}
return (0);
}
static int
urtwn_read_chipid(struct urtwn_softc *sc)
{
uint32_t reg;
if (sc->chip & URTWN_CHIP_88E)
return (0);
reg = urtwn_read_4(sc, R92C_SYS_CFG);
if (reg & R92C_SYS_CFG_TRP_VAUX_EN)
return (EIO);
if (reg & R92C_SYS_CFG_TYPE_92C) {
sc->chip |= URTWN_CHIP_92C;
/* Check if it is a castrated 8192C. */
if (MS(urtwn_read_4(sc, R92C_HPON_FSM),
R92C_HPON_FSM_CHIP_BONDING_ID) ==
R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R)
sc->chip |= URTWN_CHIP_92C_1T2R;
}
if (reg & R92C_SYS_CFG_VENDOR_UMC) {
sc->chip |= URTWN_CHIP_UMC;
if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0)
sc->chip |= URTWN_CHIP_UMC_A_CUT;
}
return (0);
}
static int
urtwn_read_rom(struct urtwn_softc *sc)
{
struct r92c_rom *rom = &sc->rom.r92c_rom;
int error;
/* Read full ROM image. */
error = urtwn_efuse_read(sc, (uint8_t *)rom, sizeof(*rom));
if (error != 0)
return (error);
/* XXX Weird but this is what the vendor driver does. */
sc->last_rom_addr = 0x1fa;
error = urtwn_efuse_read_next(sc, &sc->pa_setting);
if (error != 0)
return (error);
URTWN_DPRINTF(sc, URTWN_DEBUG_ROM, "%s: PA setting=0x%x\n", __func__,
sc->pa_setting);
sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
URTWN_DPRINTF(sc, URTWN_DEBUG_ROM, "%s: regulatory type=%d\n",
__func__, sc->regulatory);
IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, rom->macaddr);
sc->sc_rf_write = urtwn_r92c_rf_write;
sc->sc_power_on = urtwn_r92c_power_on;
sc->sc_power_off = urtwn_r92c_power_off;
return (0);
}
static int
urtwn_r88e_read_rom(struct urtwn_softc *sc)
{
struct r88e_rom *rom = &sc->rom.r88e_rom;
int error;
error = urtwn_efuse_read(sc, (uint8_t *)rom, sizeof(sc->rom.r88e_rom));
if (error != 0)
return (error);
sc->bw20_tx_pwr_diff = (rom->tx_pwr_diff >> 4);
if (sc->bw20_tx_pwr_diff & 0x08)
sc->bw20_tx_pwr_diff |= 0xf0;
sc->ofdm_tx_pwr_diff = (rom->tx_pwr_diff & 0xf);
if (sc->ofdm_tx_pwr_diff & 0x08)
sc->ofdm_tx_pwr_diff |= 0xf0;
sc->regulatory = MS(rom->rf_board_opt, R92C_ROM_RF1_REGULATORY);
URTWN_DPRINTF(sc, URTWN_DEBUG_ROM, "%s: regulatory type %d\n",
__func__,sc->regulatory);
IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, rom->macaddr);
sc->sc_rf_write = urtwn_r88e_rf_write;
sc->sc_power_on = urtwn_r88e_power_on;
sc->sc_power_off = urtwn_r88e_power_off;
return (0);
}
/*
* Initialize rate adaptation in firmware.
*/
static int
urtwn_ra_init(struct urtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ieee80211_node *ni;
struct ieee80211_rateset *rs, *rs_ht;
struct r92c_fw_cmd_macid_cfg cmd;
uint32_t rates, basicrates;
uint8_t mode;
int maxrate, maxbasicrate, error, i, j;
ni = ieee80211_ref_node(vap->iv_bss);
rs = &ni->ni_rates;
rs_ht = (struct ieee80211_rateset *) &ni->ni_htrates;
/* Get normal and basic rates mask. */
rates = basicrates = 0;
maxrate = maxbasicrate = 0;
/* This is for 11bg */
for (i = 0; i < rs->rs_nrates; i++) {
/* Convert 802.11 rate to HW rate index. */
for (j = 0; j < nitems(ridx2rate); j++)
if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) ==
ridx2rate[j])
break;
if (j == nitems(ridx2rate)) /* Unknown rate, skip. */
continue;
rates |= 1 << j;
if (j > maxrate)
maxrate = j;
if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
basicrates |= 1 << j;
if (j > maxbasicrate)
maxbasicrate = j;
}
}
/* If we're doing 11n, enable 11n rates */
if (ni->ni_flags & IEEE80211_NODE_HT) {
for (i = 0; i < rs_ht->rs_nrates; i++) {
if ((rs_ht->rs_rates[i] & 0x7f) > 0xf)
continue;
/* 11n rates start at index 12 */
j = ((rs_ht->rs_rates[i]) & 0xf) + 12;
rates |= (1 << j);
/* Guard against the rate table being oddly ordered */
if (j > maxrate)
maxrate = j;
}
}
#if 0
if (ic->ic_curmode == IEEE80211_MODE_11NG)
raid = R92C_RAID_11GN;
#endif
/* NB: group addressed frames are done at 11bg rates for now */
if (ic->ic_curmode == IEEE80211_MODE_11B)
mode = R92C_RAID_11B;
else
mode = R92C_RAID_11BG;
/* XXX misleading 'mode' value here for unicast frames */
URTWN_DPRINTF(sc, URTWN_DEBUG_RA,
"%s: mode 0x%x, rates 0x%08x, basicrates 0x%08x\n", __func__,
mode, rates, basicrates);
/* Set rates mask for group addressed frames. */
cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID;
cmd.mask = htole32(mode << 28 | basicrates);
error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
ieee80211_free_node(ni);
device_printf(sc->sc_dev,
"could not add broadcast station\n");
return (error);
}
/* Set initial MRR rate. */
URTWN_DPRINTF(sc, URTWN_DEBUG_RA, "%s: maxbasicrate %d\n", __func__,
maxbasicrate);
urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC),
maxbasicrate);
/* Set rates mask for unicast frames. */
if (ni->ni_flags & IEEE80211_NODE_HT)
mode = R92C_RAID_11GN;
else if (ic->ic_curmode == IEEE80211_MODE_11B)
mode = R92C_RAID_11B;
else
mode = R92C_RAID_11BG;
cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID;
cmd.mask = htole32(mode << 28 | rates);
error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
ieee80211_free_node(ni);
device_printf(sc->sc_dev, "could not add BSS station\n");
return (error);
}
/* Set initial MRR rate. */
URTWN_DPRINTF(sc, URTWN_DEBUG_RA, "%s: maxrate %d\n", __func__,
maxrate);
urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS),
maxrate);
/* Indicate highest supported rate. */
if (ni->ni_flags & IEEE80211_NODE_HT)
ni->ni_txrate = rs_ht->rs_rates[rs_ht->rs_nrates - 1]
| IEEE80211_RATE_MCS;
else
ni->ni_txrate = rs->rs_rates[rs->rs_nrates - 1];
ieee80211_free_node(ni);
return (0);
}
static void
urtwn_init_beacon(struct urtwn_softc *sc, struct urtwn_vap *uvp)
{
struct r92c_tx_desc *txd = &uvp->bcn_desc;
txd->txdw0 = htole32(
SM(R92C_TXDW0_OFFSET, sizeof(*txd)) | R92C_TXDW0_BMCAST |
R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
txd->txdw1 = htole32(
SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_BEACON) |
SM(R92C_TXDW1_RAID, R92C_RAID_11B));
if (sc->chip & URTWN_CHIP_88E) {
txd->txdw1 |= htole32(SM(R88E_TXDW1_MACID, URTWN_MACID_BC));
txd->txdseq |= htole16(R88E_TXDSEQ_HWSEQ_EN);
} else {
txd->txdw1 |= htole32(SM(R92C_TXDW1_MACID, URTWN_MACID_BC));
txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ_EN);
}
txd->txdw4 = htole32(R92C_TXDW4_DRVRATE);
txd->txdw5 = htole32(SM(R92C_TXDW5_DATARATE, URTWN_RIDX_CCK1));
}
static int
urtwn_setup_beacon(struct urtwn_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct urtwn_vap *uvp = URTWN_VAP(vap);
struct mbuf *m;
int error;
URTWN_ASSERT_LOCKED(sc);
if (ni->ni_chan == IEEE80211_CHAN_ANYC)
return (EINVAL);
m = ieee80211_beacon_alloc(ni);
if (m == NULL) {
device_printf(sc->sc_dev,
"%s: could not allocate beacon frame\n", __func__);
return (ENOMEM);
}
if (uvp->bcn_mbuf != NULL)
m_freem(uvp->bcn_mbuf);
uvp->bcn_mbuf = m;
if ((error = urtwn_tx_beacon(sc, uvp)) != 0)
return (error);
/* XXX bcnq stuck workaround */
if ((error = urtwn_tx_beacon(sc, uvp)) != 0)
return (error);
URTWN_DPRINTF(sc, URTWN_DEBUG_BEACON, "%s: beacon was %srecognized\n",
__func__, urtwn_read_1(sc, R92C_TDECTRL + 2) &
(R92C_TDECTRL_BCN_VALID >> 16) ? "" : "not ");
return (0);
}
static void
urtwn_update_beacon(struct ieee80211vap *vap, int item)
{
struct urtwn_softc *sc = vap->iv_ic->ic_softc;
struct urtwn_vap *uvp = URTWN_VAP(vap);
struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
struct ieee80211_node *ni = vap->iv_bss;
int mcast = 0;
URTWN_LOCK(sc);
if (uvp->bcn_mbuf == NULL) {
uvp->bcn_mbuf = ieee80211_beacon_alloc(ni);
if (uvp->bcn_mbuf == NULL) {
device_printf(sc->sc_dev,
"%s: could not allocate beacon frame\n", __func__);
URTWN_UNLOCK(sc);
return;
}
}
URTWN_UNLOCK(sc);
if (item == IEEE80211_BEACON_TIM)
mcast = 1; /* XXX */
setbit(bo->bo_flags, item);
ieee80211_beacon_update(ni, uvp->bcn_mbuf, mcast);
URTWN_LOCK(sc);
urtwn_tx_beacon(sc, uvp);
URTWN_UNLOCK(sc);
}
/*
* Push a beacon frame into the chip. Beacon will
* be repeated by the chip every R92C_BCN_INTERVAL.
*/
static int
urtwn_tx_beacon(struct urtwn_softc *sc, struct urtwn_vap *uvp)
{
struct r92c_tx_desc *desc = &uvp->bcn_desc;
struct urtwn_data *bf;
URTWN_ASSERT_LOCKED(sc);
bf = urtwn_getbuf(sc);
if (bf == NULL)
return (ENOMEM);
memcpy(bf->buf, desc, sizeof(*desc));
urtwn_tx_start(sc, uvp->bcn_mbuf, IEEE80211_FC0_TYPE_MGT, bf);
sc->sc_txtimer = 5;
callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc);
return (0);
}
static int
urtwn_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
{
struct urtwn_softc *sc = vap->iv_ic->ic_softc;
uint8_t i;
if (!(&vap->iv_nw_keys[0] <= k &&
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
URTWN_LOCK(sc);
/*
* First 4 slots for group keys,
* what is left - for pairwise.
* XXX incompatible with IBSS RSN.
*/
for (i = IEEE80211_WEP_NKID;
i < R92C_CAM_ENTRY_COUNT; i++) {
if ((sc->keys_bmap & (1 << i)) == 0) {
sc->keys_bmap |= 1 << i;
*keyix = i;
break;
}
}
URTWN_UNLOCK(sc);
if (i == R92C_CAM_ENTRY_COUNT) {
device_printf(sc->sc_dev,
"%s: no free space in the key table\n",
__func__);
return 0;
}
} else
*keyix = 0;
} else {
*keyix = k - vap->iv_nw_keys;
}
*rxkeyix = *keyix;
return 1;
}
static void
urtwn_key_set_cb(struct urtwn_softc *sc, union sec_param *data)
{
struct ieee80211_key *k = &data->key;
uint8_t algo, keyid;
int i, error;
if (k->wk_keyix < IEEE80211_WEP_NKID)
keyid = k->wk_keyix;
else
keyid = 0;
/* Map net80211 cipher to HW crypto algorithm. */
switch (k->wk_cipher->ic_cipher) {
case IEEE80211_CIPHER_WEP:
if (k->wk_keylen < 8)
algo = R92C_CAM_ALGO_WEP40;
else
algo = R92C_CAM_ALGO_WEP104;
break;
case IEEE80211_CIPHER_TKIP:
algo = R92C_CAM_ALGO_TKIP;
break;
case IEEE80211_CIPHER_AES_CCM:
algo = R92C_CAM_ALGO_AES;
break;
default:
device_printf(sc->sc_dev, "%s: undefined cipher %d\n",
__func__, k->wk_cipher->ic_cipher);
return;
}
URTWN_DPRINTF(sc, URTWN_DEBUG_KEY,
"%s: keyix %d, keyid %d, algo %d/%d, flags %04X, len %d, "
"macaddr %s\n", __func__, k->wk_keyix, keyid,
k->wk_cipher->ic_cipher, algo, k->wk_flags, k->wk_keylen,
ether_sprintf(k->wk_macaddr));
/* Write key. */
for (i = 0; i < 4; i++) {
error = urtwn_cam_write(sc, R92C_CAM_KEY(k->wk_keyix, i),
LE_READ_4(&k->wk_key[i * 4]));
if (error != 0)
goto fail;
}
/* Write CTL0 last since that will validate the CAM entry. */
error = urtwn_cam_write(sc, R92C_CAM_CTL1(k->wk_keyix),
LE_READ_4(&k->wk_macaddr[2]));
if (error != 0)
goto fail;
error = urtwn_cam_write(sc, R92C_CAM_CTL0(k->wk_keyix),
SM(R92C_CAM_ALGO, algo) |
SM(R92C_CAM_KEYID, keyid) |
SM(R92C_CAM_MACLO, LE_READ_2(&k->wk_macaddr[0])) |
R92C_CAM_VALID);
if (error != 0)
goto fail;
return;
fail:
device_printf(sc->sc_dev, "%s fails, error %d\n", __func__, error);
}
static void
urtwn_key_del_cb(struct urtwn_softc *sc, union sec_param *data)
{
struct ieee80211_key *k = &data->key;
int i;
URTWN_DPRINTF(sc, URTWN_DEBUG_KEY,
"%s: keyix %d, flags %04X, macaddr %s\n", __func__,
k->wk_keyix, k->wk_flags, ether_sprintf(k->wk_macaddr));
urtwn_cam_write(sc, R92C_CAM_CTL0(k->wk_keyix), 0);
urtwn_cam_write(sc, R92C_CAM_CTL1(k->wk_keyix), 0);
/* Clear key. */
for (i = 0; i < 4; i++)
urtwn_cam_write(sc, R92C_CAM_KEY(k->wk_keyix, i), 0);
sc->keys_bmap &= ~(1 << k->wk_keyix);
}
static int
urtwn_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
{
struct urtwn_softc *sc = vap->iv_ic->ic_softc;
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
/* Not for us. */
return (1);
}
return (!urtwn_cmd_sleepable(sc, k, sizeof(*k), urtwn_key_set_cb));
}
static int
urtwn_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
{
struct urtwn_softc *sc = vap->iv_ic->ic_softc;
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
/* Not for us. */
return (1);
}
return (!urtwn_cmd_sleepable(sc, k, sizeof(*k), urtwn_key_del_cb));
}
static void
urtwn_tsf_task_adhoc(void *arg, int pending)
{
struct ieee80211vap *vap = arg;
struct urtwn_softc *sc = vap->iv_ic->ic_softc;
struct ieee80211_node *ni;
uint32_t reg;
URTWN_LOCK(sc);
ni = ieee80211_ref_node(vap->iv_bss);
reg = urtwn_read_1(sc, R92C_BCN_CTRL);
/* Accept beacons with the same BSSID. */
urtwn_set_rx_bssid_all(sc, 0);
/* Enable synchronization. */
reg &= ~R92C_BCN_CTRL_DIS_TSF_UDT0;
urtwn_write_1(sc, R92C_BCN_CTRL, reg);
/* Synchronize. */
usb_pause_mtx(&sc->sc_mtx, hz * ni->ni_intval * 5 / 1000);
/* Disable synchronization. */
reg |= R92C_BCN_CTRL_DIS_TSF_UDT0;
urtwn_write_1(sc, R92C_BCN_CTRL, reg);
/* Remove beacon filter. */
urtwn_set_rx_bssid_all(sc, 1);
/* Enable beaconing. */
urtwn_write_1(sc, R92C_MBID_NUM,
urtwn_read_1(sc, R92C_MBID_NUM) | R92C_MBID_TXBCN_RPT0);
reg |= R92C_BCN_CTRL_EN_BCN;
urtwn_write_1(sc, R92C_BCN_CTRL, reg);
ieee80211_free_node(ni);
URTWN_UNLOCK(sc);
}
static void
urtwn_tsf_sync_enable(struct urtwn_softc *sc, struct ieee80211vap *vap)
{
struct ieee80211com *ic = &sc->sc_ic;
struct urtwn_vap *uvp = URTWN_VAP(vap);
/* Reset TSF. */
urtwn_write_1(sc, R92C_DUAL_TSF_RST, R92C_DUAL_TSF_RST0);
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
/* Enable TSF synchronization. */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) &
~R92C_BCN_CTRL_DIS_TSF_UDT0);
break;
case IEEE80211_M_IBSS:
ieee80211_runtask(ic, &uvp->tsf_task_adhoc);
break;
case IEEE80211_M_HOSTAP:
/* Enable beaconing. */
urtwn_write_1(sc, R92C_MBID_NUM,
urtwn_read_1(sc, R92C_MBID_NUM) | R92C_MBID_TXBCN_RPT0);
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
break;
default:
device_printf(sc->sc_dev, "undefined opmode %d\n",
vap->iv_opmode);
return;
}
}
static void
urtwn_get_tsf(struct urtwn_softc *sc, uint64_t *buf)
{
urtwn_read_region_1(sc, R92C_TSFTR, (uint8_t *)buf, sizeof(*buf));
}
static void
urtwn_set_led(struct urtwn_softc *sc, int led, int on)
{
uint8_t reg;
if (led == URTWN_LED_LINK) {
if (sc->chip & URTWN_CHIP_88E) {
reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0xf0;
urtwn_write_1(sc, R92C_LEDCFG2, reg | 0x60);
if (!on) {
reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0x90;
urtwn_write_1(sc, R92C_LEDCFG2,
reg | R92C_LEDCFG0_DIS);
urtwn_write_1(sc, R92C_MAC_PINMUX_CFG,
urtwn_read_1(sc, R92C_MAC_PINMUX_CFG) &
0xfe);
}
} else {
reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70;
if (!on)
reg |= R92C_LEDCFG0_DIS;
urtwn_write_1(sc, R92C_LEDCFG0, reg);
}
sc->ledlink = on; /* Save LED state. */
}
}
static void
urtwn_set_mode(struct urtwn_softc *sc, uint8_t mode)
{
uint8_t reg;
reg = urtwn_read_1(sc, R92C_MSR);
reg = (reg & ~R92C_MSR_MASK) | mode;
urtwn_write_1(sc, R92C_MSR, reg);
}
static void
urtwn_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
const struct ieee80211_rx_stats *rxs,
int rssi, int nf)
{
struct ieee80211vap *vap = ni->ni_vap;
struct urtwn_softc *sc = vap->iv_ic->ic_softc;
struct urtwn_vap *uvp = URTWN_VAP(vap);
uint64_t ni_tstamp, curr_tstamp;
uvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf);
if (vap->iv_state == IEEE80211_S_RUN &&
(subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
ni_tstamp = le64toh(ni->ni_tstamp.tsf);
URTWN_LOCK(sc);
urtwn_get_tsf(sc, &curr_tstamp);
URTWN_UNLOCK(sc);
curr_tstamp = le64toh(curr_tstamp);
if (ni_tstamp >= curr_tstamp)
(void) ieee80211_ibss_merge(ni);
}
}
static int
urtwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct urtwn_vap *uvp = URTWN_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct urtwn_softc *sc = ic->ic_softc;
struct ieee80211_node *ni;
enum ieee80211_state ostate;
uint32_t reg;
uint8_t mode;
int error = 0;
ostate = vap->iv_state;
URTWN_DPRINTF(sc, URTWN_DEBUG_STATE, "%s -> %s\n",
ieee80211_state_name[ostate], ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
URTWN_LOCK(sc);
callout_stop(&sc->sc_watchdog_ch);
if (ostate == IEEE80211_S_RUN) {
/* Stop calibration. */
callout_stop(&sc->sc_calib_to);
/* Turn link LED off. */
urtwn_set_led(sc, URTWN_LED_LINK, 0);
/* Set media status to 'No Link'. */
urtwn_set_mode(sc, R92C_MSR_NOLINK);
/* Stop Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
/* Disable TSF synchronization. */
urtwn_write_1(sc, R92C_BCN_CTRL,
(urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN) |
R92C_BCN_CTRL_DIS_TSF_UDT0);
/* Disable beaconing. */
urtwn_write_1(sc, R92C_MBID_NUM,
urtwn_read_1(sc, R92C_MBID_NUM) & ~R92C_MBID_TXBCN_RPT0);
/* Reset TSF. */
urtwn_write_1(sc, R92C_DUAL_TSF_RST, R92C_DUAL_TSF_RST0);
/* Reset EDCA parameters. */
urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217);
urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317);
urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320);
urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444);
}
switch (nstate) {
case IEEE80211_S_INIT:
/* Turn link LED off. */
urtwn_set_led(sc, URTWN_LED_LINK, 0);
break;
case IEEE80211_S_SCAN:
/* Pause AC Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE,
urtwn_read_1(sc, R92C_TXPAUSE) | R92C_TX_QUEUE_AC);
break;
case IEEE80211_S_AUTH:
urtwn_set_chan(sc, ic->ic_curchan, NULL);
break;
case IEEE80211_S_RUN:
if (vap->iv_opmode == IEEE80211_M_MONITOR) {
/* Turn link LED on. */
urtwn_set_led(sc, URTWN_LED_LINK, 1);
break;
}
ni = ieee80211_ref_node(vap->iv_bss);
if (ic->ic_bsschan == IEEE80211_CHAN_ANYC ||
ni->ni_chan == IEEE80211_CHAN_ANYC) {
device_printf(sc->sc_dev,
"%s: could not move to RUN state\n", __func__);
error = EINVAL;
goto end_run;
}
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
mode = R92C_MSR_INFRA;
break;
case IEEE80211_M_IBSS:
mode = R92C_MSR_ADHOC;
break;
case IEEE80211_M_HOSTAP:
mode = R92C_MSR_AP;
break;
default:
device_printf(sc->sc_dev, "undefined opmode %d\n",
vap->iv_opmode);
error = EINVAL;
goto end_run;
}
/* Set media status to 'Associated'. */
urtwn_set_mode(sc, mode);
/* Set BSSID. */
urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
if (ic->ic_curmode == IEEE80211_MODE_11B)
urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
else /* 802.11b/g */
urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
/* Enable Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
/* Flush all AC queues. */
urtwn_write_1(sc, R92C_TXPAUSE, 0);
/* Set beacon interval. */
urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
/* Allow Rx from our BSSID only. */
if (ic->ic_promisc == 0) {
reg = urtwn_read_4(sc, R92C_RCR);
if (vap->iv_opmode != IEEE80211_M_HOSTAP)
reg |= R92C_RCR_CBSSID_DATA;
if (vap->iv_opmode != IEEE80211_M_IBSS)
reg |= R92C_RCR_CBSSID_BCN;
urtwn_write_4(sc, R92C_RCR, reg);
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_IBSS) {
error = urtwn_setup_beacon(sc, ni);
if (error != 0) {
device_printf(sc->sc_dev,
"unable to push beacon into the chip, "
"error %d\n", error);
goto end_run;
}
}
/* Enable TSF synchronization. */
urtwn_tsf_sync_enable(sc, vap);
urtwn_write_1(sc, R92C_SIFS_CCK + 1, 10);
urtwn_write_1(sc, R92C_SIFS_OFDM + 1, 10);
urtwn_write_1(sc, R92C_SPEC_SIFS + 1, 10);
urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, 10);
urtwn_write_1(sc, R92C_R2T_SIFS + 1, 10);
urtwn_write_1(sc, R92C_T2T_SIFS + 1, 10);
/* Intialize rate adaptation. */
if (!(sc->chip & URTWN_CHIP_88E))
urtwn_ra_init(sc);
/* Turn link LED on. */
urtwn_set_led(sc, URTWN_LED_LINK, 1);
sc->avg_pwdb = -1; /* Reset average RSSI. */
/* Reset temperature calibration state machine. */
sc->sc_flags &= ~URTWN_TEMP_MEASURED;
sc->thcal_lctemp = 0;
/* Start periodic calibration. */
callout_reset(&sc->sc_calib_to, 2*hz, urtwn_calib_to, sc);
end_run:
ieee80211_free_node(ni);
break;
default:
break;
}
URTWN_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (error != 0 ? error : uvp->newstate(vap, nstate, arg));
}
static void
urtwn_calib_to(void *arg)
{
struct urtwn_softc *sc = arg;
/* Do it in a process context. */
urtwn_cmd_sleepable(sc, NULL, 0, urtwn_calib_cb);
}
static void
urtwn_calib_cb(struct urtwn_softc *sc, union sec_param *data)
{
/* Do temperature compensation. */
urtwn_temp_calib(sc);
if ((urtwn_read_1(sc, R92C_MSR) & R92C_MSR_MASK) != R92C_MSR_NOLINK)
callout_reset(&sc->sc_calib_to, 2*hz, urtwn_calib_to, sc);
}
static void
urtwn_watchdog(void *arg)
{
struct urtwn_softc *sc = arg;
if (sc->sc_txtimer > 0) {
if (--sc->sc_txtimer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
counter_u64_add(sc->sc_ic.ic_oerrors, 1);
return;
}
callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc);
}
}
static void
urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi)
{
int pwdb;
/* Convert antenna signal to percentage. */
if (rssi <= -100 || rssi >= 20)
pwdb = 0;
else if (rssi >= 0)
pwdb = 100;
else
pwdb = 100 + rssi;
if (!(sc->chip & URTWN_CHIP_88E)) {
if (rate <= URTWN_RIDX_CCK11) {
/* CCK gain is smaller than OFDM/MCS gain. */
pwdb += 6;
if (pwdb > 100)
pwdb = 100;
if (pwdb <= 14)
pwdb -= 4;
else if (pwdb <= 26)
pwdb -= 8;
else if (pwdb <= 34)
pwdb -= 6;
else if (pwdb <= 42)
pwdb -= 2;
}
}
if (sc->avg_pwdb == -1) /* Init. */
sc->avg_pwdb = pwdb;
else if (sc->avg_pwdb < pwdb)
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
else
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
URTWN_DPRINTF(sc, URTWN_DEBUG_RSSI, "%s: PWDB %d, EMA %d\n", __func__,
pwdb, sc->avg_pwdb);
}
static int8_t
urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
{
static const int8_t cckoff[] = { 16, -12, -26, -46 };
struct r92c_rx_phystat *phy;
struct r92c_rx_cck *cck;
uint8_t rpt;
int8_t rssi;
if (rate <= URTWN_RIDX_CCK11) {
cck = (struct r92c_rx_cck *)physt;
if (sc->sc_flags & URTWN_FLAG_CCK_HIPWR) {
rpt = (cck->agc_rpt >> 5) & 0x3;
rssi = (cck->agc_rpt & 0x1f) << 1;
} else {
rpt = (cck->agc_rpt >> 6) & 0x3;
rssi = cck->agc_rpt & 0x3e;
}
rssi = cckoff[rpt] - rssi;
} else { /* OFDM/HT. */
phy = (struct r92c_rx_phystat *)physt;
rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
}
return (rssi);
}
static int8_t
urtwn_r88e_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
{
struct r92c_rx_phystat *phy;
struct r88e_rx_cck *cck;
uint8_t cck_agc_rpt, lna_idx, vga_idx;
int8_t rssi;
rssi = 0;
if (rate <= URTWN_RIDX_CCK11) {
cck = (struct r88e_rx_cck *)physt;
cck_agc_rpt = cck->agc_rpt;
lna_idx = (cck_agc_rpt & 0xe0) >> 5;
vga_idx = cck_agc_rpt & 0x1f;
switch (lna_idx) {
case 7:
if (vga_idx <= 27)
rssi = -100 + 2* (27 - vga_idx);
else
rssi = -100;
break;
case 6:
rssi = -48 + 2 * (2 - vga_idx);
break;
case 5:
rssi = -42 + 2 * (7 - vga_idx);
break;
case 4:
rssi = -36 + 2 * (7 - vga_idx);
break;
case 3:
rssi = -24 + 2 * (7 - vga_idx);
break;
case 2:
rssi = -12 + 2 * (5 - vga_idx);
break;
case 1:
rssi = 8 - (2 * vga_idx);
break;
case 0:
rssi = 14 - (2 * vga_idx);
break;
}
rssi += 6;
} else { /* OFDM/HT. */
phy = (struct r92c_rx_phystat *)physt;
rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
}
return (rssi);
}
static __inline uint8_t
rate2ridx(uint8_t rate)
{
if (rate & IEEE80211_RATE_MCS) {
/* 11n rates start at idx 12 */
return ((rate & 0xf) + 12);
}
switch (rate) {
/* 11g */
case 12: return 4;
case 18: return 5;
case 24: return 6;
case 36: return 7;
case 48: return 8;
case 72: return 9;
case 96: return 10;
case 108: return 11;
/* 11b */
case 2: return 0;
case 4: return 1;
case 11: return 2;
case 22: return 3;
default: return 0;
}
}
static int
urtwn_tx_data(struct urtwn_softc *sc, struct ieee80211_node *ni,
struct mbuf *m, struct urtwn_data *data)
{
const struct ieee80211_txparam *tp;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_key *k = NULL;
struct ieee80211_channel *chan;
struct ieee80211_frame *wh;
struct r92c_tx_desc *txd;
uint8_t macid, raid, rate, ridx, subtype, type, tid, qsel;
int hasqos, ismcast;
URTWN_ASSERT_LOCKED(sc);
/*
* Software crypto.
*/
wh = mtod(m, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
hasqos = IEEE80211_QOS_HAS_SEQ(wh);
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
/* Select TX ring for this frame. */
if (hasqos) {
tid = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
tid &= IEEE80211_QOS_TID;
} else
tid = 0;
chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
ni->ni_chan : ic->ic_curchan;
tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
/* Choose a TX rate index. */
if (type == IEEE80211_FC0_TYPE_MGT)
rate = tp->mgmtrate;
else if (ismcast)
rate = tp->mcastrate;
else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
rate = tp->ucastrate;
else if (m->m_flags & M_EAPOL)
rate = tp->mgmtrate;
else {
if (URTWN_CHIP_HAS_RATECTL(sc)) {
/* XXX pass pktlen */
(void) ieee80211_ratectl_rate(ni, NULL, 0);
rate = ni->ni_txrate;
} else {
/* XXX TODO: drop the default rate for 11b/11g? */
if (ni->ni_flags & IEEE80211_NODE_HT)
rate = IEEE80211_RATE_MCS | 0x4; /* MCS4 */
else if (ic->ic_curmode != IEEE80211_MODE_11B)
rate = 108;
else
rate = 22;
}
}
/*
* XXX TODO: this should be per-node, for 11b versus 11bg
* nodes in hostap mode
*/
ridx = rate2ridx(rate);
if (ni->ni_flags & IEEE80211_NODE_HT)
raid = R92C_RAID_11GN;
else if (ic->ic_curmode != IEEE80211_MODE_11B)
raid = R92C_RAID_11BG;
else
raid = R92C_RAID_11B;
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
device_printf(sc->sc_dev,
"ieee80211_crypto_encap returns NULL.\n");
return (ENOBUFS);
}
/* in case packet header moved, reset pointer */
wh = mtod(m, struct ieee80211_frame *);
}
/* Fill Tx descriptor. */
txd = (struct r92c_tx_desc *)data->buf;
memset(txd, 0, sizeof(*txd));
txd->txdw0 |= htole32(
SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
if (ismcast)
txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
if (!ismcast) {
if (sc->chip & URTWN_CHIP_88E) {
struct urtwn_node *un = URTWN_NODE(ni);
macid = un->id;
} else
macid = URTWN_MACID_BSS;
if (type == IEEE80211_FC0_TYPE_DATA) {
qsel = tid % URTWN_MAX_TID;
if (sc->chip & URTWN_CHIP_88E) {
txd->txdw2 |= htole32(
R88E_TXDW2_AGGBK |
R88E_TXDW2_CCX_RPT);
} else
txd->txdw1 |= htole32(R92C_TXDW1_AGGBK);
/* protmode, non-HT */
/* XXX TODO: noack frames? */
if ((rate & 0x80) == 0 &&
(ic->ic_flags & IEEE80211_F_USEPROT)) {
switch (ic->ic_protmode) {
case IEEE80211_PROT_CTSONLY:
txd->txdw4 |= htole32(
R92C_TXDW4_CTS2SELF |
R92C_TXDW4_HWRTSEN);
break;
case IEEE80211_PROT_RTSCTS:
txd->txdw4 |= htole32(
R92C_TXDW4_RTSEN |
R92C_TXDW4_HWRTSEN);
break;
default:
break;
}
}
/* protmode, HT */
/* XXX TODO: noack frames? */
if ((rate & 0x80) &&
(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
txd->txdw4 |= htole32(
R92C_TXDW4_RTSEN |
R92C_TXDW4_HWRTSEN);
}
/* XXX TODO: rtsrate is configurable? 24mbit may
* be a bit high for RTS rate? */
txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE,
URTWN_RIDX_OFDM24));
txd->txdw5 |= htole32(0x0001ff00);
} else /* IEEE80211_FC0_TYPE_MGT */
qsel = R92C_TXDW1_QSEL_MGNT;
} else {
macid = URTWN_MACID_BC;
qsel = R92C_TXDW1_QSEL_MGNT;
}
txd->txdw1 |= htole32(
SM(R92C_TXDW1_QSEL, qsel) |
SM(R92C_TXDW1_RAID, raid));
/* XXX TODO: 40MHZ flag? */
/* XXX TODO: AMPDU flag? (AGG_ENABLE or AGG_BREAK?) Density shift? */
/* XXX Short preamble? */
/* XXX Short-GI? */
if (sc->chip & URTWN_CHIP_88E)
txd->txdw1 |= htole32(SM(R88E_TXDW1_MACID, macid));
else
txd->txdw1 |= htole32(SM(R92C_TXDW1_MACID, macid));
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, ridx));
/* Force this rate if needed. */
if (URTWN_CHIP_HAS_RATECTL(sc) || ismcast ||
(tp->ucastrate != IEEE80211_FIXED_RATE_NONE) ||
(m->m_flags & M_EAPOL) || type != IEEE80211_FC0_TYPE_DATA)
txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
if (!hasqos) {
/* Use HW sequence numbering for non-QoS frames. */
if (sc->chip & URTWN_CHIP_88E)
txd->txdseq = htole16(R88E_TXDSEQ_HWSEQ_EN);
else
txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ_EN);
} else {
/* Set sequence number. */
txd->txdseq = htole16(M_SEQNO_GET(m) % IEEE80211_SEQ_RANGE);
}
if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
uint8_t cipher;
switch (k->wk_cipher->ic_cipher) {
case IEEE80211_CIPHER_WEP:
case IEEE80211_CIPHER_TKIP:
cipher = R92C_TXDW1_CIPHER_RC4;
break;
case IEEE80211_CIPHER_AES_CCM:
cipher = R92C_TXDW1_CIPHER_AES;
break;
default:
device_printf(sc->sc_dev, "%s: unknown cipher %d\n",
__func__, k->wk_cipher->ic_cipher);
return (EINVAL);
}
txd->txdw1 |= htole32(SM(R92C_TXDW1_CIPHER, cipher));
}
if (ieee80211_radiotap_active_vap(vap)) {
struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
if (k != NULL)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
ieee80211_radiotap_tx(vap, m);
}
data->ni = ni;
urtwn_tx_start(sc, m, type, data);
return (0);
}
static int
urtwn_tx_raw(struct urtwn_softc *sc, struct ieee80211_node *ni,
struct mbuf *m, struct urtwn_data *data,
const struct ieee80211_bpf_params *params)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_key *k = NULL;
struct ieee80211_frame *wh;
struct r92c_tx_desc *txd;
uint8_t cipher, ridx, type;
/* Encrypt the frame if need be. */
cipher = R92C_TXDW1_CIPHER_NONE;
if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
/* Retrieve key for TX. */
k = ieee80211_crypto_encap(ni, m);
if (k == NULL)
return (ENOBUFS);
if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
switch (k->wk_cipher->ic_cipher) {
case IEEE80211_CIPHER_WEP:
case IEEE80211_CIPHER_TKIP:
cipher = R92C_TXDW1_CIPHER_RC4;
break;
case IEEE80211_CIPHER_AES_CCM:
cipher = R92C_TXDW1_CIPHER_AES;
break;
default:
device_printf(sc->sc_dev,
"%s: unknown cipher %d\n",
__func__, k->wk_cipher->ic_cipher);
return (EINVAL);
}
}
}
/* XXX TODO: 11n checks, matching urtwn_tx_data() */
wh = mtod(m, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
/* Fill Tx descriptor. */
txd = (struct r92c_tx_desc *)data->buf;
memset(txd, 0, sizeof(*txd));
txd->txdw0 |= htole32(
SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
if (params->ibp_flags & IEEE80211_BPF_RTS)
txd->txdw4 |= htole32(R92C_TXDW4_RTSEN);
if (params->ibp_flags & IEEE80211_BPF_CTS)
txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF);
if (txd->txdw4 & htole32(R92C_TXDW4_RTSEN | R92C_TXDW4_CTS2SELF)) {
txd->txdw4 |= htole32(R92C_TXDW4_HWRTSEN);
txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE,
URTWN_RIDX_OFDM24));
}
if (sc->chip & URTWN_CHIP_88E)
txd->txdw1 |= htole32(SM(R88E_TXDW1_MACID, URTWN_MACID_BC));
else
txd->txdw1 |= htole32(SM(R92C_TXDW1_MACID, URTWN_MACID_BC));
/* XXX TODO: rate index/config (RAID) for 11n? */
txd->txdw1 |= htole32(SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT));
txd->txdw1 |= htole32(SM(R92C_TXDW1_CIPHER, cipher));
/* Choose a TX rate index. */
ridx = rate2ridx(params->ibp_rate0);
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, ridx));
txd->txdw5 |= htole32(0x0001ff00);
txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
if (!IEEE80211_QOS_HAS_SEQ(wh)) {
/* Use HW sequence numbering for non-QoS frames. */
if (sc->chip & URTWN_CHIP_88E)
txd->txdseq = htole16(R88E_TXDSEQ_HWSEQ_EN);
else
txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ_EN);
} else {
/* Set sequence number. */
txd->txdseq = htole16(M_SEQNO_GET(m) % IEEE80211_SEQ_RANGE);
}
if (ieee80211_radiotap_active_vap(vap)) {
struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
if (k != NULL)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
ieee80211_radiotap_tx(vap, m);
}
data->ni = ni;
urtwn_tx_start(sc, m, type, data);
return (0);
}
static void
urtwn_tx_start(struct urtwn_softc *sc, struct mbuf *m, uint8_t type,
struct urtwn_data *data)
{
struct usb_xfer *xfer;
struct r92c_tx_desc *txd;
uint16_t ac, sum;
int i, xferlen;
URTWN_ASSERT_LOCKED(sc);
ac = M_WME_GETAC(m);
switch (type) {
case IEEE80211_FC0_TYPE_CTL:
case IEEE80211_FC0_TYPE_MGT:
xfer = sc->sc_xfer[URTWN_BULK_TX_VO];
break;
default:
xfer = sc->sc_xfer[wme2queue[ac].qid];
break;
}
txd = (struct r92c_tx_desc *)data->buf;
txd->txdw0 |= htole32(SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len));
/* Compute Tx descriptor checksum. */
sum = 0;
for (i = 0; i < sizeof(*txd) / 2; i++)
sum ^= ((uint16_t *)txd)[i];
txd->txdsum = sum; /* NB: already little endian. */
xferlen = sizeof(*txd) + m->m_pkthdr.len;
m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&txd[1]);
data->buflen = xferlen;
data->m = m;
STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
usbd_transfer_start(xfer);
}
static int
urtwn_transmit(struct ieee80211com *ic, struct mbuf *m)
{
struct urtwn_softc *sc = ic->ic_softc;
int error;
URTWN_LOCK(sc);
if ((sc->sc_flags & URTWN_RUNNING) == 0) {
URTWN_UNLOCK(sc);
return (ENXIO);
}
error = mbufq_enqueue(&sc->sc_snd, m);
if (error) {
URTWN_UNLOCK(sc);
return (error);
}
urtwn_start(sc);
URTWN_UNLOCK(sc);
return (0);
}
static void
urtwn_start(struct urtwn_softc *sc)
{
struct ieee80211_node *ni;
struct mbuf *m;
struct urtwn_data *bf;
URTWN_ASSERT_LOCKED(sc);
while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
bf = urtwn_getbuf(sc);
if (bf == NULL) {
mbufq_prepend(&sc->sc_snd, m);
break;
}
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
URTWN_DPRINTF(sc, URTWN_DEBUG_XMIT, "%s: called; m=%p\n",
__func__,
m);
if (urtwn_tx_data(sc, ni, m, bf) != 0) {
if_inc_counter(ni->ni_vap->iv_ifp,
IFCOUNTER_OERRORS, 1);
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
m_freem(m);
ieee80211_free_node(ni);
break;
}
sc->sc_txtimer = 5;
callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc);
}
}
static void
urtwn_parent(struct ieee80211com *ic)
{
struct urtwn_softc *sc = ic->ic_softc;
URTWN_LOCK(sc);
if (sc->sc_flags & URTWN_DETACHED) {
URTWN_UNLOCK(sc);
return;
}
URTWN_UNLOCK(sc);
if (ic->ic_nrunning > 0) {
if (urtwn_init(sc) != 0) {
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
if (vap != NULL)
ieee80211_stop(vap);
} else
ieee80211_start_all(ic);
} else
urtwn_stop(sc);
}
static __inline int
urtwn_power_on(struct urtwn_softc *sc)
{
return sc->sc_power_on(sc);
}
static int
urtwn_r92c_power_on(struct urtwn_softc *sc)
{
uint32_t reg;
usb_error_t error;
int ntries;
/* Wait for autoload done bit. */
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
break;
urtwn_ms_delay(sc);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for chip autoload\n");
return (ETIMEDOUT);
}
/* Unlock ISO/CLK/Power control register. */
error = urtwn_write_1(sc, R92C_RSV_CTRL, 0);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
/* Move SPS into PWM mode. */
error = urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
urtwn_ms_delay(sc);
reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL);
if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) {
error = urtwn_write_1(sc, R92C_LDOV12D_CTRL,
reg | R92C_LDOV12D_CTRL_LDV12_EN);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
urtwn_ms_delay(sc);
error = urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
urtwn_read_1(sc, R92C_SYS_ISO_CTRL) &
~R92C_SYS_ISO_CTRL_MD2PP);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
}
/* Auto enable WLAN. */
error = urtwn_write_2(sc, R92C_APS_FSMCO,
urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
for (ntries = 0; ntries < 1000; ntries++) {
if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
R92C_APS_FSMCO_APFM_ONMAC))
break;
urtwn_ms_delay(sc);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for MAC auto ON\n");
return (ETIMEDOUT);
}
/* Enable radio, GPIO and LED functions. */
error = urtwn_write_2(sc, R92C_APS_FSMCO,
R92C_APS_FSMCO_AFSM_HSUS |
R92C_APS_FSMCO_PDN_EN |
R92C_APS_FSMCO_PFM_ALDN);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
/* Release RF digital isolation. */
error = urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
/* Initialize MAC. */
error = urtwn_write_1(sc, R92C_APSD_CTRL,
urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
for (ntries = 0; ntries < 200; ntries++) {
if (!(urtwn_read_1(sc, R92C_APSD_CTRL) &
R92C_APSD_CTRL_OFF_STATUS))
break;
urtwn_ms_delay(sc);
}
if (ntries == 200) {
device_printf(sc->sc_dev,
"timeout waiting for MAC initialization\n");
return (ETIMEDOUT);
}
/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
reg = urtwn_read_2(sc, R92C_CR);
reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
R92C_CR_ENSEC;
error = urtwn_write_2(sc, R92C_CR, reg);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
error = urtwn_write_1(sc, 0xfe10, 0x19);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
return (0);
}
static int
urtwn_r88e_power_on(struct urtwn_softc *sc)
{
uint32_t reg;
usb_error_t error;
int ntries;
/* Wait for power ready bit. */
for (ntries = 0; ntries < 5000; ntries++) {
if (urtwn_read_4(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_SUS_HOST)
break;
urtwn_ms_delay(sc);
}
if (ntries == 5000) {
device_printf(sc->sc_dev,
"timeout waiting for chip power up\n");
return (ETIMEDOUT);
}
/* Reset BB. */
error = urtwn_write_1(sc, R92C_SYS_FUNC_EN,
urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~(R92C_SYS_FUNC_EN_BBRSTB |
R92C_SYS_FUNC_EN_BB_GLB_RST));
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
error = urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 2,
urtwn_read_1(sc, R92C_AFE_XTAL_CTRL + 2) | 0x80);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
/* Disable HWPDN. */
error = urtwn_write_2(sc, R92C_APS_FSMCO,
urtwn_read_2(sc, R92C_APS_FSMCO) & ~R92C_APS_FSMCO_APDM_HPDN);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
/* Disable WL suspend. */
error = urtwn_write_2(sc, R92C_APS_FSMCO,
urtwn_read_2(sc, R92C_APS_FSMCO) &
~(R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_AFSM_PCIE));
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
error = urtwn_write_2(sc, R92C_APS_FSMCO,
urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
for (ntries = 0; ntries < 5000; ntries++) {
if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
R92C_APS_FSMCO_APFM_ONMAC))
break;
urtwn_ms_delay(sc);
}
if (ntries == 5000)
return (ETIMEDOUT);
/* Enable LDO normal mode. */
error = urtwn_write_1(sc, R92C_LPLDO_CTRL,
urtwn_read_1(sc, R92C_LPLDO_CTRL) & ~R92C_LPLDO_CTRL_SLEEP);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
error = urtwn_write_2(sc, R92C_CR, 0);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
reg = urtwn_read_2(sc, R92C_CR);
reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
R92C_CR_SCHEDULE_EN | R92C_CR_ENSEC | R92C_CR_CALTMR_EN;
error = urtwn_write_2(sc, R92C_CR, reg);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
return (0);
}
static __inline void
urtwn_power_off(struct urtwn_softc *sc)
{
return sc->sc_power_off(sc);
}
static void
urtwn_r92c_power_off(struct urtwn_softc *sc)
{
uint32_t reg;
/* Block all Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE, R92C_TX_QUEUE_ALL);
/* Disable RF */
urtwn_rf_write(sc, 0, 0, 0);
urtwn_write_1(sc, R92C_APSD_CTRL, R92C_APSD_CTRL_OFF);
/* Reset BB state machine */
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA |
R92C_SYS_FUNC_EN_BB_GLB_RST);
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA);
/*
* Reset digital sequence
*/
#ifndef URTWN_WITHOUT_UCODE
if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY) {
/* Reset MCU ready status */
urtwn_write_1(sc, R92C_MCUFWDL, 0);
/* If firmware in ram code, do reset */
urtwn_fw_reset(sc);
}
#endif
/* Reset MAC and Enable 8051 */
urtwn_write_1(sc, R92C_SYS_FUNC_EN + 1,
(R92C_SYS_FUNC_EN_CPUEN |
R92C_SYS_FUNC_EN_ELDR |
R92C_SYS_FUNC_EN_HWPDN) >> 8);
/* Reset MCU ready status */
urtwn_write_1(sc, R92C_MCUFWDL, 0);
/* Disable MAC clock */
urtwn_write_2(sc, R92C_SYS_CLKR,
R92C_SYS_CLKR_ANAD16V_EN |
R92C_SYS_CLKR_ANA8M |
R92C_SYS_CLKR_LOADER_EN |
R92C_SYS_CLKR_80M_SSC_DIS |
R92C_SYS_CLKR_SYS_EN |
R92C_SYS_CLKR_RING_EN |
0x4000);
/* Disable AFE PLL */
urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x80);
/* Gated AFE DIG_CLOCK */
urtwn_write_2(sc, R92C_AFE_XTAL_CTRL, 0x880F);
/* Isolated digital to PON */
urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
R92C_SYS_ISO_CTRL_MD2PP |
R92C_SYS_ISO_CTRL_PA2PCIE |
R92C_SYS_ISO_CTRL_PD2CORE |
R92C_SYS_ISO_CTRL_IP2MAC |
R92C_SYS_ISO_CTRL_DIOP |
R92C_SYS_ISO_CTRL_DIOE);
/*
* Pull GPIO PIN to balance level and LED control
*/
/* 1. Disable GPIO[7:0] */
urtwn_write_2(sc, R92C_GPIO_IOSEL, 0x0000);
reg = urtwn_read_4(sc, R92C_GPIO_PIN_CTRL) & ~0x0000ff00;
reg |= ((reg << 8) & 0x0000ff00) | 0x00ff0000;
urtwn_write_4(sc, R92C_GPIO_PIN_CTRL, reg);
/* Disable GPIO[10:8] */
urtwn_write_1(sc, R92C_MAC_PINMUX_CFG, 0x00);
reg = urtwn_read_2(sc, R92C_GPIO_IO_SEL) & ~0x00f0;
reg |= (((reg & 0x000f) << 4) | 0x0780);
urtwn_write_2(sc, R92C_GPIO_IO_SEL, reg);
/* Disable LED0 & 1 */
urtwn_write_2(sc, R92C_LEDCFG0, 0x8080);
/*
* Reset digital sequence
*/
/* Disable ELDR clock */
urtwn_write_2(sc, R92C_SYS_CLKR,
R92C_SYS_CLKR_ANAD16V_EN |
R92C_SYS_CLKR_ANA8M |
R92C_SYS_CLKR_LOADER_EN |
R92C_SYS_CLKR_80M_SSC_DIS |
R92C_SYS_CLKR_SYS_EN |
R92C_SYS_CLKR_RING_EN |
0x4000);
/* Isolated ELDR to PON */
urtwn_write_1(sc, R92C_SYS_ISO_CTRL + 1,
(R92C_SYS_ISO_CTRL_DIOR |
R92C_SYS_ISO_CTRL_PWC_EV12V) >> 8);
/*
* Disable analog sequence
*/
/* Disable A15 power */
urtwn_write_1(sc, R92C_LDOA15_CTRL, R92C_LDOA15_CTRL_OBUF);
/* Disable digital core power */
urtwn_write_1(sc, R92C_LDOV12D_CTRL,
urtwn_read_1(sc, R92C_LDOV12D_CTRL) &
~R92C_LDOV12D_CTRL_LDV12_EN);
/* Enter PFM mode */
urtwn_write_1(sc, R92C_SPS0_CTRL, 0x23);
/* Set USB suspend */
urtwn_write_2(sc, R92C_APS_FSMCO,
R92C_APS_FSMCO_APDM_HOST |
R92C_APS_FSMCO_AFSM_HSUS |
R92C_APS_FSMCO_PFM_ALDN);
/* Lock ISO/CLK/Power control register. */
urtwn_write_1(sc, R92C_RSV_CTRL, 0x0E);
}
static void
urtwn_r88e_power_off(struct urtwn_softc *sc)
{
uint8_t reg;
int ntries;
/* Disable any kind of TX reports. */
urtwn_write_1(sc, R88E_TX_RPT_CTRL,
urtwn_read_1(sc, R88E_TX_RPT_CTRL) &
~(R88E_TX_RPT1_ENA | R88E_TX_RPT2_ENA));
/* Stop Rx. */
urtwn_write_1(sc, R92C_CR, 0);
/* Move card to Low Power State. */
/* Block all Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE, R92C_TX_QUEUE_ALL);
for (ntries = 0; ntries < 20; ntries++) {
/* Should be zero if no packet is transmitting. */
if (urtwn_read_4(sc, R88E_SCH_TXCMD) == 0)
break;
urtwn_ms_delay(sc);
}
if (ntries == 20) {
device_printf(sc->sc_dev, "%s: failed to block Tx queues\n",
__func__);
return;
}
/* CCK and OFDM are disabled, and clock are gated. */
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~R92C_SYS_FUNC_EN_BBRSTB);
urtwn_ms_delay(sc);
/* Reset MAC TRX */
urtwn_write_1(sc, R92C_CR,
R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN |
R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN);
/* check if removed later */
urtwn_write_1(sc, R92C_CR + 1,
urtwn_read_1(sc, R92C_CR + 1) & ~(R92C_CR_ENSEC >> 8));
/* Respond TxOK to scheduler */
urtwn_write_1(sc, R92C_DUAL_TSF_RST,
urtwn_read_1(sc, R92C_DUAL_TSF_RST) | 0x20);
/* If firmware in ram code, do reset. */
#ifndef URTWN_WITHOUT_UCODE
if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY)
urtwn_r88e_fw_reset(sc);
#endif
/* Reset MCU ready status. */
urtwn_write_1(sc, R92C_MCUFWDL, 0x00);
/* Disable 32k. */
urtwn_write_1(sc, R88E_32K_CTRL,
urtwn_read_1(sc, R88E_32K_CTRL) & ~0x01);
/* Move card to Disabled state. */
/* Turn off RF. */
urtwn_write_1(sc, R92C_RF_CTRL, 0);
/* LDO Sleep mode. */
urtwn_write_1(sc, R92C_LPLDO_CTRL,
urtwn_read_1(sc, R92C_LPLDO_CTRL) | R92C_LPLDO_CTRL_SLEEP);
/* Turn off MAC by HW state machine */
urtwn_write_1(sc, R92C_APS_FSMCO + 1,
urtwn_read_1(sc, R92C_APS_FSMCO + 1) |
(R92C_APS_FSMCO_APFM_OFF >> 8));
for (ntries = 0; ntries < 20; ntries++) {
/* Wait until it will be disabled. */
if ((urtwn_read_1(sc, R92C_APS_FSMCO + 1) &
(R92C_APS_FSMCO_APFM_OFF >> 8)) == 0)
break;
urtwn_ms_delay(sc);
}
if (ntries == 20) {
device_printf(sc->sc_dev, "%s: could not turn off MAC\n",
__func__);
return;
}
/* schmit trigger */
urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 2,
urtwn_read_1(sc, R92C_AFE_XTAL_CTRL + 2) | 0x80);
/* Enable WL suspend. */
urtwn_write_1(sc, R92C_APS_FSMCO + 1,
(urtwn_read_1(sc, R92C_APS_FSMCO + 1) & ~0x10) | 0x08);
/* Enable bandgap mbias in suspend. */
urtwn_write_1(sc, R92C_APS_FSMCO + 3, 0);
/* Clear SIC_EN register. */
urtwn_write_1(sc, R92C_GPIO_MUXCFG + 1,
urtwn_read_1(sc, R92C_GPIO_MUXCFG + 1) & ~0x10);
/* Set USB suspend enable local register */
urtwn_write_1(sc, R92C_USB_SUSPEND,
urtwn_read_1(sc, R92C_USB_SUSPEND) | 0x10);
/* Reset MCU IO Wrapper. */
reg = urtwn_read_1(sc, R92C_RSV_CTRL + 1);
urtwn_write_1(sc, R92C_RSV_CTRL + 1, reg & ~0x08);
urtwn_write_1(sc, R92C_RSV_CTRL + 1, reg | 0x08);
/* marked as 'For Power Consumption' code. */
urtwn_write_1(sc, R92C_GPIO_OUT, urtwn_read_1(sc, R92C_GPIO_IN));
urtwn_write_1(sc, R92C_GPIO_IOSEL, 0xff);
urtwn_write_1(sc, R92C_GPIO_IO_SEL,
urtwn_read_1(sc, R92C_GPIO_IO_SEL) << 4);
urtwn_write_1(sc, R92C_GPIO_MOD,
urtwn_read_1(sc, R92C_GPIO_MOD) | 0x0f);
/* Set LNA, TRSW, EX_PA Pin to output mode. */
urtwn_write_4(sc, R88E_BB_PAD_CTRL, 0x00080808);
}
static int
urtwn_llt_init(struct urtwn_softc *sc)
{
int i, error, page_count, pktbuf_count;
page_count = (sc->chip & URTWN_CHIP_88E) ?
R88E_TX_PAGE_COUNT : R92C_TX_PAGE_COUNT;
pktbuf_count = (sc->chip & URTWN_CHIP_88E) ?
R88E_TXPKTBUF_COUNT : R92C_TXPKTBUF_COUNT;
/* Reserve pages [0; page_count]. */
for (i = 0; i < page_count; i++) {
if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
return (error);
}
/* NB: 0xff indicates end-of-list. */
if ((error = urtwn_llt_write(sc, i, 0xff)) != 0)
return (error);
/*
* Use pages [page_count + 1; pktbuf_count - 1]
* as ring buffer.
*/
for (++i; i < pktbuf_count - 1; i++) {
if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
return (error);
}
/* Make the last page point to the beginning of the ring buffer. */
error = urtwn_llt_write(sc, i, page_count + 1);
return (error);
}
#ifndef URTWN_WITHOUT_UCODE
static void
urtwn_fw_reset(struct urtwn_softc *sc)
{
uint16_t reg;
int ntries;
/* Tell 8051 to reset itself. */
urtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
/* Wait until 8051 resets by itself. */
for (ntries = 0; ntries < 100; ntries++) {
reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
return;
urtwn_ms_delay(sc);
}
/* Force 8051 reset. */
urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
}
static void
urtwn_r88e_fw_reset(struct urtwn_softc *sc)
{
uint16_t reg;
reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg | R92C_SYS_FUNC_EN_CPUEN);
}
static int
urtwn_fw_loadpage(struct urtwn_softc *sc, int page, const uint8_t *buf, int len)
{
uint32_t reg;
usb_error_t error = USB_ERR_NORMAL_COMPLETION;
int off, mlen;
reg = urtwn_read_4(sc, R92C_MCUFWDL);
reg = RW(reg, R92C_MCUFWDL_PAGE, page);
urtwn_write_4(sc, R92C_MCUFWDL, reg);
off = R92C_FW_START_ADDR;
while (len > 0) {
if (len > 196)
mlen = 196;
else if (len > 4)
mlen = 4;
else
mlen = 1;
/* XXX fix this deconst */
error = urtwn_write_region_1(sc, off,
__DECONST(uint8_t *, buf), mlen);
if (error != USB_ERR_NORMAL_COMPLETION)
break;
off += mlen;
buf += mlen;
len -= mlen;
}
return (error);
}
static int
urtwn_load_firmware(struct urtwn_softc *sc)
{
const struct firmware *fw;
const struct r92c_fw_hdr *hdr;
const char *imagename;
const u_char *ptr;
size_t len;
uint32_t reg;
int mlen, ntries, page, error;
URTWN_UNLOCK(sc);
/* Read firmware image from the filesystem. */
if (sc->chip & URTWN_CHIP_88E)
imagename = "urtwn-rtl8188eufw";
else if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
URTWN_CHIP_UMC_A_CUT)
imagename = "urtwn-rtl8192cfwU";
else
imagename = "urtwn-rtl8192cfwT";
fw = firmware_get(imagename);
URTWN_LOCK(sc);
if (fw == NULL) {
device_printf(sc->sc_dev,
"failed loadfirmware of file %s\n", imagename);
return (ENOENT);
}
len = fw->datasize;
if (len < sizeof(*hdr)) {
device_printf(sc->sc_dev, "firmware too short\n");
error = EINVAL;
goto fail;
}
ptr = fw->data;
hdr = (const struct r92c_fw_hdr *)ptr;
/* Check if there is a valid FW header and skip it. */
if ((le16toh(hdr->signature) >> 4) == 0x88c ||
(le16toh(hdr->signature) >> 4) == 0x88e ||
(le16toh(hdr->signature) >> 4) == 0x92c) {
URTWN_DPRINTF(sc, URTWN_DEBUG_FIRMWARE,
"FW V%d.%d %02d-%02d %02d:%02d\n",
le16toh(hdr->version), le16toh(hdr->subversion),
hdr->month, hdr->date, hdr->hour, hdr->minute);
ptr += sizeof(*hdr);
len -= sizeof(*hdr);
}
if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RAM_DL_SEL) {
if (sc->chip & URTWN_CHIP_88E)
urtwn_r88e_fw_reset(sc);
else
urtwn_fw_reset(sc);
urtwn_write_1(sc, R92C_MCUFWDL, 0);
}
if (!(sc->chip & URTWN_CHIP_88E)) {
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
R92C_SYS_FUNC_EN_CPUEN);
}
urtwn_write_1(sc, R92C_MCUFWDL,
urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
urtwn_write_1(sc, R92C_MCUFWDL + 2,
urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08);
/* Reset the FWDL checksum. */
urtwn_write_1(sc, R92C_MCUFWDL,
urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_CHKSUM_RPT);
for (page = 0; len > 0; page++) {
mlen = min(len, R92C_FW_PAGE_SIZE);
error = urtwn_fw_loadpage(sc, page, ptr, mlen);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load firmware page\n");
goto fail;
}
ptr += mlen;
len -= mlen;
}
urtwn_write_1(sc, R92C_MCUFWDL,
urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
urtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
/* Wait for checksum report. */
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
break;
urtwn_ms_delay(sc);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for checksum report\n");
error = ETIMEDOUT;
goto fail;
}
reg = urtwn_read_4(sc, R92C_MCUFWDL);
reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
urtwn_write_4(sc, R92C_MCUFWDL, reg);
if (sc->chip & URTWN_CHIP_88E)
urtwn_r88e_fw_reset(sc);
/* Wait for firmware readiness. */
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
break;
urtwn_ms_delay(sc);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for firmware readiness\n");
error = ETIMEDOUT;
goto fail;
}
fail:
firmware_put(fw, FIRMWARE_UNLOAD);
return (error);
}
#endif
static int
urtwn_dma_init(struct urtwn_softc *sc)
{
struct usb_endpoint *ep, *ep_end;
usb_error_t usb_err;
uint32_t reg;
int hashq, hasnq, haslq, nqueues, ntx;
int error, pagecount, npubqpages, nqpages, nrempages, tx_boundary;
/* Initialize LLT table. */
error = urtwn_llt_init(sc);
if (error != 0)
return (error);
/* Determine the number of bulk-out pipes. */
ntx = 0;
ep = sc->sc_udev->endpoints;
ep_end = sc->sc_udev->endpoints + sc->sc_udev->endpoints_max;
for (; ep != ep_end; ep++) {
if ((ep->edesc == NULL) ||
(ep->iface_index != sc->sc_iface_index))
continue;
if (UE_GET_DIR(ep->edesc->bEndpointAddress) == UE_DIR_OUT)
ntx++;
}
if (ntx == 0) {
device_printf(sc->sc_dev,
"%d: invalid number of Tx bulk pipes\n", ntx);
return (EIO);
}
/* Get Tx queues to USB endpoints mapping. */
hashq = hasnq = haslq = nqueues = 0;
switch (ntx) {
case 1: hashq = 1; break;
case 2: hashq = hasnq = 1; break;
case 3: case 4: hashq = hasnq = haslq = 1; break;
}
nqueues = hashq + hasnq + haslq;
if (nqueues == 0)
return (EIO);
npubqpages = nqpages = nrempages = pagecount = 0;
if (sc->chip & URTWN_CHIP_88E)
tx_boundary = R88E_TX_PAGE_BOUNDARY;
else {
pagecount = R92C_TX_PAGE_COUNT;
npubqpages = R92C_PUBQ_NPAGES;
tx_boundary = R92C_TX_PAGE_BOUNDARY;
}
/* Set number of pages for normal priority queue. */
if (sc->chip & URTWN_CHIP_88E) {
usb_err = urtwn_write_2(sc, R92C_RQPN_NPQ, 0xd);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
usb_err = urtwn_write_4(sc, R92C_RQPN, 0x808e000d);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
} else {
/* Get the number of pages for each queue. */
nqpages = (pagecount - npubqpages) / nqueues;
/*
* The remaining pages are assigned to the high priority
* queue.
*/
nrempages = (pagecount - npubqpages) % nqueues;
usb_err = urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
usb_err = urtwn_write_4(sc, R92C_RQPN,
/* Set number of pages for public queue. */
SM(R92C_RQPN_PUBQ, npubqpages) |
/* Set number of pages for high priority queue. */
SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) |
/* Set number of pages for low priority queue. */
SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) |
/* Load values. */
R92C_RQPN_LD);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
}
usb_err = urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, tx_boundary);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
usb_err = urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, tx_boundary);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
usb_err = urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, tx_boundary);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
usb_err = urtwn_write_1(sc, R92C_TRXFF_BNDY, tx_boundary);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
usb_err = urtwn_write_1(sc, R92C_TDECTRL + 1, tx_boundary);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
/* Set queue to USB pipe mapping. */
reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
if (nqueues == 1) {
if (hashq)
reg |= R92C_TRXDMA_CTRL_QMAP_HQ;
else if (hasnq)
reg |= R92C_TRXDMA_CTRL_QMAP_NQ;
else
reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
} else if (nqueues == 2) {
/*
* All 2-endpoints configs have high and normal
* priority queues.
*/
reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
} else
reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
usb_err = urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
/* Set Tx/Rx transfer page boundary. */
usb_err = urtwn_write_2(sc, R92C_TRXFF_BNDY + 2,
(sc->chip & URTWN_CHIP_88E) ? 0x23ff : 0x27ff);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
/* Set Tx/Rx transfer page size. */
usb_err = urtwn_write_1(sc, R92C_PBP,
SM(R92C_PBP_PSRX, R92C_PBP_128) |
SM(R92C_PBP_PSTX, R92C_PBP_128));
if (usb_err != USB_ERR_NORMAL_COMPLETION)
return (EIO);
return (0);
}
static int
urtwn_mac_init(struct urtwn_softc *sc)
{
usb_error_t error;
int i;
/* Write MAC initialization values. */
if (sc->chip & URTWN_CHIP_88E) {
for (i = 0; i < nitems(rtl8188eu_mac); i++) {
error = urtwn_write_1(sc, rtl8188eu_mac[i].reg,
rtl8188eu_mac[i].val);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
}
urtwn_write_1(sc, R92C_MAX_AGGR_NUM, 0x07);
} else {
for (i = 0; i < nitems(rtl8192cu_mac); i++)
error = urtwn_write_1(sc, rtl8192cu_mac[i].reg,
rtl8192cu_mac[i].val);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
}
return (0);
}
static void
urtwn_bb_init(struct urtwn_softc *sc)
{
const struct urtwn_bb_prog *prog;
uint32_t reg;
uint8_t crystalcap;
int i;
/* Enable BB and RF. */
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
R92C_SYS_FUNC_EN_DIO_RF);
if (!(sc->chip & URTWN_CHIP_88E))
urtwn_write_2(sc, R92C_AFE_PLL_CTRL, 0xdb83);
urtwn_write_1(sc, R92C_RF_CTRL,
R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD |
R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB);
if (!(sc->chip & URTWN_CHIP_88E)) {
urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f);
urtwn_write_1(sc, 0x15, 0xe9);
urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
}
/* Select BB programming based on board type. */
if (sc->chip & URTWN_CHIP_88E)
prog = &rtl8188eu_bb_prog;
else if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD)
prog = &rtl8188ce_bb_prog;
else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
prog = &rtl8188ru_bb_prog;
else
prog = &rtl8188cu_bb_prog;
} else {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD)
prog = &rtl8192ce_bb_prog;
else
prog = &rtl8192cu_bb_prog;
}
/* Write BB initialization values. */
for (i = 0; i < prog->count; i++) {
urtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
urtwn_ms_delay(sc);
}
if (sc->chip & URTWN_CHIP_92C_1T2R) {
/* 8192C 1T only configuration. */
reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO);
reg = (reg & ~0x00000003) | 0x2;
urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO);
reg = (reg & ~0x00300033) | 0x00200022;
urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING);
reg = (reg & ~0xff000000) | 0x45 << 24;
urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
reg = (reg & ~0x000000ff) | 0x23;
urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
reg = (reg & ~0x00000030) | 1 << 4;
urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
reg = urtwn_bb_read(sc, 0xe74);
reg = (reg & ~0x0c000000) | 2 << 26;
urtwn_bb_write(sc, 0xe74, reg);
reg = urtwn_bb_read(sc, 0xe78);
reg = (reg & ~0x0c000000) | 2 << 26;
urtwn_bb_write(sc, 0xe78, reg);
reg = urtwn_bb_read(sc, 0xe7c);
reg = (reg & ~0x0c000000) | 2 << 26;
urtwn_bb_write(sc, 0xe7c, reg);
reg = urtwn_bb_read(sc, 0xe80);
reg = (reg & ~0x0c000000) | 2 << 26;
urtwn_bb_write(sc, 0xe80, reg);
reg = urtwn_bb_read(sc, 0xe88);
reg = (reg & ~0x0c000000) | 2 << 26;
urtwn_bb_write(sc, 0xe88, reg);
}
/* Write AGC values. */
for (i = 0; i < prog->agccount; i++) {
urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE,
prog->agcvals[i]);
urtwn_ms_delay(sc);
}
if (sc->chip & URTWN_CHIP_88E) {
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553422);
urtwn_ms_delay(sc);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553420);
urtwn_ms_delay(sc);
crystalcap = sc->rom.r88e_rom.crystalcap;
if (crystalcap == 0xff)
crystalcap = 0x20;
crystalcap &= 0x3f;
reg = urtwn_bb_read(sc, R92C_AFE_XTAL_CTRL);
urtwn_bb_write(sc, R92C_AFE_XTAL_CTRL,
RW(reg, R92C_AFE_XTAL_CTRL_ADDR,
crystalcap | crystalcap << 6));
} else {
if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) &
R92C_HSSI_PARAM2_CCK_HIPWR)
sc->sc_flags |= URTWN_FLAG_CCK_HIPWR;
}
}
static void
urtwn_rf_init(struct urtwn_softc *sc)
{
const struct urtwn_rf_prog *prog;
uint32_t reg, type;
int i, j, idx, off;
/* Select RF programming based on board type. */
if (sc->chip & URTWN_CHIP_88E)
prog = rtl8188eu_rf_prog;
else if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD)
prog = rtl8188ce_rf_prog;
else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
prog = rtl8188ru_rf_prog;
else
prog = rtl8188cu_rf_prog;
} else
prog = rtl8192ce_rf_prog;
for (i = 0; i < sc->nrxchains; i++) {
/* Save RF_ENV control type. */
idx = i / 2;
off = (i % 2) * 16;
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx));
type = (reg >> off) & 0x10;
/* Set RF_ENV enable. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x100000;
urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
urtwn_ms_delay(sc);
/* Set RF_ENV output high. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x10;
urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
urtwn_ms_delay(sc);
/* Set address and data lengths of RF registers. */
reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
urtwn_ms_delay(sc);
reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
urtwn_ms_delay(sc);
/* Write RF initialization values for this chain. */
for (j = 0; j < prog[i].count; j++) {
if (prog[i].regs[j] >= 0xf9 &&
prog[i].regs[j] <= 0xfe) {
/*
* These are fake RF registers offsets that
* indicate a delay is required.
*/
usb_pause_mtx(&sc->sc_mtx, hz / 20); /* 50ms */
continue;
}
urtwn_rf_write(sc, i, prog[i].regs[j],
prog[i].vals[j]);
urtwn_ms_delay(sc);
}
/* Restore RF_ENV control type. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx));
reg &= ~(0x10 << off) | (type << off);
urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg);
/* Cache RF register CHNLBW. */
sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW);
}
if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
URTWN_CHIP_UMC_A_CUT) {
urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
}
}
static void
urtwn_cam_init(struct urtwn_softc *sc)
{
/* Invalidate all CAM entries. */
urtwn_write_4(sc, R92C_CAMCMD,
R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
}
static int
urtwn_cam_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
{
usb_error_t error;
error = urtwn_write_4(sc, R92C_CAMWRITE, data);
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
error = urtwn_write_4(sc, R92C_CAMCMD,
R92C_CAMCMD_POLLING | R92C_CAMCMD_WRITE |
SM(R92C_CAMCMD_ADDR, addr));
if (error != USB_ERR_NORMAL_COMPLETION)
return (EIO);
return (0);
}
static void
urtwn_pa_bias_init(struct urtwn_softc *sc)
{
uint8_t reg;
int i;
for (i = 0; i < sc->nrxchains; i++) {
if (sc->pa_setting & (1 << i))
continue;
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
}
if (!(sc->pa_setting & 0x10)) {
reg = urtwn_read_1(sc, 0x16);
reg = (reg & ~0xf0) | 0x90;
urtwn_write_1(sc, 0x16, reg);
}
}
static void
urtwn_rxfilter_init(struct urtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint32_t rcr;
uint16_t filter;
URTWN_ASSERT_LOCKED(sc);
/* Accept all multicast frames. */
urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
/* Filter for management frames. */
filter = 0x7f3f;
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
filter &= ~(
R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_ASSOC_REQ) |
R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_REASSOC_REQ) |
R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_PROBE_REQ));
break;
case IEEE80211_M_HOSTAP:
filter &= ~(
R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_ASSOC_RESP) |
R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_REASSOC_RESP));
break;
case IEEE80211_M_MONITOR:
case IEEE80211_M_IBSS:
break;
default:
device_printf(sc->sc_dev, "%s: undefined opmode %d\n",
__func__, vap->iv_opmode);
break;
}
urtwn_write_2(sc, R92C_RXFLTMAP0, filter);
/* Reject all control frames. */
urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
/* Reject all data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0x0000);
rcr = R92C_RCR_AM | R92C_RCR_AB | R92C_RCR_APM |
R92C_RCR_HTC_LOC_CTRL | R92C_RCR_APP_PHYSTS |
R92C_RCR_APP_ICV | R92C_RCR_APP_MIC;
if (vap->iv_opmode == IEEE80211_M_MONITOR) {
/* Accept all frames. */
rcr |= R92C_RCR_ACF | R92C_RCR_ADF | R92C_RCR_AMF |
R92C_RCR_AAP;
}
/* Set Rx filter. */
urtwn_write_4(sc, R92C_RCR, rcr);
if (ic->ic_promisc != 0) {
/* Update Rx filter. */
urtwn_set_promisc(sc);
}
}
static void
urtwn_edca_init(struct urtwn_softc *sc)
{
urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a);
urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a);
urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a);
urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a);
urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b);
urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f);
urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324);
urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226);
}
static void
urtwn_write_txpower(struct urtwn_softc *sc, int chain,
uint16_t power[URTWN_RIDX_COUNT])
{
uint32_t reg;
/* Write per-CCK rate Tx power. */
if (chain == 0) {
reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]);
urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]);
reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]);
reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
} else {
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]);
reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]);
reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
}
/* Write per-OFDM rate Tx power. */
urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
SM(R92C_TXAGC_RATE06, power[ 4]) |
SM(R92C_TXAGC_RATE09, power[ 5]) |
SM(R92C_TXAGC_RATE12, power[ 6]) |
SM(R92C_TXAGC_RATE18, power[ 7]));
urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
SM(R92C_TXAGC_RATE24, power[ 8]) |
SM(R92C_TXAGC_RATE36, power[ 9]) |
SM(R92C_TXAGC_RATE48, power[10]) |
SM(R92C_TXAGC_RATE54, power[11]));
/* Write per-MCS Tx power. */
urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
SM(R92C_TXAGC_MCS00, power[12]) |
SM(R92C_TXAGC_MCS01, power[13]) |
SM(R92C_TXAGC_MCS02, power[14]) |
SM(R92C_TXAGC_MCS03, power[15]));
urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
SM(R92C_TXAGC_MCS04, power[16]) |
SM(R92C_TXAGC_MCS05, power[17]) |
SM(R92C_TXAGC_MCS06, power[18]) |
SM(R92C_TXAGC_MCS07, power[19]));
urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
SM(R92C_TXAGC_MCS08, power[20]) |
SM(R92C_TXAGC_MCS09, power[21]) |
SM(R92C_TXAGC_MCS10, power[22]) |
SM(R92C_TXAGC_MCS11, power[23]));
urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
SM(R92C_TXAGC_MCS12, power[24]) |
SM(R92C_TXAGC_MCS13, power[25]) |
SM(R92C_TXAGC_MCS14, power[26]) |
SM(R92C_TXAGC_MCS15, power[27]));
}
static void
urtwn_get_txpower(struct urtwn_softc *sc, int chain,
struct ieee80211_channel *c, struct ieee80211_channel *extc,
uint16_t power[URTWN_RIDX_COUNT])
{
struct ieee80211com *ic = &sc->sc_ic;
struct r92c_rom *rom = &sc->rom.r92c_rom;
uint16_t cckpow, ofdmpow, htpow, diff, max;
const struct urtwn_txpwr *base;
int ridx, chan, group;
/* Determine channel group. */
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
if (chan <= 3)
group = 0;
else if (chan <= 9)
group = 1;
else
group = 2;
/* Get original Tx power based on board type and RF chain. */
if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
base = &rtl8188ru_txagc[chain];
else
base = &rtl8192cu_txagc[chain];
} else
base = &rtl8192cu_txagc[chain];
memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
if (sc->regulatory == 0) {
for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++)
power[ridx] = base->pwr[0][ridx];
}
for (ridx = URTWN_RIDX_OFDM6; ridx < URTWN_RIDX_COUNT; ridx++) {
if (sc->regulatory == 3) {
power[ridx] = base->pwr[0][ridx];
/* Apply vendor limits. */
if (extc != NULL)
max = rom->ht40_max_pwr[group];
else
max = rom->ht20_max_pwr[group];
max = (max >> (chain * 4)) & 0xf;
if (power[ridx] > max)
power[ridx] = max;
} else if (sc->regulatory == 1) {
if (extc == NULL)
power[ridx] = base->pwr[group][ridx];
} else if (sc->regulatory != 2)
power[ridx] = base->pwr[0][ridx];
}
/* Compute per-CCK rate Tx power. */
cckpow = rom->cck_tx_pwr[chain][group];
for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++) {
power[ridx] += cckpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
htpow = rom->ht40_1s_tx_pwr[chain][group];
if (sc->ntxchains > 1) {
/* Apply reduction for 2 spatial streams. */
diff = rom->ht40_2s_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow = (htpow > diff) ? htpow - diff : 0;
}
/* Compute per-OFDM rate Tx power. */
diff = rom->ofdm_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
ofdmpow = htpow + diff; /* HT->OFDM correction. */
for (ridx = URTWN_RIDX_OFDM6; ridx <= URTWN_RIDX_OFDM54; ridx++) {
power[ridx] += ofdmpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
/* Compute per-MCS Tx power. */
if (extc == NULL) {
diff = rom->ht20_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow += diff; /* HT40->HT20 correction. */
}
for (ridx = 12; ridx <= 27; ridx++) {
power[ridx] += htpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
#ifdef USB_DEBUG
if (sc->sc_debug & URTWN_DEBUG_TXPWR) {
/* Dump per-rate Tx power values. */
printf("Tx power for chain %d:\n", chain);
for (ridx = URTWN_RIDX_CCK1; ridx < URTWN_RIDX_COUNT; ridx++)
printf("Rate %d = %u\n", ridx, power[ridx]);
}
#endif
}
static void
urtwn_r88e_get_txpower(struct urtwn_softc *sc, int chain,
struct ieee80211_channel *c, struct ieee80211_channel *extc,
uint16_t power[URTWN_RIDX_COUNT])
{
struct ieee80211com *ic = &sc->sc_ic;
struct r88e_rom *rom = &sc->rom.r88e_rom;
uint16_t cckpow, ofdmpow, bw20pow, htpow;
const struct urtwn_r88e_txpwr *base;
int ridx, chan, group;
/* Determine channel group. */
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
if (chan <= 2)
group = 0;
else if (chan <= 5)
group = 1;
else if (chan <= 8)
group = 2;
else if (chan <= 11)
group = 3;
else if (chan <= 13)
group = 4;
else
group = 5;
/* Get original Tx power based on board type and RF chain. */
base = &rtl8188eu_txagc[chain];
memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
if (sc->regulatory == 0) {
for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++)
power[ridx] = base->pwr[0][ridx];
}
for (ridx = URTWN_RIDX_OFDM6; ridx < URTWN_RIDX_COUNT; ridx++) {
if (sc->regulatory == 3)
power[ridx] = base->pwr[0][ridx];
else if (sc->regulatory == 1) {
if (extc == NULL)
power[ridx] = base->pwr[group][ridx];
} else if (sc->regulatory != 2)
power[ridx] = base->pwr[0][ridx];
}
/* Compute per-CCK rate Tx power. */
cckpow = rom->cck_tx_pwr[group];
for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++) {
power[ridx] += cckpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
htpow = rom->ht40_tx_pwr[group];
/* Compute per-OFDM rate Tx power. */
ofdmpow = htpow + sc->ofdm_tx_pwr_diff;
for (ridx = URTWN_RIDX_OFDM6; ridx <= URTWN_RIDX_OFDM54; ridx++) {
power[ridx] += ofdmpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
bw20pow = htpow + sc->bw20_tx_pwr_diff;
for (ridx = 12; ridx <= 27; ridx++) {
power[ridx] += bw20pow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
}
static void
urtwn_set_txpower(struct urtwn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
uint16_t power[URTWN_RIDX_COUNT];
int i;
for (i = 0; i < sc->ntxchains; i++) {
/* Compute per-rate Tx power values. */
if (sc->chip & URTWN_CHIP_88E)
urtwn_r88e_get_txpower(sc, i, c, extc, power);
else
urtwn_get_txpower(sc, i, c, extc, power);
/* Write per-rate Tx power values to hardware. */
urtwn_write_txpower(sc, i, power);
}
}
static void
urtwn_set_rx_bssid_all(struct urtwn_softc *sc, int enable)
{
uint32_t reg;
reg = urtwn_read_4(sc, R92C_RCR);
if (enable)
reg &= ~R92C_RCR_CBSSID_BCN;
else
reg |= R92C_RCR_CBSSID_BCN;
urtwn_write_4(sc, R92C_RCR, reg);
}
static void
urtwn_set_gain(struct urtwn_softc *sc, uint8_t gain)
{
uint32_t reg;
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, gain);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
if (!(sc->chip & URTWN_CHIP_88E)) {
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, gain);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
}
}
static void
urtwn_scan_start(struct ieee80211com *ic)
{
struct urtwn_softc *sc = ic->ic_softc;
URTWN_LOCK(sc);
/* Receive beacons / probe responses from any BSSID. */
if (ic->ic_opmode != IEEE80211_M_IBSS)
urtwn_set_rx_bssid_all(sc, 1);
/* Set gain for scanning. */
urtwn_set_gain(sc, 0x20);
URTWN_UNLOCK(sc);
}
static void
urtwn_scan_end(struct ieee80211com *ic)
{
struct urtwn_softc *sc = ic->ic_softc;
URTWN_LOCK(sc);
/* Restore limitations. */
if (ic->ic_promisc == 0 && ic->ic_opmode != IEEE80211_M_IBSS)
urtwn_set_rx_bssid_all(sc, 0);
/* Set gain under link. */
urtwn_set_gain(sc, 0x32);
URTWN_UNLOCK(sc);
}
static void
urtwn_set_channel(struct ieee80211com *ic)
{
struct urtwn_softc *sc = ic->ic_softc;
struct ieee80211_channel *c = ic->ic_curchan;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
URTWN_LOCK(sc);
if (vap->iv_state == IEEE80211_S_SCAN) {
/* Make link LED blink during scan. */
urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink);
}
urtwn_set_chan(sc, c, NULL);
sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
URTWN_UNLOCK(sc);
}
static int
urtwn_wme_update(struct ieee80211com *ic)
{
const struct wmeParams *wmep =
ic->ic_wme.wme_chanParams.cap_wmeParams;
struct urtwn_softc *sc = ic->ic_softc;
uint8_t aifs, acm, slottime;
int ac;
acm = 0;
slottime = IEEE80211_GET_SLOTTIME(ic);
URTWN_LOCK(sc);
for (ac = WME_AC_BE; ac < WME_NUM_AC; ac++) {
/* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */
aifs = wmep[ac].wmep_aifsn * slottime + IEEE80211_DUR_SIFS;
urtwn_write_4(sc, wme2queue[ac].reg,
SM(R92C_EDCA_PARAM_TXOP, wmep[ac].wmep_txopLimit) |
SM(R92C_EDCA_PARAM_ECWMIN, wmep[ac].wmep_logcwmin) |
SM(R92C_EDCA_PARAM_ECWMAX, wmep[ac].wmep_logcwmax) |
SM(R92C_EDCA_PARAM_AIFS, aifs));
if (ac != WME_AC_BE)
acm |= wmep[ac].wmep_acm << ac;
}
if (acm != 0)
acm |= R92C_ACMHWCTRL_EN;
urtwn_write_1(sc, R92C_ACMHWCTRL,
(urtwn_read_1(sc, R92C_ACMHWCTRL) & ~R92C_ACMHWCTRL_ACM_MASK) |
acm);
URTWN_UNLOCK(sc);
return 0;
}
static void
urtwn_update_slot(struct ieee80211com *ic)
{
urtwn_cmd_sleepable(ic->ic_softc, NULL, 0, urtwn_update_slot_cb);
}
static void
urtwn_update_slot_cb(struct urtwn_softc *sc, union sec_param *data)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t slottime;
slottime = IEEE80211_GET_SLOTTIME(ic);
URTWN_DPRINTF(sc, URTWN_DEBUG_ANY, "%s: setting slot time to %uus\n",
__func__, slottime);
urtwn_write_1(sc, R92C_SLOT, slottime);
urtwn_update_aifs(sc, slottime);
}
static void
urtwn_update_aifs(struct urtwn_softc *sc, uint8_t slottime)
{
const struct wmeParams *wmep =
sc->sc_ic.ic_wme.wme_chanParams.cap_wmeParams;
uint8_t aifs, ac;
for (ac = WME_AC_BE; ac < WME_NUM_AC; ac++) {
/* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */
aifs = wmep[ac].wmep_aifsn * slottime + IEEE80211_DUR_SIFS;
urtwn_write_1(sc, wme2queue[ac].reg, aifs);
}
}
static void
urtwn_set_promisc(struct urtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint32_t rcr, mask1, mask2;
URTWN_ASSERT_LOCKED(sc);
if (vap->iv_opmode == IEEE80211_M_MONITOR)
return;
mask1 = R92C_RCR_ACF | R92C_RCR_ADF | R92C_RCR_AMF | R92C_RCR_AAP;
mask2 = R92C_RCR_APM;
if (vap->iv_state == IEEE80211_S_RUN) {
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
mask2 |= R92C_RCR_CBSSID_DATA;
/* FALLTHROUGH */
case IEEE80211_M_HOSTAP:
mask2 |= R92C_RCR_CBSSID_BCN;
break;
case IEEE80211_M_IBSS:
mask2 |= R92C_RCR_CBSSID_DATA;
break;
default:
device_printf(sc->sc_dev, "%s: undefined opmode %d\n",
__func__, vap->iv_opmode);
return;
}
}
rcr = urtwn_read_4(sc, R92C_RCR);
if (ic->ic_promisc == 0)
rcr = (rcr & ~mask1) | mask2;
else
rcr = (rcr & ~mask2) | mask1;
urtwn_write_4(sc, R92C_RCR, rcr);
}
static void
urtwn_update_promisc(struct ieee80211com *ic)
{
struct urtwn_softc *sc = ic->ic_softc;
URTWN_LOCK(sc);
if (sc->sc_flags & URTWN_RUNNING)
urtwn_set_promisc(sc);
URTWN_UNLOCK(sc);
}
static void
urtwn_update_mcast(struct ieee80211com *ic)
{
/* XXX do nothing? */
}
static struct ieee80211_node *
urtwn_node_alloc(struct ieee80211vap *vap,
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct urtwn_node *un;
un = malloc(sizeof (struct urtwn_node), M_80211_NODE,
M_NOWAIT | M_ZERO);
if (un == NULL)
return NULL;
un->id = URTWN_MACID_UNDEFINED;
return &un->ni;
}
static void
urtwn_newassoc(struct ieee80211_node *ni, int isnew)
{
struct urtwn_softc *sc = ni->ni_ic->ic_softc;
struct urtwn_node *un = URTWN_NODE(ni);
uint8_t id;
/* Only do this bit for R88E chips */
if (! (sc->chip & URTWN_CHIP_88E))
return;
if (!isnew)
return;
URTWN_NT_LOCK(sc);
for (id = 0; id <= URTWN_MACID_MAX(sc); id++) {
if (id != URTWN_MACID_BC && sc->node_list[id] == NULL) {
un->id = id;
sc->node_list[id] = ni;
break;
}
}
URTWN_NT_UNLOCK(sc);
if (id > URTWN_MACID_MAX(sc)) {
device_printf(sc->sc_dev, "%s: node table is full\n",
__func__);
}
}
static void
urtwn_node_free(struct ieee80211_node *ni)
{
struct urtwn_softc *sc = ni->ni_ic->ic_softc;
struct urtwn_node *un = URTWN_NODE(ni);
URTWN_NT_LOCK(sc);
if (un->id != URTWN_MACID_UNDEFINED)
sc->node_list[un->id] = NULL;
URTWN_NT_UNLOCK(sc);
sc->sc_node_free(ni);
}
static void
urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t reg;
u_int chan;
int i;
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
device_printf(sc->sc_dev,
"%s: invalid channel %x\n", __func__, chan);
return;
}
/* Set Tx power for this new channel. */
urtwn_set_txpower(sc, c, extc);
for (i = 0; i < sc->nrxchains; i++) {
urtwn_rf_write(sc, i, R92C_RF_CHNLBW,
RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
}
#ifndef IEEE80211_NO_HT
if (extc != NULL) {
/* Is secondary channel below or above primary? */
int prichlo = c->ic_freq < extc->ic_freq;
urtwn_write_1(sc, R92C_BWOPMODE,
urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ);
reg = urtwn_read_1(sc, R92C_RRSR + 2);
reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
urtwn_write_1(sc, R92C_RRSR + 2, reg);
urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
/* Set CCK side band. */
reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM);
reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF);
reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
~R92C_FPGA0_ANAPARAM2_CBW20);
reg = urtwn_bb_read(sc, 0x818);
reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
urtwn_bb_write(sc, 0x818, reg);
/* Select 40MHz bandwidth. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
(sc->rf_chnlbw[0] & ~0xfff) | chan);
} else
#endif
{
urtwn_write_1(sc, R92C_BWOPMODE,
urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ);
urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
if (!(sc->chip & URTWN_CHIP_88E)) {
urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
R92C_FPGA0_ANAPARAM2_CBW20);
}
/* Select 20MHz bandwidth. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
(sc->rf_chnlbw[0] & ~0xfff) | chan |
((sc->chip & URTWN_CHIP_88E) ? R88E_RF_CHNLBW_BW20 :
R92C_RF_CHNLBW_BW20));
}
}
static void
urtwn_iq_calib(struct urtwn_softc *sc)
{
/* TODO */
}
static void
urtwn_lc_calib(struct urtwn_softc *sc)
{
uint32_t rf_ac[2];
uint8_t txmode;
int i;
txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
if ((txmode & 0x70) != 0) {
/* Disable all continuous Tx. */
urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
/* Set RF mode to standby mode. */
for (i = 0; i < sc->nrxchains; i++) {
rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC);
urtwn_rf_write(sc, i, R92C_RF_AC,
RW(rf_ac[i], R92C_RF_AC_MODE,
R92C_RF_AC_MODE_STANDBY));
}
} else {
/* Block all Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE, R92C_TX_QUEUE_ALL);
}
/* Start calibration. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
/* Give calibration the time to complete. */
usb_pause_mtx(&sc->sc_mtx, hz / 10); /* 100ms */
/* Restore configuration. */
if ((txmode & 0x70) != 0) {
/* Restore Tx mode. */
urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
/* Restore RF mode. */
for (i = 0; i < sc->nrxchains; i++)
urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
} else {
/* Unblock all Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE, 0x00);
}
}
static void
urtwn_temp_calib(struct urtwn_softc *sc)
{
uint8_t temp;
URTWN_ASSERT_LOCKED(sc);
if (!(sc->sc_flags & URTWN_TEMP_MEASURED)) {
/* Start measuring temperature. */
URTWN_DPRINTF(sc, URTWN_DEBUG_TEMP,
"%s: start measuring temperature\n", __func__);
if (sc->chip & URTWN_CHIP_88E) {
urtwn_rf_write(sc, 0, R88E_RF_T_METER,
R88E_RF_T_METER_START);
} else {
urtwn_rf_write(sc, 0, R92C_RF_T_METER,
R92C_RF_T_METER_START);
}
sc->sc_flags |= URTWN_TEMP_MEASURED;
return;
}
sc->sc_flags &= ~URTWN_TEMP_MEASURED;
/* Read measured temperature. */
if (sc->chip & URTWN_CHIP_88E) {
temp = MS(urtwn_rf_read(sc, 0, R88E_RF_T_METER),
R88E_RF_T_METER_VAL);
} else {
temp = MS(urtwn_rf_read(sc, 0, R92C_RF_T_METER),
R92C_RF_T_METER_VAL);
}
if (temp == 0) { /* Read failed, skip. */
URTWN_DPRINTF(sc, URTWN_DEBUG_TEMP,
"%s: temperature read failed, skipping\n", __func__);
return;
}
URTWN_DPRINTF(sc, URTWN_DEBUG_TEMP,
"%s: temperature: previous %u, current %u\n",
__func__, sc->thcal_lctemp, temp);
/*
* Redo LC calibration if temperature changed significantly since
* last calibration.
*/
if (sc->thcal_lctemp == 0) {
/* First LC calibration is performed in urtwn_init(). */
sc->thcal_lctemp = temp;
} else if (abs(temp - sc->thcal_lctemp) > 1) {
URTWN_DPRINTF(sc, URTWN_DEBUG_TEMP,
"%s: LC calib triggered by temp: %u -> %u\n",
__func__, sc->thcal_lctemp, temp);
urtwn_lc_calib(sc);
/* Record temperature of last LC calibration. */
sc->thcal_lctemp = temp;
}
}
static int
urtwn_init(struct urtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint8_t macaddr[IEEE80211_ADDR_LEN];
uint32_t reg;
usb_error_t usb_err = USB_ERR_NORMAL_COMPLETION;
int error;
URTWN_LOCK(sc);
if (sc->sc_flags & URTWN_RUNNING) {
URTWN_UNLOCK(sc);
return (0);
}
/* Init firmware commands ring. */
sc->fwcur = 0;
/* Allocate Tx/Rx buffers. */
error = urtwn_alloc_rx_list(sc);
if (error != 0)
goto fail;
error = urtwn_alloc_tx_list(sc);
if (error != 0)
goto fail;
/* Power on adapter. */
error = urtwn_power_on(sc);
if (error != 0)
goto fail;
/* Initialize DMA. */
error = urtwn_dma_init(sc);
if (error != 0)
goto fail;
/* Set info size in Rx descriptors (in 64-bit words). */
urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
/* Init interrupts. */
if (sc->chip & URTWN_CHIP_88E) {
usb_err = urtwn_write_4(sc, R88E_HISR, 0xffffffff);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
goto fail;
usb_err = urtwn_write_4(sc, R88E_HIMR, R88E_HIMR_CPWM | R88E_HIMR_CPWM2 |
R88E_HIMR_TBDER | R88E_HIMR_PSTIMEOUT);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
goto fail;
usb_err = urtwn_write_4(sc, R88E_HIMRE, R88E_HIMRE_RXFOVW |
R88E_HIMRE_TXFOVW | R88E_HIMRE_RXERR | R88E_HIMRE_TXERR);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
goto fail;
usb_err = urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) |
R92C_USB_SPECIAL_OPTION_INT_BULK_SEL);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
goto fail;
} else {
usb_err = urtwn_write_4(sc, R92C_HISR, 0xffffffff);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
goto fail;
usb_err = urtwn_write_4(sc, R92C_HIMR, 0xffffffff);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
goto fail;
}
/* Set MAC address. */
IEEE80211_ADDR_COPY(macaddr, vap ? vap->iv_myaddr : ic->ic_macaddr);
usb_err = urtwn_write_region_1(sc, R92C_MACID, macaddr, IEEE80211_ADDR_LEN);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
goto fail;
/* Set initial network type. */
urtwn_set_mode(sc, R92C_MSR_INFRA);
/* Initialize Rx filter. */
urtwn_rxfilter_init(sc);
/* Set response rate. */
reg = urtwn_read_4(sc, R92C_RRSR);
reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M);
urtwn_write_4(sc, R92C_RRSR, reg);
/* Set short/long retry limits. */
urtwn_write_2(sc, R92C_RL,
SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30));
/* Initialize EDCA parameters. */
urtwn_edca_init(sc);
/* Setup rate fallback. */
if (!(sc->chip & URTWN_CHIP_88E)) {
urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000);
urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404);
urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201);
urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605);
}
urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL,
urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) |
R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW);
/* Set ACK timeout. */
urtwn_write_1(sc, R92C_ACKTO, 0x40);
/* Setup USB aggregation. */
reg = urtwn_read_4(sc, R92C_TDECTRL);
reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6);
urtwn_write_4(sc, R92C_TDECTRL, reg);
urtwn_write_1(sc, R92C_TRXDMA_CTRL,
urtwn_read_1(sc, R92C_TRXDMA_CTRL) |
R92C_TRXDMA_CTRL_RXDMA_AGG_EN);
urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48);
if (sc->chip & URTWN_CHIP_88E)
urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH + 1, 4);
else {
urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4);
urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) |
R92C_USB_SPECIAL_OPTION_AGG_EN);
urtwn_write_1(sc, R92C_USB_AGG_TH, 8);
urtwn_write_1(sc, R92C_USB_AGG_TO, 6);
}
/* Initialize beacon parameters. */
urtwn_write_2(sc, R92C_BCN_CTRL, 0x1010);
urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
urtwn_write_1(sc, R92C_DRVERLYINT, 0x05);
urtwn_write_1(sc, R92C_BCNDMATIM, 0x02);
urtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
if (!(sc->chip & URTWN_CHIP_88E)) {
/* Setup AMPDU aggregation. */
urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */
urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
urtwn_write_2(sc, R92C_MAX_AGGR_NUM, 0x0708);
urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
}
#ifndef URTWN_WITHOUT_UCODE
/* Load 8051 microcode. */
error = urtwn_load_firmware(sc);
if (error == 0)
sc->sc_flags |= URTWN_FW_LOADED;
#endif
/* Initialize MAC/BB/RF blocks. */
error = urtwn_mac_init(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: error while initializing MAC block\n", __func__);
goto fail;
}
urtwn_bb_init(sc);
urtwn_rf_init(sc);
/* Reinitialize Rx filter (D3845 is not committed yet). */
urtwn_rxfilter_init(sc);
if (sc->chip & URTWN_CHIP_88E) {
urtwn_write_2(sc, R92C_CR,
urtwn_read_2(sc, R92C_CR) | R92C_CR_MACTXEN |
R92C_CR_MACRXEN);
}
/* Turn CCK and OFDM blocks on. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_CCK_EN;
usb_err = urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
goto fail;
reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_OFDM_EN;
usb_err = urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
if (usb_err != USB_ERR_NORMAL_COMPLETION)
goto fail;
/* Clear per-station keys table. */
urtwn_cam_init(sc);
/* Enable decryption / encryption. */
urtwn_write_2(sc, R92C_SECCFG,
R92C_SECCFG_TXUCKEY_DEF | R92C_SECCFG_RXUCKEY_DEF |
R92C_SECCFG_TXENC_ENA | R92C_SECCFG_RXDEC_ENA |
R92C_SECCFG_TXBCKEY_DEF | R92C_SECCFG_RXBCKEY_DEF);
/*
* Install static keys (if any).
* Must be called after urtwn_cam_init().
*/
ieee80211_runtask(ic, &sc->cmdq_task);
/* Enable hardware sequence numbering. */
urtwn_write_1(sc, R92C_HWSEQ_CTRL, R92C_TX_QUEUE_ALL);
/* Enable per-packet TX report. */
if (sc->chip & URTWN_CHIP_88E) {
urtwn_write_1(sc, R88E_TX_RPT_CTRL,
urtwn_read_1(sc, R88E_TX_RPT_CTRL) | R88E_TX_RPT1_ENA);
}
/* Perform LO and IQ calibrations. */
urtwn_iq_calib(sc);
/* Perform LC calibration. */
urtwn_lc_calib(sc);
/* Fix USB interference issue. */
if (!(sc->chip & URTWN_CHIP_88E)) {
urtwn_write_1(sc, 0xfe40, 0xe0);
urtwn_write_1(sc, 0xfe41, 0x8d);
urtwn_write_1(sc, 0xfe42, 0x80);
urtwn_pa_bias_init(sc);
}
/* Initialize GPIO setting. */
urtwn_write_1(sc, R92C_GPIO_MUXCFG,
urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
/* Fix for lower temperature. */
if (!(sc->chip & URTWN_CHIP_88E))
urtwn_write_1(sc, 0x15, 0xe9);
usbd_transfer_start(sc->sc_xfer[URTWN_BULK_RX]);
sc->sc_flags |= URTWN_RUNNING;
callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc);
fail:
if (usb_err != USB_ERR_NORMAL_COMPLETION)
error = EIO;
URTWN_UNLOCK(sc);
return (error);
}
static void
urtwn_stop(struct urtwn_softc *sc)
{
URTWN_LOCK(sc);
if (!(sc->sc_flags & URTWN_RUNNING)) {
URTWN_UNLOCK(sc);
return;
}
sc->sc_flags &= ~(URTWN_RUNNING | URTWN_FW_LOADED |
URTWN_TEMP_MEASURED);
sc->thcal_lctemp = 0;
callout_stop(&sc->sc_watchdog_ch);
urtwn_abort_xfers(sc);
urtwn_drain_mbufq(sc);
urtwn_power_off(sc);
URTWN_UNLOCK(sc);
}
static void
urtwn_abort_xfers(struct urtwn_softc *sc)
{
int i;
URTWN_ASSERT_LOCKED(sc);
/* abort any pending transfers */
for (i = 0; i < URTWN_N_TRANSFER; i++)
usbd_transfer_stop(sc->sc_xfer[i]);
}
static int
urtwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct urtwn_softc *sc = ic->ic_softc;
struct urtwn_data *bf;
int error;
URTWN_DPRINTF(sc, URTWN_DEBUG_XMIT, "%s: called; m=%p\n",
__func__,
m);
/* prevent management frames from being sent if we're not ready */
URTWN_LOCK(sc);
if (!(sc->sc_flags & URTWN_RUNNING)) {
error = ENETDOWN;
goto end;
}
bf = urtwn_getbuf(sc);
if (bf == NULL) {
error = ENOBUFS;
goto end;
}
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
error = urtwn_tx_data(sc, ni, m, bf);
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
error = urtwn_tx_raw(sc, ni, m, bf, params);
}
if (error != 0) {
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
goto end;
}
sc->sc_txtimer = 5;
callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc);
end:
if (error != 0)
m_freem(m);
URTWN_UNLOCK(sc);
return (error);
}
static void
urtwn_ms_delay(struct urtwn_softc *sc)
{
usb_pause_mtx(&sc->sc_mtx, hz / 1000);
}
static device_method_t urtwn_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, urtwn_match),
DEVMETHOD(device_attach, urtwn_attach),
DEVMETHOD(device_detach, urtwn_detach),
DEVMETHOD_END
};
static driver_t urtwn_driver = {
"urtwn",
urtwn_methods,
sizeof(struct urtwn_softc)
};
static devclass_t urtwn_devclass;
DRIVER_MODULE(urtwn, uhub, urtwn_driver, urtwn_devclass, NULL, NULL);
MODULE_DEPEND(urtwn, usb, 1, 1, 1);
MODULE_DEPEND(urtwn, wlan, 1, 1, 1);
#ifndef URTWN_WITHOUT_UCODE
MODULE_DEPEND(urtwn, firmware, 1, 1, 1);
#endif
MODULE_VERSION(urtwn, 1);
USB_PNP_HOST_INFO(urtwn_devs);