Gleb Smirnoff a68cc38879 Mechanical cleanup of epoch(9) usage in network stack.
- Remove macros that covertly create epoch_tracker on thread stack. Such
  macros a quite unsafe, e.g. will produce a buggy code if same macro is
  used in embedded scopes. Explicitly declare epoch_tracker always.

- Unmask interface list IFNET_RLOCK_NOSLEEP(), interface address list
  IF_ADDR_RLOCK() and interface AF specific data IF_AFDATA_RLOCK() read
  locking macros to what they actually are - the net_epoch.
  Keeping them as is is very misleading. They all are named FOO_RLOCK(),
  while they no longer have lock semantics. Now they allow recursion and
  what's more important they now no longer guarantee protection against
  their companion WLOCK macros.
  Note: INP_HASH_RLOCK() has same problems, but not touched by this commit.

This is non functional mechanical change. The only functionally changed
functions are ni6_addrs() and ni6_store_addrs(), where we no longer enter
epoch recursively.

Discussed with:	jtl, gallatin
2019-01-09 01:11:19 +00:00

895 lines
34 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1990, 1993
* The Regents of the University of California.
* Copyright (c) 2010-2011 Juniper Networks, Inc.
* All rights reserved.
*
* Portions of this software were developed by Robert N. M. Watson under
* contract to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.h 8.1 (Berkeley) 6/10/93
* $FreeBSD$
*/
#ifndef _NETINET_IN_PCB_H_
#define _NETINET_IN_PCB_H_
#include <sys/queue.h>
#include <sys/epoch.h>
#include <sys/_lock.h>
#include <sys/_mutex.h>
#include <sys/_rwlock.h>
#include <net/route.h>
#ifdef _KERNEL
#include <sys/lock.h>
#include <sys/rwlock.h>
#include <net/vnet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <vm/uma.h>
#endif
#include <sys/ck.h>
#define in6pcb inpcb /* for KAME src sync over BSD*'s */
#define in6p_sp inp_sp /* for KAME src sync over BSD*'s */
/*
* struct inpcb is the common protocol control block structure used in most
* IP transport protocols.
*
* Pointers to local and foreign host table entries, local and foreign socket
* numbers, and pointers up (to a socket structure) and down (to a
* protocol-specific control block) are stored here.
*/
CK_LIST_HEAD(inpcbhead, inpcb);
CK_LIST_HEAD(inpcbporthead, inpcbport);
CK_LIST_HEAD(inpcblbgrouphead, inpcblbgroup);
typedef uint64_t inp_gen_t;
/*
* PCB with AF_INET6 null bind'ed laddr can receive AF_INET input packet.
* So, AF_INET6 null laddr is also used as AF_INET null laddr, by utilizing
* the following structure.
*/
struct in_addr_4in6 {
u_int32_t ia46_pad32[3];
struct in_addr ia46_addr4;
};
union in_dependaddr {
struct in_addr_4in6 id46_addr;
struct in6_addr id6_addr;
};
/*
* NOTE: ipv6 addrs should be 64-bit aligned, per RFC 2553. in_conninfo has
* some extra padding to accomplish this.
* NOTE 2: tcp_syncache.c uses first 5 32-bit words, which identify fport,
* lport, faddr to generate hash, so these fields shouldn't be moved.
*/
struct in_endpoints {
u_int16_t ie_fport; /* foreign port */
u_int16_t ie_lport; /* local port */
/* protocol dependent part, local and foreign addr */
union in_dependaddr ie_dependfaddr; /* foreign host table entry */
union in_dependaddr ie_dependladdr; /* local host table entry */
#define ie_faddr ie_dependfaddr.id46_addr.ia46_addr4
#define ie_laddr ie_dependladdr.id46_addr.ia46_addr4
#define ie6_faddr ie_dependfaddr.id6_addr
#define ie6_laddr ie_dependladdr.id6_addr
u_int32_t ie6_zoneid; /* scope zone id */
};
/*
* XXX The defines for inc_* are hacks and should be changed to direct
* references.
*/
struct in_conninfo {
u_int8_t inc_flags;
u_int8_t inc_len;
u_int16_t inc_fibnum; /* XXX was pad, 16 bits is plenty */
/* protocol dependent part */
struct in_endpoints inc_ie;
};
/*
* Flags for inc_flags.
*/
#define INC_ISIPV6 0x01
#define INC_IPV6MINMTU 0x02
#define inc_fport inc_ie.ie_fport
#define inc_lport inc_ie.ie_lport
#define inc_faddr inc_ie.ie_faddr
#define inc_laddr inc_ie.ie_laddr
#define inc6_faddr inc_ie.ie6_faddr
#define inc6_laddr inc_ie.ie6_laddr
#define inc6_zoneid inc_ie.ie6_zoneid
#if defined(_KERNEL) || defined(_WANT_INPCB)
/*
* struct inpcb captures the network layer state for TCP, UDP, and raw IPv4 and
* IPv6 sockets. In the case of TCP and UDP, further per-connection state is
* hung off of inp_ppcb most of the time. Almost all fields of struct inpcb
* are static after creation or protected by a per-inpcb rwlock, inp_lock. A
* few fields are protected by multiple locks as indicated in the locking notes
* below. For these fields, all of the listed locks must be write-locked for
* any modifications. However, these fields can be safely read while any one of
* the listed locks are read-locked. This model can permit greater concurrency
* for read operations. For example, connections can be looked up while only
* holding a read lock on the global pcblist lock. This is important for
* performance when attempting to find the connection for a packet given its IP
* and port tuple.
*
* One noteworthy exception is that the global pcbinfo lock follows a different
* set of rules in relation to the inp_list field. Rather than being
* write-locked for modifications and read-locked for list iterations, it must
* be read-locked during modifications and write-locked during list iterations.
* This ensures that the relatively rare global list iterations safely walk a
* stable snapshot of connections while allowing more common list modifications
* to safely grab the pcblist lock just while adding or removing a connection
* from the global list.
*
* Key:
* (b) - Protected by the hpts lock.
* (c) - Constant after initialization
* (e) - Protected by the net_epoch_prempt epoch
* (g) - Protected by the pcbgroup lock
* (i) - Protected by the inpcb lock
* (p) - Protected by the pcbinfo lock for the inpcb
* (l) - Protected by the pcblist lock for the inpcb
* (h) - Protected by the pcbhash lock for the inpcb
* (s) - Protected by another subsystem's locks
* (x) - Undefined locking
*
* Notes on the tcp_hpts:
*
* First Hpts lock order is
* 1) INP_WLOCK()
* 2) HPTS_LOCK() i.e. hpts->pmtx
*
* To insert a TCB on the hpts you *must* be holding the INP_WLOCK().
* You may check the inp->inp_in_hpts flag without the hpts lock.
* The hpts is the only one that will clear this flag holding
* only the hpts lock. This means that in your tcp_output()
* routine when you test for the inp_in_hpts flag to be 1
* it may be transitioning to 0 (by the hpts).
* That's ok since that will just mean an extra call to tcp_output
* that most likely will find the call you executed
* (when the mis-match occured) will have put the TCB back
* on the hpts and it will return. If your
* call did not add the inp back to the hpts then you will either
* over-send or the cwnd will block you from sending more.
*
* Note you should also be holding the INP_WLOCK() when you
* call the remove from the hpts as well. Though usually
* you are either doing this from a timer, where you need and have
* the INP_WLOCK() or from destroying your TCB where again
* you should already have the INP_WLOCK().
*
* The inp_hpts_cpu, inp_hpts_cpu_set, inp_input_cpu and
* inp_input_cpu_set fields are controlled completely by
* the hpts. Do not ever set these. The inp_hpts_cpu_set
* and inp_input_cpu_set fields indicate if the hpts has
* setup the respective cpu field. It is advised if this
* field is 0, to enqueue the packet with the appropriate
* hpts_immediate() call. If the _set field is 1, then
* you may compare the inp_*_cpu field to the curcpu and
* may want to again insert onto the hpts if these fields
* are not equal (i.e. you are not on the expected CPU).
*
* A note on inp_hpts_calls and inp_input_calls, these
* flags are set when the hpts calls either the output
* or do_segment routines respectively. If the routine
* being called wants to use this, then it needs to
* clear the flag before returning. The hpts will not
* clear the flag. The flags can be used to tell if
* the hpts is the function calling the respective
* routine.
*
* A few other notes:
*
* When a read lock is held, stability of the field is guaranteed; to write
* to a field, a write lock must generally be held.
*
* netinet/netinet6-layer code should not assume that the inp_socket pointer
* is safe to dereference without inp_lock being held, even for protocols
* other than TCP (where the inpcb persists during TIMEWAIT even after the
* socket has been freed), or there may be close(2)-related races.
*
* The inp_vflag field is overloaded, and would otherwise ideally be (c).
*
* TODO: Currently only the TCP stack is leveraging the global pcbinfo lock
* read-lock usage during modification, this model can be applied to other
* protocols (especially SCTP).
*/
struct icmp6_filter;
struct inpcbpolicy;
struct m_snd_tag;
struct inpcb {
/* Cache line #1 (amd64) */
CK_LIST_ENTRY(inpcb) inp_hash; /* [w](h/i) [r](e/i) hash list */
CK_LIST_ENTRY(inpcb) inp_pcbgrouphash; /* (g/i) hash list */
struct rwlock inp_lock;
/* Cache line #2 (amd64) */
#define inp_start_zero inp_hpts
#define inp_zero_size (sizeof(struct inpcb) - \
offsetof(struct inpcb, inp_start_zero))
TAILQ_ENTRY(inpcb) inp_hpts; /* pacing out queue next lock(b) */
uint32_t inp_hpts_request; /* Current hpts request, zero if
* fits in the pacing window (i&b). */
/*
* Note the next fields are protected by a
* different lock (hpts-lock). This means that
* they must correspond in size to the smallest
* protectable bit field (uint8_t on x86, and
* other platfomrs potentially uint32_t?). Also
* since CPU switches can occur at different times the two
* fields can *not* be collapsed into a signal bit field.
*/
#if defined(__amd64__) || defined(__i386__)
volatile uint8_t inp_in_hpts; /* on output hpts (lock b) */
volatile uint8_t inp_in_input; /* on input hpts (lock b) */
#else
volatile uint32_t inp_in_hpts; /* on output hpts (lock b) */
volatile uint32_t inp_in_input; /* on input hpts (lock b) */
#endif
volatile uint16_t inp_hpts_cpu; /* Lock (i) */
u_int inp_refcount; /* (i) refcount */
int inp_flags; /* (i) generic IP/datagram flags */
int inp_flags2; /* (i) generic IP/datagram flags #2*/
volatile uint16_t inp_input_cpu; /* Lock (i) */
volatile uint8_t inp_hpts_cpu_set :1, /* on output hpts (i) */
inp_input_cpu_set : 1, /* on input hpts (i) */
inp_hpts_calls :1, /* (i) from output hpts */
inp_input_calls :1, /* (i) from input hpts */
inp_spare_bits2 : 4;
uint8_t inp_spare_byte; /* Compiler hole */
void *inp_ppcb; /* (i) pointer to per-protocol pcb */
struct socket *inp_socket; /* (i) back pointer to socket */
uint32_t inp_hptsslot; /* Hpts wheel slot this tcb is Lock(i&b) */
uint32_t inp_hpts_drop_reas; /* reason we are dropping the PCB (lock i&b) */
TAILQ_ENTRY(inpcb) inp_input; /* pacing in queue next lock(b) */
struct inpcbinfo *inp_pcbinfo; /* (c) PCB list info */
struct inpcbgroup *inp_pcbgroup; /* (g/i) PCB group list */
CK_LIST_ENTRY(inpcb) inp_pcbgroup_wild; /* (g/i/h) group wildcard entry */
struct ucred *inp_cred; /* (c) cache of socket cred */
u_int32_t inp_flow; /* (i) IPv6 flow information */
u_char inp_vflag; /* (i) IP version flag (v4/v6) */
u_char inp_ip_ttl; /* (i) time to live proto */
u_char inp_ip_p; /* (c) protocol proto */
u_char inp_ip_minttl; /* (i) minimum TTL or drop */
uint32_t inp_flowid; /* (x) flow id / queue id */
struct m_snd_tag *inp_snd_tag; /* (i) send tag for outgoing mbufs */
uint32_t inp_flowtype; /* (x) M_HASHTYPE value */
uint32_t inp_rss_listen_bucket; /* (x) overridden RSS listen bucket */
/* Local and foreign ports, local and foreign addr. */
struct in_conninfo inp_inc; /* (i) list for PCB's local port */
/* MAC and IPSEC policy information. */
struct label *inp_label; /* (i) MAC label */
struct inpcbpolicy *inp_sp; /* (s) for IPSEC */
/* Protocol-dependent part; options. */
struct {
u_char inp_ip_tos; /* (i) type of service proto */
struct mbuf *inp_options; /* (i) IP options */
struct ip_moptions *inp_moptions; /* (i) mcast options */
};
struct {
/* (i) IP options */
struct mbuf *in6p_options;
/* (i) IP6 options for outgoing packets */
struct ip6_pktopts *in6p_outputopts;
/* (i) IP multicast options */
struct ip6_moptions *in6p_moptions;
/* (i) ICMPv6 code type filter */
struct icmp6_filter *in6p_icmp6filt;
/* (i) IPV6_CHECKSUM setsockopt */
int in6p_cksum;
short in6p_hops;
};
CK_LIST_ENTRY(inpcb) inp_portlist; /* (i/h) */
struct inpcbport *inp_phd; /* (i/h) head of this list */
inp_gen_t inp_gencnt; /* (c) generation count */
void *spare_ptr; /* Spare pointer. */
rt_gen_t inp_rt_cookie; /* generation for route entry */
union { /* cached L3 information */
struct route inp_route;
struct route_in6 inp_route6;
};
CK_LIST_ENTRY(inpcb) inp_list; /* (p/l) list for all PCBs for proto */
/* (e[r]) for list iteration */
/* (p[w]/l) for addition/removal */
struct epoch_context inp_epoch_ctx;
};
#endif /* _KERNEL */
#define inp_fport inp_inc.inc_fport
#define inp_lport inp_inc.inc_lport
#define inp_faddr inp_inc.inc_faddr
#define inp_laddr inp_inc.inc_laddr
#define in6p_faddr inp_inc.inc6_faddr
#define in6p_laddr inp_inc.inc6_laddr
#define in6p_zoneid inp_inc.inc6_zoneid
#define in6p_flowinfo inp_flow
#define inp_vnet inp_pcbinfo->ipi_vnet
/*
* The range of the generation count, as used in this implementation, is 9e19.
* We would have to create 300 billion connections per second for this number
* to roll over in a year. This seems sufficiently unlikely that we simply
* don't concern ourselves with that possibility.
*/
/*
* Interface exported to userland by various protocols which use inpcbs. Hack
* alert -- only define if struct xsocket is in scope.
* Fields prefixed with "xi_" are unique to this structure, and the rest
* match fields in the struct inpcb, to ease coding and porting.
*
* Legend:
* (s) - used by userland utilities in src
* (p) - used by utilities in ports
* (3) - is known to be used by third party software not in ports
* (n) - no known usage
*/
#ifdef _SYS_SOCKETVAR_H_
struct xinpcb {
ksize_t xi_len; /* length of this structure */
struct xsocket xi_socket; /* (s,p) */
struct in_conninfo inp_inc; /* (s,p) */
uint64_t inp_gencnt; /* (s,p) */
kvaddr_t inp_ppcb; /* (s) netstat(1) */
int64_t inp_spare64[4];
uint32_t inp_flow; /* (s) */
uint32_t inp_flowid; /* (s) */
uint32_t inp_flowtype; /* (s) */
int32_t inp_flags; /* (s,p) */
int32_t inp_flags2; /* (s) */
int32_t inp_rss_listen_bucket; /* (n) */
int32_t in6p_cksum; /* (n) */
int32_t inp_spare32[4];
uint16_t in6p_hops; /* (n) */
uint8_t inp_ip_tos; /* (n) */
int8_t pad8;
uint8_t inp_vflag; /* (s,p) */
uint8_t inp_ip_ttl; /* (n) */
uint8_t inp_ip_p; /* (n) */
uint8_t inp_ip_minttl; /* (n) */
int8_t inp_spare8[4];
} __aligned(8);
struct xinpgen {
ksize_t xig_len; /* length of this structure */
u_int xig_count; /* number of PCBs at this time */
uint32_t _xig_spare32;
inp_gen_t xig_gen; /* generation count at this time */
so_gen_t xig_sogen; /* socket generation count this time */
uint64_t _xig_spare64[4];
} __aligned(8);
#ifdef _KERNEL
void in_pcbtoxinpcb(const struct inpcb *, struct xinpcb *);
#endif
#endif /* _SYS_SOCKETVAR_H_ */
struct inpcbport {
struct epoch_context phd_epoch_ctx;
CK_LIST_ENTRY(inpcbport) phd_hash;
struct inpcbhead phd_pcblist;
u_short phd_port;
};
struct in_pcblist {
int il_count;
struct epoch_context il_epoch_ctx;
struct inpcbinfo *il_pcbinfo;
struct inpcb *il_inp_list[0];
};
/*-
* Global data structure for each high-level protocol (UDP, TCP, ...) in both
* IPv4 and IPv6. Holds inpcb lists and information for managing them.
*
* Each pcbinfo is protected by three locks: ipi_lock, ipi_hash_lock and
* ipi_list_lock:
* - ipi_lock covering the global pcb list stability during loop iteration,
* - ipi_hash_lock covering the hashed lookup tables,
* - ipi_list_lock covering mutable global fields (such as the global
* pcb list)
*
* The lock order is:
*
* ipi_lock (before)
* inpcb locks (before)
* ipi_list locks (before)
* {ipi_hash_lock, pcbgroup locks}
*
* Locking key:
*
* (c) Constant or nearly constant after initialisation
* (e) - Protected by the net_epoch_prempt epoch
* (g) Locked by ipi_lock
* (l) Locked by ipi_list_lock
* (h) Read using either net_epoch_preempt or inpcb lock; write requires both ipi_hash_lock and inpcb lock
* (p) Protected by one or more pcbgroup locks
* (x) Synchronisation properties poorly defined
*/
struct inpcbinfo {
/*
* Global lock protecting inpcb list modification
*/
struct mtx ipi_lock;
/*
* Global list of inpcbs on the protocol.
*/
struct inpcbhead *ipi_listhead; /* [r](e) [w](g/l) */
u_int ipi_count; /* (l) */
/*
* Generation count -- incremented each time a connection is allocated
* or freed.
*/
u_quad_t ipi_gencnt; /* (l) */
/*
* Fields associated with port lookup and allocation.
*/
u_short ipi_lastport; /* (x) */
u_short ipi_lastlow; /* (x) */
u_short ipi_lasthi; /* (x) */
/*
* UMA zone from which inpcbs are allocated for this protocol.
*/
struct uma_zone *ipi_zone; /* (c) */
/*
* Connection groups associated with this protocol. These fields are
* constant, but pcbgroup structures themselves are protected by
* per-pcbgroup locks.
*/
struct inpcbgroup *ipi_pcbgroups; /* (c) */
u_int ipi_npcbgroups; /* (c) */
u_int ipi_hashfields; /* (c) */
/*
* Global lock protecting modification non-pcbgroup hash lookup tables.
*/
struct mtx ipi_hash_lock;
/*
* Global hash of inpcbs, hashed by local and foreign addresses and
* port numbers.
*/
struct inpcbhead *ipi_hashbase; /* (h) */
u_long ipi_hashmask; /* (h) */
/*
* Global hash of inpcbs, hashed by only local port number.
*/
struct inpcbporthead *ipi_porthashbase; /* (h) */
u_long ipi_porthashmask; /* (h) */
/*
* List of wildcard inpcbs for use with pcbgroups. In the past, was
* per-pcbgroup but is now global. All pcbgroup locks must be held
* to modify the list, so any is sufficient to read it.
*/
struct inpcbhead *ipi_wildbase; /* (p) */
u_long ipi_wildmask; /* (p) */
/*
* Load balance groups used for the SO_REUSEPORT_LB option,
* hashed by local port.
*/
struct inpcblbgrouphead *ipi_lbgrouphashbase; /* (h) */
u_long ipi_lbgrouphashmask; /* (h) */
/*
* Pointer to network stack instance
*/
struct vnet *ipi_vnet; /* (c) */
/*
* general use 2
*/
void *ipi_pspare[2];
/*
* Global lock protecting global inpcb list, inpcb count, etc.
*/
struct rwlock ipi_list_lock;
};
#ifdef _KERNEL
/*
* Connection groups hold sets of connections that have similar CPU/thread
* affinity. Each connection belongs to exactly one connection group.
*/
struct inpcbgroup {
/*
* Per-connection group hash of inpcbs, hashed by local and foreign
* addresses and port numbers.
*/
struct inpcbhead *ipg_hashbase; /* (c) */
u_long ipg_hashmask; /* (c) */
/*
* Notional affinity of this pcbgroup.
*/
u_int ipg_cpu; /* (p) */
/*
* Per-connection group lock, not to be confused with ipi_lock.
* Protects the hash table hung off the group, but also the global
* wildcard list in inpcbinfo.
*/
struct mtx ipg_lock;
} __aligned(CACHE_LINE_SIZE);
/*
* Load balance groups used for the SO_REUSEPORT_LB socket option. Each group
* (or unique address:port combination) can be re-used at most
* INPCBLBGROUP_SIZMAX (256) times. The inpcbs are stored in il_inp which
* is dynamically resized as processes bind/unbind to that specific group.
*/
struct inpcblbgroup {
CK_LIST_ENTRY(inpcblbgroup) il_list;
struct epoch_context il_epoch_ctx;
uint16_t il_lport; /* (c) */
u_char il_vflag; /* (c) */
u_char il_pad;
uint32_t il_pad2;
union in_dependaddr il_dependladdr; /* (c) */
#define il_laddr il_dependladdr.id46_addr.ia46_addr4
#define il6_laddr il_dependladdr.id6_addr
uint32_t il_inpsiz; /* max count in il_inp[] (h) */
uint32_t il_inpcnt; /* cur count in il_inp[] (h) */
struct inpcb *il_inp[]; /* (h) */
};
#define INP_LOCK_INIT(inp, d, t) \
rw_init_flags(&(inp)->inp_lock, (t), RW_RECURSE | RW_DUPOK)
#define INP_LOCK_DESTROY(inp) rw_destroy(&(inp)->inp_lock)
#define INP_RLOCK(inp) rw_rlock(&(inp)->inp_lock)
#define INP_WLOCK(inp) rw_wlock(&(inp)->inp_lock)
#define INP_TRY_RLOCK(inp) rw_try_rlock(&(inp)->inp_lock)
#define INP_TRY_WLOCK(inp) rw_try_wlock(&(inp)->inp_lock)
#define INP_RUNLOCK(inp) rw_runlock(&(inp)->inp_lock)
#define INP_WUNLOCK(inp) rw_wunlock(&(inp)->inp_lock)
#define INP_TRY_UPGRADE(inp) rw_try_upgrade(&(inp)->inp_lock)
#define INP_DOWNGRADE(inp) rw_downgrade(&(inp)->inp_lock)
#define INP_WLOCKED(inp) rw_wowned(&(inp)->inp_lock)
#define INP_LOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_LOCKED)
#define INP_RLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_RLOCKED)
#define INP_WLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_WLOCKED)
#define INP_UNLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_UNLOCKED)
/*
* These locking functions are for inpcb consumers outside of sys/netinet,
* more specifically, they were added for the benefit of TOE drivers. The
* macros are reserved for use by the stack.
*/
void inp_wlock(struct inpcb *);
void inp_wunlock(struct inpcb *);
void inp_rlock(struct inpcb *);
void inp_runlock(struct inpcb *);
#ifdef INVARIANT_SUPPORT
void inp_lock_assert(struct inpcb *);
void inp_unlock_assert(struct inpcb *);
#else
#define inp_lock_assert(inp) do {} while (0)
#define inp_unlock_assert(inp) do {} while (0)
#endif
void inp_apply_all(void (*func)(struct inpcb *, void *), void *arg);
int inp_ip_tos_get(const struct inpcb *inp);
void inp_ip_tos_set(struct inpcb *inp, int val);
struct socket *
inp_inpcbtosocket(struct inpcb *inp);
struct tcpcb *
inp_inpcbtotcpcb(struct inpcb *inp);
void inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
uint32_t *faddr, uint16_t *fp);
int inp_so_options(const struct inpcb *inp);
#endif /* _KERNEL */
#define INP_INFO_LOCK_INIT(ipi, d) \
mtx_init(&(ipi)->ipi_lock, (d), NULL, MTX_DEF| MTX_RECURSE)
#define INP_INFO_LOCK_DESTROY(ipi) mtx_destroy(&(ipi)->ipi_lock)
#define INP_INFO_RLOCK_ET(ipi, et) NET_EPOCH_ENTER((et))
#define INP_INFO_WLOCK(ipi) mtx_lock(&(ipi)->ipi_lock)
#define INP_INFO_TRY_WLOCK(ipi) mtx_trylock(&(ipi)->ipi_lock)
#define INP_INFO_WLOCKED(ipi) mtx_owned(&(ipi)->ipi_lock)
#define INP_INFO_RUNLOCK_ET(ipi, et) NET_EPOCH_EXIT((et))
#define INP_INFO_RUNLOCK_TP(ipi, tp) NET_EPOCH_EXIT(*(tp)->t_inpcb->inp_et)
#define INP_INFO_WUNLOCK(ipi) mtx_unlock(&(ipi)->ipi_lock)
#define INP_INFO_LOCK_ASSERT(ipi) MPASS(in_epoch(net_epoch_preempt) || mtx_owned(&(ipi)->ipi_lock))
#define INP_INFO_RLOCK_ASSERT(ipi) MPASS(in_epoch(net_epoch_preempt))
#define INP_INFO_WLOCK_ASSERT(ipi) mtx_assert(&(ipi)->ipi_lock, MA_OWNED)
#define INP_INFO_WUNLOCK_ASSERT(ipi) \
mtx_assert(&(ipi)->ipi_lock, MA_NOTOWNED)
#define INP_INFO_UNLOCK_ASSERT(ipi) MPASS(!in_epoch(net_epoch_preempt) && !mtx_owned(&(ipi)->ipi_lock))
#define INP_LIST_LOCK_INIT(ipi, d) \
rw_init_flags(&(ipi)->ipi_list_lock, (d), 0)
#define INP_LIST_LOCK_DESTROY(ipi) rw_destroy(&(ipi)->ipi_list_lock)
#define INP_LIST_RLOCK(ipi) rw_rlock(&(ipi)->ipi_list_lock)
#define INP_LIST_WLOCK(ipi) rw_wlock(&(ipi)->ipi_list_lock)
#define INP_LIST_TRY_RLOCK(ipi) rw_try_rlock(&(ipi)->ipi_list_lock)
#define INP_LIST_TRY_WLOCK(ipi) rw_try_wlock(&(ipi)->ipi_list_lock)
#define INP_LIST_TRY_UPGRADE(ipi) rw_try_upgrade(&(ipi)->ipi_list_lock)
#define INP_LIST_RUNLOCK(ipi) rw_runlock(&(ipi)->ipi_list_lock)
#define INP_LIST_WUNLOCK(ipi) rw_wunlock(&(ipi)->ipi_list_lock)
#define INP_LIST_LOCK_ASSERT(ipi) \
rw_assert(&(ipi)->ipi_list_lock, RA_LOCKED)
#define INP_LIST_RLOCK_ASSERT(ipi) \
rw_assert(&(ipi)->ipi_list_lock, RA_RLOCKED)
#define INP_LIST_WLOCK_ASSERT(ipi) \
rw_assert(&(ipi)->ipi_list_lock, RA_WLOCKED)
#define INP_LIST_UNLOCK_ASSERT(ipi) \
rw_assert(&(ipi)->ipi_list_lock, RA_UNLOCKED)
#define INP_HASH_LOCK_INIT(ipi, d) mtx_init(&(ipi)->ipi_hash_lock, (d), NULL, MTX_DEF)
#define INP_HASH_LOCK_DESTROY(ipi) mtx_destroy(&(ipi)->ipi_hash_lock)
#define INP_HASH_RLOCK(ipi) struct epoch_tracker inp_hash_et; epoch_enter_preempt(net_epoch_preempt, &inp_hash_et)
#define INP_HASH_RLOCK_ET(ipi, et) epoch_enter_preempt(net_epoch_preempt, &(et))
#define INP_HASH_WLOCK(ipi) mtx_lock(&(ipi)->ipi_hash_lock)
#define INP_HASH_RUNLOCK(ipi) NET_EPOCH_EXIT(inp_hash_et)
#define INP_HASH_RUNLOCK_ET(ipi, et) NET_EPOCH_EXIT((et))
#define INP_HASH_WUNLOCK(ipi) mtx_unlock(&(ipi)->ipi_hash_lock)
#define INP_HASH_LOCK_ASSERT(ipi) MPASS(in_epoch(net_epoch_preempt) || mtx_owned(&(ipi)->ipi_hash_lock))
#define INP_HASH_WLOCK_ASSERT(ipi) mtx_assert(&(ipi)->ipi_hash_lock, MA_OWNED);
#define INP_GROUP_LOCK_INIT(ipg, d) mtx_init(&(ipg)->ipg_lock, (d), NULL, \
MTX_DEF | MTX_DUPOK)
#define INP_GROUP_LOCK_DESTROY(ipg) mtx_destroy(&(ipg)->ipg_lock)
#define INP_GROUP_LOCK(ipg) mtx_lock(&(ipg)->ipg_lock)
#define INP_GROUP_LOCK_ASSERT(ipg) mtx_assert(&(ipg)->ipg_lock, MA_OWNED)
#define INP_GROUP_UNLOCK(ipg) mtx_unlock(&(ipg)->ipg_lock)
#define INP_PCBHASH(faddr, lport, fport, mask) \
(((faddr) ^ ((faddr) >> 16) ^ ntohs((lport) ^ (fport))) & (mask))
#define INP_PCBPORTHASH(lport, mask) \
(ntohs((lport)) & (mask))
#define INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) \
((faddr) ^ ((faddr) >> 16) ^ ntohs((lport) ^ (fport)))
#define INP6_PCBHASHKEY(faddr) ((faddr)->s6_addr32[3])
/*
* Flags for inp_vflags -- historically version flags only
*/
#define INP_IPV4 0x1
#define INP_IPV6 0x2
#define INP_IPV6PROTO 0x4 /* opened under IPv6 protocol */
/*
* Flags for inp_flags.
*/
#define INP_RECVOPTS 0x00000001 /* receive incoming IP options */
#define INP_RECVRETOPTS 0x00000002 /* receive IP options for reply */
#define INP_RECVDSTADDR 0x00000004 /* receive IP dst address */
#define INP_HDRINCL 0x00000008 /* user supplies entire IP header */
#define INP_HIGHPORT 0x00000010 /* user wants "high" port binding */
#define INP_LOWPORT 0x00000020 /* user wants "low" port binding */
#define INP_ANONPORT 0x00000040 /* port chosen for user */
#define INP_RECVIF 0x00000080 /* receive incoming interface */
#define INP_MTUDISC 0x00000100 /* user can do MTU discovery */
/* 0x000200 unused: was INP_FAITH */
#define INP_RECVTTL 0x00000400 /* receive incoming IP TTL */
#define INP_DONTFRAG 0x00000800 /* don't fragment packet */
#define INP_BINDANY 0x00001000 /* allow bind to any address */
#define INP_INHASHLIST 0x00002000 /* in_pcbinshash() has been called */
#define INP_RECVTOS 0x00004000 /* receive incoming IP TOS */
#define IN6P_IPV6_V6ONLY 0x00008000 /* restrict AF_INET6 socket for v6 */
#define IN6P_PKTINFO 0x00010000 /* receive IP6 dst and I/F */
#define IN6P_HOPLIMIT 0x00020000 /* receive hoplimit */
#define IN6P_HOPOPTS 0x00040000 /* receive hop-by-hop options */
#define IN6P_DSTOPTS 0x00080000 /* receive dst options after rthdr */
#define IN6P_RTHDR 0x00100000 /* receive routing header */
#define IN6P_RTHDRDSTOPTS 0x00200000 /* receive dstoptions before rthdr */
#define IN6P_TCLASS 0x00400000 /* receive traffic class value */
#define IN6P_AUTOFLOWLABEL 0x00800000 /* attach flowlabel automatically */
#define INP_TIMEWAIT 0x01000000 /* in TIMEWAIT, ppcb is tcptw */
#define INP_ONESBCAST 0x02000000 /* send all-ones broadcast */
#define INP_DROPPED 0x04000000 /* protocol drop flag */
#define INP_SOCKREF 0x08000000 /* strong socket reference */
#define INP_RESERVED_0 0x10000000 /* reserved field */
#define INP_RESERVED_1 0x20000000 /* reserved field */
#define IN6P_RFC2292 0x40000000 /* used RFC2292 API on the socket */
#define IN6P_MTU 0x80000000 /* receive path MTU */
#define INP_CONTROLOPTS (INP_RECVOPTS|INP_RECVRETOPTS|INP_RECVDSTADDR|\
INP_RECVIF|INP_RECVTTL|INP_RECVTOS|\
IN6P_PKTINFO|IN6P_HOPLIMIT|IN6P_HOPOPTS|\
IN6P_DSTOPTS|IN6P_RTHDR|IN6P_RTHDRDSTOPTS|\
IN6P_TCLASS|IN6P_AUTOFLOWLABEL|IN6P_RFC2292|\
IN6P_MTU)
/*
* Flags for inp_flags2.
*/
#define INP_2UNUSED1 0x00000001
#define INP_2UNUSED2 0x00000002
#define INP_PCBGROUPWILD 0x00000004 /* in pcbgroup wildcard list */
#define INP_REUSEPORT 0x00000008 /* SO_REUSEPORT option is set */
#define INP_FREED 0x00000010 /* inp itself is not valid */
#define INP_REUSEADDR 0x00000020 /* SO_REUSEADDR option is set */
#define INP_BINDMULTI 0x00000040 /* IP_BINDMULTI option is set */
#define INP_RSS_BUCKET_SET 0x00000080 /* IP_RSS_LISTEN_BUCKET is set */
#define INP_RECVFLOWID 0x00000100 /* populate recv datagram with flow info */
#define INP_RECVRSSBUCKETID 0x00000200 /* populate recv datagram with bucket id */
#define INP_RATE_LIMIT_CHANGED 0x00000400 /* rate limit needs attention */
#define INP_ORIGDSTADDR 0x00000800 /* receive IP dst address/port */
#define INP_CANNOT_DO_ECN 0x00001000 /* The stack does not do ECN */
#define INP_REUSEPORT_LB 0x00002000 /* SO_REUSEPORT_LB option is set */
/*
* Flags passed to in_pcblookup*() functions.
*/
#define INPLOOKUP_WILDCARD 0x00000001 /* Allow wildcard sockets. */
#define INPLOOKUP_RLOCKPCB 0x00000002 /* Return inpcb read-locked. */
#define INPLOOKUP_WLOCKPCB 0x00000004 /* Return inpcb write-locked. */
#define INPLOOKUP_MASK (INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB | \
INPLOOKUP_WLOCKPCB)
#define sotoinpcb(so) ((struct inpcb *)(so)->so_pcb)
#define sotoin6pcb(so) sotoinpcb(so) /* for KAME src sync over BSD*'s */
#define INP_SOCKAF(so) so->so_proto->pr_domain->dom_family
#define INP_CHECK_SOCKAF(so, af) (INP_SOCKAF(so) == af)
/*
* Constants for pcbinfo.ipi_hashfields.
*/
#define IPI_HASHFIELDS_NONE 0
#define IPI_HASHFIELDS_2TUPLE 1
#define IPI_HASHFIELDS_4TUPLE 2
#ifdef _KERNEL
VNET_DECLARE(int, ipport_reservedhigh);
VNET_DECLARE(int, ipport_reservedlow);
VNET_DECLARE(int, ipport_lowfirstauto);
VNET_DECLARE(int, ipport_lowlastauto);
VNET_DECLARE(int, ipport_firstauto);
VNET_DECLARE(int, ipport_lastauto);
VNET_DECLARE(int, ipport_hifirstauto);
VNET_DECLARE(int, ipport_hilastauto);
VNET_DECLARE(int, ipport_randomized);
VNET_DECLARE(int, ipport_randomcps);
VNET_DECLARE(int, ipport_randomtime);
VNET_DECLARE(int, ipport_stoprandom);
VNET_DECLARE(int, ipport_tcpallocs);
#define V_ipport_reservedhigh VNET(ipport_reservedhigh)
#define V_ipport_reservedlow VNET(ipport_reservedlow)
#define V_ipport_lowfirstauto VNET(ipport_lowfirstauto)
#define V_ipport_lowlastauto VNET(ipport_lowlastauto)
#define V_ipport_firstauto VNET(ipport_firstauto)
#define V_ipport_lastauto VNET(ipport_lastauto)
#define V_ipport_hifirstauto VNET(ipport_hifirstauto)
#define V_ipport_hilastauto VNET(ipport_hilastauto)
#define V_ipport_randomized VNET(ipport_randomized)
#define V_ipport_randomcps VNET(ipport_randomcps)
#define V_ipport_randomtime VNET(ipport_randomtime)
#define V_ipport_stoprandom VNET(ipport_stoprandom)
#define V_ipport_tcpallocs VNET(ipport_tcpallocs)
void in_pcbinfo_destroy(struct inpcbinfo *);
void in_pcbinfo_init(struct inpcbinfo *, const char *, struct inpcbhead *,
int, int, char *, uma_init, u_int);
int in_pcbbind_check_bindmulti(const struct inpcb *ni,
const struct inpcb *oi);
struct inpcbgroup *
in_pcbgroup_byhash(struct inpcbinfo *, u_int, uint32_t);
struct inpcbgroup *
in_pcbgroup_byinpcb(struct inpcb *);
struct inpcbgroup *
in_pcbgroup_bytuple(struct inpcbinfo *, struct in_addr, u_short,
struct in_addr, u_short);
void in_pcbgroup_destroy(struct inpcbinfo *);
int in_pcbgroup_enabled(struct inpcbinfo *);
void in_pcbgroup_init(struct inpcbinfo *, u_int, int);
void in_pcbgroup_remove(struct inpcb *);
void in_pcbgroup_update(struct inpcb *);
void in_pcbgroup_update_mbuf(struct inpcb *, struct mbuf *);
void in_pcbpurgeif0(struct inpcbinfo *, struct ifnet *);
int in_pcballoc(struct socket *, struct inpcbinfo *);
int in_pcbbind(struct inpcb *, struct sockaddr *, struct ucred *);
int in_pcb_lport(struct inpcb *, struct in_addr *, u_short *,
struct ucred *, int);
int in_pcbbind_setup(struct inpcb *, struct sockaddr *, in_addr_t *,
u_short *, struct ucred *);
int in_pcbconnect(struct inpcb *, struct sockaddr *, struct ucred *);
int in_pcbconnect_mbuf(struct inpcb *, struct sockaddr *, struct ucred *,
struct mbuf *);
int in_pcbconnect_setup(struct inpcb *, struct sockaddr *, in_addr_t *,
u_short *, in_addr_t *, u_short *, struct inpcb **,
struct ucred *);
void in_pcbdetach(struct inpcb *);
void in_pcbdisconnect(struct inpcb *);
void in_pcbdrop(struct inpcb *);
void in_pcbfree(struct inpcb *);
int in_pcbinshash(struct inpcb *);
int in_pcbinshash_nopcbgroup(struct inpcb *);
int in_pcbladdr(struct inpcb *, struct in_addr *, struct in_addr *,
struct ucred *);
struct inpcb *
in_pcblookup_local(struct inpcbinfo *,
struct in_addr, u_short, int, struct ucred *);
struct inpcb *
in_pcblookup(struct inpcbinfo *, struct in_addr, u_int,
struct in_addr, u_int, int, struct ifnet *);
struct inpcb *
in_pcblookup_mbuf(struct inpcbinfo *, struct in_addr, u_int,
struct in_addr, u_int, int, struct ifnet *, struct mbuf *);
void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr,
int, struct inpcb *(*)(struct inpcb *, int));
void in_pcbref(struct inpcb *);
void in_pcbrehash(struct inpcb *);
void in_pcbrehash_mbuf(struct inpcb *, struct mbuf *);
int in_pcbrele(struct inpcb *);
int in_pcbrele_rlocked(struct inpcb *);
int in_pcbrele_wlocked(struct inpcb *);
void in_pcblist_rele_rlocked(epoch_context_t ctx);
void in_losing(struct inpcb *);
void in_pcbsetsolabel(struct socket *so);
int in_getpeeraddr(struct socket *so, struct sockaddr **nam);
int in_getsockaddr(struct socket *so, struct sockaddr **nam);
struct sockaddr *
in_sockaddr(in_port_t port, struct in_addr *addr);
void in_pcbsosetlabel(struct socket *so);
#ifdef RATELIMIT
int in_pcbattach_txrtlmt(struct inpcb *, struct ifnet *, uint32_t, uint32_t, uint32_t);
void in_pcbdetach_txrtlmt(struct inpcb *);
int in_pcbmodify_txrtlmt(struct inpcb *, uint32_t);
int in_pcbquery_txrtlmt(struct inpcb *, uint32_t *);
int in_pcbquery_txrlevel(struct inpcb *, uint32_t *);
void in_pcboutput_txrtlmt(struct inpcb *, struct ifnet *, struct mbuf *);
void in_pcboutput_eagain(struct inpcb *);
#endif
#endif /* _KERNEL */
#endif /* !_NETINET_IN_PCB_H_ */