658 lines
28 KiB
Groff
658 lines
28 KiB
Groff
.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.32
|
|
.\"
|
|
.\" Standard preamble:
|
|
.\" ========================================================================
|
|
.de Sh \" Subsection heading
|
|
.br
|
|
.if t .Sp
|
|
.ne 5
|
|
.PP
|
|
\fB\\$1\fR
|
|
.PP
|
|
..
|
|
.de Sp \" Vertical space (when we can't use .PP)
|
|
.if t .sp .5v
|
|
.if n .sp
|
|
..
|
|
.de Vb \" Begin verbatim text
|
|
.ft CW
|
|
.nf
|
|
.ne \\$1
|
|
..
|
|
.de Ve \" End verbatim text
|
|
.ft R
|
|
.fi
|
|
..
|
|
.\" Set up some character translations and predefined strings. \*(-- will
|
|
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
|
|
.\" double quote, and \*(R" will give a right double quote. | will give a
|
|
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
|
|
.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
|
|
.\" expand to `' in nroff, nothing in troff, for use with C<>.
|
|
.tr \(*W-|\(bv\*(Tr
|
|
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
|
|
.ie n \{\
|
|
. ds -- \(*W-
|
|
. ds PI pi
|
|
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
|
|
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
|
|
. ds L" ""
|
|
. ds R" ""
|
|
. ds C` ""
|
|
. ds C' ""
|
|
'br\}
|
|
.el\{\
|
|
. ds -- \|\(em\|
|
|
. ds PI \(*p
|
|
. ds L" ``
|
|
. ds R" ''
|
|
'br\}
|
|
.\"
|
|
.\" If the F register is turned on, we'll generate index entries on stderr for
|
|
.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
|
|
.\" entries marked with X<> in POD. Of course, you'll have to process the
|
|
.\" output yourself in some meaningful fashion.
|
|
.if \nF \{\
|
|
. de IX
|
|
. tm Index:\\$1\t\\n%\t"\\$2"
|
|
..
|
|
. nr % 0
|
|
. rr F
|
|
.\}
|
|
.\"
|
|
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
|
|
.\" way too many mistakes in technical documents.
|
|
.hy 0
|
|
.if n .na
|
|
.\"
|
|
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
|
|
.\" Fear. Run. Save yourself. No user-serviceable parts.
|
|
. \" fudge factors for nroff and troff
|
|
.if n \{\
|
|
. ds #H 0
|
|
. ds #V .8m
|
|
. ds #F .3m
|
|
. ds #[ \f1
|
|
. ds #] \fP
|
|
.\}
|
|
.if t \{\
|
|
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
|
|
. ds #V .6m
|
|
. ds #F 0
|
|
. ds #[ \&
|
|
. ds #] \&
|
|
.\}
|
|
. \" simple accents for nroff and troff
|
|
.if n \{\
|
|
. ds ' \&
|
|
. ds ` \&
|
|
. ds ^ \&
|
|
. ds , \&
|
|
. ds ~ ~
|
|
. ds /
|
|
.\}
|
|
.if t \{\
|
|
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
|
|
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
|
|
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
|
|
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
|
|
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
|
|
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
|
|
.\}
|
|
. \" troff and (daisy-wheel) nroff accents
|
|
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
|
|
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
|
|
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
|
|
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
|
|
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
|
|
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
|
|
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
|
|
.ds ae a\h'-(\w'a'u*4/10)'e
|
|
.ds Ae A\h'-(\w'A'u*4/10)'E
|
|
. \" corrections for vroff
|
|
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
|
|
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
|
|
. \" for low resolution devices (crt and lpr)
|
|
.if \n(.H>23 .if \n(.V>19 \
|
|
\{\
|
|
. ds : e
|
|
. ds 8 ss
|
|
. ds o a
|
|
. ds d- d\h'-1'\(ga
|
|
. ds D- D\h'-1'\(hy
|
|
. ds th \o'bp'
|
|
. ds Th \o'LP'
|
|
. ds ae ae
|
|
. ds Ae AE
|
|
.\}
|
|
.rm #[ #] #H #V #F C
|
|
.\" ========================================================================
|
|
.\"
|
|
.IX Title "EVP_EncryptInit 3"
|
|
.TH EVP_EncryptInit 3 "2006-07-29" "0.9.8b" "OpenSSL"
|
|
.SH "NAME"
|
|
EVP_CIPHER_CTX_init, EVP_EncryptInit_ex, EVP_EncryptUpdate,
|
|
EVP_EncryptFinal_ex, EVP_DecryptInit_ex, EVP_DecryptUpdate,
|
|
EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUpdate,
|
|
EVP_CipherFinal_ex, EVP_CIPHER_CTX_set_key_length,
|
|
EVP_CIPHER_CTX_ctrl, EVP_CIPHER_CTX_cleanup, EVP_EncryptInit,
|
|
EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFinal,
|
|
EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname,
|
|
EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid,
|
|
EVP_CIPHER_block_size, EVP_CIPHER_key_length, EVP_CIPHER_iv_length,
|
|
EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type, EVP_CIPHER_CTX_cipher,
|
|
EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
|
|
EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
|
|
EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags,
|
|
EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param,
|
|
EVP_CIPHER_CTX_set_padding \- EVP cipher routines
|
|
.SH "SYNOPSIS"
|
|
.IX Header "SYNOPSIS"
|
|
.Vb 1
|
|
\& #include <openssl/evp.h>
|
|
.Ve
|
|
.PP
|
|
.Vb 1
|
|
\& void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a);
|
|
.Ve
|
|
.PP
|
|
.Vb 6
|
|
\& int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
|
|
\& ENGINE *impl, unsigned char *key, unsigned char *iv);
|
|
\& int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
\& int *outl, unsigned char *in, int inl);
|
|
\& int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
\& int *outl);
|
|
.Ve
|
|
.PP
|
|
.Vb 6
|
|
\& int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
|
|
\& ENGINE *impl, unsigned char *key, unsigned char *iv);
|
|
\& int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
\& int *outl, unsigned char *in, int inl);
|
|
\& int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
|
|
\& int *outl);
|
|
.Ve
|
|
.PP
|
|
.Vb 6
|
|
\& int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
|
|
\& ENGINE *impl, unsigned char *key, unsigned char *iv, int enc);
|
|
\& int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
\& int *outl, unsigned char *in, int inl);
|
|
\& int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
|
|
\& int *outl);
|
|
.Ve
|
|
.PP
|
|
.Vb 4
|
|
\& int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
|
|
\& unsigned char *key, unsigned char *iv);
|
|
\& int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
\& int *outl);
|
|
.Ve
|
|
.PP
|
|
.Vb 4
|
|
\& int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
|
|
\& unsigned char *key, unsigned char *iv);
|
|
\& int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
|
|
\& int *outl);
|
|
.Ve
|
|
.PP
|
|
.Vb 4
|
|
\& int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
|
|
\& unsigned char *key, unsigned char *iv, int enc);
|
|
\& int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
|
|
\& int *outl);
|
|
.Ve
|
|
.PP
|
|
.Vb 4
|
|
\& int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
|
|
\& int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
|
|
\& int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
|
|
\& int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a);
|
|
.Ve
|
|
.PP
|
|
.Vb 3
|
|
\& const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
|
|
\& #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
|
|
\& #define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))
|
|
.Ve
|
|
.PP
|
|
.Vb 7
|
|
\& #define EVP_CIPHER_nid(e) ((e)->nid)
|
|
\& #define EVP_CIPHER_block_size(e) ((e)->block_size)
|
|
\& #define EVP_CIPHER_key_length(e) ((e)->key_len)
|
|
\& #define EVP_CIPHER_iv_length(e) ((e)->iv_len)
|
|
\& #define EVP_CIPHER_flags(e) ((e)->flags)
|
|
\& #define EVP_CIPHER_mode(e) ((e)->flags) & EVP_CIPH_MODE)
|
|
\& int EVP_CIPHER_type(const EVP_CIPHER *ctx);
|
|
.Ve
|
|
.PP
|
|
.Vb 10
|
|
\& #define EVP_CIPHER_CTX_cipher(e) ((e)->cipher)
|
|
\& #define EVP_CIPHER_CTX_nid(e) ((e)->cipher->nid)
|
|
\& #define EVP_CIPHER_CTX_block_size(e) ((e)->cipher->block_size)
|
|
\& #define EVP_CIPHER_CTX_key_length(e) ((e)->key_len)
|
|
\& #define EVP_CIPHER_CTX_iv_length(e) ((e)->cipher->iv_len)
|
|
\& #define EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data)
|
|
\& #define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d))
|
|
\& #define EVP_CIPHER_CTX_type(c) EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c))
|
|
\& #define EVP_CIPHER_CTX_flags(e) ((e)->cipher->flags)
|
|
\& #define EVP_CIPHER_CTX_mode(e) ((e)->cipher->flags & EVP_CIPH_MODE)
|
|
.Ve
|
|
.PP
|
|
.Vb 2
|
|
\& int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
|
|
\& int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
|
|
.Ve
|
|
.SH "DESCRIPTION"
|
|
.IX Header "DESCRIPTION"
|
|
The \s-1EVP\s0 cipher routines are a high level interface to certain
|
|
symmetric ciphers.
|
|
.PP
|
|
\&\fIEVP_CIPHER_CTX_init()\fR initializes cipher contex \fBctx\fR.
|
|
.PP
|
|
\&\fIEVP_EncryptInit_ex()\fR sets up cipher context \fBctx\fR for encryption
|
|
with cipher \fBtype\fR from \s-1ENGINE\s0 \fBimpl\fR. \fBctx\fR must be initialized
|
|
before calling this function. \fBtype\fR is normally supplied
|
|
by a function such as \fIEVP_des_cbc()\fR. If \fBimpl\fR is \s-1NULL\s0 then the
|
|
default implementation is used. \fBkey\fR is the symmetric key to use
|
|
and \fBiv\fR is the \s-1IV\s0 to use (if necessary), the actual number of bytes
|
|
used for the key and \s-1IV\s0 depends on the cipher. It is possible to set
|
|
all parameters to \s-1NULL\s0 except \fBtype\fR in an initial call and supply
|
|
the remaining parameters in subsequent calls, all of which have \fBtype\fR
|
|
set to \s-1NULL\s0. This is done when the default cipher parameters are not
|
|
appropriate.
|
|
.PP
|
|
\&\fIEVP_EncryptUpdate()\fR encrypts \fBinl\fR bytes from the buffer \fBin\fR and
|
|
writes the encrypted version to \fBout\fR. This function can be called
|
|
multiple times to encrypt successive blocks of data. The amount
|
|
of data written depends on the block alignment of the encrypted data:
|
|
as a result the amount of data written may be anything from zero bytes
|
|
to (inl + cipher_block_size \- 1) so \fBoutl\fR should contain sufficient
|
|
room. The actual number of bytes written is placed in \fBoutl\fR.
|
|
.PP
|
|
If padding is enabled (the default) then \fIEVP_EncryptFinal_ex()\fR encrypts
|
|
the \*(L"final\*(R" data, that is any data that remains in a partial block.
|
|
It uses standard block padding (aka \s-1PKCS\s0 padding). The encrypted
|
|
final data is written to \fBout\fR which should have sufficient space for
|
|
one cipher block. The number of bytes written is placed in \fBoutl\fR. After
|
|
this function is called the encryption operation is finished and no further
|
|
calls to \fIEVP_EncryptUpdate()\fR should be made.
|
|
.PP
|
|
If padding is disabled then \fIEVP_EncryptFinal_ex()\fR will not encrypt any more
|
|
data and it will return an error if any data remains in a partial block:
|
|
that is if the total data length is not a multiple of the block size.
|
|
.PP
|
|
\&\fIEVP_DecryptInit_ex()\fR, \fIEVP_DecryptUpdate()\fR and \fIEVP_DecryptFinal_ex()\fR are the
|
|
corresponding decryption operations. \fIEVP_DecryptFinal()\fR will return an
|
|
error code if padding is enabled and the final block is not correctly
|
|
formatted. The parameters and restrictions are identical to the encryption
|
|
operations except that if padding is enabled the decrypted data buffer \fBout\fR
|
|
passed to \fIEVP_DecryptUpdate()\fR should have sufficient room for
|
|
(\fBinl\fR + cipher_block_size) bytes unless the cipher block size is 1 in
|
|
which case \fBinl\fR bytes is sufficient.
|
|
.PP
|
|
\&\fIEVP_CipherInit_ex()\fR, \fIEVP_CipherUpdate()\fR and \fIEVP_CipherFinal_ex()\fR are
|
|
functions that can be used for decryption or encryption. The operation
|
|
performed depends on the value of the \fBenc\fR parameter. It should be set
|
|
to 1 for encryption, 0 for decryption and \-1 to leave the value unchanged
|
|
(the actual value of 'enc' being supplied in a previous call).
|
|
.PP
|
|
\&\fIEVP_CIPHER_CTX_cleanup()\fR clears all information from a cipher context
|
|
and free up any allocated memory associate with it. It should be called
|
|
after all operations using a cipher are complete so sensitive information
|
|
does not remain in memory.
|
|
.PP
|
|
\&\fIEVP_EncryptInit()\fR, \fIEVP_DecryptInit()\fR and \fIEVP_CipherInit()\fR behave in a
|
|
similar way to \fIEVP_EncryptInit_ex()\fR, EVP_DecryptInit_ex and
|
|
\&\fIEVP_CipherInit_ex()\fR except the \fBctx\fR paramter does not need to be
|
|
initialized and they always use the default cipher implementation.
|
|
.PP
|
|
\&\fIEVP_EncryptFinal()\fR, \fIEVP_DecryptFinal()\fR and \fIEVP_CipherFinal()\fR behave in a
|
|
similar way to \fIEVP_EncryptFinal_ex()\fR, \fIEVP_DecryptFinal_ex()\fR and
|
|
\&\fIEVP_CipherFinal_ex()\fR except \fBctx\fR is automatically cleaned up
|
|
after the call.
|
|
.PP
|
|
\&\fIEVP_get_cipherbyname()\fR, \fIEVP_get_cipherbynid()\fR and \fIEVP_get_cipherbyobj()\fR
|
|
return an \s-1EVP_CIPHER\s0 structure when passed a cipher name, a \s-1NID\s0 or an
|
|
\&\s-1ASN1_OBJECT\s0 structure.
|
|
.PP
|
|
\&\fIEVP_CIPHER_nid()\fR and \fIEVP_CIPHER_CTX_nid()\fR return the \s-1NID\s0 of a cipher when
|
|
passed an \fB\s-1EVP_CIPHER\s0\fR or \fB\s-1EVP_CIPHER_CTX\s0\fR structure. The actual \s-1NID\s0
|
|
value is an internal value which may not have a corresponding \s-1OBJECT\s0
|
|
\&\s-1IDENTIFIER\s0.
|
|
.PP
|
|
\&\fIEVP_CIPHER_CTX_set_padding()\fR enables or disables padding. By default
|
|
encryption operations are padded using standard block padding and the
|
|
padding is checked and removed when decrypting. If the \fBpad\fR parameter
|
|
is zero then no padding is performed, the total amount of data encrypted
|
|
or decrypted must then be a multiple of the block size or an error will
|
|
occur.
|
|
.PP
|
|
\&\fIEVP_CIPHER_key_length()\fR and \fIEVP_CIPHER_CTX_key_length()\fR return the key
|
|
length of a cipher when passed an \fB\s-1EVP_CIPHER\s0\fR or \fB\s-1EVP_CIPHER_CTX\s0\fR
|
|
structure. The constant \fB\s-1EVP_MAX_KEY_LENGTH\s0\fR is the maximum key length
|
|
for all ciphers. Note: although \fIEVP_CIPHER_key_length()\fR is fixed for a
|
|
given cipher, the value of \fIEVP_CIPHER_CTX_key_length()\fR may be different
|
|
for variable key length ciphers.
|
|
.PP
|
|
\&\fIEVP_CIPHER_CTX_set_key_length()\fR sets the key length of the cipher ctx.
|
|
If the cipher is a fixed length cipher then attempting to set the key
|
|
length to any value other than the fixed value is an error.
|
|
.PP
|
|
\&\fIEVP_CIPHER_iv_length()\fR and \fIEVP_CIPHER_CTX_iv_length()\fR return the \s-1IV\s0
|
|
length of a cipher when passed an \fB\s-1EVP_CIPHER\s0\fR or \fB\s-1EVP_CIPHER_CTX\s0\fR.
|
|
It will return zero if the cipher does not use an \s-1IV\s0. The constant
|
|
\&\fB\s-1EVP_MAX_IV_LENGTH\s0\fR is the maximum \s-1IV\s0 length for all ciphers.
|
|
.PP
|
|
\&\fIEVP_CIPHER_block_size()\fR and \fIEVP_CIPHER_CTX_block_size()\fR return the block
|
|
size of a cipher when passed an \fB\s-1EVP_CIPHER\s0\fR or \fB\s-1EVP_CIPHER_CTX\s0\fR
|
|
structure. The constant \fB\s-1EVP_MAX_IV_LENGTH\s0\fR is also the maximum block
|
|
length for all ciphers.
|
|
.PP
|
|
\&\fIEVP_CIPHER_type()\fR and \fIEVP_CIPHER_CTX_type()\fR return the type of the passed
|
|
cipher or context. This \*(L"type\*(R" is the actual \s-1NID\s0 of the cipher \s-1OBJECT\s0
|
|
\&\s-1IDENTIFIER\s0 as such it ignores the cipher parameters and 40 bit \s-1RC2\s0 and
|
|
128 bit \s-1RC2\s0 have the same \s-1NID\s0. If the cipher does not have an object
|
|
identifier or does not have \s-1ASN1\s0 support this function will return
|
|
\&\fBNID_undef\fR.
|
|
.PP
|
|
\&\fIEVP_CIPHER_CTX_cipher()\fR returns the \fB\s-1EVP_CIPHER\s0\fR structure when passed
|
|
an \fB\s-1EVP_CIPHER_CTX\s0\fR structure.
|
|
.PP
|
|
\&\fIEVP_CIPHER_mode()\fR and \fIEVP_CIPHER_CTX_mode()\fR return the block cipher mode:
|
|
\&\s-1EVP_CIPH_ECB_MODE\s0, \s-1EVP_CIPH_CBC_MODE\s0, \s-1EVP_CIPH_CFB_MODE\s0 or
|
|
\&\s-1EVP_CIPH_OFB_MODE\s0. If the cipher is a stream cipher then
|
|
\&\s-1EVP_CIPH_STREAM_CIPHER\s0 is returned.
|
|
.PP
|
|
\&\fIEVP_CIPHER_param_to_asn1()\fR sets the AlgorithmIdentifier \*(L"parameter\*(R" based
|
|
on the passed cipher. This will typically include any parameters and an
|
|
\&\s-1IV\s0. The cipher \s-1IV\s0 (if any) must be set when this call is made. This call
|
|
should be made before the cipher is actually \*(L"used\*(R" (before any
|
|
\&\fIEVP_EncryptUpdate()\fR, \fIEVP_DecryptUpdate()\fR calls for example). This function
|
|
may fail if the cipher does not have any \s-1ASN1\s0 support.
|
|
.PP
|
|
\&\fIEVP_CIPHER_asn1_to_param()\fR sets the cipher parameters based on an \s-1ASN1\s0
|
|
AlgorithmIdentifier \*(L"parameter\*(R". The precise effect depends on the cipher
|
|
In the case of \s-1RC2\s0, for example, it will set the \s-1IV\s0 and effective key length.
|
|
This function should be called after the base cipher type is set but before
|
|
the key is set. For example \fIEVP_CipherInit()\fR will be called with the \s-1IV\s0 and
|
|
key set to \s-1NULL\s0, \fIEVP_CIPHER_asn1_to_param()\fR will be called and finally
|
|
\&\fIEVP_CipherInit()\fR again with all parameters except the key set to \s-1NULL\s0. It is
|
|
possible for this function to fail if the cipher does not have any \s-1ASN1\s0 support
|
|
or the parameters cannot be set (for example the \s-1RC2\s0 effective key length
|
|
is not supported.
|
|
.PP
|
|
\&\fIEVP_CIPHER_CTX_ctrl()\fR allows various cipher specific parameters to be determined
|
|
and set. Currently only the \s-1RC2\s0 effective key length and the number of rounds of
|
|
\&\s-1RC5\s0 can be set.
|
|
.SH "RETURN VALUES"
|
|
.IX Header "RETURN VALUES"
|
|
\&\fIEVP_EncryptInit_ex()\fR, \fIEVP_EncryptUpdate()\fR and \fIEVP_EncryptFinal_ex()\fR
|
|
return 1 for success and 0 for failure.
|
|
.PP
|
|
\&\fIEVP_DecryptInit_ex()\fR and \fIEVP_DecryptUpdate()\fR return 1 for success and 0 for failure.
|
|
\&\fIEVP_DecryptFinal_ex()\fR returns 0 if the decrypt failed or 1 for success.
|
|
.PP
|
|
\&\fIEVP_CipherInit_ex()\fR and \fIEVP_CipherUpdate()\fR return 1 for success and 0 for failure.
|
|
\&\fIEVP_CipherFinal_ex()\fR returns 0 for a decryption failure or 1 for success.
|
|
.PP
|
|
\&\fIEVP_CIPHER_CTX_cleanup()\fR returns 1 for success and 0 for failure.
|
|
.PP
|
|
\&\fIEVP_get_cipherbyname()\fR, \fIEVP_get_cipherbynid()\fR and \fIEVP_get_cipherbyobj()\fR
|
|
return an \fB\s-1EVP_CIPHER\s0\fR structure or \s-1NULL\s0 on error.
|
|
.PP
|
|
\&\fIEVP_CIPHER_nid()\fR and \fIEVP_CIPHER_CTX_nid()\fR return a \s-1NID\s0.
|
|
.PP
|
|
\&\fIEVP_CIPHER_block_size()\fR and \fIEVP_CIPHER_CTX_block_size()\fR return the block
|
|
size.
|
|
.PP
|
|
\&\fIEVP_CIPHER_key_length()\fR and \fIEVP_CIPHER_CTX_key_length()\fR return the key
|
|
length.
|
|
.PP
|
|
\&\fIEVP_CIPHER_CTX_set_padding()\fR always returns 1.
|
|
.PP
|
|
\&\fIEVP_CIPHER_iv_length()\fR and \fIEVP_CIPHER_CTX_iv_length()\fR return the \s-1IV\s0
|
|
length or zero if the cipher does not use an \s-1IV\s0.
|
|
.PP
|
|
\&\fIEVP_CIPHER_type()\fR and \fIEVP_CIPHER_CTX_type()\fR return the \s-1NID\s0 of the cipher's
|
|
\&\s-1OBJECT\s0 \s-1IDENTIFIER\s0 or NID_undef if it has no defined \s-1OBJECT\s0 \s-1IDENTIFIER\s0.
|
|
.PP
|
|
\&\fIEVP_CIPHER_CTX_cipher()\fR returns an \fB\s-1EVP_CIPHER\s0\fR structure.
|
|
.PP
|
|
\&\fIEVP_CIPHER_param_to_asn1()\fR and \fIEVP_CIPHER_asn1_to_param()\fR return 1 for
|
|
success or zero for failure.
|
|
.SH "CIPHER LISTING"
|
|
.IX Header "CIPHER LISTING"
|
|
All algorithms have a fixed key length unless otherwise stated.
|
|
.IP "\fIEVP_enc_null()\fR" 4
|
|
.IX Item "EVP_enc_null()"
|
|
Null cipher: does nothing.
|
|
.IP "EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void), EVP_des_ofb(void)" 4
|
|
.IX Item "EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void), EVP_des_ofb(void)"
|
|
\&\s-1DES\s0 in \s-1CBC\s0, \s-1ECB\s0, \s-1CFB\s0 and \s-1OFB\s0 modes respectively.
|
|
.IP "EVP_des_ede_cbc(void), \fIEVP_des_ede()\fR, EVP_des_ede_ofb(void), EVP_des_ede_cfb(void)" 4
|
|
.IX Item "EVP_des_ede_cbc(void), EVP_des_ede(), EVP_des_ede_ofb(void), EVP_des_ede_cfb(void)"
|
|
Two key triple \s-1DES\s0 in \s-1CBC\s0, \s-1ECB\s0, \s-1CFB\s0 and \s-1OFB\s0 modes respectively.
|
|
.IP "EVP_des_ede3_cbc(void), \fIEVP_des_ede3()\fR, EVP_des_ede3_ofb(void), EVP_des_ede3_cfb(void)" 4
|
|
.IX Item "EVP_des_ede3_cbc(void), EVP_des_ede3(), EVP_des_ede3_ofb(void), EVP_des_ede3_cfb(void)"
|
|
Three key triple \s-1DES\s0 in \s-1CBC\s0, \s-1ECB\s0, \s-1CFB\s0 and \s-1OFB\s0 modes respectively.
|
|
.IP "EVP_desx_cbc(void)" 4
|
|
.IX Item "EVP_desx_cbc(void)"
|
|
\&\s-1DESX\s0 algorithm in \s-1CBC\s0 mode.
|
|
.IP "EVP_rc4(void)" 4
|
|
.IX Item "EVP_rc4(void)"
|
|
\&\s-1RC4\s0 stream cipher. This is a variable key length cipher with default key length 128 bits.
|
|
.IP "EVP_rc4_40(void)" 4
|
|
.IX Item "EVP_rc4_40(void)"
|
|
\&\s-1RC4\s0 stream cipher with 40 bit key length. This is obsolete and new code should use \fIEVP_rc4()\fR
|
|
and the \fIEVP_CIPHER_CTX_set_key_length()\fR function.
|
|
.IP "\fIEVP_idea_cbc()\fR EVP_idea_ecb(void), EVP_idea_cfb(void), EVP_idea_ofb(void), EVP_idea_cbc(void)" 4
|
|
.IX Item "EVP_idea_cbc() EVP_idea_ecb(void), EVP_idea_cfb(void), EVP_idea_ofb(void), EVP_idea_cbc(void)"
|
|
\&\s-1IDEA\s0 encryption algorithm in \s-1CBC\s0, \s-1ECB\s0, \s-1CFB\s0 and \s-1OFB\s0 modes respectively.
|
|
.IP "EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void), EVP_rc2_ofb(void)" 4
|
|
.IX Item "EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void), EVP_rc2_ofb(void)"
|
|
\&\s-1RC2\s0 encryption algorithm in \s-1CBC\s0, \s-1ECB\s0, \s-1CFB\s0 and \s-1OFB\s0 modes respectively. This is a variable key
|
|
length cipher with an additional parameter called \*(L"effective key bits\*(R" or \*(L"effective key length\*(R".
|
|
By default both are set to 128 bits.
|
|
.IP "EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void)" 4
|
|
.IX Item "EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void)"
|
|
\&\s-1RC2\s0 algorithm in \s-1CBC\s0 mode with a default key length and effective key length of 40 and 64 bits.
|
|
These are obsolete and new code should use \fIEVP_rc2_cbc()\fR, \fIEVP_CIPHER_CTX_set_key_length()\fR and
|
|
\&\fIEVP_CIPHER_CTX_ctrl()\fR to set the key length and effective key length.
|
|
.IP "EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void), EVP_bf_ofb(void);" 4
|
|
.IX Item "EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void), EVP_bf_ofb(void);"
|
|
Blowfish encryption algorithm in \s-1CBC\s0, \s-1ECB\s0, \s-1CFB\s0 and \s-1OFB\s0 modes respectively. This is a variable key
|
|
length cipher.
|
|
.IP "EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void), EVP_cast5_ofb(void)" 4
|
|
.IX Item "EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void), EVP_cast5_ofb(void)"
|
|
\&\s-1CAST\s0 encryption algorithm in \s-1CBC\s0, \s-1ECB\s0, \s-1CFB\s0 and \s-1OFB\s0 modes respectively. This is a variable key
|
|
length cipher.
|
|
.IP "EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void), EVP_rc5_32_12_16_cfb(void), EVP_rc5_32_12_16_ofb(void)" 4
|
|
.IX Item "EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void), EVP_rc5_32_12_16_cfb(void), EVP_rc5_32_12_16_ofb(void)"
|
|
\&\s-1RC5\s0 encryption algorithm in \s-1CBC\s0, \s-1ECB\s0, \s-1CFB\s0 and \s-1OFB\s0 modes respectively. This is a variable key length
|
|
cipher with an additional \*(L"number of rounds\*(R" parameter. By default the key length is set to 128
|
|
bits and 12 rounds.
|
|
.SH "NOTES"
|
|
.IX Header "NOTES"
|
|
Where possible the \fB\s-1EVP\s0\fR interface to symmetric ciphers should be used in
|
|
preference to the low level interfaces. This is because the code then becomes
|
|
transparent to the cipher used and much more flexible.
|
|
.PP
|
|
\&\s-1PKCS\s0 padding works by adding \fBn\fR padding bytes of value \fBn\fR to make the total
|
|
length of the encrypted data a multiple of the block size. Padding is always
|
|
added so if the data is already a multiple of the block size \fBn\fR will equal
|
|
the block size. For example if the block size is 8 and 11 bytes are to be
|
|
encrypted then 5 padding bytes of value 5 will be added.
|
|
.PP
|
|
When decrypting the final block is checked to see if it has the correct form.
|
|
.PP
|
|
Although the decryption operation can produce an error if padding is enabled,
|
|
it is not a strong test that the input data or key is correct. A random block
|
|
has better than 1 in 256 chance of being of the correct format and problems with
|
|
the input data earlier on will not produce a final decrypt error.
|
|
.PP
|
|
If padding is disabled then the decryption operation will always succeed if
|
|
the total amount of data decrypted is a multiple of the block size.
|
|
.PP
|
|
The functions \fIEVP_EncryptInit()\fR, \fIEVP_EncryptFinal()\fR, \fIEVP_DecryptInit()\fR,
|
|
\&\fIEVP_CipherInit()\fR and \fIEVP_CipherFinal()\fR are obsolete but are retained for
|
|
compatibility with existing code. New code should use \fIEVP_EncryptInit_ex()\fR,
|
|
\&\fIEVP_EncryptFinal_ex()\fR, \fIEVP_DecryptInit_ex()\fR, \fIEVP_DecryptFinal_ex()\fR,
|
|
\&\fIEVP_CipherInit_ex()\fR and \fIEVP_CipherFinal_ex()\fR because they can reuse an
|
|
existing context without allocating and freeing it up on each call.
|
|
.SH "BUGS"
|
|
.IX Header "BUGS"
|
|
For \s-1RC5\s0 the number of rounds can currently only be set to 8, 12 or 16. This is
|
|
a limitation of the current \s-1RC5\s0 code rather than the \s-1EVP\s0 interface.
|
|
.PP
|
|
\&\s-1EVP_MAX_KEY_LENGTH\s0 and \s-1EVP_MAX_IV_LENGTH\s0 only refer to the internal ciphers with
|
|
default key lengths. If custom ciphers exceed these values the results are
|
|
unpredictable. This is because it has become standard practice to define a
|
|
generic key as a fixed unsigned char array containing \s-1EVP_MAX_KEY_LENGTH\s0 bytes.
|
|
.PP
|
|
The \s-1ASN1\s0 code is incomplete (and sometimes inaccurate) it has only been tested
|
|
for certain common S/MIME ciphers (\s-1RC2\s0, \s-1DES\s0, triple \s-1DES\s0) in \s-1CBC\s0 mode.
|
|
.SH "EXAMPLES"
|
|
.IX Header "EXAMPLES"
|
|
Get the number of rounds used in \s-1RC5:\s0
|
|
.PP
|
|
.Vb 2
|
|
\& int nrounds;
|
|
\& EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &nrounds);
|
|
.Ve
|
|
.PP
|
|
Get the \s-1RC2\s0 effective key length:
|
|
.PP
|
|
.Vb 2
|
|
\& int key_bits;
|
|
\& EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC2_KEY_BITS, 0, &key_bits);
|
|
.Ve
|
|
.PP
|
|
Set the number of rounds used in \s-1RC5:\s0
|
|
.PP
|
|
.Vb 2
|
|
\& int nrounds;
|
|
\& EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC5_ROUNDS, nrounds, NULL);
|
|
.Ve
|
|
.PP
|
|
Set the effective key length used in \s-1RC2:\s0
|
|
.PP
|
|
.Vb 2
|
|
\& int key_bits;
|
|
\& EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL);
|
|
.Ve
|
|
.PP
|
|
Encrypt a string using blowfish:
|
|
.PP
|
|
.Vb 14
|
|
\& int do_crypt(char *outfile)
|
|
\& {
|
|
\& unsigned char outbuf[1024];
|
|
\& int outlen, tmplen;
|
|
\& /* Bogus key and IV: we'd normally set these from
|
|
\& * another source.
|
|
\& */
|
|
\& unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
|
|
\& unsigned char iv[] = {1,2,3,4,5,6,7,8};
|
|
\& char intext[] = "Some Crypto Text";
|
|
\& EVP_CIPHER_CTX ctx;
|
|
\& FILE *out;
|
|
\& EVP_CIPHER_CTX_init(&ctx);
|
|
\& EVP_EncryptInit_ex(&ctx, EVP_bf_cbc(), NULL, key, iv);
|
|
.Ve
|
|
.PP
|
|
.Vb 25
|
|
\& if(!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext)))
|
|
\& {
|
|
\& /* Error */
|
|
\& return 0;
|
|
\& }
|
|
\& /* Buffer passed to EVP_EncryptFinal() must be after data just
|
|
\& * encrypted to avoid overwriting it.
|
|
\& */
|
|
\& if(!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen))
|
|
\& {
|
|
\& /* Error */
|
|
\& return 0;
|
|
\& }
|
|
\& outlen += tmplen;
|
|
\& EVP_CIPHER_CTX_cleanup(&ctx);
|
|
\& /* Need binary mode for fopen because encrypted data is
|
|
\& * binary data. Also cannot use strlen() on it because
|
|
\& * it wont be null terminated and may contain embedded
|
|
\& * nulls.
|
|
\& */
|
|
\& out = fopen(outfile, "wb");
|
|
\& fwrite(outbuf, 1, outlen, out);
|
|
\& fclose(out);
|
|
\& return 1;
|
|
\& }
|
|
.Ve
|
|
.PP
|
|
The ciphertext from the above example can be decrypted using the \fBopenssl\fR
|
|
utility with the command line:
|
|
.PP
|
|
.Vb 1
|
|
\& S<openssl bf -in cipher.bin -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708 -d>
|
|
.Ve
|
|
.PP
|
|
General encryption, decryption function example using \s-1FILE\s0 I/O and \s-1RC2\s0 with an
|
|
80 bit key:
|
|
.PP
|
|
.Vb 16
|
|
\& int do_crypt(FILE *in, FILE *out, int do_encrypt)
|
|
\& {
|
|
\& /* Allow enough space in output buffer for additional block */
|
|
\& inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
|
|
\& int inlen, outlen;
|
|
\& /* Bogus key and IV: we'd normally set these from
|
|
\& * another source.
|
|
\& */
|
|
\& unsigned char key[] = "0123456789";
|
|
\& unsigned char iv[] = "12345678";
|
|
\& /* Don't set key or IV because we will modify the parameters */
|
|
\& EVP_CIPHER_CTX_init(&ctx);
|
|
\& EVP_CipherInit_ex(&ctx, EVP_rc2(), NULL, NULL, NULL, do_encrypt);
|
|
\& EVP_CIPHER_CTX_set_key_length(&ctx, 10);
|
|
\& /* We finished modifying parameters so now we can set key and IV */
|
|
\& EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt);
|
|
.Ve
|
|
.PP
|
|
.Vb 19
|
|
\& for(;;)
|
|
\& {
|
|
\& inlen = fread(inbuf, 1, 1024, in);
|
|
\& if(inlen <= 0) break;
|
|
\& if(!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen))
|
|
\& {
|
|
\& /* Error */
|
|
\& EVP_CIPHER_CTX_cleanup(&ctx);
|
|
\& return 0;
|
|
\& }
|
|
\& fwrite(outbuf, 1, outlen, out);
|
|
\& }
|
|
\& if(!EVP_CipherFinal_ex(&ctx, outbuf, &outlen))
|
|
\& {
|
|
\& /* Error */
|
|
\& EVP_CIPHER_CTX_cleanup(&ctx);
|
|
\& return 0;
|
|
\& }
|
|
\& fwrite(outbuf, 1, outlen, out);
|
|
.Ve
|
|
.PP
|
|
.Vb 3
|
|
\& EVP_CIPHER_CTX_cleanup(&ctx);
|
|
\& return 1;
|
|
\& }
|
|
.Ve
|
|
.SH "SEE ALSO"
|
|
.IX Header "SEE ALSO"
|
|
\&\fIevp\fR\|(3)
|
|
.SH "HISTORY"
|
|
.IX Header "HISTORY"
|
|
\&\fIEVP_CIPHER_CTX_init()\fR, \fIEVP_EncryptInit_ex()\fR, \fIEVP_EncryptFinal_ex()\fR,
|
|
\&\fIEVP_DecryptInit_ex()\fR, \fIEVP_DecryptFinal_ex()\fR, \fIEVP_CipherInit_ex()\fR,
|
|
\&\fIEVP_CipherFinal_ex()\fR and \fIEVP_CIPHER_CTX_set_padding()\fR appeared in
|
|
OpenSSL 0.9.7.
|