freebsd-nq/sys/dev/uart/uart_tty.c
Marcel Moolenaar 9f0974f96d In uart_cnprobe(), fill in the cn_name field of the consdev structure.
The core console code checks this field when a console is added and
emits a warning if it's empty. In practice the warning is harmless for
uart(4), because the cn_name is filled in as soon as the device name is
known; which is when the device is enumerated.
To avoid the warning, to avoid possible complications caused by emitting
the warning without there (possibly) being a console selected yet and to
avoid complications when the UART isn't found during bus enumeration, we
just preset the cn_name field here to the name of the driver.
2005-05-08 20:25:09 +00:00

400 lines
9.1 KiB
C

/*-
* Copyright (c) 2003 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/cons.h>
#include <sys/fcntl.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/reboot.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <sys/termios.h>
#include <sys/tty.h>
#include <machine/resource.h>
#include <machine/stdarg.h>
#include <dev/uart/uart.h>
#include <dev/uart/uart_bus.h>
#include <dev/uart/uart_cpu.h>
#include "uart_if.h"
static cn_probe_t uart_cnprobe;
static cn_init_t uart_cninit;
static cn_term_t uart_cnterm;
static cn_getc_t uart_cngetc;
static cn_checkc_t uart_cncheckc;
static cn_putc_t uart_cnputc;
CONS_DRIVER(uart, uart_cnprobe, uart_cninit, uart_cnterm, uart_cngetc,
uart_cncheckc, uart_cnputc, NULL);
static struct uart_devinfo uart_console;
static void
uart_cnprobe(struct consdev *cp)
{
cp->cn_pri = CN_DEAD;
KASSERT(uart_console.cookie == NULL, ("foo"));
if (uart_cpu_getdev(UART_DEV_CONSOLE, &uart_console))
return;
if (uart_probe(&uart_console))
return;
strlcpy(cp->cn_name, uart_driver_name, sizeof(cp->cn_name));
cp->cn_pri = (boothowto & RB_SERIAL) ? CN_REMOTE : CN_NORMAL;
cp->cn_arg = &uart_console;
}
static void
uart_cninit(struct consdev *cp)
{
struct uart_devinfo *di;
/*
* Yedi trick: we need to be able to define cn_dev before we go
* single- or multi-user. The problem is that we don't know at
* this time what the device will be. Hence, we need to link from
* the uart_devinfo to the consdev that corresponds to it so that
* we can define cn_dev in uart_bus_attach() when we find the
* device during bus enumeration. That's when we'll know what the
* the unit number will be.
*/
di = cp->cn_arg;
KASSERT(di->cookie == NULL, ("foo"));
di->cookie = cp;
di->type = UART_DEV_CONSOLE;
uart_add_sysdev(di);
uart_init(di);
}
static void
uart_cnterm(struct consdev *cp)
{
uart_term(cp->cn_arg);
}
static void
uart_cnputc(struct consdev *cp, int c)
{
uart_putc(cp->cn_arg, c);
}
static int
uart_cncheckc(struct consdev *cp)
{
return (uart_poll(cp->cn_arg));
}
static int
uart_cngetc(struct consdev *cp)
{
return (uart_getc(cp->cn_arg));
}
static int
uart_tty_open(struct tty *tp, struct cdev *dev)
{
struct uart_softc *sc;
sc = tp->t_sc;
sc->sc_opened = 1;
return (0);
}
static void
uart_tty_close(struct tty *tp)
{
struct uart_softc *sc;
sc = tp->t_sc;
if (sc == NULL || sc->sc_leaving || !sc->sc_opened)
return;
if (sc->sc_hwiflow)
UART_IOCTL(sc, UART_IOCTL_IFLOW, 0);
if (sc->sc_hwoflow)
UART_IOCTL(sc, UART_IOCTL_OFLOW, 0);
if (sc->sc_sysdev == NULL)
UART_SETSIG(sc, SER_DDTR | SER_DRTS);
wakeup(sc);
sc->sc_opened = 0;
return;
}
static void
uart_tty_oproc(struct tty *tp)
{
struct uart_softc *sc;
sc = tp->t_sc;
if (sc == NULL || sc->sc_leaving)
return;
/*
* Handle input flow control. Note that if we have hardware support,
* we don't do anything here. We continue to receive until our buffer
* is full. At that time we cannot empty the UART itself and it will
* de-assert RTS for us. In that situation we're completely stuffed.
* Without hardware support, we need to toggle RTS ourselves.
*/
if ((tp->t_cflag & CRTS_IFLOW) && !sc->sc_hwiflow) {
if ((tp->t_state & TS_TBLOCK) &&
(sc->sc_hwsig & SER_RTS))
UART_SETSIG(sc, SER_DRTS);
else if (!(tp->t_state & TS_TBLOCK) &&
!(sc->sc_hwsig & SER_RTS))
UART_SETSIG(sc, SER_DRTS|SER_RTS);
}
if (tp->t_state & TS_TTSTOP)
return;
if ((tp->t_state & TS_BUSY) || sc->sc_txbusy)
return;
if (tp->t_outq.c_cc == 0) {
ttwwakeup(tp);
return;
}
sc->sc_txdatasz = q_to_b(&tp->t_outq, sc->sc_txbuf, sc->sc_txfifosz);
tp->t_state |= TS_BUSY;
UART_TRANSMIT(sc);
ttwwakeup(tp);
}
static int
uart_tty_param(struct tty *tp, struct termios *t)
{
struct uart_softc *sc;
int databits, parity, stopbits;
sc = tp->t_sc;
if (sc == NULL || sc->sc_leaving)
return (ENODEV);
if (t->c_ispeed != t->c_ospeed && t->c_ospeed != 0)
return (EINVAL);
/* Fixate certain parameters for system devices. */
if (sc->sc_sysdev != NULL) {
t->c_ispeed = t->c_ospeed = sc->sc_sysdev->baudrate;
t->c_cflag |= CLOCAL;
t->c_cflag &= ~HUPCL;
}
if (t->c_ospeed == 0) {
UART_SETSIG(sc, SER_DDTR | SER_DRTS);
return (0);
}
switch (t->c_cflag & CSIZE) {
case CS5: databits = 5; break;
case CS6: databits = 6; break;
case CS7: databits = 7; break;
default: databits = 8; break;
}
stopbits = (t->c_cflag & CSTOPB) ? 2 : 1;
if (t->c_cflag & PARENB)
parity = (t->c_cflag & PARODD) ? UART_PARITY_ODD
: UART_PARITY_EVEN;
else
parity = UART_PARITY_NONE;
if (UART_PARAM(sc, t->c_ospeed, databits, stopbits, parity) != 0)
return (EINVAL);
UART_SETSIG(sc, SER_DDTR | SER_DTR);
/* Set input flow control state. */
if (!sc->sc_hwiflow) {
if ((t->c_cflag & CRTS_IFLOW) && (tp->t_state & TS_TBLOCK))
UART_SETSIG(sc, SER_DRTS);
else
UART_SETSIG(sc, SER_DRTS | SER_RTS);
} else
UART_IOCTL(sc, UART_IOCTL_IFLOW, (t->c_cflag & CRTS_IFLOW));
/* Set output flow control state. */
if (sc->sc_hwoflow)
UART_IOCTL(sc, UART_IOCTL_OFLOW, (t->c_cflag & CCTS_OFLOW));
ttsetwater(tp);
return (0);
}
static int
uart_tty_modem(struct tty *tp, int biton, int bitoff)
{
struct uart_softc *sc;
sc = tp->t_sc;
if (biton != 0 || bitoff != 0)
UART_SETSIG(sc, SER_DELTA(bitoff|biton) | biton);
return (sc->sc_hwsig);
}
static void
uart_tty_break(struct tty *tp, int state)
{
struct uart_softc *sc;
sc = tp->t_sc;
UART_IOCTL(sc, UART_IOCTL_BREAK, state);
}
static void
uart_tty_stop(struct tty *tp, int rw)
{
struct uart_softc *sc;
sc = tp->t_sc;
if (sc == NULL || sc->sc_leaving)
return;
if (rw & FWRITE) {
if (sc->sc_txbusy) {
sc->sc_txbusy = 0;
UART_FLUSH(sc, UART_FLUSH_TRANSMITTER);
}
tp->t_state &= ~TS_BUSY;
}
if (rw & FREAD) {
UART_FLUSH(sc, UART_FLUSH_RECEIVER);
sc->sc_rxget = sc->sc_rxput = 0;
}
}
void
uart_tty_intr(void *arg)
{
struct uart_softc *sc = arg;
struct tty *tp;
int c, pend, sig, xc;
if (sc->sc_leaving)
return;
pend = atomic_readandclear_32(&sc->sc_ttypend);
if (!(pend & UART_IPEND_MASK))
return;
tp = sc->sc_u.u_tty.tp;
if (pend & UART_IPEND_RXREADY) {
while (!uart_rx_empty(sc) && !(tp->t_state & TS_TBLOCK)) {
xc = uart_rx_get(sc);
c = xc & 0xff;
if (xc & UART_STAT_FRAMERR)
c |= TTY_FE;
if (xc & UART_STAT_PARERR)
c |= TTY_PE;
ttyld_rint(tp, c);
}
}
if (pend & UART_IPEND_BREAK) {
if (tp != NULL && !(tp->t_iflag & IGNBRK))
ttyld_rint(tp, 0);
}
if (pend & UART_IPEND_SIGCHG) {
sig = pend & UART_IPEND_SIGMASK;
if (sig & SER_DDCD)
ttyld_modem(tp, sig & SER_DCD);
if ((sig & SER_DCTS) && (tp->t_cflag & CCTS_OFLOW) &&
!sc->sc_hwoflow) {
if (sig & SER_CTS) {
tp->t_state &= ~TS_TTSTOP;
ttyld_start(tp);
} else
tp->t_state |= TS_TTSTOP;
}
}
if (pend & UART_IPEND_TXIDLE) {
tp->t_state &= ~TS_BUSY;
ttyld_start(tp);
}
}
int
uart_tty_attach(struct uart_softc *sc)
{
struct tty *tp;
int unit;
tp = ttyalloc();
sc->sc_u.u_tty.tp = tp;
tp->t_sc = sc;
unit = device_get_unit(sc->sc_dev);
tp->t_oproc = uart_tty_oproc;
tp->t_param = uart_tty_param;
tp->t_stop = uart_tty_stop;
tp->t_modem = uart_tty_modem;
tp->t_break = uart_tty_break;
tp->t_open = uart_tty_open;
tp->t_close = uart_tty_close;
tp->t_pps = &sc->sc_pps;
if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
sprintf(((struct consdev *)sc->sc_sysdev->cookie)->cn_name,
"ttyu%r", unit);
ttyconsolemode(tp, 0);
}
swi_add(&tty_ithd, uart_driver_name, uart_tty_intr, sc, SWI_TTY,
INTR_TYPE_TTY, &sc->sc_softih);
ttycreate(tp, NULL, 0, MINOR_CALLOUT, "u%r", unit);
return (0);
}
int uart_tty_detach(struct uart_softc *sc)
{
struct tty *tp;
tp = sc->sc_u.u_tty.tp;
tp->t_pps = NULL;
ttygone(tp);
ithread_remove_handler(sc->sc_softih);
ttyfree(tp);
return (0);
}