freebsd-nq/sys/kern/subr_trap.c
Mark Johnston b0f71f1bc5 amd64: Add MD bits for KMSAN
Interrupt and exception handlers must call kmsan_intr_enter() prior to
calling any C code.  This is because the KMSAN runtime maintains some
TLS in order to track initialization state of function parameters and
return values across function calls.  Then, to ensure that this state is
kept consistent in the face of asynchronous kernel-mode excpeptions, the
runtime uses a stack of TLS blocks, and kmsan_intr_enter() and
kmsan_intr_leave() push and pop that stack, respectively.

Use these functions in amd64 interrupt and exception handlers.  Note
that handlers for user->kernel transitions need not be annotated.

Also ensure that trap frames pushed by the CPU and by handlers are
marked as initialized before they are used.

Reviewed by:	kib
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D31467
2021-08-10 21:27:53 -04:00

390 lines
11 KiB
C

/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (C) 1994, David Greenman
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (c) 2007 The FreeBSD Foundation
*
* This code is derived from software contributed to Berkeley by
* the University of Utah, and William Jolitz.
*
* Portions of this software were developed by A. Joseph Koshy under
* sponsorship from the FreeBSD Foundation and Google, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)trap.c 7.4 (Berkeley) 5/13/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_hwpmc_hooks.h"
#include "opt_ktrace.h"
#include "opt_sched.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/capsicum.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/msan.h>
#include <sys/mutex.h>
#include <sys/pmckern.h>
#include <sys/proc.h>
#include <sys/ktr.h>
#include <sys/ptrace.h>
#include <sys/racct.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/syscall.h>
#include <sys/syscallsubr.h>
#include <sys/sysent.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>
#ifdef KTRACE
#include <sys/uio.h>
#include <sys/ktrace.h>
#endif
#include <security/audit/audit.h>
#include <machine/cpu.h>
#ifdef VIMAGE
#include <net/vnet.h>
#endif
#ifdef HWPMC_HOOKS
#include <sys/pmckern.h>
#endif
#include <security/mac/mac_framework.h>
void (*softdep_ast_cleanup)(struct thread *);
/*
* Define the code needed before returning to user mode, for trap and
* syscall.
*/
void
userret(struct thread *td, struct trapframe *frame)
{
struct proc *p = td->td_proc;
CTR3(KTR_SYSC, "userret: thread %p (pid %d, %s)", td, p->p_pid,
td->td_name);
KASSERT((p->p_flag & P_WEXIT) == 0,
("Exiting process returns to usermode"));
#ifdef DIAGNOSTIC
/*
* Check that we called signotify() enough. For
* multi-threaded processes, where signal distribution might
* change due to other threads changing sigmask, the check is
* racy and cannot be performed reliably.
* If current process is vfork child, indicated by P_PPWAIT, then
* issignal() ignores stops, so we block the check to avoid
* classifying pending signals.
*/
if (p->p_numthreads == 1) {
PROC_LOCK(p);
thread_lock(td);
if ((p->p_flag & P_PPWAIT) == 0 &&
(td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
if (SIGPENDING(td) && (td->td_flags &
(TDF_NEEDSIGCHK | TDF_ASTPENDING)) !=
(TDF_NEEDSIGCHK | TDF_ASTPENDING)) {
thread_unlock(td);
panic(
"failed to set signal flags for ast p %p td %p fl %x",
p, td, td->td_flags);
}
}
thread_unlock(td);
PROC_UNLOCK(p);
}
#endif
/*
* Charge system time if profiling.
*/
if (__predict_false(p->p_flag & P_PROFIL))
addupc_task(td, TRAPF_PC(frame), td->td_pticks * psratio);
#ifdef HWPMC_HOOKS
if (PMC_THREAD_HAS_SAMPLES(td))
PMC_CALL_HOOK(td, PMC_FN_THR_USERRET, NULL);
#endif
#ifdef TCPHPTS
/*
* @gallatin is adament that this needs to go here, I
* am not so sure. Running hpts is a lot like
* a lro_flush() that happens while a user process
* is running. But he may know best so I will go
* with his view of accounting. :-)
*/
tcp_run_hpts();
#endif
/*
* Let the scheduler adjust our priority etc.
*/
sched_userret(td);
/*
* Check for misbehavior.
*
* In case there is a callchain tracing ongoing because of
* hwpmc(4), skip the scheduler pinning check.
* hwpmc(4) subsystem, infact, will collect callchain informations
* at ast() checkpoint, which is past userret().
*/
WITNESS_WARN(WARN_PANIC, NULL, "userret: returning");
KASSERT(td->td_critnest == 0,
("userret: Returning in a critical section"));
KASSERT(td->td_locks == 0,
("userret: Returning with %d locks held", td->td_locks));
KASSERT(td->td_rw_rlocks == 0,
("userret: Returning with %d rwlocks held in read mode",
td->td_rw_rlocks));
KASSERT(td->td_sx_slocks == 0,
("userret: Returning with %d sx locks held in shared mode",
td->td_sx_slocks));
KASSERT(td->td_lk_slocks == 0,
("userret: Returning with %d lockmanager locks held in shared mode",
td->td_lk_slocks));
KASSERT((td->td_pflags & TDP_NOFAULTING) == 0,
("userret: Returning with pagefaults disabled"));
if (__predict_false(!THREAD_CAN_SLEEP())) {
#ifdef EPOCH_TRACE
epoch_trace_list(curthread);
#endif
KASSERT(0, ("userret: Returning with sleep disabled"));
}
KASSERT(td->td_pinned == 0 || (td->td_pflags & TDP_CALLCHAIN) != 0,
("userret: Returning with with pinned thread"));
KASSERT(td->td_vp_reserved == NULL,
("userret: Returning with preallocated vnode"));
KASSERT((td->td_flags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
("userret: Returning with stop signals deferred"));
KASSERT(td->td_vslock_sz == 0,
("userret: Returning with vslock-wired space"));
#ifdef VIMAGE
/* Unfortunately td_vnet_lpush needs VNET_DEBUG. */
VNET_ASSERT(curvnet == NULL,
("%s: Returning on td %p (pid %d, %s) with vnet %p set in %s",
__func__, td, p->p_pid, td->td_name, curvnet,
(td->td_vnet_lpush != NULL) ? td->td_vnet_lpush : "N/A"));
#endif
}
/*
* Process an asynchronous software trap.
* This is relatively easy.
* This function will return with preemption disabled.
*/
void
ast(struct trapframe *framep)
{
struct thread *td;
struct proc *p;
int flags, sig;
bool resched_sigs;
kmsan_mark(framep, sizeof(*framep), KMSAN_STATE_INITED);
td = curthread;
p = td->td_proc;
CTR3(KTR_SYSC, "ast: thread %p (pid %d, %s)", td, p->p_pid,
p->p_comm);
KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
WITNESS_WARN(WARN_PANIC, NULL, "Returning to user mode");
mtx_assert(&Giant, MA_NOTOWNED);
THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
td->td_frame = framep;
td->td_pticks = 0;
/*
* This updates the td_flag's for the checks below in one
* "atomic" operation with turning off the astpending flag.
* If another AST is triggered while we are handling the
* AST's saved in flags, the astpending flag will be set and
* ast() will be called again.
*/
thread_lock(td);
flags = td->td_flags;
td->td_flags &= ~(TDF_ASTPENDING | TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK |
TDF_NEEDRESCHED | TDF_ALRMPEND | TDF_PROFPEND | TDF_MACPEND);
thread_unlock(td);
VM_CNT_INC(v_trap);
if (td->td_cowgen != p->p_cowgen)
thread_cow_update(td);
if (td->td_pflags & TDP_OWEUPC && p->p_flag & P_PROFIL) {
addupc_task(td, td->td_profil_addr, td->td_profil_ticks);
td->td_profil_ticks = 0;
td->td_pflags &= ~TDP_OWEUPC;
}
#ifdef HWPMC_HOOKS
/* Handle Software PMC callchain capture. */
if (PMC_IS_PENDING_CALLCHAIN(td))
PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_USER_CALLCHAIN_SOFT, (void *) framep);
#endif
if (flags & TDF_ALRMPEND) {
PROC_LOCK(p);
kern_psignal(p, SIGVTALRM);
PROC_UNLOCK(p);
}
if (flags & TDF_PROFPEND) {
PROC_LOCK(p);
kern_psignal(p, SIGPROF);
PROC_UNLOCK(p);
}
#ifdef MAC
if (flags & TDF_MACPEND)
mac_thread_userret(td);
#endif
if (flags & TDF_NEEDRESCHED) {
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(1, 1, __func__);
#endif
thread_lock(td);
sched_prio(td, td->td_user_pri);
mi_switch(SW_INVOL | SWT_NEEDRESCHED);
#ifdef KTRACE
if (KTRPOINT(td, KTR_CSW))
ktrcsw(0, 1, __func__);
#endif
}
td_softdep_cleanup(td);
MPASS(td->td_su == NULL);
/*
* If this thread tickled GEOM, we need to wait for the giggling to
* stop before we return to userland
*/
if (__predict_false(td->td_pflags & TDP_GEOM))
g_waitidle();
#ifdef DIAGNOSTIC
if (p->p_numthreads == 1 && (flags & TDF_NEEDSIGCHK) == 0) {
PROC_LOCK(p);
thread_lock(td);
/*
* Note that TDF_NEEDSIGCHK should be re-read from
* td_flags, since signal might have been delivered
* after we cleared td_flags above. This is one of
* the reason for looping check for AST condition.
* See comment in userret() about P_PPWAIT.
*/
if ((p->p_flag & P_PPWAIT) == 0 &&
(td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
if (SIGPENDING(td) && (td->td_flags &
(TDF_NEEDSIGCHK | TDF_ASTPENDING)) !=
(TDF_NEEDSIGCHK | TDF_ASTPENDING)) {
thread_unlock(td); /* fix dumps */
panic(
"failed2 to set signal flags for ast p %p td %p fl %x %x",
p, td, flags, td->td_flags);
}
}
thread_unlock(td);
PROC_UNLOCK(p);
}
#endif
/*
* Check for signals. Unlocked reads of p_pendingcnt or
* p_siglist might cause process-directed signal to be handled
* later.
*/
if (flags & TDF_NEEDSIGCHK || p->p_pendingcnt > 0 ||
!SIGISEMPTY(p->p_siglist)) {
sigfastblock_fetch(td);
PROC_LOCK(p);
mtx_lock(&p->p_sigacts->ps_mtx);
while ((sig = cursig(td)) != 0) {
KASSERT(sig >= 0, ("sig %d", sig));
postsig(sig);
}
mtx_unlock(&p->p_sigacts->ps_mtx);
PROC_UNLOCK(p);
resched_sigs = true;
} else {
resched_sigs = false;
}
/*
* Handle deferred update of the fast sigblock value, after
* the postsig() loop was performed.
*/
sigfastblock_setpend(td, resched_sigs);
#ifdef KTRACE
KTRUSERRET(td);
#endif
/*
* We need to check to see if we have to exit or wait due to a
* single threading requirement or some other STOP condition.
*/
if (flags & TDF_NEEDSUSPCHK) {
PROC_LOCK(p);
thread_suspend_check(0);
PROC_UNLOCK(p);
}
if (td->td_pflags & TDP_OLDMASK) {
td->td_pflags &= ~TDP_OLDMASK;
kern_sigprocmask(td, SIG_SETMASK, &td->td_oldsigmask, NULL, 0);
}
#ifdef RACCT
if (__predict_false(racct_enable && p->p_throttled != 0))
racct_proc_throttled(p);
#endif
userret(td, framep);
}
const char *
syscallname(struct proc *p, u_int code)
{
static const char unknown[] = "unknown";
struct sysentvec *sv;
sv = p->p_sysent;
if (sv->sv_syscallnames == NULL || code >= sv->sv_size)
return (unknown);
return (sv->sv_syscallnames[code]);
}