freebsd-nq/sys/kern/vfs_aio.c
Mark Johnston 2e5f615295 lio_listio: Don't post a completion notification if none was requested
One is allowed to use LIO_NOWAIT without specifying a sigevent.  In this
case, lj->lioj_signal is left uninitialized, but several code paths
examine liov_signal.sigev_notify to figure out which notification to
post.  Unconditionally initialize that field to SIGEV_NONE.

Add a dumb test case which triggers the bug.

Reported by:	KMSAN+syzkaller
Reviewed by:	asomers
MFC after:	2 weeks
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D31197
2021-07-15 22:41:10 -04:00

3157 lines
76 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 1997 John S. Dyson. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. John S. Dyson's name may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* DISCLAIMER: This code isn't warranted to do anything useful. Anything
* bad that happens because of using this software isn't the responsibility
* of the author. This software is distributed AS-IS.
*/
/*
* This file contains support for the POSIX 1003.1B AIO/LIO facility.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/capsicum.h>
#include <sys/eventhandler.h>
#include <sys/sysproto.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/kthread.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/unistd.h>
#include <sys/posix4.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/syscallsubr.h>
#include <sys/protosw.h>
#include <sys/rwlock.h>
#include <sys/sema.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syscall.h>
#include <sys/sysent.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/sx.h>
#include <sys/taskqueue.h>
#include <sys/vnode.h>
#include <sys/conf.h>
#include <sys/event.h>
#include <sys/mount.h>
#include <geom/geom.h>
#include <machine/atomic.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/uma.h>
#include <sys/aio.h>
/*
* Counter for allocating reference ids to new jobs. Wrapped to 1 on
* overflow. (XXX will be removed soon.)
*/
static u_long jobrefid;
/*
* Counter for aio_fsync.
*/
static uint64_t jobseqno;
#ifndef MAX_AIO_PER_PROC
#define MAX_AIO_PER_PROC 32
#endif
#ifndef MAX_AIO_QUEUE_PER_PROC
#define MAX_AIO_QUEUE_PER_PROC 256
#endif
#ifndef MAX_AIO_QUEUE
#define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
#endif
#ifndef MAX_BUF_AIO
#define MAX_BUF_AIO 16
#endif
FEATURE(aio, "Asynchronous I/O");
SYSCTL_DECL(_p1003_1b);
static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list");
static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Async IO management");
static int enable_aio_unsafe = 0;
SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
"Permit asynchronous IO on all file types, not just known-safe types");
static unsigned int unsafe_warningcnt = 1;
SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
&unsafe_warningcnt, 0,
"Warnings that will be triggered upon failed IO requests on unsafe files");
static int max_aio_procs = MAX_AIO_PROCS;
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
"Maximum number of kernel processes to use for handling async IO ");
static int num_aio_procs = 0;
SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
"Number of presently active kernel processes for async IO");
/*
* The code will adjust the actual number of AIO processes towards this
* number when it gets a chance.
*/
static int target_aio_procs = TARGET_AIO_PROCS;
SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
0,
"Preferred number of ready kernel processes for async IO");
static int max_queue_count = MAX_AIO_QUEUE;
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
"Maximum number of aio requests to queue, globally");
static int num_queue_count = 0;
SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
"Number of queued aio requests");
static int num_buf_aio = 0;
SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
"Number of aio requests presently handled by the buf subsystem");
static int num_unmapped_aio = 0;
SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
0,
"Number of aio requests presently handled by unmapped I/O buffers");
/* Number of async I/O processes in the process of being started */
/* XXX This should be local to aio_aqueue() */
static int num_aio_resv_start = 0;
static int aiod_lifetime;
SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
"Maximum lifetime for idle aiod");
static int max_aio_per_proc = MAX_AIO_PER_PROC;
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
0,
"Maximum active aio requests per process");
static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
&max_aio_queue_per_proc, 0,
"Maximum queued aio requests per process");
static int max_buf_aio = MAX_BUF_AIO;
SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
"Maximum buf aio requests per process");
/*
* Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
* sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
* vfs.aio.aio_listio_max.
*/
SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
0, "Maximum aio requests for a single lio_listio call");
#ifdef COMPAT_FREEBSD6
typedef struct oaiocb {
int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset for I/O */
volatile void *aio_buf; /* I/O buffer in process space */
size_t aio_nbytes; /* Number of bytes for I/O */
struct osigevent aio_sigevent; /* Signal to deliver */
int aio_lio_opcode; /* LIO opcode */
int aio_reqprio; /* Request priority -- ignored */
struct __aiocb_private _aiocb_private;
} oaiocb_t;
#endif
/*
* Below is a key of locks used to protect each member of struct kaiocb
* aioliojob and kaioinfo and any backends.
*
* * - need not protected
* a - locked by kaioinfo lock
* b - locked by backend lock, the backend lock can be null in some cases,
* for example, BIO belongs to this type, in this case, proc lock is
* reused.
* c - locked by aio_job_mtx, the lock for the generic file I/O backend.
*/
/*
* If the routine that services an AIO request blocks while running in an
* AIO kernel process it can starve other I/O requests. BIO requests
* queued via aio_qbio() complete asynchronously and do not use AIO kernel
* processes at all. Socket I/O requests use a separate pool of
* kprocs and also force non-blocking I/O. Other file I/O requests
* use the generic fo_read/fo_write operations which can block. The
* fsync and mlock operations can also block while executing. Ideally
* none of these requests would block while executing.
*
* Note that the service routines cannot toggle O_NONBLOCK in the file
* structure directly while handling a request due to races with
* userland threads.
*/
/* jobflags */
#define KAIOCB_QUEUEING 0x01
#define KAIOCB_CANCELLED 0x02
#define KAIOCB_CANCELLING 0x04
#define KAIOCB_CHECKSYNC 0x08
#define KAIOCB_CLEARED 0x10
#define KAIOCB_FINISHED 0x20
/*
* AIO process info
*/
#define AIOP_FREE 0x1 /* proc on free queue */
struct aioproc {
int aioprocflags; /* (c) AIO proc flags */
TAILQ_ENTRY(aioproc) list; /* (c) list of processes */
struct proc *aioproc; /* (*) the AIO proc */
};
/*
* data-structure for lio signal management
*/
struct aioliojob {
int lioj_flags; /* (a) listio flags */
int lioj_count; /* (a) count of jobs */
int lioj_finished_count; /* (a) count of finished jobs */
struct sigevent lioj_signal; /* (a) signal on all I/O done */
TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */
struct knlist klist; /* (a) list of knotes */
ksiginfo_t lioj_ksi; /* (a) Realtime signal info */
};
#define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */
#define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */
#define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */
/*
* per process aio data structure
*/
struct kaioinfo {
struct mtx kaio_mtx; /* the lock to protect this struct */
int kaio_flags; /* (a) per process kaio flags */
int kaio_active_count; /* (c) number of currently used AIOs */
int kaio_count; /* (a) size of AIO queue */
int kaio_buffer_count; /* (a) number of bio buffers */
TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */
TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */
TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */
TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */
TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */
struct task kaio_task; /* (*) task to kick aio processes */
struct task kaio_sync_task; /* (*) task to schedule fsync jobs */
};
#define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx)
#define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx)
#define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f))
#define AIO_MTX(ki) (&(ki)->kaio_mtx)
#define KAIO_RUNDOWN 0x1 /* process is being run down */
#define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */
/*
* Operations used to interact with userland aio control blocks.
* Different ABIs provide their own operations.
*/
struct aiocb_ops {
int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
long (*fetch_status)(struct aiocb *ujob);
long (*fetch_error)(struct aiocb *ujob);
int (*store_status)(struct aiocb *ujob, long status);
int (*store_error)(struct aiocb *ujob, long error);
int (*store_kernelinfo)(struct aiocb *ujob, long jobref);
int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
};
static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */
static struct sema aio_newproc_sem;
static struct mtx aio_job_mtx;
static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */
static struct unrhdr *aiod_unr;
static void aio_biocleanup(struct bio *bp);
void aio_init_aioinfo(struct proc *p);
static int aio_onceonly(void);
static int aio_free_entry(struct kaiocb *job);
static void aio_process_rw(struct kaiocb *job);
static void aio_process_sync(struct kaiocb *job);
static void aio_process_mlock(struct kaiocb *job);
static void aio_schedule_fsync(void *context, int pending);
static int aio_newproc(int *);
int aio_aqueue(struct thread *td, struct aiocb *ujob,
struct aioliojob *lio, int type, struct aiocb_ops *ops);
static int aio_queue_file(struct file *fp, struct kaiocb *job);
static void aio_biowakeup(struct bio *bp);
static void aio_proc_rundown(void *arg, struct proc *p);
static void aio_proc_rundown_exec(void *arg, struct proc *p,
struct image_params *imgp);
static int aio_qbio(struct proc *p, struct kaiocb *job);
static void aio_daemon(void *param);
static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
static bool aio_clear_cancel_function_locked(struct kaiocb *job);
static int aio_kick(struct proc *userp);
static void aio_kick_nowait(struct proc *userp);
static void aio_kick_helper(void *context, int pending);
static int filt_aioattach(struct knote *kn);
static void filt_aiodetach(struct knote *kn);
static int filt_aio(struct knote *kn, long hint);
static int filt_lioattach(struct knote *kn);
static void filt_liodetach(struct knote *kn);
static int filt_lio(struct knote *kn, long hint);
/*
* Zones for:
* kaio Per process async io info
* aiop async io process data
* aiocb async io jobs
* aiolio list io jobs
*/
static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone;
/* kqueue filters for aio */
static struct filterops aio_filtops = {
.f_isfd = 0,
.f_attach = filt_aioattach,
.f_detach = filt_aiodetach,
.f_event = filt_aio,
};
static struct filterops lio_filtops = {
.f_isfd = 0,
.f_attach = filt_lioattach,
.f_detach = filt_liodetach,
.f_event = filt_lio
};
static eventhandler_tag exit_tag, exec_tag;
TASKQUEUE_DEFINE_THREAD(aiod_kick);
/*
* Main operations function for use as a kernel module.
*/
static int
aio_modload(struct module *module, int cmd, void *arg)
{
int error = 0;
switch (cmd) {
case MOD_LOAD:
aio_onceonly();
break;
case MOD_SHUTDOWN:
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
static moduledata_t aio_mod = {
"aio",
&aio_modload,
NULL
};
DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
MODULE_VERSION(aio, 1);
/*
* Startup initialization
*/
static int
aio_onceonly(void)
{
exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
EVENTHANDLER_PRI_ANY);
exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
NULL, EVENTHANDLER_PRI_ANY);
kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
TAILQ_INIT(&aio_freeproc);
sema_init(&aio_newproc_sem, 0, "aio_new_proc");
mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
TAILQ_INIT(&aio_jobs);
aiod_unr = new_unrhdr(1, INT_MAX, NULL);
kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL,
NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
aiod_lifetime = AIOD_LIFETIME_DEFAULT;
jobrefid = 1;
p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
return (0);
}
/*
* Init the per-process aioinfo structure. The aioinfo limits are set
* per-process for user limit (resource) management.
*/
void
aio_init_aioinfo(struct proc *p)
{
struct kaioinfo *ki;
ki = uma_zalloc(kaio_zone, M_WAITOK);
mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
ki->kaio_flags = 0;
ki->kaio_active_count = 0;
ki->kaio_count = 0;
ki->kaio_buffer_count = 0;
TAILQ_INIT(&ki->kaio_all);
TAILQ_INIT(&ki->kaio_done);
TAILQ_INIT(&ki->kaio_jobqueue);
TAILQ_INIT(&ki->kaio_liojoblist);
TAILQ_INIT(&ki->kaio_syncqueue);
TAILQ_INIT(&ki->kaio_syncready);
TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
PROC_LOCK(p);
if (p->p_aioinfo == NULL) {
p->p_aioinfo = ki;
PROC_UNLOCK(p);
} else {
PROC_UNLOCK(p);
mtx_destroy(&ki->kaio_mtx);
uma_zfree(kaio_zone, ki);
}
while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
aio_newproc(NULL);
}
static int
aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
{
struct thread *td;
int error;
error = sigev_findtd(p, sigev, &td);
if (error)
return (error);
if (!KSI_ONQ(ksi)) {
ksiginfo_set_sigev(ksi, sigev);
ksi->ksi_code = SI_ASYNCIO;
ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
tdsendsignal(p, td, ksi->ksi_signo, ksi);
}
PROC_UNLOCK(p);
return (error);
}
/*
* Free a job entry. Wait for completion if it is currently active, but don't
* delay forever. If we delay, we return a flag that says that we have to
* restart the queue scan.
*/
static int
aio_free_entry(struct kaiocb *job)
{
struct kaioinfo *ki;
struct aioliojob *lj;
struct proc *p;
p = job->userproc;
MPASS(curproc == p);
ki = p->p_aioinfo;
MPASS(ki != NULL);
AIO_LOCK_ASSERT(ki, MA_OWNED);
MPASS(job->jobflags & KAIOCB_FINISHED);
atomic_subtract_int(&num_queue_count, 1);
ki->kaio_count--;
MPASS(ki->kaio_count >= 0);
TAILQ_REMOVE(&ki->kaio_done, job, plist);
TAILQ_REMOVE(&ki->kaio_all, job, allist);
lj = job->lio;
if (lj) {
lj->lioj_count--;
lj->lioj_finished_count--;
if (lj->lioj_count == 0) {
TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
/* lio is going away, we need to destroy any knotes */
knlist_delete(&lj->klist, curthread, 1);
PROC_LOCK(p);
sigqueue_take(&lj->lioj_ksi);
PROC_UNLOCK(p);
uma_zfree(aiolio_zone, lj);
}
}
/* job is going away, we need to destroy any knotes */
knlist_delete(&job->klist, curthread, 1);
PROC_LOCK(p);
sigqueue_take(&job->ksi);
PROC_UNLOCK(p);
AIO_UNLOCK(ki);
/*
* The thread argument here is used to find the owning process
* and is also passed to fo_close() which may pass it to various
* places such as devsw close() routines. Because of that, we
* need a thread pointer from the process owning the job that is
* persistent and won't disappear out from under us or move to
* another process.
*
* Currently, all the callers of this function call it to remove
* a kaiocb from the current process' job list either via a
* syscall or due to the current process calling exit() or
* execve(). Thus, we know that p == curproc. We also know that
* curthread can't exit since we are curthread.
*
* Therefore, we use curthread as the thread to pass to
* knlist_delete(). This does mean that it is possible for the
* thread pointer at close time to differ from the thread pointer
* at open time, but this is already true of file descriptors in
* a multithreaded process.
*/
if (job->fd_file)
fdrop(job->fd_file, curthread);
crfree(job->cred);
if (job->uiop != &job->uio)
free(job->uiop, M_IOV);
uma_zfree(aiocb_zone, job);
AIO_LOCK(ki);
return (0);
}
static void
aio_proc_rundown_exec(void *arg, struct proc *p,
struct image_params *imgp __unused)
{
aio_proc_rundown(arg, p);
}
static int
aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
{
aio_cancel_fn_t *func;
int cancelled;
AIO_LOCK_ASSERT(ki, MA_OWNED);
if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
return (0);
MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
job->jobflags |= KAIOCB_CANCELLED;
func = job->cancel_fn;
/*
* If there is no cancel routine, just leave the job marked as
* cancelled. The job should be in active use by a caller who
* should complete it normally or when it fails to install a
* cancel routine.
*/
if (func == NULL)
return (0);
/*
* Set the CANCELLING flag so that aio_complete() will defer
* completions of this job. This prevents the job from being
* freed out from under the cancel callback. After the
* callback any deferred completion (whether from the callback
* or any other source) will be completed.
*/
job->jobflags |= KAIOCB_CANCELLING;
AIO_UNLOCK(ki);
func(job);
AIO_LOCK(ki);
job->jobflags &= ~KAIOCB_CANCELLING;
if (job->jobflags & KAIOCB_FINISHED) {
cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
aio_bio_done_notify(p, job);
} else {
/*
* The cancel callback might have scheduled an
* operation to cancel this request, but it is
* only counted as cancelled if the request is
* cancelled when the callback returns.
*/
cancelled = 0;
}
return (cancelled);
}
/*
* Rundown the jobs for a given process.
*/
static void
aio_proc_rundown(void *arg, struct proc *p)
{
struct kaioinfo *ki;
struct aioliojob *lj;
struct kaiocb *job, *jobn;
KASSERT(curthread->td_proc == p,
("%s: called on non-curproc", __func__));
ki = p->p_aioinfo;
if (ki == NULL)
return;
AIO_LOCK(ki);
ki->kaio_flags |= KAIO_RUNDOWN;
restart:
/*
* Try to cancel all pending requests. This code simulates
* aio_cancel on all pending I/O requests.
*/
TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
aio_cancel_job(p, ki, job);
}
/* Wait for all running I/O to be finished */
if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
ki->kaio_flags |= KAIO_WAKEUP;
msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
goto restart;
}
/* Free all completed I/O requests. */
while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
aio_free_entry(job);
while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
if (lj->lioj_count == 0) {
TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
knlist_delete(&lj->klist, curthread, 1);
PROC_LOCK(p);
sigqueue_take(&lj->lioj_ksi);
PROC_UNLOCK(p);
uma_zfree(aiolio_zone, lj);
} else {
panic("LIO job not cleaned up: C:%d, FC:%d\n",
lj->lioj_count, lj->lioj_finished_count);
}
}
AIO_UNLOCK(ki);
taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
mtx_destroy(&ki->kaio_mtx);
uma_zfree(kaio_zone, ki);
p->p_aioinfo = NULL;
}
/*
* Select a job to run (called by an AIO daemon).
*/
static struct kaiocb *
aio_selectjob(struct aioproc *aiop)
{
struct kaiocb *job;
struct kaioinfo *ki;
struct proc *userp;
mtx_assert(&aio_job_mtx, MA_OWNED);
restart:
TAILQ_FOREACH(job, &aio_jobs, list) {
userp = job->userproc;
ki = userp->p_aioinfo;
if (ki->kaio_active_count < max_aio_per_proc) {
TAILQ_REMOVE(&aio_jobs, job, list);
if (!aio_clear_cancel_function(job))
goto restart;
/* Account for currently active jobs. */
ki->kaio_active_count++;
break;
}
}
return (job);
}
/*
* Move all data to a permanent storage device. This code
* simulates the fsync and fdatasync syscalls.
*/
static int
aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
{
struct mount *mp;
int error;
if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
goto drop;
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (vp->v_object != NULL) {
VM_OBJECT_WLOCK(vp->v_object);
vm_object_page_clean(vp->v_object, 0, 0, 0);
VM_OBJECT_WUNLOCK(vp->v_object);
}
if (op == LIO_DSYNC)
error = VOP_FDATASYNC(vp, td);
else
error = VOP_FSYNC(vp, MNT_WAIT, td);
VOP_UNLOCK(vp);
vn_finished_write(mp);
drop:
return (error);
}
/*
* The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that
* does the I/O request for the non-bio version of the operations. The normal
* vn operations are used, and this code should work in all instances for every
* type of file, including pipes, sockets, fifos, and regular files.
*
* XXX I don't think it works well for socket, pipe, and fifo.
*/
static void
aio_process_rw(struct kaiocb *job)
{
struct ucred *td_savedcred;
struct thread *td;
struct aiocb *cb;
struct file *fp;
ssize_t cnt;
long msgsnd_st, msgsnd_end;
long msgrcv_st, msgrcv_end;
long oublock_st, oublock_end;
long inblock_st, inblock_end;
int error, opcode;
KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
job->uaiocb.aio_lio_opcode == LIO_READV ||
job->uaiocb.aio_lio_opcode == LIO_WRITE ||
job->uaiocb.aio_lio_opcode == LIO_WRITEV,
("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
aio_switch_vmspace(job);
td = curthread;
td_savedcred = td->td_ucred;
td->td_ucred = job->cred;
job->uiop->uio_td = td;
cb = &job->uaiocb;
fp = job->fd_file;
opcode = job->uaiocb.aio_lio_opcode;
cnt = job->uiop->uio_resid;
msgrcv_st = td->td_ru.ru_msgrcv;
msgsnd_st = td->td_ru.ru_msgsnd;
inblock_st = td->td_ru.ru_inblock;
oublock_st = td->td_ru.ru_oublock;
/*
* aio_aqueue() acquires a reference to the file that is
* released in aio_free_entry().
*/
if (opcode == LIO_READ || opcode == LIO_READV) {
if (job->uiop->uio_resid == 0)
error = 0;
else
error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET,
td);
} else {
if (fp->f_type == DTYPE_VNODE)
bwillwrite();
error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td);
}
msgrcv_end = td->td_ru.ru_msgrcv;
msgsnd_end = td->td_ru.ru_msgsnd;
inblock_end = td->td_ru.ru_inblock;
oublock_end = td->td_ru.ru_oublock;
job->msgrcv = msgrcv_end - msgrcv_st;
job->msgsnd = msgsnd_end - msgsnd_st;
job->inblock = inblock_end - inblock_st;
job->outblock = oublock_end - oublock_st;
if (error != 0 && job->uiop->uio_resid != cnt) {
if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
error = 0;
if (error == EPIPE && (opcode & LIO_WRITE)) {
PROC_LOCK(job->userproc);
kern_psignal(job->userproc, SIGPIPE);
PROC_UNLOCK(job->userproc);
}
}
cnt -= job->uiop->uio_resid;
td->td_ucred = td_savedcred;
if (error)
aio_complete(job, -1, error);
else
aio_complete(job, cnt, 0);
}
static void
aio_process_sync(struct kaiocb *job)
{
struct thread *td = curthread;
struct ucred *td_savedcred = td->td_ucred;
struct file *fp = job->fd_file;
int error = 0;
KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
td->td_ucred = job->cred;
if (fp->f_vnode != NULL) {
error = aio_fsync_vnode(td, fp->f_vnode,
job->uaiocb.aio_lio_opcode);
}
td->td_ucred = td_savedcred;
if (error)
aio_complete(job, -1, error);
else
aio_complete(job, 0, 0);
}
static void
aio_process_mlock(struct kaiocb *job)
{
struct aiocb *cb = &job->uaiocb;
int error;
KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
aio_switch_vmspace(job);
error = kern_mlock(job->userproc, job->cred,
__DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
aio_complete(job, error != 0 ? -1 : 0, error);
}
static void
aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
{
struct aioliojob *lj;
struct kaioinfo *ki;
struct kaiocb *sjob, *sjobn;
int lj_done;
bool schedule_fsync;
ki = userp->p_aioinfo;
AIO_LOCK_ASSERT(ki, MA_OWNED);
lj = job->lio;
lj_done = 0;
if (lj) {
lj->lioj_finished_count++;
if (lj->lioj_count == lj->lioj_finished_count)
lj_done = 1;
}
TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
MPASS(job->jobflags & KAIOCB_FINISHED);
if (ki->kaio_flags & KAIO_RUNDOWN)
goto notification_done;
if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
KNOTE_LOCKED(&job->klist, 1);
if (lj_done) {
if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
lj->lioj_flags |= LIOJ_KEVENT_POSTED;
KNOTE_LOCKED(&lj->klist, 1);
}
if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
== LIOJ_SIGNAL &&
(lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
true);
lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
}
}
notification_done:
if (job->jobflags & KAIOCB_CHECKSYNC) {
schedule_fsync = false;
TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
if (job->fd_file != sjob->fd_file ||
job->seqno >= sjob->seqno)
continue;
if (--sjob->pending > 0)
continue;
TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
if (!aio_clear_cancel_function_locked(sjob))
continue;
TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
schedule_fsync = true;
}
if (schedule_fsync)
taskqueue_enqueue(taskqueue_aiod_kick,
&ki->kaio_sync_task);
}
if (ki->kaio_flags & KAIO_WAKEUP) {
ki->kaio_flags &= ~KAIO_WAKEUP;
wakeup(&userp->p_aioinfo);
}
}
static void
aio_schedule_fsync(void *context, int pending)
{
struct kaioinfo *ki;
struct kaiocb *job;
ki = context;
AIO_LOCK(ki);
while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
job = TAILQ_FIRST(&ki->kaio_syncready);
TAILQ_REMOVE(&ki->kaio_syncready, job, list);
AIO_UNLOCK(ki);
aio_schedule(job, aio_process_sync);
AIO_LOCK(ki);
}
AIO_UNLOCK(ki);
}
bool
aio_cancel_cleared(struct kaiocb *job)
{
/*
* The caller should hold the same queue lock held when
* aio_clear_cancel_function() was called and set this flag
* ensuring this check sees an up-to-date value. However,
* there is no way to assert that.
*/
return ((job->jobflags & KAIOCB_CLEARED) != 0);
}
static bool
aio_clear_cancel_function_locked(struct kaiocb *job)
{
AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
MPASS(job->cancel_fn != NULL);
if (job->jobflags & KAIOCB_CANCELLING) {
job->jobflags |= KAIOCB_CLEARED;
return (false);
}
job->cancel_fn = NULL;
return (true);
}
bool
aio_clear_cancel_function(struct kaiocb *job)
{
struct kaioinfo *ki;
bool ret;
ki = job->userproc->p_aioinfo;
AIO_LOCK(ki);
ret = aio_clear_cancel_function_locked(job);
AIO_UNLOCK(ki);
return (ret);
}
static bool
aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
{
AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
if (job->jobflags & KAIOCB_CANCELLED)
return (false);
job->cancel_fn = func;
return (true);
}
bool
aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
{
struct kaioinfo *ki;
bool ret;
ki = job->userproc->p_aioinfo;
AIO_LOCK(ki);
ret = aio_set_cancel_function_locked(job, func);
AIO_UNLOCK(ki);
return (ret);
}
void
aio_complete(struct kaiocb *job, long status, int error)
{
struct kaioinfo *ki;
struct proc *userp;
job->uaiocb._aiocb_private.error = error;
job->uaiocb._aiocb_private.status = status;
userp = job->userproc;
ki = userp->p_aioinfo;
AIO_LOCK(ki);
KASSERT(!(job->jobflags & KAIOCB_FINISHED),
("duplicate aio_complete"));
job->jobflags |= KAIOCB_FINISHED;
if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
aio_bio_done_notify(userp, job);
}
AIO_UNLOCK(ki);
}
void
aio_cancel(struct kaiocb *job)
{
aio_complete(job, -1, ECANCELED);
}
void
aio_switch_vmspace(struct kaiocb *job)
{
vmspace_switch_aio(job->userproc->p_vmspace);
}
/*
* The AIO daemon, most of the actual work is done in aio_process_*,
* but the setup (and address space mgmt) is done in this routine.
*/
static void
aio_daemon(void *_id)
{
struct kaiocb *job;
struct aioproc *aiop;
struct kaioinfo *ki;
struct proc *p;
struct vmspace *myvm;
struct thread *td = curthread;
int id = (intptr_t)_id;
/*
* Grab an extra reference on the daemon's vmspace so that it
* doesn't get freed by jobs that switch to a different
* vmspace.
*/
p = td->td_proc;
myvm = vmspace_acquire_ref(p);
KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
/*
* Allocate and ready the aio control info. There is one aiop structure
* per daemon.
*/
aiop = uma_zalloc(aiop_zone, M_WAITOK);
aiop->aioproc = p;
aiop->aioprocflags = 0;
/*
* Wakeup parent process. (Parent sleeps to keep from blasting away
* and creating too many daemons.)
*/
sema_post(&aio_newproc_sem);
mtx_lock(&aio_job_mtx);
for (;;) {
/*
* Take daemon off of free queue
*/
if (aiop->aioprocflags & AIOP_FREE) {
TAILQ_REMOVE(&aio_freeproc, aiop, list);
aiop->aioprocflags &= ~AIOP_FREE;
}
/*
* Check for jobs.
*/
while ((job = aio_selectjob(aiop)) != NULL) {
mtx_unlock(&aio_job_mtx);
ki = job->userproc->p_aioinfo;
job->handle_fn(job);
mtx_lock(&aio_job_mtx);
/* Decrement the active job count. */
ki->kaio_active_count--;
}
/*
* Disconnect from user address space.
*/
if (p->p_vmspace != myvm) {
mtx_unlock(&aio_job_mtx);
vmspace_switch_aio(myvm);
mtx_lock(&aio_job_mtx);
/*
* We have to restart to avoid race, we only sleep if
* no job can be selected.
*/
continue;
}
mtx_assert(&aio_job_mtx, MA_OWNED);
TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
aiop->aioprocflags |= AIOP_FREE;
/*
* If daemon is inactive for a long time, allow it to exit,
* thereby freeing resources.
*/
if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
(aiop->aioprocflags & AIOP_FREE) &&
num_aio_procs > target_aio_procs)
break;
}
TAILQ_REMOVE(&aio_freeproc, aiop, list);
num_aio_procs--;
mtx_unlock(&aio_job_mtx);
uma_zfree(aiop_zone, aiop);
free_unr(aiod_unr, id);
vmspace_free(myvm);
KASSERT(p->p_vmspace == myvm,
("AIOD: bad vmspace for exiting daemon"));
KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
("AIOD: bad vm refcnt for exiting daemon: %d",
refcount_load(&myvm->vm_refcnt)));
kproc_exit(0);
}
/*
* Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
* AIO daemon modifies its environment itself.
*/
static int
aio_newproc(int *start)
{
int error;
struct proc *p;
int id;
id = alloc_unr(aiod_unr);
error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
RFNOWAIT, 0, "aiod%d", id);
if (error == 0) {
/*
* Wait until daemon is started.
*/
sema_wait(&aio_newproc_sem);
mtx_lock(&aio_job_mtx);
num_aio_procs++;
if (start != NULL)
(*start)--;
mtx_unlock(&aio_job_mtx);
} else {
free_unr(aiod_unr, id);
}
return (error);
}
/*
* Try the high-performance, low-overhead bio method for eligible
* VCHR devices. This method doesn't use an aio helper thread, and
* thus has very low overhead.
*
* Assumes that the caller, aio_aqueue(), has incremented the file
* structure's reference count, preventing its deallocation for the
* duration of this call.
*/
static int
aio_qbio(struct proc *p, struct kaiocb *job)
{
struct aiocb *cb;
struct file *fp;
struct buf *pbuf;
struct vnode *vp;
struct cdevsw *csw;
struct cdev *dev;
struct kaioinfo *ki;
struct bio **bios = NULL;
off_t offset;
int bio_cmd, error, i, iovcnt, opcode, poff, ref;
vm_prot_t prot;
bool use_unmapped;
cb = &job->uaiocb;
fp = job->fd_file;
opcode = cb->aio_lio_opcode;
if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
opcode == LIO_READ || opcode == LIO_READV))
return (-1);
if (fp == NULL || fp->f_type != DTYPE_VNODE)
return (-1);
vp = fp->f_vnode;
if (vp->v_type != VCHR)
return (-1);
if (vp->v_bufobj.bo_bsize == 0)
return (-1);
bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
iovcnt = job->uiop->uio_iovcnt;
if (iovcnt > max_buf_aio)
return (-1);
for (i = 0; i < iovcnt; i++) {
if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
return (-1);
if (job->uiop->uio_iov[i].iov_len > maxphys) {
error = -1;
return (-1);
}
}
offset = cb->aio_offset;
ref = 0;
csw = devvn_refthread(vp, &dev, &ref);
if (csw == NULL)
return (ENXIO);
if ((csw->d_flags & D_DISK) == 0) {
error = -1;
goto unref;
}
if (job->uiop->uio_resid > dev->si_iosize_max) {
error = -1;
goto unref;
}
ki = p->p_aioinfo;
job->error = 0;
use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
if (!use_unmapped) {
AIO_LOCK(ki);
if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
AIO_UNLOCK(ki);
error = EAGAIN;
goto unref;
}
ki->kaio_buffer_count += iovcnt;
AIO_UNLOCK(ki);
}
bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
atomic_store_int(&job->nbio, iovcnt);
for (i = 0; i < iovcnt; i++) {
struct vm_page** pages;
struct bio *bp;
void *buf;
size_t nbytes;
int npages;
buf = job->uiop->uio_iov[i].iov_base;
nbytes = job->uiop->uio_iov[i].iov_len;
bios[i] = g_alloc_bio();
bp = bios[i];
poff = (vm_offset_t)buf & PAGE_MASK;
if (use_unmapped) {
pbuf = NULL;
pages = malloc(sizeof(vm_page_t) * (atop(round_page(
nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
} else {
pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
BUF_KERNPROC(pbuf);
pages = pbuf->b_pages;
}
bp->bio_length = nbytes;
bp->bio_bcount = nbytes;
bp->bio_done = aio_biowakeup;
bp->bio_offset = offset;
bp->bio_cmd = bio_cmd;
bp->bio_dev = dev;
bp->bio_caller1 = job;
bp->bio_caller2 = pbuf;
prot = VM_PROT_READ;
if (opcode == LIO_READ || opcode == LIO_READV)
prot |= VM_PROT_WRITE; /* Less backwards than it looks */
npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
(vm_offset_t)buf, bp->bio_length, prot, pages,
atop(maxphys) + 1);
if (npages < 0) {
if (pbuf != NULL)
uma_zfree(pbuf_zone, pbuf);
else
free(pages, M_TEMP);
error = EFAULT;
g_destroy_bio(bp);
i--;
goto destroy_bios;
}
if (pbuf != NULL) {
pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
bp->bio_data = pbuf->b_data + poff;
pbuf->b_npages = npages;
atomic_add_int(&num_buf_aio, 1);
} else {
bp->bio_ma = pages;
bp->bio_ma_n = npages;
bp->bio_ma_offset = poff;
bp->bio_data = unmapped_buf;
bp->bio_flags |= BIO_UNMAPPED;
atomic_add_int(&num_unmapped_aio, 1);
}
offset += nbytes;
}
/* Perform transfer. */
for (i = 0; i < iovcnt; i++)
csw->d_strategy(bios[i]);
free(bios, M_TEMP);
dev_relthread(dev, ref);
return (0);
destroy_bios:
for (; i >= 0; i--)
aio_biocleanup(bios[i]);
free(bios, M_TEMP);
unref:
dev_relthread(dev, ref);
return (error);
}
#ifdef COMPAT_FREEBSD6
static int
convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
{
/*
* Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
* supported by AIO with the old sigevent structure.
*/
nsig->sigev_notify = osig->sigev_notify;
switch (nsig->sigev_notify) {
case SIGEV_NONE:
break;
case SIGEV_SIGNAL:
nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
break;
case SIGEV_KEVENT:
nsig->sigev_notify_kqueue =
osig->__sigev_u.__sigev_notify_kqueue;
nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
break;
default:
return (EINVAL);
}
return (0);
}
static int
aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
int type __unused)
{
struct oaiocb *ojob;
struct aiocb *kcb = &kjob->uaiocb;
int error;
bzero(kcb, sizeof(struct aiocb));
error = copyin(ujob, kcb, sizeof(struct oaiocb));
if (error)
return (error);
/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
ojob = (struct oaiocb *)kcb;
return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
}
#endif
static int
aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
{
struct aiocb *kcb = &kjob->uaiocb;
int error;
error = copyin(ujob, kcb, sizeof(struct aiocb));
if (error)
return (error);
if (type & LIO_VECTORED) {
/* malloc a uio and copy in the iovec */
error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
kcb->aio_iovcnt, &kjob->uiop);
}
return (error);
}
static long
aiocb_fetch_status(struct aiocb *ujob)
{
return (fuword(&ujob->_aiocb_private.status));
}
static long
aiocb_fetch_error(struct aiocb *ujob)
{
return (fuword(&ujob->_aiocb_private.error));
}
static int
aiocb_store_status(struct aiocb *ujob, long status)
{
return (suword(&ujob->_aiocb_private.status, status));
}
static int
aiocb_store_error(struct aiocb *ujob, long error)
{
return (suword(&ujob->_aiocb_private.error, error));
}
static int
aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
{
return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
}
static int
aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
{
return (suword(ujobp, (long)ujob));
}
static struct aiocb_ops aiocb_ops = {
.aio_copyin = aiocb_copyin,
.fetch_status = aiocb_fetch_status,
.fetch_error = aiocb_fetch_error,
.store_status = aiocb_store_status,
.store_error = aiocb_store_error,
.store_kernelinfo = aiocb_store_kernelinfo,
.store_aiocb = aiocb_store_aiocb,
};
#ifdef COMPAT_FREEBSD6
static struct aiocb_ops aiocb_ops_osigevent = {
.aio_copyin = aiocb_copyin_old_sigevent,
.fetch_status = aiocb_fetch_status,
.fetch_error = aiocb_fetch_error,
.store_status = aiocb_store_status,
.store_error = aiocb_store_error,
.store_kernelinfo = aiocb_store_kernelinfo,
.store_aiocb = aiocb_store_aiocb,
};
#endif
/*
* Queue a new AIO request. Choosing either the threaded or direct bio VCHR
* technique is done in this code.
*/
int
aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
int type, struct aiocb_ops *ops)
{
struct proc *p = td->td_proc;
struct file *fp = NULL;
struct kaiocb *job;
struct kaioinfo *ki;
struct kevent kev;
int opcode;
int error;
int fd, kqfd;
int jid;
u_short evflags;
if (p->p_aioinfo == NULL)
aio_init_aioinfo(p);
ki = p->p_aioinfo;
ops->store_status(ujob, -1);
ops->store_error(ujob, 0);
ops->store_kernelinfo(ujob, -1);
if (num_queue_count >= max_queue_count ||
ki->kaio_count >= max_aio_queue_per_proc) {
error = EAGAIN;
goto err1;
}
job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
knlist_init_mtx(&job->klist, AIO_MTX(ki));
error = ops->aio_copyin(ujob, job, type);
if (error)
goto err2;
if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
error = EINVAL;
goto err2;
}
if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
error = EINVAL;
goto err2;
}
if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
error = EINVAL;
goto err2;
}
/* Get the opcode. */
if (type == LIO_NOP) {
switch (job->uaiocb.aio_lio_opcode) {
case LIO_WRITE:
case LIO_NOP:
case LIO_READ:
opcode = job->uaiocb.aio_lio_opcode;
break;
default:
error = EINVAL;
goto err2;
}
} else
opcode = job->uaiocb.aio_lio_opcode = type;
ksiginfo_init(&job->ksi);
/* Save userspace address of the job info. */
job->ujob = ujob;
/*
* Validate the opcode and fetch the file object for the specified
* file descriptor.
*
* XXXRW: Moved the opcode validation up here so that we don't
* retrieve a file descriptor without knowing what the capabiltity
* should be.
*/
fd = job->uaiocb.aio_fildes;
switch (opcode) {
case LIO_WRITE:
case LIO_WRITEV:
error = fget_write(td, fd, &cap_pwrite_rights, &fp);
break;
case LIO_READ:
case LIO_READV:
error = fget_read(td, fd, &cap_pread_rights, &fp);
break;
case LIO_SYNC:
case LIO_DSYNC:
error = fget(td, fd, &cap_fsync_rights, &fp);
break;
case LIO_MLOCK:
break;
case LIO_NOP:
error = fget(td, fd, &cap_no_rights, &fp);
break;
default:
error = EINVAL;
}
if (error)
goto err3;
if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
error = EINVAL;
goto err3;
}
if ((opcode == LIO_READ || opcode == LIO_READV ||
opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
job->uaiocb.aio_offset < 0 &&
(fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
error = EINVAL;
goto err3;
}
if (fp != NULL && fp->f_ops == &path_fileops) {
error = EBADF;
goto err3;
}
job->fd_file = fp;
mtx_lock(&aio_job_mtx);
jid = jobrefid++;
job->seqno = jobseqno++;
mtx_unlock(&aio_job_mtx);
error = ops->store_kernelinfo(ujob, jid);
if (error) {
error = EINVAL;
goto err3;
}
job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
if (opcode == LIO_NOP) {
fdrop(fp, td);
MPASS(job->uiop == &job->uio || job->uiop == NULL);
uma_zfree(aiocb_zone, job);
return (0);
}
if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
goto no_kqueue;
evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
error = EINVAL;
goto err3;
}
kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
memset(&kev, 0, sizeof(kev));
kev.ident = (uintptr_t)job->ujob;
kev.filter = EVFILT_AIO;
kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
kev.data = (intptr_t)job;
kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
error = kqfd_register(kqfd, &kev, td, M_WAITOK);
if (error)
goto err3;
no_kqueue:
ops->store_error(ujob, EINPROGRESS);
job->uaiocb._aiocb_private.error = EINPROGRESS;
job->userproc = p;
job->cred = crhold(td->td_ucred);
job->jobflags = KAIOCB_QUEUEING;
job->lio = lj;
if (opcode & LIO_VECTORED) {
/* Use the uio copied in by aio_copyin */
MPASS(job->uiop != &job->uio && job->uiop != NULL);
} else {
/* Setup the inline uio */
job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
job->iov[0].iov_len = job->uaiocb.aio_nbytes;
job->uio.uio_iov = job->iov;
job->uio.uio_iovcnt = 1;
job->uio.uio_resid = job->uaiocb.aio_nbytes;
job->uio.uio_segflg = UIO_USERSPACE;
job->uiop = &job->uio;
}
switch (opcode & (LIO_READ | LIO_WRITE)) {
case LIO_READ:
job->uiop->uio_rw = UIO_READ;
break;
case LIO_WRITE:
job->uiop->uio_rw = UIO_WRITE;
break;
}
job->uiop->uio_offset = job->uaiocb.aio_offset;
job->uiop->uio_td = td;
if (opcode == LIO_MLOCK) {
aio_schedule(job, aio_process_mlock);
error = 0;
} else if (fp->f_ops->fo_aio_queue == NULL)
error = aio_queue_file(fp, job);
else
error = fo_aio_queue(fp, job);
if (error)
goto err3;
AIO_LOCK(ki);
job->jobflags &= ~KAIOCB_QUEUEING;
TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
ki->kaio_count++;
if (lj)
lj->lioj_count++;
atomic_add_int(&num_queue_count, 1);
if (job->jobflags & KAIOCB_FINISHED) {
/*
* The queue callback completed the request synchronously.
* The bulk of the completion is deferred in that case
* until this point.
*/
aio_bio_done_notify(p, job);
} else
TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
AIO_UNLOCK(ki);
return (0);
err3:
if (fp)
fdrop(fp, td);
knlist_delete(&job->klist, curthread, 0);
err2:
if (job->uiop != &job->uio)
free(job->uiop, M_IOV);
uma_zfree(aiocb_zone, job);
err1:
ops->store_error(ujob, error);
return (error);
}
static void
aio_cancel_daemon_job(struct kaiocb *job)
{
mtx_lock(&aio_job_mtx);
if (!aio_cancel_cleared(job))
TAILQ_REMOVE(&aio_jobs, job, list);
mtx_unlock(&aio_job_mtx);
aio_cancel(job);
}
void
aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
{
mtx_lock(&aio_job_mtx);
if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
mtx_unlock(&aio_job_mtx);
aio_cancel(job);
return;
}
job->handle_fn = func;
TAILQ_INSERT_TAIL(&aio_jobs, job, list);
aio_kick_nowait(job->userproc);
mtx_unlock(&aio_job_mtx);
}
static void
aio_cancel_sync(struct kaiocb *job)
{
struct kaioinfo *ki;
ki = job->userproc->p_aioinfo;
AIO_LOCK(ki);
if (!aio_cancel_cleared(job))
TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
AIO_UNLOCK(ki);
aio_cancel(job);
}
int
aio_queue_file(struct file *fp, struct kaiocb *job)
{
struct kaioinfo *ki;
struct kaiocb *job2;
struct vnode *vp;
struct mount *mp;
int error;
bool safe;
ki = job->userproc->p_aioinfo;
error = aio_qbio(job->userproc, job);
if (error >= 0)
return (error);
safe = false;
if (fp->f_type == DTYPE_VNODE) {
vp = fp->f_vnode;
if (vp->v_type == VREG || vp->v_type == VDIR) {
mp = fp->f_vnode->v_mount;
if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
safe = true;
}
}
if (!(safe || enable_aio_unsafe)) {
counted_warning(&unsafe_warningcnt,
"is attempting to use unsafe AIO requests");
return (EOPNOTSUPP);
}
if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
aio_schedule(job, aio_process_rw);
error = 0;
} else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
AIO_LOCK(ki);
TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
if (job2->fd_file == job->fd_file &&
((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
job2->seqno < job->seqno) {
job2->jobflags |= KAIOCB_CHECKSYNC;
job->pending++;
}
}
if (job->pending != 0) {
if (!aio_set_cancel_function_locked(job,
aio_cancel_sync)) {
AIO_UNLOCK(ki);
aio_cancel(job);
return (0);
}
TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
AIO_UNLOCK(ki);
return (0);
}
AIO_UNLOCK(ki);
aio_schedule(job, aio_process_sync);
error = 0;
} else {
error = EINVAL;
}
return (error);
}
static void
aio_kick_nowait(struct proc *userp)
{
struct kaioinfo *ki = userp->p_aioinfo;
struct aioproc *aiop;
mtx_assert(&aio_job_mtx, MA_OWNED);
if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
TAILQ_REMOVE(&aio_freeproc, aiop, list);
aiop->aioprocflags &= ~AIOP_FREE;
wakeup(aiop->aioproc);
} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
}
}
static int
aio_kick(struct proc *userp)
{
struct kaioinfo *ki = userp->p_aioinfo;
struct aioproc *aiop;
int error, ret = 0;
mtx_assert(&aio_job_mtx, MA_OWNED);
retryproc:
if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
TAILQ_REMOVE(&aio_freeproc, aiop, list);
aiop->aioprocflags &= ~AIOP_FREE;
wakeup(aiop->aioproc);
} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
num_aio_resv_start++;
mtx_unlock(&aio_job_mtx);
error = aio_newproc(&num_aio_resv_start);
mtx_lock(&aio_job_mtx);
if (error) {
num_aio_resv_start--;
goto retryproc;
}
} else {
ret = -1;
}
return (ret);
}
static void
aio_kick_helper(void *context, int pending)
{
struct proc *userp = context;
mtx_lock(&aio_job_mtx);
while (--pending >= 0) {
if (aio_kick(userp))
break;
}
mtx_unlock(&aio_job_mtx);
}
/*
* Support the aio_return system call, as a side-effect, kernel resources are
* released.
*/
static int
kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
{
struct proc *p = td->td_proc;
struct kaiocb *job;
struct kaioinfo *ki;
long status, error;
ki = p->p_aioinfo;
if (ki == NULL)
return (EINVAL);
AIO_LOCK(ki);
TAILQ_FOREACH(job, &ki->kaio_done, plist) {
if (job->ujob == ujob)
break;
}
if (job != NULL) {
MPASS(job->jobflags & KAIOCB_FINISHED);
status = job->uaiocb._aiocb_private.status;
error = job->uaiocb._aiocb_private.error;
td->td_retval[0] = status;
td->td_ru.ru_oublock += job->outblock;
td->td_ru.ru_inblock += job->inblock;
td->td_ru.ru_msgsnd += job->msgsnd;
td->td_ru.ru_msgrcv += job->msgrcv;
aio_free_entry(job);
AIO_UNLOCK(ki);
ops->store_error(ujob, error);
ops->store_status(ujob, status);
} else {
error = EINVAL;
AIO_UNLOCK(ki);
}
return (error);
}
int
sys_aio_return(struct thread *td, struct aio_return_args *uap)
{
return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
}
/*
* Allow a process to wakeup when any of the I/O requests are completed.
*/
static int
kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
struct timespec *ts)
{
struct proc *p = td->td_proc;
struct timeval atv;
struct kaioinfo *ki;
struct kaiocb *firstjob, *job;
int error, i, timo;
timo = 0;
if (ts) {
if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
return (EINVAL);
TIMESPEC_TO_TIMEVAL(&atv, ts);
if (itimerfix(&atv))
return (EINVAL);
timo = tvtohz(&atv);
}
ki = p->p_aioinfo;
if (ki == NULL)
return (EAGAIN);
if (njoblist == 0)
return (0);
AIO_LOCK(ki);
for (;;) {
firstjob = NULL;
error = 0;
TAILQ_FOREACH(job, &ki->kaio_all, allist) {
for (i = 0; i < njoblist; i++) {
if (job->ujob == ujoblist[i]) {
if (firstjob == NULL)
firstjob = job;
if (job->jobflags & KAIOCB_FINISHED)
goto RETURN;
}
}
}
/* All tasks were finished. */
if (firstjob == NULL)
break;
ki->kaio_flags |= KAIO_WAKEUP;
error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
"aiospn", timo);
if (error == ERESTART)
error = EINTR;
if (error)
break;
}
RETURN:
AIO_UNLOCK(ki);
return (error);
}
int
sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
{
struct timespec ts, *tsp;
struct aiocb **ujoblist;
int error;
if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
return (EINVAL);
if (uap->timeout) {
/* Get timespec struct. */
if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
return (error);
tsp = &ts;
} else
tsp = NULL;
ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
if (error == 0)
error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
free(ujoblist, M_AIOS);
return (error);
}
/*
* aio_cancel cancels any non-bio aio operations not currently in progress.
*/
int
sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
{
struct proc *p = td->td_proc;
struct kaioinfo *ki;
struct kaiocb *job, *jobn;
struct file *fp;
int error;
int cancelled = 0;
int notcancelled = 0;
struct vnode *vp;
/* Lookup file object. */
error = fget(td, uap->fd, &cap_no_rights, &fp);
if (error)
return (error);
ki = p->p_aioinfo;
if (ki == NULL)
goto done;
if (fp->f_type == DTYPE_VNODE) {
vp = fp->f_vnode;
if (vn_isdisk(vp)) {
fdrop(fp, td);
td->td_retval[0] = AIO_NOTCANCELED;
return (0);
}
}
AIO_LOCK(ki);
TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
if ((uap->fd == job->uaiocb.aio_fildes) &&
((uap->aiocbp == NULL) ||
(uap->aiocbp == job->ujob))) {
if (aio_cancel_job(p, ki, job)) {
cancelled++;
} else {
notcancelled++;
}
if (uap->aiocbp != NULL)
break;
}
}
AIO_UNLOCK(ki);
done:
fdrop(fp, td);
if (uap->aiocbp != NULL) {
if (cancelled) {
td->td_retval[0] = AIO_CANCELED;
return (0);
}
}
if (notcancelled) {
td->td_retval[0] = AIO_NOTCANCELED;
return (0);
}
if (cancelled) {
td->td_retval[0] = AIO_CANCELED;
return (0);
}
td->td_retval[0] = AIO_ALLDONE;
return (0);
}
/*
* aio_error is implemented in the kernel level for compatibility purposes
* only. For a user mode async implementation, it would be best to do it in
* a userland subroutine.
*/
static int
kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
{
struct proc *p = td->td_proc;
struct kaiocb *job;
struct kaioinfo *ki;
int status;
ki = p->p_aioinfo;
if (ki == NULL) {
td->td_retval[0] = EINVAL;
return (0);
}
AIO_LOCK(ki);
TAILQ_FOREACH(job, &ki->kaio_all, allist) {
if (job->ujob == ujob) {
if (job->jobflags & KAIOCB_FINISHED)
td->td_retval[0] =
job->uaiocb._aiocb_private.error;
else
td->td_retval[0] = EINPROGRESS;
AIO_UNLOCK(ki);
return (0);
}
}
AIO_UNLOCK(ki);
/*
* Hack for failure of aio_aqueue.
*/
status = ops->fetch_status(ujob);
if (status == -1) {
td->td_retval[0] = ops->fetch_error(ujob);
return (0);
}
td->td_retval[0] = EINVAL;
return (0);
}
int
sys_aio_error(struct thread *td, struct aio_error_args *uap)
{
return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
}
/* syscall - asynchronous read from a file (REALTIME) */
#ifdef COMPAT_FREEBSD6
int
freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
{
return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
&aiocb_ops_osigevent));
}
#endif
int
sys_aio_read(struct thread *td, struct aio_read_args *uap)
{
return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
}
int
sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
{
return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
}
/* syscall - asynchronous write to a file (REALTIME) */
#ifdef COMPAT_FREEBSD6
int
freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
{
return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
&aiocb_ops_osigevent));
}
#endif
int
sys_aio_write(struct thread *td, struct aio_write_args *uap)
{
return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
}
int
sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
{
return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
}
int
sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
{
return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
}
static int
kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
struct aiocb **acb_list, int nent, struct sigevent *sig,
struct aiocb_ops *ops)
{
struct proc *p = td->td_proc;
struct aiocb *job;
struct kaioinfo *ki;
struct aioliojob *lj;
struct kevent kev;
int error;
int nagain, nerror;
int i;
if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
return (EINVAL);
if (nent < 0 || nent > max_aio_queue_per_proc)
return (EINVAL);
if (p->p_aioinfo == NULL)
aio_init_aioinfo(p);
ki = p->p_aioinfo;
lj = uma_zalloc(aiolio_zone, M_WAITOK);
lj->lioj_flags = 0;
lj->lioj_count = 0;
lj->lioj_finished_count = 0;
lj->lioj_signal.sigev_notify = SIGEV_NONE;
knlist_init_mtx(&lj->klist, AIO_MTX(ki));
ksiginfo_init(&lj->lioj_ksi);
/*
* Setup signal.
*/
if (sig && (mode == LIO_NOWAIT)) {
bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
/* Assume only new style KEVENT */
memset(&kev, 0, sizeof(kev));
kev.filter = EVFILT_LIO;
kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
kev.ident = (uintptr_t)uacb_list; /* something unique */
kev.data = (intptr_t)lj;
/* pass user defined sigval data */
kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
error = kqfd_register(
lj->lioj_signal.sigev_notify_kqueue, &kev, td,
M_WAITOK);
if (error) {
uma_zfree(aiolio_zone, lj);
return (error);
}
} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
;
} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
uma_zfree(aiolio_zone, lj);
return EINVAL;
}
lj->lioj_flags |= LIOJ_SIGNAL;
} else {
uma_zfree(aiolio_zone, lj);
return EINVAL;
}
}
AIO_LOCK(ki);
TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
/*
* Add extra aiocb count to avoid the lio to be freed
* by other threads doing aio_waitcomplete or aio_return,
* and prevent event from being sent until we have queued
* all tasks.
*/
lj->lioj_count = 1;
AIO_UNLOCK(ki);
/*
* Get pointers to the list of I/O requests.
*/
nagain = 0;
nerror = 0;
for (i = 0; i < nent; i++) {
job = acb_list[i];
if (job != NULL) {
error = aio_aqueue(td, job, lj, LIO_NOP, ops);
if (error == EAGAIN)
nagain++;
else if (error != 0)
nerror++;
}
}
error = 0;
AIO_LOCK(ki);
if (mode == LIO_WAIT) {
while (lj->lioj_count - 1 != lj->lioj_finished_count) {
ki->kaio_flags |= KAIO_WAKEUP;
error = msleep(&p->p_aioinfo, AIO_MTX(ki),
PRIBIO | PCATCH, "aiospn", 0);
if (error == ERESTART)
error = EINTR;
if (error)
break;
}
} else {
if (lj->lioj_count - 1 == lj->lioj_finished_count) {
if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
lj->lioj_flags |= LIOJ_KEVENT_POSTED;
KNOTE_LOCKED(&lj->klist, 1);
}
if ((lj->lioj_flags & (LIOJ_SIGNAL |
LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
(lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
lj->lioj_count != 1);
lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
}
}
}
lj->lioj_count--;
if (lj->lioj_count == 0) {
TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
knlist_delete(&lj->klist, curthread, 1);
PROC_LOCK(p);
sigqueue_take(&lj->lioj_ksi);
PROC_UNLOCK(p);
AIO_UNLOCK(ki);
uma_zfree(aiolio_zone, lj);
} else
AIO_UNLOCK(ki);
if (nerror)
return (EIO);
else if (nagain)
return (EAGAIN);
else
return (error);
}
/* syscall - list directed I/O (REALTIME) */
#ifdef COMPAT_FREEBSD6
int
freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
{
struct aiocb **acb_list;
struct sigevent *sigp, sig;
struct osigevent osig;
int error, nent;
if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
return (EINVAL);
nent = uap->nent;
if (nent < 0 || nent > max_aio_queue_per_proc)
return (EINVAL);
if (uap->sig && (uap->mode == LIO_NOWAIT)) {
error = copyin(uap->sig, &osig, sizeof(osig));
if (error)
return (error);
error = convert_old_sigevent(&osig, &sig);
if (error)
return (error);
sigp = &sig;
} else
sigp = NULL;
acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
if (error == 0)
error = kern_lio_listio(td, uap->mode,
(struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
&aiocb_ops_osigevent);
free(acb_list, M_LIO);
return (error);
}
#endif
/* syscall - list directed I/O (REALTIME) */
int
sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
{
struct aiocb **acb_list;
struct sigevent *sigp, sig;
int error, nent;
if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
return (EINVAL);
nent = uap->nent;
if (nent < 0 || nent > max_aio_queue_per_proc)
return (EINVAL);
if (uap->sig && (uap->mode == LIO_NOWAIT)) {
error = copyin(uap->sig, &sig, sizeof(sig));
if (error)
return (error);
sigp = &sig;
} else
sigp = NULL;
acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
if (error == 0)
error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
nent, sigp, &aiocb_ops);
free(acb_list, M_LIO);
return (error);
}
static void
aio_biocleanup(struct bio *bp)
{
struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
struct kaioinfo *ki;
struct buf *pbuf = (struct buf *)bp->bio_caller2;
/* Release mapping into kernel space. */
if (pbuf != NULL) {
MPASS(pbuf->b_npages <= atop(maxphys) + 1);
pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
uma_zfree(pbuf_zone, pbuf);
atomic_subtract_int(&num_buf_aio, 1);
ki = job->userproc->p_aioinfo;
AIO_LOCK(ki);
ki->kaio_buffer_count--;
AIO_UNLOCK(ki);
} else {
MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
free(bp->bio_ma, M_TEMP);
atomic_subtract_int(&num_unmapped_aio, 1);
}
g_destroy_bio(bp);
}
static void
aio_biowakeup(struct bio *bp)
{
struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
size_t nbytes;
long bcount = bp->bio_bcount;
long resid = bp->bio_resid;
int error, opcode, nblks;
int bio_error = bp->bio_error;
uint16_t flags = bp->bio_flags;
opcode = job->uaiocb.aio_lio_opcode;
aio_biocleanup(bp);
nbytes =bcount - resid;
atomic_add_acq_long(&job->nbytes, nbytes);
nblks = btodb(nbytes);
error = 0;
/*
* If multiple bios experienced an error, the job will reflect the
* error of whichever failed bio completed last.
*/
if (flags & BIO_ERROR)
atomic_set_int(&job->error, bio_error);
if (opcode & LIO_WRITE)
atomic_add_int(&job->outblock, nblks);
else
atomic_add_int(&job->inblock, nblks);
atomic_subtract_int(&job->nbio, 1);
if (atomic_load_int(&job->nbio) == 0) {
if (atomic_load_int(&job->error))
aio_complete(job, -1, job->error);
else
aio_complete(job, atomic_load_long(&job->nbytes), 0);
}
}
/* syscall - wait for the next completion of an aio request */
static int
kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
struct timespec *ts, struct aiocb_ops *ops)
{
struct proc *p = td->td_proc;
struct timeval atv;
struct kaioinfo *ki;
struct kaiocb *job;
struct aiocb *ujob;
long error, status;
int timo;
ops->store_aiocb(ujobp, NULL);
if (ts == NULL) {
timo = 0;
} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
timo = -1;
} else {
if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
return (EINVAL);
TIMESPEC_TO_TIMEVAL(&atv, ts);
if (itimerfix(&atv))
return (EINVAL);
timo = tvtohz(&atv);
}
if (p->p_aioinfo == NULL)
aio_init_aioinfo(p);
ki = p->p_aioinfo;
error = 0;
job = NULL;
AIO_LOCK(ki);
while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
if (timo == -1) {
error = EWOULDBLOCK;
break;
}
ki->kaio_flags |= KAIO_WAKEUP;
error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
"aiowc", timo);
if (timo && error == ERESTART)
error = EINTR;
if (error)
break;
}
if (job != NULL) {
MPASS(job->jobflags & KAIOCB_FINISHED);
ujob = job->ujob;
status = job->uaiocb._aiocb_private.status;
error = job->uaiocb._aiocb_private.error;
td->td_retval[0] = status;
td->td_ru.ru_oublock += job->outblock;
td->td_ru.ru_inblock += job->inblock;
td->td_ru.ru_msgsnd += job->msgsnd;
td->td_ru.ru_msgrcv += job->msgrcv;
aio_free_entry(job);
AIO_UNLOCK(ki);
ops->store_aiocb(ujobp, ujob);
ops->store_error(ujob, error);
ops->store_status(ujob, status);
} else
AIO_UNLOCK(ki);
return (error);
}
int
sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
{
struct timespec ts, *tsp;
int error;
if (uap->timeout) {
/* Get timespec struct. */
error = copyin(uap->timeout, &ts, sizeof(ts));
if (error)
return (error);
tsp = &ts;
} else
tsp = NULL;
return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
}
static int
kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
struct aiocb_ops *ops)
{
int listop;
switch (op) {
case O_SYNC:
listop = LIO_SYNC;
break;
case O_DSYNC:
listop = LIO_DSYNC;
break;
default:
return (EINVAL);
}
return (aio_aqueue(td, ujob, NULL, listop, ops));
}
int
sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
{
return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
}
/* kqueue attach function */
static int
filt_aioattach(struct knote *kn)
{
struct kaiocb *job;
job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
/*
* The job pointer must be validated before using it, so
* registration is restricted to the kernel; the user cannot
* set EV_FLAG1.
*/
if ((kn->kn_flags & EV_FLAG1) == 0)
return (EPERM);
kn->kn_ptr.p_aio = job;
kn->kn_flags &= ~EV_FLAG1;
knlist_add(&job->klist, kn, 0);
return (0);
}
/* kqueue detach function */
static void
filt_aiodetach(struct knote *kn)
{
struct knlist *knl;
knl = &kn->kn_ptr.p_aio->klist;
knl->kl_lock(knl->kl_lockarg);
if (!knlist_empty(knl))
knlist_remove(knl, kn, 1);
knl->kl_unlock(knl->kl_lockarg);
}
/* kqueue filter function */
/*ARGSUSED*/
static int
filt_aio(struct knote *kn, long hint)
{
struct kaiocb *job = kn->kn_ptr.p_aio;
kn->kn_data = job->uaiocb._aiocb_private.error;
if (!(job->jobflags & KAIOCB_FINISHED))
return (0);
kn->kn_flags |= EV_EOF;
return (1);
}
/* kqueue attach function */
static int
filt_lioattach(struct knote *kn)
{
struct aioliojob *lj;
lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
/*
* The aioliojob pointer must be validated before using it, so
* registration is restricted to the kernel; the user cannot
* set EV_FLAG1.
*/
if ((kn->kn_flags & EV_FLAG1) == 0)
return (EPERM);
kn->kn_ptr.p_lio = lj;
kn->kn_flags &= ~EV_FLAG1;
knlist_add(&lj->klist, kn, 0);
return (0);
}
/* kqueue detach function */
static void
filt_liodetach(struct knote *kn)
{
struct knlist *knl;
knl = &kn->kn_ptr.p_lio->klist;
knl->kl_lock(knl->kl_lockarg);
if (!knlist_empty(knl))
knlist_remove(knl, kn, 1);
knl->kl_unlock(knl->kl_lockarg);
}
/* kqueue filter function */
/*ARGSUSED*/
static int
filt_lio(struct knote *kn, long hint)
{
struct aioliojob * lj = kn->kn_ptr.p_lio;
return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
}
#ifdef COMPAT_FREEBSD32
#include <sys/mount.h>
#include <sys/socket.h>
#include <compat/freebsd32/freebsd32.h>
#include <compat/freebsd32/freebsd32_proto.h>
#include <compat/freebsd32/freebsd32_signal.h>
#include <compat/freebsd32/freebsd32_syscall.h>
#include <compat/freebsd32/freebsd32_util.h>
struct __aiocb_private32 {
int32_t status;
int32_t error;
uint32_t kernelinfo;
};
#ifdef COMPAT_FREEBSD6
typedef struct oaiocb32 {
int aio_fildes; /* File descriptor */
uint64_t aio_offset __packed; /* File offset for I/O */
uint32_t aio_buf; /* I/O buffer in process space */
uint32_t aio_nbytes; /* Number of bytes for I/O */
struct osigevent32 aio_sigevent; /* Signal to deliver */
int aio_lio_opcode; /* LIO opcode */
int aio_reqprio; /* Request priority -- ignored */
struct __aiocb_private32 _aiocb_private;
} oaiocb32_t;
#endif
typedef struct aiocb32 {
int32_t aio_fildes; /* File descriptor */
uint64_t aio_offset __packed; /* File offset for I/O */
uint32_t aio_buf; /* I/O buffer in process space */
uint32_t aio_nbytes; /* Number of bytes for I/O */
int __spare__[2];
uint32_t __spare2__;
int aio_lio_opcode; /* LIO opcode */
int aio_reqprio; /* Request priority -- ignored */
struct __aiocb_private32 _aiocb_private;
struct sigevent32 aio_sigevent; /* Signal to deliver */
} aiocb32_t;
#ifdef COMPAT_FREEBSD6
static int
convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
{
/*
* Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
* supported by AIO with the old sigevent structure.
*/
CP(*osig, *nsig, sigev_notify);
switch (nsig->sigev_notify) {
case SIGEV_NONE:
break;
case SIGEV_SIGNAL:
nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
break;
case SIGEV_KEVENT:
nsig->sigev_notify_kqueue =
osig->__sigev_u.__sigev_notify_kqueue;
PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
break;
default:
return (EINVAL);
}
return (0);
}
static int
aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
int type __unused)
{
struct oaiocb32 job32;
struct aiocb *kcb = &kjob->uaiocb;
int error;
bzero(kcb, sizeof(struct aiocb));
error = copyin(ujob, &job32, sizeof(job32));
if (error)
return (error);
/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
CP(job32, *kcb, aio_fildes);
CP(job32, *kcb, aio_offset);
PTRIN_CP(job32, *kcb, aio_buf);
CP(job32, *kcb, aio_nbytes);
CP(job32, *kcb, aio_lio_opcode);
CP(job32, *kcb, aio_reqprio);
CP(job32, *kcb, _aiocb_private.status);
CP(job32, *kcb, _aiocb_private.error);
PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
return (convert_old_sigevent32(&job32.aio_sigevent,
&kcb->aio_sigevent));
}
#endif
static int
aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
{
struct aiocb32 job32;
struct aiocb *kcb = &kjob->uaiocb;
struct iovec32 *iov32;
int error;
error = copyin(ujob, &job32, sizeof(job32));
if (error)
return (error);
CP(job32, *kcb, aio_fildes);
CP(job32, *kcb, aio_offset);
CP(job32, *kcb, aio_lio_opcode);
if (type & LIO_VECTORED) {
iov32 = PTRIN(job32.aio_iov);
CP(job32, *kcb, aio_iovcnt);
/* malloc a uio and copy in the iovec */
error = freebsd32_copyinuio(iov32,
kcb->aio_iovcnt, &kjob->uiop);
if (error)
return (error);
} else {
PTRIN_CP(job32, *kcb, aio_buf);
CP(job32, *kcb, aio_nbytes);
}
CP(job32, *kcb, aio_reqprio);
CP(job32, *kcb, _aiocb_private.status);
CP(job32, *kcb, _aiocb_private.error);
PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
return (error);
}
static long
aiocb32_fetch_status(struct aiocb *ujob)
{
struct aiocb32 *ujob32;
ujob32 = (struct aiocb32 *)ujob;
return (fuword32(&ujob32->_aiocb_private.status));
}
static long
aiocb32_fetch_error(struct aiocb *ujob)
{
struct aiocb32 *ujob32;
ujob32 = (struct aiocb32 *)ujob;
return (fuword32(&ujob32->_aiocb_private.error));
}
static int
aiocb32_store_status(struct aiocb *ujob, long status)
{
struct aiocb32 *ujob32;
ujob32 = (struct aiocb32 *)ujob;
return (suword32(&ujob32->_aiocb_private.status, status));
}
static int
aiocb32_store_error(struct aiocb *ujob, long error)
{
struct aiocb32 *ujob32;
ujob32 = (struct aiocb32 *)ujob;
return (suword32(&ujob32->_aiocb_private.error, error));
}
static int
aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
{
struct aiocb32 *ujob32;
ujob32 = (struct aiocb32 *)ujob;
return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
}
static int
aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
{
return (suword32(ujobp, (long)ujob));
}
static struct aiocb_ops aiocb32_ops = {
.aio_copyin = aiocb32_copyin,
.fetch_status = aiocb32_fetch_status,
.fetch_error = aiocb32_fetch_error,
.store_status = aiocb32_store_status,
.store_error = aiocb32_store_error,
.store_kernelinfo = aiocb32_store_kernelinfo,
.store_aiocb = aiocb32_store_aiocb,
};
#ifdef COMPAT_FREEBSD6
static struct aiocb_ops aiocb32_ops_osigevent = {
.aio_copyin = aiocb32_copyin_old_sigevent,
.fetch_status = aiocb32_fetch_status,
.fetch_error = aiocb32_fetch_error,
.store_status = aiocb32_store_status,
.store_error = aiocb32_store_error,
.store_kernelinfo = aiocb32_store_kernelinfo,
.store_aiocb = aiocb32_store_aiocb,
};
#endif
int
freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
{
return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
}
int
freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
{
struct timespec32 ts32;
struct timespec ts, *tsp;
struct aiocb **ujoblist;
uint32_t *ujoblist32;
int error, i;
if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
return (EINVAL);
if (uap->timeout) {
/* Get timespec struct. */
if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
return (error);
CP(ts32, ts, tv_sec);
CP(ts32, ts, tv_nsec);
tsp = &ts;
} else
tsp = NULL;
ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
ujoblist32 = (uint32_t *)ujoblist;
error = copyin(uap->aiocbp, ujoblist32, uap->nent *
sizeof(ujoblist32[0]));
if (error == 0) {
for (i = uap->nent - 1; i >= 0; i--)
ujoblist[i] = PTRIN(ujoblist32[i]);
error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
}
free(ujoblist, M_AIOS);
return (error);
}
int
freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
{
return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
}
#ifdef COMPAT_FREEBSD6
int
freebsd6_freebsd32_aio_read(struct thread *td,
struct freebsd6_freebsd32_aio_read_args *uap)
{
return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
&aiocb32_ops_osigevent));
}
#endif
int
freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
{
return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
&aiocb32_ops));
}
int
freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
{
return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
&aiocb32_ops));
}
#ifdef COMPAT_FREEBSD6
int
freebsd6_freebsd32_aio_write(struct thread *td,
struct freebsd6_freebsd32_aio_write_args *uap)
{
return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
&aiocb32_ops_osigevent));
}
#endif
int
freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
{
return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
&aiocb32_ops));
}
int
freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
{
return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
&aiocb32_ops));
}
int
freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
{
return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
&aiocb32_ops));
}
int
freebsd32_aio_waitcomplete(struct thread *td,
struct freebsd32_aio_waitcomplete_args *uap)
{
struct timespec32 ts32;
struct timespec ts, *tsp;
int error;
if (uap->timeout) {
/* Get timespec struct. */
error = copyin(uap->timeout, &ts32, sizeof(ts32));
if (error)
return (error);
CP(ts32, ts, tv_sec);
CP(ts32, ts, tv_nsec);
tsp = &ts;
} else
tsp = NULL;
return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
&aiocb32_ops));
}
int
freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
{
return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
&aiocb32_ops));
}
#ifdef COMPAT_FREEBSD6
int
freebsd6_freebsd32_lio_listio(struct thread *td,
struct freebsd6_freebsd32_lio_listio_args *uap)
{
struct aiocb **acb_list;
struct sigevent *sigp, sig;
struct osigevent32 osig;
uint32_t *acb_list32;
int error, i, nent;
if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
return (EINVAL);
nent = uap->nent;
if (nent < 0 || nent > max_aio_queue_per_proc)
return (EINVAL);
if (uap->sig && (uap->mode == LIO_NOWAIT)) {
error = copyin(uap->sig, &osig, sizeof(osig));
if (error)
return (error);
error = convert_old_sigevent32(&osig, &sig);
if (error)
return (error);
sigp = &sig;
} else
sigp = NULL;
acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
if (error) {
free(acb_list32, M_LIO);
return (error);
}
acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
for (i = 0; i < nent; i++)
acb_list[i] = PTRIN(acb_list32[i]);
free(acb_list32, M_LIO);
error = kern_lio_listio(td, uap->mode,
(struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
&aiocb32_ops_osigevent);
free(acb_list, M_LIO);
return (error);
}
#endif
int
freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
{
struct aiocb **acb_list;
struct sigevent *sigp, sig;
struct sigevent32 sig32;
uint32_t *acb_list32;
int error, i, nent;
if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
return (EINVAL);
nent = uap->nent;
if (nent < 0 || nent > max_aio_queue_per_proc)
return (EINVAL);
if (uap->sig && (uap->mode == LIO_NOWAIT)) {
error = copyin(uap->sig, &sig32, sizeof(sig32));
if (error)
return (error);
error = convert_sigevent32(&sig32, &sig);
if (error)
return (error);
sigp = &sig;
} else
sigp = NULL;
acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
if (error) {
free(acb_list32, M_LIO);
return (error);
}
acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
for (i = 0; i < nent; i++)
acb_list[i] = PTRIN(acb_list32[i]);
free(acb_list32, M_LIO);
error = kern_lio_listio(td, uap->mode,
(struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
&aiocb32_ops);
free(acb_list, M_LIO);
return (error);
}
#endif