freebsd-nq/sys/dev/nvme/nvme_ns.c
Warner Losh 45d7e233a5 Unconditionally support unmapped BIOs. This was another shim for
supporting older kernels. However, all supported versions of FreeBSD
have unmapped I/Os (as do several that have gone EOL), remove it. It's
unlikely the driver would work on the older kernels anyway at this
point.
2019-02-27 22:16:59 +00:00

606 lines
14 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2012-2013 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/fcntl.h>
#include <sys/ioccom.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <dev/pci/pcivar.h>
#include <geom/geom.h>
#include "nvme_private.h"
static void nvme_bio_child_inbed(struct bio *parent, int bio_error);
static void nvme_bio_child_done(void *arg,
const struct nvme_completion *cpl);
static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size,
uint32_t alignment);
static void nvme_free_child_bios(int num_bios,
struct bio **child_bios);
static struct bio ** nvme_allocate_child_bios(int num_bios);
static struct bio ** nvme_construct_child_bios(struct bio *bp,
uint32_t alignment,
int *num_bios);
static int nvme_ns_split_bio(struct nvme_namespace *ns,
struct bio *bp,
uint32_t alignment);
static int
nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
struct thread *td)
{
struct nvme_namespace *ns;
struct nvme_controller *ctrlr;
struct nvme_pt_command *pt;
ns = cdev->si_drv1;
ctrlr = ns->ctrlr;
switch (cmd) {
case NVME_IO_TEST:
case NVME_BIO_TEST:
nvme_ns_test(ns, cmd, arg);
break;
case NVME_PASSTHROUGH_CMD:
pt = (struct nvme_pt_command *)arg;
return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id,
1 /* is_user_buffer */, 0 /* is_admin_cmd */));
case DIOCGMEDIASIZE:
*(off_t *)arg = (off_t)nvme_ns_get_size(ns);
break;
case DIOCGSECTORSIZE:
*(u_int *)arg = nvme_ns_get_sector_size(ns);
break;
default:
return (ENOTTY);
}
return (0);
}
static int
nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused,
struct thread *td)
{
int error = 0;
if (flags & FWRITE)
error = securelevel_gt(td->td_ucred, 0);
return (error);
}
static int
nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused,
struct thread *td)
{
return (0);
}
static void
nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl)
{
struct bio *bp = arg;
/*
* TODO: add more extensive translation of NVMe status codes
* to different bio error codes (i.e. EIO, EINVAL, etc.)
*/
if (nvme_completion_is_error(cpl)) {
bp->bio_error = EIO;
bp->bio_flags |= BIO_ERROR;
bp->bio_resid = bp->bio_bcount;
} else
bp->bio_resid = 0;
biodone(bp);
}
static void
nvme_ns_strategy(struct bio *bp)
{
struct nvme_namespace *ns;
int err;
ns = bp->bio_dev->si_drv1;
err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done);
if (err) {
bp->bio_error = err;
bp->bio_flags |= BIO_ERROR;
bp->bio_resid = bp->bio_bcount;
biodone(bp);
}
}
static struct cdevsw nvme_ns_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_DISK,
.d_read = physread,
.d_write = physwrite,
.d_open = nvme_ns_open,
.d_close = nvme_ns_close,
.d_strategy = nvme_ns_strategy,
.d_ioctl = nvme_ns_ioctl
};
uint32_t
nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns)
{
return ns->ctrlr->max_xfer_size;
}
uint32_t
nvme_ns_get_sector_size(struct nvme_namespace *ns)
{
uint8_t flbas_fmt, lbads;
flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) &
NVME_NS_DATA_FLBAS_FORMAT_MASK;
lbads = (ns->data.lbaf[flbas_fmt] >> NVME_NS_DATA_LBAF_LBADS_SHIFT) &
NVME_NS_DATA_LBAF_LBADS_MASK;
return (1 << lbads);
}
uint64_t
nvme_ns_get_num_sectors(struct nvme_namespace *ns)
{
return (ns->data.nsze);
}
uint64_t
nvme_ns_get_size(struct nvme_namespace *ns)
{
return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns));
}
uint32_t
nvme_ns_get_flags(struct nvme_namespace *ns)
{
return (ns->flags);
}
const char *
nvme_ns_get_serial_number(struct nvme_namespace *ns)
{
return ((const char *)ns->ctrlr->cdata.sn);
}
const char *
nvme_ns_get_model_number(struct nvme_namespace *ns)
{
return ((const char *)ns->ctrlr->cdata.mn);
}
const struct nvme_namespace_data *
nvme_ns_get_data(struct nvme_namespace *ns)
{
return (&ns->data);
}
uint32_t
nvme_ns_get_stripesize(struct nvme_namespace *ns)
{
return (ns->stripesize);
}
static void
nvme_ns_bio_done(void *arg, const struct nvme_completion *status)
{
struct bio *bp = arg;
nvme_cb_fn_t bp_cb_fn;
bp_cb_fn = bp->bio_driver1;
if (bp->bio_driver2)
free(bp->bio_driver2, M_NVME);
if (nvme_completion_is_error(status)) {
bp->bio_flags |= BIO_ERROR;
if (bp->bio_error == 0)
bp->bio_error = EIO;
}
if ((bp->bio_flags & BIO_ERROR) == 0)
bp->bio_resid = 0;
else
bp->bio_resid = bp->bio_bcount;
bp_cb_fn(bp, status);
}
static void
nvme_bio_child_inbed(struct bio *parent, int bio_error)
{
struct nvme_completion parent_cpl;
int children, inbed;
if (bio_error != 0) {
parent->bio_flags |= BIO_ERROR;
parent->bio_error = bio_error;
}
/*
* atomic_fetchadd will return value before adding 1, so we still
* must add 1 to get the updated inbed number. Save bio_children
* before incrementing to guard against race conditions when
* two children bios complete on different queues.
*/
children = atomic_load_acq_int(&parent->bio_children);
inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1;
if (inbed == children) {
bzero(&parent_cpl, sizeof(parent_cpl));
if (parent->bio_flags & BIO_ERROR) {
parent_cpl.status &= ~(NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT);
parent_cpl.status |= (NVME_SC_DATA_TRANSFER_ERROR) << NVME_STATUS_SC_SHIFT;
}
nvme_ns_bio_done(parent, &parent_cpl);
}
}
static void
nvme_bio_child_done(void *arg, const struct nvme_completion *cpl)
{
struct bio *child = arg;
struct bio *parent;
int bio_error;
parent = child->bio_parent;
g_destroy_bio(child);
bio_error = nvme_completion_is_error(cpl) ? EIO : 0;
nvme_bio_child_inbed(parent, bio_error);
}
static uint32_t
nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align)
{
uint32_t num_segs, offset, remainder;
if (align == 0)
return (1);
KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n"));
num_segs = size / align;
remainder = size & (align - 1);
offset = addr & (align - 1);
if (remainder > 0 || offset > 0)
num_segs += 1 + (remainder + offset - 1) / align;
return (num_segs);
}
static void
nvme_free_child_bios(int num_bios, struct bio **child_bios)
{
int i;
for (i = 0; i < num_bios; i++) {
if (child_bios[i] != NULL)
g_destroy_bio(child_bios[i]);
}
free(child_bios, M_NVME);
}
static struct bio **
nvme_allocate_child_bios(int num_bios)
{
struct bio **child_bios;
int err = 0, i;
child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT);
if (child_bios == NULL)
return (NULL);
for (i = 0; i < num_bios; i++) {
child_bios[i] = g_new_bio();
if (child_bios[i] == NULL)
err = ENOMEM;
}
if (err == ENOMEM) {
nvme_free_child_bios(num_bios, child_bios);
return (NULL);
}
return (child_bios);
}
static struct bio **
nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios)
{
struct bio **child_bios;
struct bio *child;
uint64_t cur_offset;
caddr_t data;
uint32_t rem_bcount;
int i;
struct vm_page **ma;
uint32_t ma_offset;
*num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount,
alignment);
child_bios = nvme_allocate_child_bios(*num_bios);
if (child_bios == NULL)
return (NULL);
bp->bio_children = *num_bios;
bp->bio_inbed = 0;
cur_offset = bp->bio_offset;
rem_bcount = bp->bio_bcount;
data = bp->bio_data;
ma_offset = bp->bio_ma_offset;
ma = bp->bio_ma;
for (i = 0; i < *num_bios; i++) {
child = child_bios[i];
child->bio_parent = bp;
child->bio_cmd = bp->bio_cmd;
child->bio_offset = cur_offset;
child->bio_bcount = min(rem_bcount,
alignment - (cur_offset & (alignment - 1)));
child->bio_flags = bp->bio_flags;
if (bp->bio_flags & BIO_UNMAPPED) {
child->bio_ma_offset = ma_offset;
child->bio_ma = ma;
child->bio_ma_n =
nvme_get_num_segments(child->bio_ma_offset,
child->bio_bcount, PAGE_SIZE);
ma_offset = (ma_offset + child->bio_bcount) &
PAGE_MASK;
ma += child->bio_ma_n;
if (ma_offset != 0)
ma -= 1;
} else {
child->bio_data = data;
data += child->bio_bcount;
}
cur_offset += child->bio_bcount;
rem_bcount -= child->bio_bcount;
}
return (child_bios);
}
static int
nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp,
uint32_t alignment)
{
struct bio *child;
struct bio **child_bios;
int err, i, num_bios;
child_bios = nvme_construct_child_bios(bp, alignment, &num_bios);
if (child_bios == NULL)
return (ENOMEM);
for (i = 0; i < num_bios; i++) {
child = child_bios[i];
err = nvme_ns_bio_process(ns, child, nvme_bio_child_done);
if (err != 0) {
nvme_bio_child_inbed(bp, err);
g_destroy_bio(child);
}
}
free(child_bios, M_NVME);
return (0);
}
int
nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp,
nvme_cb_fn_t cb_fn)
{
struct nvme_dsm_range *dsm_range;
uint32_t num_bios;
int err;
bp->bio_driver1 = cb_fn;
if (ns->stripesize > 0 &&
(bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) {
num_bios = nvme_get_num_segments(bp->bio_offset,
bp->bio_bcount, ns->stripesize);
if (num_bios > 1)
return (nvme_ns_split_bio(ns, bp, ns->stripesize));
}
switch (bp->bio_cmd) {
case BIO_READ:
err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp);
break;
case BIO_WRITE:
err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp);
break;
case BIO_FLUSH:
err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp);
break;
case BIO_DELETE:
dsm_range =
malloc(sizeof(struct nvme_dsm_range), M_NVME,
M_ZERO | M_WAITOK);
if (!dsm_range) {
err = ENOMEM;
break;
}
dsm_range->length =
htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns));
dsm_range->starting_lba =
htole64(bp->bio_offset/nvme_ns_get_sector_size(ns));
bp->bio_driver2 = dsm_range;
err = nvme_ns_cmd_deallocate(ns, dsm_range, 1,
nvme_ns_bio_done, bp);
if (err != 0)
free(dsm_range, M_NVME);
break;
default:
err = EIO;
break;
}
return (err);
}
int
nvme_ns_construct(struct nvme_namespace *ns, uint32_t id,
struct nvme_controller *ctrlr)
{
struct make_dev_args md_args;
struct nvme_completion_poll_status status;
int res;
int unit;
uint8_t flbas_fmt;
uint8_t vwc_present;
ns->ctrlr = ctrlr;
ns->id = id;
ns->stripesize = 0;
/*
* Older Intel devices advertise in vendor specific space an alignment
* that improves performance. If present use for the stripe size. NVMe
* 1.3 standardized this as NOIOB, and newer Intel drives use that.
*/
switch (pci_get_devid(ctrlr->dev)) {
case 0x09538086: /* Intel DC PC3500 */
case 0x0a538086: /* Intel DC PC3520 */
case 0x0a548086: /* Intel DC PC4500 */
case 0x0a558086: /* Dell Intel P4600 */
if (ctrlr->cdata.vs[3] != 0)
ns->stripesize =
(1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size;
break;
default:
break;
}
/*
* Namespaces are reconstructed after a controller reset, so check
* to make sure we only call mtx_init once on each mtx.
*
* TODO: Move this somewhere where it gets called at controller
* construction time, which is not invoked as part of each
* controller reset.
*/
if (!mtx_initialized(&ns->lock))
mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF);
status.done = 0;
nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data,
nvme_completion_poll_cb, &status);
while (!atomic_load_acq_int(&status.done))
pause("nvme", 1);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_identify_namespace failed\n");
return (ENXIO);
}
/* Convert data to host endian */
nvme_namespace_data_swapbytes(&ns->data);
/*
* If the size of is zero, chances are this isn't a valid
* namespace (eg one that's not been configured yet). The
* standard says the entire id will be zeros, so this is a
* cheap way to test for that.
*/
if (ns->data.nsze == 0)
return (ENXIO);
flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) &
NVME_NS_DATA_FLBAS_FORMAT_MASK;
/*
* Note: format is a 0-based value, so > is appropriate here,
* not >=.
*/
if (flbas_fmt > ns->data.nlbaf) {
printf("lba format %d exceeds number supported (%d)\n",
flbas_fmt, ns->data.nlbaf + 1);
return (ENXIO);
}
if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata))
ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED;
vwc_present = (ctrlr->cdata.vwc >> NVME_CTRLR_DATA_VWC_PRESENT_SHIFT) &
NVME_CTRLR_DATA_VWC_PRESENT_MASK;
if (vwc_present)
ns->flags |= NVME_NS_FLUSH_SUPPORTED;
/*
* cdev may have already been created, if we are reconstructing the
* namespace after a controller-level reset.
*/
if (ns->cdev != NULL)
return (0);
/*
* Namespace IDs start at 1, so we need to subtract 1 to create a
* correct unit number.
*/
unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1;
make_dev_args_init(&md_args);
md_args.mda_devsw = &nvme_ns_cdevsw;
md_args.mda_unit = unit;
md_args.mda_mode = 0600;
md_args.mda_si_drv1 = ns;
res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d",
device_get_unit(ctrlr->dev), ns->id);
if (res != 0)
return (ENXIO);
ns->cdev->si_flags |= SI_UNMAPPED;
return (0);
}
void nvme_ns_destruct(struct nvme_namespace *ns)
{
if (ns->cdev != NULL)
destroy_dev(ns->cdev);
}