freebsd-nq/sys/dev/pci/pci.c
Tycho Nightingale 96ca24dc32 remove the 4GB boundary requirement on PCI DMA segments
Reviewed by:	kib
Discussed with:	jhb
Sponsored by:	Dell EMC Isilon
Differential Revision:	https://reviews.freebsd.org/D19867
2019-04-19 13:43:33 +00:00

6626 lines
177 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 1997, Stefan Esser <se@freebsd.org>
* Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
* Copyright (c) 2000, BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#include "opt_bus.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/limits.h>
#include <sys/linker.h>
#include <sys/fcntl.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <machine/stdarg.h>
#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
#include <machine/intr_machdep.h>
#endif
#include <sys/pciio.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pci_private.h>
#ifdef PCI_IOV
#include <sys/nv.h>
#include <dev/pci/pci_iov_private.h>
#endif
#include <dev/usb/controller/xhcireg.h>
#include <dev/usb/controller/ehcireg.h>
#include <dev/usb/controller/ohcireg.h>
#include <dev/usb/controller/uhcireg.h>
#include "pcib_if.h"
#include "pci_if.h"
#define PCIR_IS_BIOS(cfg, reg) \
(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) || \
((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
static int pci_has_quirk(uint32_t devid, int quirk);
static pci_addr_t pci_mapbase(uint64_t mapreg);
static const char *pci_maptype(uint64_t mapreg);
static int pci_maprange(uint64_t mapreg);
static pci_addr_t pci_rombase(uint64_t mapreg);
static int pci_romsize(uint64_t testval);
static void pci_fixancient(pcicfgregs *cfg);
static int pci_printf(pcicfgregs *cfg, const char *fmt, ...);
static int pci_porten(device_t dev);
static int pci_memen(device_t dev);
static void pci_assign_interrupt(device_t bus, device_t dev,
int force_route);
static int pci_add_map(device_t bus, device_t dev, int reg,
struct resource_list *rl, int force, int prefetch);
static int pci_probe(device_t dev);
static int pci_attach(device_t dev);
static int pci_detach(device_t dev);
static void pci_load_vendor_data(void);
static int pci_describe_parse_line(char **ptr, int *vendor,
int *device, char **desc);
static char *pci_describe_device(device_t dev);
static int pci_modevent(module_t mod, int what, void *arg);
static void pci_hdrtypedata(device_t pcib, int b, int s, int f,
pcicfgregs *cfg);
static void pci_read_cap(device_t pcib, pcicfgregs *cfg);
static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
int reg, uint32_t *data);
#if 0
static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
int reg, uint32_t data);
#endif
static void pci_read_vpd(device_t pcib, pcicfgregs *cfg);
static void pci_mask_msix(device_t dev, u_int index);
static void pci_unmask_msix(device_t dev, u_int index);
static int pci_msi_blacklisted(void);
static int pci_msix_blacklisted(void);
static void pci_resume_msi(device_t dev);
static void pci_resume_msix(device_t dev);
static int pci_remap_intr_method(device_t bus, device_t dev,
u_int irq);
static void pci_hint_device_unit(device_t acdev, device_t child,
const char *name, int *unitp);
static int pci_reset_post(device_t dev, device_t child);
static int pci_reset_prepare(device_t dev, device_t child);
static int pci_reset_child(device_t dev, device_t child,
int flags);
static int pci_get_id_method(device_t dev, device_t child,
enum pci_id_type type, uintptr_t *rid);
static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
int b, int s, int f, uint16_t vid, uint16_t did);
static device_method_t pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, pci_probe),
DEVMETHOD(device_attach, pci_attach),
DEVMETHOD(device_detach, pci_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, pci_resume),
/* Bus interface */
DEVMETHOD(bus_print_child, pci_print_child),
DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch),
DEVMETHOD(bus_read_ivar, pci_read_ivar),
DEVMETHOD(bus_write_ivar, pci_write_ivar),
DEVMETHOD(bus_driver_added, pci_driver_added),
DEVMETHOD(bus_setup_intr, pci_setup_intr),
DEVMETHOD(bus_teardown_intr, pci_teardown_intr),
DEVMETHOD(bus_reset_prepare, pci_reset_prepare),
DEVMETHOD(bus_reset_post, pci_reset_post),
DEVMETHOD(bus_reset_child, pci_reset_child),
DEVMETHOD(bus_get_dma_tag, pci_get_dma_tag),
DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
DEVMETHOD(bus_delete_resource, pci_delete_resource),
DEVMETHOD(bus_alloc_resource, pci_alloc_resource),
DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource),
DEVMETHOD(bus_release_resource, pci_release_resource),
DEVMETHOD(bus_activate_resource, pci_activate_resource),
DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
DEVMETHOD(bus_child_deleted, pci_child_deleted),
DEVMETHOD(bus_child_detached, pci_child_detached),
DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
DEVMETHOD(bus_hint_device_unit, pci_hint_device_unit),
DEVMETHOD(bus_remap_intr, pci_remap_intr_method),
DEVMETHOD(bus_suspend_child, pci_suspend_child),
DEVMETHOD(bus_resume_child, pci_resume_child),
DEVMETHOD(bus_rescan, pci_rescan_method),
/* PCI interface */
DEVMETHOD(pci_read_config, pci_read_config_method),
DEVMETHOD(pci_write_config, pci_write_config_method),
DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method),
DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
DEVMETHOD(pci_enable_io, pci_enable_io_method),
DEVMETHOD(pci_disable_io, pci_disable_io_method),
DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method),
DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method),
DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method),
DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method),
DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method),
DEVMETHOD(pci_find_cap, pci_find_cap_method),
DEVMETHOD(pci_find_next_cap, pci_find_next_cap_method),
DEVMETHOD(pci_find_extcap, pci_find_extcap_method),
DEVMETHOD(pci_find_next_extcap, pci_find_next_extcap_method),
DEVMETHOD(pci_find_htcap, pci_find_htcap_method),
DEVMETHOD(pci_find_next_htcap, pci_find_next_htcap_method),
DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method),
DEVMETHOD(pci_alloc_msix, pci_alloc_msix_method),
DEVMETHOD(pci_enable_msi, pci_enable_msi_method),
DEVMETHOD(pci_enable_msix, pci_enable_msix_method),
DEVMETHOD(pci_disable_msi, pci_disable_msi_method),
DEVMETHOD(pci_remap_msix, pci_remap_msix_method),
DEVMETHOD(pci_release_msi, pci_release_msi_method),
DEVMETHOD(pci_msi_count, pci_msi_count_method),
DEVMETHOD(pci_msix_count, pci_msix_count_method),
DEVMETHOD(pci_msix_pba_bar, pci_msix_pba_bar_method),
DEVMETHOD(pci_msix_table_bar, pci_msix_table_bar_method),
DEVMETHOD(pci_get_id, pci_get_id_method),
DEVMETHOD(pci_alloc_devinfo, pci_alloc_devinfo_method),
DEVMETHOD(pci_child_added, pci_child_added_method),
#ifdef PCI_IOV
DEVMETHOD(pci_iov_attach, pci_iov_attach_method),
DEVMETHOD(pci_iov_detach, pci_iov_detach_method),
DEVMETHOD(pci_create_iov_child, pci_create_iov_child_method),
#endif
DEVMETHOD_END
};
DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
static devclass_t pci_devclass;
EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL,
BUS_PASS_BUS);
MODULE_VERSION(pci, 1);
static char *pci_vendordata;
static size_t pci_vendordata_size;
struct pci_quirk {
uint32_t devid; /* Vendor/device of the card */
int type;
#define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */
#define PCI_QUIRK_DISABLE_MSI 2 /* Neither MSI nor MSI-X work */
#define PCI_QUIRK_ENABLE_MSI_VM 3 /* Older chipset in VM where MSI works */
#define PCI_QUIRK_UNMAP_REG 4 /* Ignore PCI map register */
#define PCI_QUIRK_DISABLE_MSIX 5 /* MSI-X doesn't work */
#define PCI_QUIRK_MSI_INTX_BUG 6 /* PCIM_CMD_INTxDIS disables MSI */
#define PCI_QUIRK_REALLOC_BAR 7 /* Can't allocate memory at the default address */
int arg1;
int arg2;
};
static const struct pci_quirk pci_quirks[] = {
/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
{ 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 },
{ 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 },
/* As does the Serverworks OSB4 (the SMBus mapping register) */
{ 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 },
/*
* MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
* or the CMIC-SL (AKA ServerWorks GC_LE).
*/
{ 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 },
{ 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 },
/*
* MSI doesn't work on earlier Intel chipsets including
* E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
*/
{ 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
{ 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
{ 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
{ 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
{ 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
{ 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
{ 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
/*
* MSI doesn't work with devices behind the AMD 8131 HT-PCIX
* bridge.
*/
{ 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 },
/*
* MSI-X allocation doesn't work properly for devices passed through
* by VMware up to at least ESXi 5.1.
*/
{ 0x079015ad, PCI_QUIRK_DISABLE_MSIX, 0, 0 }, /* PCI/PCI-X */
{ 0x07a015ad, PCI_QUIRK_DISABLE_MSIX, 0, 0 }, /* PCIe */
/*
* Some virtualization environments emulate an older chipset
* but support MSI just fine. QEMU uses the Intel 82440.
*/
{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM, 0, 0 },
/*
* HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
* controller depending on SoftPciRst register (PM_IO 0x55 [7]).
* It prevents us from attaching hpet(4) when the bit is unset.
* Note this quirk only affects SB600 revision A13 and earlier.
* For SB600 A21 and later, firmware must set the bit to hide it.
* For SB700 and later, it is unused and hardcoded to zero.
*/
{ 0x43851002, PCI_QUIRK_UNMAP_REG, 0x14, 0 },
/*
* Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
* a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
* of the command register is set.
*/
{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 },
{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 },
{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 },
{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 },
{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 },
/*
* Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
* issue MSI interrupts with PCIM_CMD_INTxDIS set either.
*/
{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714 */
{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714S */
{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780 */
{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780S */
{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715 */
{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715S */
/*
* HPE Gen 10 VGA has a memory range that can't be allocated in the
* expected place.
*/
{ 0x98741002, PCI_QUIRK_REALLOC_BAR, 0, 0 },
{ 0 }
};
/* map register information */
#define PCI_MAPMEM 0x01 /* memory map */
#define PCI_MAPMEMP 0x02 /* prefetchable memory map */
#define PCI_MAPPORT 0x04 /* port map */
struct devlist pci_devq;
uint32_t pci_generation;
uint32_t pci_numdevs = 0;
static int pcie_chipset, pcix_chipset;
/* sysctl vars */
SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "PCI bus tuning parameters");
static int pci_enable_io_modes = 1;
SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
&pci_enable_io_modes, 1,
"Enable I/O and memory bits in the config register. Some BIOSes do not"
" enable these bits correctly. We'd like to do this all the time, but"
" there are some peripherals that this causes problems with.");
static int pci_do_realloc_bars = 1;
SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
&pci_do_realloc_bars, 0,
"Attempt to allocate a new range for any BARs whose original "
"firmware-assigned ranges fail to allocate during the initial device scan.");
static int pci_do_power_nodriver = 0;
SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
&pci_do_power_nodriver, 0,
"Place a function into D3 state when no driver attaches to it. 0 means"
" disable. 1 means conservatively place devices into D3 state. 2 means"
" aggressively place devices into D3 state. 3 means put absolutely"
" everything in D3 state.");
int pci_do_power_resume = 1;
SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
&pci_do_power_resume, 1,
"Transition from D3 -> D0 on resume.");
int pci_do_power_suspend = 1;
SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
&pci_do_power_suspend, 1,
"Transition from D0 -> D3 on suspend.");
static int pci_do_msi = 1;
SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
"Enable support for MSI interrupts");
static int pci_do_msix = 1;
SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
"Enable support for MSI-X interrupts");
static int pci_msix_rewrite_table = 0;
SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
&pci_msix_rewrite_table, 0,
"Rewrite entire MSI-X table when updating MSI-X entries");
static int pci_honor_msi_blacklist = 1;
SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
&pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
#if defined(__i386__) || defined(__amd64__)
static int pci_usb_takeover = 1;
#else
static int pci_usb_takeover = 0;
#endif
SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
&pci_usb_takeover, 1,
"Enable early takeover of USB controllers. Disable this if you depend on"
" BIOS emulation of USB devices, that is you use USB devices (like"
" keyboard or mouse) but do not load USB drivers");
static int pci_clear_bars;
SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
"Ignore firmware-assigned resources for BARs.");
#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
static int pci_clear_buses;
SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
"Ignore firmware-assigned bus numbers.");
#endif
static int pci_enable_ari = 1;
SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
0, "Enable support for PCIe Alternative RID Interpretation");
static int pci_clear_aer_on_attach = 0;
SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
&pci_clear_aer_on_attach, 0,
"Clear port and device AER state on driver attach");
static int
pci_has_quirk(uint32_t devid, int quirk)
{
const struct pci_quirk *q;
for (q = &pci_quirks[0]; q->devid; q++) {
if (q->devid == devid && q->type == quirk)
return (1);
}
return (0);
}
/* Find a device_t by bus/slot/function in domain 0 */
device_t
pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
{
return (pci_find_dbsf(0, bus, slot, func));
}
/* Find a device_t by domain/bus/slot/function */
device_t
pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
{
struct pci_devinfo *dinfo;
STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
if ((dinfo->cfg.domain == domain) &&
(dinfo->cfg.bus == bus) &&
(dinfo->cfg.slot == slot) &&
(dinfo->cfg.func == func)) {
return (dinfo->cfg.dev);
}
}
return (NULL);
}
/* Find a device_t by vendor/device ID */
device_t
pci_find_device(uint16_t vendor, uint16_t device)
{
struct pci_devinfo *dinfo;
STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
if ((dinfo->cfg.vendor == vendor) &&
(dinfo->cfg.device == device)) {
return (dinfo->cfg.dev);
}
}
return (NULL);
}
device_t
pci_find_class(uint8_t class, uint8_t subclass)
{
struct pci_devinfo *dinfo;
STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
if (dinfo->cfg.baseclass == class &&
dinfo->cfg.subclass == subclass) {
return (dinfo->cfg.dev);
}
}
return (NULL);
}
static int
pci_printf(pcicfgregs *cfg, const char *fmt, ...)
{
va_list ap;
int retval;
retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
cfg->func);
va_start(ap, fmt);
retval += vprintf(fmt, ap);
va_end(ap);
return (retval);
}
/* return base address of memory or port map */
static pci_addr_t
pci_mapbase(uint64_t mapreg)
{
if (PCI_BAR_MEM(mapreg))
return (mapreg & PCIM_BAR_MEM_BASE);
else
return (mapreg & PCIM_BAR_IO_BASE);
}
/* return map type of memory or port map */
static const char *
pci_maptype(uint64_t mapreg)
{
if (PCI_BAR_IO(mapreg))
return ("I/O Port");
if (mapreg & PCIM_BAR_MEM_PREFETCH)
return ("Prefetchable Memory");
return ("Memory");
}
/* return log2 of map size decoded for memory or port map */
int
pci_mapsize(uint64_t testval)
{
int ln2size;
testval = pci_mapbase(testval);
ln2size = 0;
if (testval != 0) {
while ((testval & 1) == 0)
{
ln2size++;
testval >>= 1;
}
}
return (ln2size);
}
/* return base address of device ROM */
static pci_addr_t
pci_rombase(uint64_t mapreg)
{
return (mapreg & PCIM_BIOS_ADDR_MASK);
}
/* return log2 of map size decided for device ROM */
static int
pci_romsize(uint64_t testval)
{
int ln2size;
testval = pci_rombase(testval);
ln2size = 0;
if (testval != 0) {
while ((testval & 1) == 0)
{
ln2size++;
testval >>= 1;
}
}
return (ln2size);
}
/* return log2 of address range supported by map register */
static int
pci_maprange(uint64_t mapreg)
{
int ln2range = 0;
if (PCI_BAR_IO(mapreg))
ln2range = 32;
else
switch (mapreg & PCIM_BAR_MEM_TYPE) {
case PCIM_BAR_MEM_32:
ln2range = 32;
break;
case PCIM_BAR_MEM_1MB:
ln2range = 20;
break;
case PCIM_BAR_MEM_64:
ln2range = 64;
break;
}
return (ln2range);
}
/* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
static void
pci_fixancient(pcicfgregs *cfg)
{
if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
return;
/* PCI to PCI bridges use header type 1 */
if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
}
/* extract header type specific config data */
static void
pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
{
#define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w)
switch (cfg->hdrtype & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_NORMAL:
cfg->subvendor = REG(PCIR_SUBVEND_0, 2);
cfg->subdevice = REG(PCIR_SUBDEV_0, 2);
cfg->mingnt = REG(PCIR_MINGNT, 1);
cfg->maxlat = REG(PCIR_MAXLAT, 1);
cfg->nummaps = PCI_MAXMAPS_0;
break;
case PCIM_HDRTYPE_BRIDGE:
cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
cfg->nummaps = PCI_MAXMAPS_1;
break;
case PCIM_HDRTYPE_CARDBUS:
cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
cfg->subvendor = REG(PCIR_SUBVEND_2, 2);
cfg->subdevice = REG(PCIR_SUBDEV_2, 2);
cfg->nummaps = PCI_MAXMAPS_2;
break;
}
#undef REG
}
/* read configuration header into pcicfgregs structure */
struct pci_devinfo *
pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
{
#define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w)
uint16_t vid, did;
vid = REG(PCIR_VENDOR, 2);
did = REG(PCIR_DEVICE, 2);
if (vid != 0xffff)
return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
return (NULL);
}
struct pci_devinfo *
pci_alloc_devinfo_method(device_t dev)
{
return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
M_WAITOK | M_ZERO));
}
static struct pci_devinfo *
pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
uint16_t vid, uint16_t did)
{
struct pci_devinfo *devlist_entry;
pcicfgregs *cfg;
devlist_entry = PCI_ALLOC_DEVINFO(bus);
cfg = &devlist_entry->cfg;
cfg->domain = d;
cfg->bus = b;
cfg->slot = s;
cfg->func = f;
cfg->vendor = vid;
cfg->device = did;
cfg->cmdreg = REG(PCIR_COMMAND, 2);
cfg->statreg = REG(PCIR_STATUS, 2);
cfg->baseclass = REG(PCIR_CLASS, 1);
cfg->subclass = REG(PCIR_SUBCLASS, 1);
cfg->progif = REG(PCIR_PROGIF, 1);
cfg->revid = REG(PCIR_REVID, 1);
cfg->hdrtype = REG(PCIR_HDRTYPE, 1);
cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1);
cfg->lattimer = REG(PCIR_LATTIMER, 1);
cfg->intpin = REG(PCIR_INTPIN, 1);
cfg->intline = REG(PCIR_INTLINE, 1);
cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0;
cfg->hdrtype &= ~PCIM_MFDEV;
STAILQ_INIT(&cfg->maps);
cfg->iov = NULL;
pci_fixancient(cfg);
pci_hdrtypedata(pcib, b, s, f, cfg);
if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
pci_read_cap(pcib, cfg);
STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
devlist_entry->conf.pc_sel.pc_func = cfg->func;
devlist_entry->conf.pc_hdr = cfg->hdrtype;
devlist_entry->conf.pc_subvendor = cfg->subvendor;
devlist_entry->conf.pc_subdevice = cfg->subdevice;
devlist_entry->conf.pc_vendor = cfg->vendor;
devlist_entry->conf.pc_device = cfg->device;
devlist_entry->conf.pc_class = cfg->baseclass;
devlist_entry->conf.pc_subclass = cfg->subclass;
devlist_entry->conf.pc_progif = cfg->progif;
devlist_entry->conf.pc_revid = cfg->revid;
pci_numdevs++;
pci_generation++;
return (devlist_entry);
}
#undef REG
static void
pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
{
#define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
cfg->ea.ea_location + (n), w)
int num_ent;
int ptr;
int a, b;
uint32_t val;
int ent_size;
uint32_t dw[4];
uint64_t base, max_offset;
struct pci_ea_entry *eae;
if (cfg->ea.ea_location == 0)
return;
STAILQ_INIT(&cfg->ea.ea_entries);
/* Determine the number of entries */
num_ent = REG(PCIR_EA_NUM_ENT, 2);
num_ent &= PCIM_EA_NUM_ENT_MASK;
/* Find the first entry to care of */
ptr = PCIR_EA_FIRST_ENT;
/* Skip DWORD 2 for type 1 functions */
if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
ptr += 4;
for (a = 0; a < num_ent; a++) {
eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
/* Read a number of dwords in the entry */
val = REG(ptr, 4);
ptr += 4;
ent_size = (val & PCIM_EA_ES);
for (b = 0; b < ent_size; b++) {
dw[b] = REG(ptr, 4);
ptr += 4;
}
eae->eae_flags = val;
eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
base = dw[0] & PCIM_EA_FIELD_MASK;
max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
b = 2;
if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
base |= (uint64_t)dw[b] << 32UL;
b++;
}
if (((dw[1] & PCIM_EA_IS_64) != 0)
&& (b < ent_size)) {
max_offset |= (uint64_t)dw[b] << 32UL;
b++;
}
eae->eae_base = base;
eae->eae_max_offset = max_offset;
STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
if (bootverbose) {
printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
(uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
}
}
}
#undef REG
static void
pci_read_cap(device_t pcib, pcicfgregs *cfg)
{
#define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
#define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
uint64_t addr;
#endif
uint32_t val;
int ptr, nextptr, ptrptr;
switch (cfg->hdrtype & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_NORMAL:
case PCIM_HDRTYPE_BRIDGE:
ptrptr = PCIR_CAP_PTR;
break;
case PCIM_HDRTYPE_CARDBUS:
ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */
break;
default:
return; /* no extended capabilities support */
}
nextptr = REG(ptrptr, 1); /* sanity check? */
/*
* Read capability entries.
*/
while (nextptr != 0) {
/* Sanity check */
if (nextptr > 255) {
printf("illegal PCI extended capability offset %d\n",
nextptr);
return;
}
/* Find the next entry */
ptr = nextptr;
nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
/* Process this entry */
switch (REG(ptr + PCICAP_ID, 1)) {
case PCIY_PMG: /* PCI power management */
if (cfg->pp.pp_cap == 0) {
cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
cfg->pp.pp_bse = ptr + PCIR_POWER_BSE;
if ((nextptr - ptr) > PCIR_POWER_DATA)
cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
}
break;
case PCIY_HT: /* HyperTransport */
/* Determine HT-specific capability type. */
val = REG(ptr + PCIR_HT_COMMAND, 2);
if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
cfg->ht.ht_slave = ptr;
#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
switch (val & PCIM_HTCMD_CAP_MASK) {
case PCIM_HTCAP_MSI_MAPPING:
if (!(val & PCIM_HTCMD_MSI_FIXED)) {
/* Sanity check the mapping window. */
addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
4);
addr <<= 32;
addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
4);
if (addr != MSI_INTEL_ADDR_BASE)
device_printf(pcib,
"HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
cfg->domain, cfg->bus,
cfg->slot, cfg->func,
(long long)addr);
} else
addr = MSI_INTEL_ADDR_BASE;
cfg->ht.ht_msimap = ptr;
cfg->ht.ht_msictrl = val;
cfg->ht.ht_msiaddr = addr;
break;
}
#endif
break;
case PCIY_MSI: /* PCI MSI */
cfg->msi.msi_location = ptr;
cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
PCIM_MSICTRL_MMC_MASK)>>1);
break;
case PCIY_MSIX: /* PCI MSI-X */
cfg->msix.msix_location = ptr;
cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
PCIM_MSIXCTRL_TABLE_SIZE) + 1;
val = REG(ptr + PCIR_MSIX_TABLE, 4);
cfg->msix.msix_table_bar = PCIR_BAR(val &
PCIM_MSIX_BIR_MASK);
cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
val = REG(ptr + PCIR_MSIX_PBA, 4);
cfg->msix.msix_pba_bar = PCIR_BAR(val &
PCIM_MSIX_BIR_MASK);
cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
break;
case PCIY_VPD: /* PCI Vital Product Data */
cfg->vpd.vpd_reg = ptr;
break;
case PCIY_SUBVENDOR:
/* Should always be true. */
if ((cfg->hdrtype & PCIM_HDRTYPE) ==
PCIM_HDRTYPE_BRIDGE) {
val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
cfg->subvendor = val & 0xffff;
cfg->subdevice = val >> 16;
}
break;
case PCIY_PCIX: /* PCI-X */
/*
* Assume we have a PCI-X chipset if we have
* at least one PCI-PCI bridge with a PCI-X
* capability. Note that some systems with
* PCI-express or HT chipsets might match on
* this check as well.
*/
if ((cfg->hdrtype & PCIM_HDRTYPE) ==
PCIM_HDRTYPE_BRIDGE)
pcix_chipset = 1;
cfg->pcix.pcix_location = ptr;
break;
case PCIY_EXPRESS: /* PCI-express */
/*
* Assume we have a PCI-express chipset if we have
* at least one PCI-express device.
*/
pcie_chipset = 1;
cfg->pcie.pcie_location = ptr;
val = REG(ptr + PCIER_FLAGS, 2);
cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
break;
case PCIY_EA: /* Enhanced Allocation */
cfg->ea.ea_location = ptr;
pci_ea_fill_info(pcib, cfg);
break;
default:
break;
}
}
#if defined(__powerpc__)
/*
* Enable the MSI mapping window for all HyperTransport
* slaves. PCI-PCI bridges have their windows enabled via
* PCIB_MAP_MSI().
*/
if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
!(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
device_printf(pcib,
"Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
cfg->domain, cfg->bus, cfg->slot, cfg->func);
cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
2);
}
#endif
/* REG and WREG use carry through to next functions */
}
/*
* PCI Vital Product Data
*/
#define PCI_VPD_TIMEOUT 1000000
static int
pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
{
int count = PCI_VPD_TIMEOUT;
KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
if (--count < 0)
return (ENXIO);
DELAY(1); /* limit looping */
}
*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
return (0);
}
#if 0
static int
pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
{
int count = PCI_VPD_TIMEOUT;
KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
if (--count < 0)
return (ENXIO);
DELAY(1); /* limit looping */
}
return (0);
}
#endif
#undef PCI_VPD_TIMEOUT
struct vpd_readstate {
device_t pcib;
pcicfgregs *cfg;
uint32_t val;
int bytesinval;
int off;
uint8_t cksum;
};
static int
vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
{
uint32_t reg;
uint8_t byte;
if (vrs->bytesinval == 0) {
if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
return (ENXIO);
vrs->val = le32toh(reg);
vrs->off += 4;
byte = vrs->val & 0xff;
vrs->bytesinval = 3;
} else {
vrs->val = vrs->val >> 8;
byte = vrs->val & 0xff;
vrs->bytesinval--;
}
vrs->cksum += byte;
*data = byte;
return (0);
}
static void
pci_read_vpd(device_t pcib, pcicfgregs *cfg)
{
struct vpd_readstate vrs;
int state;
int name;
int remain;
int i;
int alloc, off; /* alloc/off for RO/W arrays */
int cksumvalid;
int dflen;
uint8_t byte;
uint8_t byte2;
/* init vpd reader */
vrs.bytesinval = 0;
vrs.off = 0;
vrs.pcib = pcib;
vrs.cfg = cfg;
vrs.cksum = 0;
state = 0;
name = remain = i = 0; /* shut up stupid gcc */
alloc = off = 0; /* shut up stupid gcc */
dflen = 0; /* shut up stupid gcc */
cksumvalid = -1;
while (state >= 0) {
if (vpd_nextbyte(&vrs, &byte)) {
state = -2;
break;
}
#if 0
printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \
"state: %d, remain: %d, name: %#x, i: %d\n", vrs.val,
vrs.off, vrs.bytesinval, byte, state, remain, name, i);
#endif
switch (state) {
case 0: /* item name */
if (byte & 0x80) {
if (vpd_nextbyte(&vrs, &byte2)) {
state = -2;
break;
}
remain = byte2;
if (vpd_nextbyte(&vrs, &byte2)) {
state = -2;
break;
}
remain |= byte2 << 8;
if (remain > (0x7f*4 - vrs.off)) {
state = -1;
pci_printf(cfg,
"invalid VPD data, remain %#x\n",
remain);
}
name = byte & 0x7f;
} else {
remain = byte & 0x7;
name = (byte >> 3) & 0xf;
}
switch (name) {
case 0x2: /* String */
cfg->vpd.vpd_ident = malloc(remain + 1,
M_DEVBUF, M_WAITOK);
i = 0;
state = 1;
break;
case 0xf: /* End */
state = -1;
break;
case 0x10: /* VPD-R */
alloc = 8;
off = 0;
cfg->vpd.vpd_ros = malloc(alloc *
sizeof(*cfg->vpd.vpd_ros), M_DEVBUF,
M_WAITOK | M_ZERO);
state = 2;
break;
case 0x11: /* VPD-W */
alloc = 8;
off = 0;
cfg->vpd.vpd_w = malloc(alloc *
sizeof(*cfg->vpd.vpd_w), M_DEVBUF,
M_WAITOK | M_ZERO);
state = 5;
break;
default: /* Invalid data, abort */
state = -1;
break;
}
break;
case 1: /* Identifier String */
cfg->vpd.vpd_ident[i++] = byte;
remain--;
if (remain == 0) {
cfg->vpd.vpd_ident[i] = '\0';
state = 0;
}
break;
case 2: /* VPD-R Keyword Header */
if (off == alloc) {
cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
(alloc *= 2) * sizeof(*cfg->vpd.vpd_ros),
M_DEVBUF, M_WAITOK | M_ZERO);
}
cfg->vpd.vpd_ros[off].keyword[0] = byte;
if (vpd_nextbyte(&vrs, &byte2)) {
state = -2;
break;
}
cfg->vpd.vpd_ros[off].keyword[1] = byte2;
if (vpd_nextbyte(&vrs, &byte2)) {
state = -2;
break;
}
cfg->vpd.vpd_ros[off].len = dflen = byte2;
if (dflen == 0 &&
strncmp(cfg->vpd.vpd_ros[off].keyword, "RV",
2) == 0) {
/*
* if this happens, we can't trust the rest
* of the VPD.
*/
pci_printf(cfg, "bad keyword length: %d\n",
dflen);
cksumvalid = 0;
state = -1;
break;
} else if (dflen == 0) {
cfg->vpd.vpd_ros[off].value = malloc(1 *
sizeof(*cfg->vpd.vpd_ros[off].value),
M_DEVBUF, M_WAITOK);
cfg->vpd.vpd_ros[off].value[0] = '\x00';
} else
cfg->vpd.vpd_ros[off].value = malloc(
(dflen + 1) *
sizeof(*cfg->vpd.vpd_ros[off].value),
M_DEVBUF, M_WAITOK);
remain -= 3;
i = 0;
/* keep in sync w/ state 3's transistions */
if (dflen == 0 && remain == 0)
state = 0;
else if (dflen == 0)
state = 2;
else
state = 3;
break;
case 3: /* VPD-R Keyword Value */
cfg->vpd.vpd_ros[off].value[i++] = byte;
if (strncmp(cfg->vpd.vpd_ros[off].keyword,
"RV", 2) == 0 && cksumvalid == -1) {
if (vrs.cksum == 0)
cksumvalid = 1;
else {
if (bootverbose)
pci_printf(cfg,
"bad VPD cksum, remain %hhu\n",
vrs.cksum);
cksumvalid = 0;
state = -1;
break;
}
}
dflen--;
remain--;
/* keep in sync w/ state 2's transistions */
if (dflen == 0)
cfg->vpd.vpd_ros[off++].value[i++] = '\0';
if (dflen == 0 && remain == 0) {
cfg->vpd.vpd_rocnt = off;
cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
off * sizeof(*cfg->vpd.vpd_ros),
M_DEVBUF, M_WAITOK | M_ZERO);
state = 0;
} else if (dflen == 0)
state = 2;
break;
case 4:
remain--;
if (remain == 0)
state = 0;
break;
case 5: /* VPD-W Keyword Header */
if (off == alloc) {
cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
(alloc *= 2) * sizeof(*cfg->vpd.vpd_w),
M_DEVBUF, M_WAITOK | M_ZERO);
}
cfg->vpd.vpd_w[off].keyword[0] = byte;
if (vpd_nextbyte(&vrs, &byte2)) {
state = -2;
break;
}
cfg->vpd.vpd_w[off].keyword[1] = byte2;
if (vpd_nextbyte(&vrs, &byte2)) {
state = -2;
break;
}
cfg->vpd.vpd_w[off].len = dflen = byte2;
cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval;
cfg->vpd.vpd_w[off].value = malloc((dflen + 1) *
sizeof(*cfg->vpd.vpd_w[off].value),
M_DEVBUF, M_WAITOK);
remain -= 3;
i = 0;
/* keep in sync w/ state 6's transistions */
if (dflen == 0 && remain == 0)
state = 0;
else if (dflen == 0)
state = 5;
else
state = 6;
break;
case 6: /* VPD-W Keyword Value */
cfg->vpd.vpd_w[off].value[i++] = byte;
dflen--;
remain--;
/* keep in sync w/ state 5's transistions */
if (dflen == 0)
cfg->vpd.vpd_w[off++].value[i++] = '\0';
if (dflen == 0 && remain == 0) {
cfg->vpd.vpd_wcnt = off;
cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
off * sizeof(*cfg->vpd.vpd_w),
M_DEVBUF, M_WAITOK | M_ZERO);
state = 0;
} else if (dflen == 0)
state = 5;
break;
default:
pci_printf(cfg, "invalid state: %d\n", state);
state = -1;
break;
}
}
if (cksumvalid == 0 || state < -1) {
/* read-only data bad, clean up */
if (cfg->vpd.vpd_ros != NULL) {
for (off = 0; cfg->vpd.vpd_ros[off].value; off++)
free(cfg->vpd.vpd_ros[off].value, M_DEVBUF);
free(cfg->vpd.vpd_ros, M_DEVBUF);
cfg->vpd.vpd_ros = NULL;
}
}
if (state < -1) {
/* I/O error, clean up */
pci_printf(cfg, "failed to read VPD data.\n");
if (cfg->vpd.vpd_ident != NULL) {
free(cfg->vpd.vpd_ident, M_DEVBUF);
cfg->vpd.vpd_ident = NULL;
}
if (cfg->vpd.vpd_w != NULL) {
for (off = 0; cfg->vpd.vpd_w[off].value; off++)
free(cfg->vpd.vpd_w[off].value, M_DEVBUF);
free(cfg->vpd.vpd_w, M_DEVBUF);
cfg->vpd.vpd_w = NULL;
}
}
cfg->vpd.vpd_cached = 1;
#undef REG
#undef WREG
}
int
pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
pci_read_vpd(device_get_parent(dev), cfg);
*identptr = cfg->vpd.vpd_ident;
if (*identptr == NULL)
return (ENXIO);
return (0);
}
int
pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
const char **vptr)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
int i;
if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
pci_read_vpd(device_get_parent(dev), cfg);
for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
*vptr = cfg->vpd.vpd_ros[i].value;
return (0);
}
*vptr = NULL;
return (ENXIO);
}
struct pcicfg_vpd *
pci_fetch_vpd_list(device_t dev)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
pcicfgregs *cfg = &dinfo->cfg;
if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
return (&cfg->vpd);
}
/*
* Find the requested HyperTransport capability and return the offset
* in configuration space via the pointer provided. The function
* returns 0 on success and an error code otherwise.
*/
int
pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
{
int ptr, error;
uint16_t val;
error = pci_find_cap(child, PCIY_HT, &ptr);
if (error)
return (error);
/*
* Traverse the capabilities list checking each HT capability
* to see if it matches the requested HT capability.
*/
for (;;) {
val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
if (capability == PCIM_HTCAP_SLAVE ||
capability == PCIM_HTCAP_HOST)
val &= 0xe000;
else
val &= PCIM_HTCMD_CAP_MASK;
if (val == capability) {
if (capreg != NULL)
*capreg = ptr;
return (0);
}
/* Skip to the next HT capability. */
if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
break;
}
return (ENOENT);
}
/*
* Find the next requested HyperTransport capability after start and return
* the offset in configuration space via the pointer provided. The function
* returns 0 on success and an error code otherwise.
*/
int
pci_find_next_htcap_method(device_t dev, device_t child, int capability,
int start, int *capreg)
{
int ptr;
uint16_t val;
KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
("start capability is not HyperTransport capability"));
ptr = start;
/*
* Traverse the capabilities list checking each HT capability
* to see if it matches the requested HT capability.
*/
for (;;) {
/* Skip to the next HT capability. */
if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
break;
val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
if (capability == PCIM_HTCAP_SLAVE ||
capability == PCIM_HTCAP_HOST)
val &= 0xe000;
else
val &= PCIM_HTCMD_CAP_MASK;
if (val == capability) {
if (capreg != NULL)
*capreg = ptr;
return (0);
}
}
return (ENOENT);
}
/*
* Find the requested capability and return the offset in
* configuration space via the pointer provided. The function returns
* 0 on success and an error code otherwise.
*/
int
pci_find_cap_method(device_t dev, device_t child, int capability,
int *capreg)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
uint32_t status;
uint8_t ptr;
/*
* Check the CAP_LIST bit of the PCI status register first.
*/
status = pci_read_config(child, PCIR_STATUS, 2);
if (!(status & PCIM_STATUS_CAPPRESENT))
return (ENXIO);
/*
* Determine the start pointer of the capabilities list.
*/
switch (cfg->hdrtype & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_NORMAL:
case PCIM_HDRTYPE_BRIDGE:
ptr = PCIR_CAP_PTR;
break;
case PCIM_HDRTYPE_CARDBUS:
ptr = PCIR_CAP_PTR_2;
break;
default:
/* XXX: panic? */
return (ENXIO); /* no extended capabilities support */
}
ptr = pci_read_config(child, ptr, 1);
/*
* Traverse the capabilities list.
*/
while (ptr != 0) {
if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
if (capreg != NULL)
*capreg = ptr;
return (0);
}
ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
}
return (ENOENT);
}
/*
* Find the next requested capability after start and return the offset in
* configuration space via the pointer provided. The function returns
* 0 on success and an error code otherwise.
*/
int
pci_find_next_cap_method(device_t dev, device_t child, int capability,
int start, int *capreg)
{
uint8_t ptr;
KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
("start capability is not expected capability"));
ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
while (ptr != 0) {
if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
if (capreg != NULL)
*capreg = ptr;
return (0);
}
ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
}
return (ENOENT);
}
/*
* Find the requested extended capability and return the offset in
* configuration space via the pointer provided. The function returns
* 0 on success and an error code otherwise.
*/
int
pci_find_extcap_method(device_t dev, device_t child, int capability,
int *capreg)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
uint32_t ecap;
uint16_t ptr;
/* Only supported for PCI-express devices. */
if (cfg->pcie.pcie_location == 0)
return (ENXIO);
ptr = PCIR_EXTCAP;
ecap = pci_read_config(child, ptr, 4);
if (ecap == 0xffffffff || ecap == 0)
return (ENOENT);
for (;;) {
if (PCI_EXTCAP_ID(ecap) == capability) {
if (capreg != NULL)
*capreg = ptr;
return (0);
}
ptr = PCI_EXTCAP_NEXTPTR(ecap);
if (ptr == 0)
break;
ecap = pci_read_config(child, ptr, 4);
}
return (ENOENT);
}
/*
* Find the next requested extended capability after start and return the
* offset in configuration space via the pointer provided. The function
* returns 0 on success and an error code otherwise.
*/
int
pci_find_next_extcap_method(device_t dev, device_t child, int capability,
int start, int *capreg)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
uint32_t ecap;
uint16_t ptr;
/* Only supported for PCI-express devices. */
if (cfg->pcie.pcie_location == 0)
return (ENXIO);
ecap = pci_read_config(child, start, 4);
KASSERT(PCI_EXTCAP_ID(ecap) == capability,
("start extended capability is not expected capability"));
ptr = PCI_EXTCAP_NEXTPTR(ecap);
while (ptr != 0) {
ecap = pci_read_config(child, ptr, 4);
if (PCI_EXTCAP_ID(ecap) == capability) {
if (capreg != NULL)
*capreg = ptr;
return (0);
}
ptr = PCI_EXTCAP_NEXTPTR(ecap);
}
return (ENOENT);
}
/*
* Support for MSI-X message interrupts.
*/
static void
pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
struct pcicfg_msix *msix = &dinfo->cfg.msix;
uint32_t offset;
KASSERT(msix->msix_table_len > index, ("bogus index"));
offset = msix->msix_table_offset + index * 16;
bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
bus_write_4(msix->msix_table_res, offset + 8, data);
}
void
pci_enable_msix_method(device_t dev, device_t child, u_int index,
uint64_t address, uint32_t data)
{
if (pci_msix_rewrite_table) {
struct pci_devinfo *dinfo = device_get_ivars(child);
struct pcicfg_msix *msix = &dinfo->cfg.msix;
/*
* Some VM hosts require MSIX to be disabled in the
* control register before updating the MSIX table
* entries are allowed. It is not enough to only
* disable MSIX while updating a single entry. MSIX
* must be disabled while updating all entries in the
* table.
*/
pci_write_config(child,
msix->msix_location + PCIR_MSIX_CTRL,
msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
pci_resume_msix(child);
} else
pci_write_msix_entry(child, index, address, data);
/* Enable MSI -> HT mapping. */
pci_ht_map_msi(child, address);
}
void
pci_mask_msix(device_t dev, u_int index)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
struct pcicfg_msix *msix = &dinfo->cfg.msix;
uint32_t offset, val;
KASSERT(msix->msix_msgnum > index, ("bogus index"));
offset = msix->msix_table_offset + index * 16 + 12;
val = bus_read_4(msix->msix_table_res, offset);
if (!(val & PCIM_MSIX_VCTRL_MASK)) {
val |= PCIM_MSIX_VCTRL_MASK;
bus_write_4(msix->msix_table_res, offset, val);
}
}
void
pci_unmask_msix(device_t dev, u_int index)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
struct pcicfg_msix *msix = &dinfo->cfg.msix;
uint32_t offset, val;
KASSERT(msix->msix_table_len > index, ("bogus index"));
offset = msix->msix_table_offset + index * 16 + 12;
val = bus_read_4(msix->msix_table_res, offset);
if (val & PCIM_MSIX_VCTRL_MASK) {
val &= ~PCIM_MSIX_VCTRL_MASK;
bus_write_4(msix->msix_table_res, offset, val);
}
}
int
pci_pending_msix(device_t dev, u_int index)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
struct pcicfg_msix *msix = &dinfo->cfg.msix;
uint32_t offset, bit;
KASSERT(msix->msix_table_len > index, ("bogus index"));
offset = msix->msix_pba_offset + (index / 32) * 4;
bit = 1 << index % 32;
return (bus_read_4(msix->msix_pba_res, offset) & bit);
}
/*
* Restore MSI-X registers and table during resume. If MSI-X is
* enabled then walk the virtual table to restore the actual MSI-X
* table.
*/
static void
pci_resume_msix(device_t dev)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
struct pcicfg_msix *msix = &dinfo->cfg.msix;
struct msix_table_entry *mte;
struct msix_vector *mv;
int i;
if (msix->msix_alloc > 0) {
/* First, mask all vectors. */
for (i = 0; i < msix->msix_msgnum; i++)
pci_mask_msix(dev, i);
/* Second, program any messages with at least one handler. */
for (i = 0; i < msix->msix_table_len; i++) {
mte = &msix->msix_table[i];
if (mte->mte_vector == 0 || mte->mte_handlers == 0)
continue;
mv = &msix->msix_vectors[mte->mte_vector - 1];
pci_write_msix_entry(dev, i, mv->mv_address,
mv->mv_data);
pci_unmask_msix(dev, i);
}
}
pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
msix->msix_ctrl, 2);
}
/*
* Attempt to allocate *count MSI-X messages. The actual number allocated is
* returned in *count. After this function returns, each message will be
* available to the driver as SYS_RES_IRQ resources starting at rid 1.
*/
int
pci_alloc_msix_method(device_t dev, device_t child, int *count)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
struct resource_list_entry *rle;
int actual, error, i, irq, max;
/* Don't let count == 0 get us into trouble. */
if (*count == 0)
return (EINVAL);
/* If rid 0 is allocated, then fail. */
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
if (rle != NULL && rle->res != NULL)
return (ENXIO);
/* Already have allocated messages? */
if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
return (ENXIO);
/* If MSI-X is blacklisted for this system, fail. */
if (pci_msix_blacklisted())
return (ENXIO);
/* MSI-X capability present? */
if (cfg->msix.msix_location == 0 || !pci_do_msix)
return (ENODEV);
/* Make sure the appropriate BARs are mapped. */
rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
cfg->msix.msix_table_bar);
if (rle == NULL || rle->res == NULL ||
!(rman_get_flags(rle->res) & RF_ACTIVE))
return (ENXIO);
cfg->msix.msix_table_res = rle->res;
if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
cfg->msix.msix_pba_bar);
if (rle == NULL || rle->res == NULL ||
!(rman_get_flags(rle->res) & RF_ACTIVE))
return (ENXIO);
}
cfg->msix.msix_pba_res = rle->res;
if (bootverbose)
device_printf(child,
"attempting to allocate %d MSI-X vectors (%d supported)\n",
*count, cfg->msix.msix_msgnum);
max = min(*count, cfg->msix.msix_msgnum);
for (i = 0; i < max; i++) {
/* Allocate a message. */
error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
if (error) {
if (i == 0)
return (error);
break;
}
resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
irq, 1);
}
actual = i;
if (bootverbose) {
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
if (actual == 1)
device_printf(child, "using IRQ %ju for MSI-X\n",
rle->start);
else {
int run;
/*
* Be fancy and try to print contiguous runs of
* IRQ values as ranges. 'irq' is the previous IRQ.
* 'run' is true if we are in a range.
*/
device_printf(child, "using IRQs %ju", rle->start);
irq = rle->start;
run = 0;
for (i = 1; i < actual; i++) {
rle = resource_list_find(&dinfo->resources,
SYS_RES_IRQ, i + 1);
/* Still in a run? */
if (rle->start == irq + 1) {
run = 1;
irq++;
continue;
}
/* Finish previous range. */
if (run) {
printf("-%d", irq);
run = 0;
}
/* Start new range. */
printf(",%ju", rle->start);
irq = rle->start;
}
/* Unfinished range? */
if (run)
printf("-%d", irq);
printf(" for MSI-X\n");
}
}
/* Mask all vectors. */
for (i = 0; i < cfg->msix.msix_msgnum; i++)
pci_mask_msix(child, i);
/* Allocate and initialize vector data and virtual table. */
cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
M_DEVBUF, M_WAITOK | M_ZERO);
cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
M_DEVBUF, M_WAITOK | M_ZERO);
for (i = 0; i < actual; i++) {
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
cfg->msix.msix_vectors[i].mv_irq = rle->start;
cfg->msix.msix_table[i].mte_vector = i + 1;
}
/* Update control register to enable MSI-X. */
cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
cfg->msix.msix_ctrl, 2);
/* Update counts of alloc'd messages. */
cfg->msix.msix_alloc = actual;
cfg->msix.msix_table_len = actual;
*count = actual;
return (0);
}
/*
* By default, pci_alloc_msix() will assign the allocated IRQ
* resources consecutively to the first N messages in the MSI-X table.
* However, device drivers may want to use different layouts if they
* either receive fewer messages than they asked for, or they wish to
* populate the MSI-X table sparsely. This method allows the driver
* to specify what layout it wants. It must be called after a
* successful pci_alloc_msix() but before any of the associated
* SYS_RES_IRQ resources are allocated via bus_alloc_resource().
*
* The 'vectors' array contains 'count' message vectors. The array
* maps directly to the MSI-X table in that index 0 in the array
* specifies the vector for the first message in the MSI-X table, etc.
* The vector value in each array index can either be 0 to indicate
* that no vector should be assigned to a message slot, or it can be a
* number from 1 to N (where N is the count returned from a
* succcessful call to pci_alloc_msix()) to indicate which message
* vector (IRQ) to be used for the corresponding message.
*
* On successful return, each message with a non-zero vector will have
* an associated SYS_RES_IRQ whose rid is equal to the array index +
* 1. Additionally, if any of the IRQs allocated via the previous
* call to pci_alloc_msix() are not used in the mapping, those IRQs
* will be freed back to the system automatically.
*
* For example, suppose a driver has a MSI-X table with 6 messages and
* asks for 6 messages, but pci_alloc_msix() only returns a count of
* 3. Call the three vectors allocated by pci_alloc_msix() A, B, and
* C. After the call to pci_alloc_msix(), the device will be setup to
* have an MSI-X table of ABC--- (where - means no vector assigned).
* If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
* then the MSI-X table will look like A-AB-B, and the 'C' vector will
* be freed back to the system. This device will also have valid
* SYS_RES_IRQ rids of 1, 3, 4, and 6.
*
* In any case, the SYS_RES_IRQ rid X will always map to the message
* at MSI-X table index X - 1 and will only be valid if a vector is
* assigned to that table entry.
*/
int
pci_remap_msix_method(device_t dev, device_t child, int count,
const u_int *vectors)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
struct pcicfg_msix *msix = &dinfo->cfg.msix;
struct resource_list_entry *rle;
int i, irq, j, *used;
/*
* Have to have at least one message in the table but the
* table can't be bigger than the actual MSI-X table in the
* device.
*/
if (count == 0 || count > msix->msix_msgnum)
return (EINVAL);
/* Sanity check the vectors. */
for (i = 0; i < count; i++)
if (vectors[i] > msix->msix_alloc)
return (EINVAL);
/*
* Make sure there aren't any holes in the vectors to be used.
* It's a big pain to support it, and it doesn't really make
* sense anyway. Also, at least one vector must be used.
*/
used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
M_ZERO);
for (i = 0; i < count; i++)
if (vectors[i] != 0)
used[vectors[i] - 1] = 1;
for (i = 0; i < msix->msix_alloc - 1; i++)
if (used[i] == 0 && used[i + 1] == 1) {
free(used, M_DEVBUF);
return (EINVAL);
}
if (used[0] != 1) {
free(used, M_DEVBUF);
return (EINVAL);
}
/* Make sure none of the resources are allocated. */
for (i = 0; i < msix->msix_table_len; i++) {
if (msix->msix_table[i].mte_vector == 0)
continue;
if (msix->msix_table[i].mte_handlers > 0) {
free(used, M_DEVBUF);
return (EBUSY);
}
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
KASSERT(rle != NULL, ("missing resource"));
if (rle->res != NULL) {
free(used, M_DEVBUF);
return (EBUSY);
}
}
/* Free the existing resource list entries. */
for (i = 0; i < msix->msix_table_len; i++) {
if (msix->msix_table[i].mte_vector == 0)
continue;
resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
}
/*
* Build the new virtual table keeping track of which vectors are
* used.
*/
free(msix->msix_table, M_DEVBUF);
msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
M_DEVBUF, M_WAITOK | M_ZERO);
for (i = 0; i < count; i++)
msix->msix_table[i].mte_vector = vectors[i];
msix->msix_table_len = count;
/* Free any unused IRQs and resize the vectors array if necessary. */
j = msix->msix_alloc - 1;
if (used[j] == 0) {
struct msix_vector *vec;
while (used[j] == 0) {
PCIB_RELEASE_MSIX(device_get_parent(dev), child,
msix->msix_vectors[j].mv_irq);
j--;
}
vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
M_WAITOK);
bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
(j + 1));
free(msix->msix_vectors, M_DEVBUF);
msix->msix_vectors = vec;
msix->msix_alloc = j + 1;
}
free(used, M_DEVBUF);
/* Map the IRQs onto the rids. */
for (i = 0; i < count; i++) {
if (vectors[i] == 0)
continue;
irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
irq, 1);
}
if (bootverbose) {
device_printf(child, "Remapped MSI-X IRQs as: ");
for (i = 0; i < count; i++) {
if (i != 0)
printf(", ");
if (vectors[i] == 0)
printf("---");
else
printf("%d",
msix->msix_vectors[vectors[i] - 1].mv_irq);
}
printf("\n");
}
return (0);
}
static int
pci_release_msix(device_t dev, device_t child)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
struct pcicfg_msix *msix = &dinfo->cfg.msix;
struct resource_list_entry *rle;
int i;
/* Do we have any messages to release? */
if (msix->msix_alloc == 0)
return (ENODEV);
/* Make sure none of the resources are allocated. */
for (i = 0; i < msix->msix_table_len; i++) {
if (msix->msix_table[i].mte_vector == 0)
continue;
if (msix->msix_table[i].mte_handlers > 0)
return (EBUSY);
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
KASSERT(rle != NULL, ("missing resource"));
if (rle->res != NULL)
return (EBUSY);
}
/* Update control register to disable MSI-X. */
msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
msix->msix_ctrl, 2);
/* Free the resource list entries. */
for (i = 0; i < msix->msix_table_len; i++) {
if (msix->msix_table[i].mte_vector == 0)
continue;
resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
}
free(msix->msix_table, M_DEVBUF);
msix->msix_table_len = 0;
/* Release the IRQs. */
for (i = 0; i < msix->msix_alloc; i++)
PCIB_RELEASE_MSIX(device_get_parent(dev), child,
msix->msix_vectors[i].mv_irq);
free(msix->msix_vectors, M_DEVBUF);
msix->msix_alloc = 0;
return (0);
}
/*
* Return the max supported MSI-X messages this device supports.
* Basically, assuming the MD code can alloc messages, this function
* should return the maximum value that pci_alloc_msix() can return.
* Thus, it is subject to the tunables, etc.
*/
int
pci_msix_count_method(device_t dev, device_t child)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
struct pcicfg_msix *msix = &dinfo->cfg.msix;
if (pci_do_msix && msix->msix_location != 0)
return (msix->msix_msgnum);
return (0);
}
int
pci_msix_pba_bar_method(device_t dev, device_t child)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
struct pcicfg_msix *msix = &dinfo->cfg.msix;
if (pci_do_msix && msix->msix_location != 0)
return (msix->msix_pba_bar);
return (-1);
}
int
pci_msix_table_bar_method(device_t dev, device_t child)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
struct pcicfg_msix *msix = &dinfo->cfg.msix;
if (pci_do_msix && msix->msix_location != 0)
return (msix->msix_table_bar);
return (-1);
}
/*
* HyperTransport MSI mapping control
*/
void
pci_ht_map_msi(device_t dev, uint64_t addr)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
struct pcicfg_ht *ht = &dinfo->cfg.ht;
if (!ht->ht_msimap)
return;
if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
ht->ht_msiaddr >> 20 == addr >> 20) {
/* Enable MSI -> HT mapping. */
ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
ht->ht_msictrl, 2);
}
if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
/* Disable MSI -> HT mapping. */
ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
ht->ht_msictrl, 2);
}
}
int
pci_get_max_payload(device_t dev)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
int cap;
uint16_t val;
cap = dinfo->cfg.pcie.pcie_location;
if (cap == 0)
return (0);
val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
val &= PCIEM_CTL_MAX_PAYLOAD;
val >>= 5;
return (1 << (val + 7));
}
int
pci_get_max_read_req(device_t dev)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
int cap;
uint16_t val;
cap = dinfo->cfg.pcie.pcie_location;
if (cap == 0)
return (0);
val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
val &= PCIEM_CTL_MAX_READ_REQUEST;
val >>= 12;
return (1 << (val + 7));
}
int
pci_set_max_read_req(device_t dev, int size)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
int cap;
uint16_t val;
cap = dinfo->cfg.pcie.pcie_location;
if (cap == 0)
return (0);
if (size < 128)
size = 128;
if (size > 4096)
size = 4096;
size = (1 << (fls(size) - 1));
val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
val &= ~PCIEM_CTL_MAX_READ_REQUEST;
val |= (fls(size) - 8) << 12;
pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
return (size);
}
uint32_t
pcie_read_config(device_t dev, int reg, int width)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
int cap;
cap = dinfo->cfg.pcie.pcie_location;
if (cap == 0) {
if (width == 2)
return (0xffff);
return (0xffffffff);
}
return (pci_read_config(dev, cap + reg, width));
}
void
pcie_write_config(device_t dev, int reg, uint32_t value, int width)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
int cap;
cap = dinfo->cfg.pcie.pcie_location;
if (cap == 0)
return;
pci_write_config(dev, cap + reg, value, width);
}
/*
* Adjusts a PCI-e capability register by clearing the bits in mask
* and setting the bits in (value & mask). Bits not set in mask are
* not adjusted.
*
* Returns the old value on success or all ones on failure.
*/
uint32_t
pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
int width)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
uint32_t old, new;
int cap;
cap = dinfo->cfg.pcie.pcie_location;
if (cap == 0) {
if (width == 2)
return (0xffff);
return (0xffffffff);
}
old = pci_read_config(dev, cap + reg, width);
new = old & ~mask;
new |= (value & mask);
pci_write_config(dev, cap + reg, new, width);
return (old);
}
/*
* Support for MSI message signalled interrupts.
*/
void
pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
uint16_t data)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
struct pcicfg_msi *msi = &dinfo->cfg.msi;
/* Write data and address values. */
pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
address & 0xffffffff, 4);
if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
address >> 32, 4);
pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
data, 2);
} else
pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2);
/* Enable MSI in the control register. */
msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
msi->msi_ctrl, 2);
/* Enable MSI -> HT mapping. */
pci_ht_map_msi(child, address);
}
void
pci_disable_msi_method(device_t dev, device_t child)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
struct pcicfg_msi *msi = &dinfo->cfg.msi;
/* Disable MSI -> HT mapping. */
pci_ht_map_msi(child, 0);
/* Disable MSI in the control register. */
msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
msi->msi_ctrl, 2);
}
/*
* Restore MSI registers during resume. If MSI is enabled then
* restore the data and address registers in addition to the control
* register.
*/
static void
pci_resume_msi(device_t dev)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
struct pcicfg_msi *msi = &dinfo->cfg.msi;
uint64_t address;
uint16_t data;
if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
address = msi->msi_addr;
data = msi->msi_data;
pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
address & 0xffffffff, 4);
if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
pci_write_config(dev, msi->msi_location +
PCIR_MSI_ADDR_HIGH, address >> 32, 4);
pci_write_config(dev, msi->msi_location +
PCIR_MSI_DATA_64BIT, data, 2);
} else
pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
data, 2);
}
pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2);
}
static int
pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
pcicfgregs *cfg = &dinfo->cfg;
struct resource_list_entry *rle;
struct msix_table_entry *mte;
struct msix_vector *mv;
uint64_t addr;
uint32_t data;
int error, i, j;
/*
* Handle MSI first. We try to find this IRQ among our list
* of MSI IRQs. If we find it, we request updated address and
* data registers and apply the results.
*/
if (cfg->msi.msi_alloc > 0) {
/* If we don't have any active handlers, nothing to do. */
if (cfg->msi.msi_handlers == 0)
return (0);
for (i = 0; i < cfg->msi.msi_alloc; i++) {
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
i + 1);
if (rle->start == irq) {
error = PCIB_MAP_MSI(device_get_parent(bus),
dev, irq, &addr, &data);
if (error)
return (error);
pci_disable_msi(dev);
dinfo->cfg.msi.msi_addr = addr;
dinfo->cfg.msi.msi_data = data;
pci_enable_msi(dev, addr, data);
return (0);
}
}
return (ENOENT);
}
/*
* For MSI-X, we check to see if we have this IRQ. If we do,
* we request the updated mapping info. If that works, we go
* through all the slots that use this IRQ and update them.
*/
if (cfg->msix.msix_alloc > 0) {
for (i = 0; i < cfg->msix.msix_alloc; i++) {
mv = &cfg->msix.msix_vectors[i];
if (mv->mv_irq == irq) {
error = PCIB_MAP_MSI(device_get_parent(bus),
dev, irq, &addr, &data);
if (error)
return (error);
mv->mv_address = addr;
mv->mv_data = data;
for (j = 0; j < cfg->msix.msix_table_len; j++) {
mte = &cfg->msix.msix_table[j];
if (mte->mte_vector != i + 1)
continue;
if (mte->mte_handlers == 0)
continue;
pci_mask_msix(dev, j);
pci_enable_msix(dev, j, addr, data);
pci_unmask_msix(dev, j);
}
}
}
return (ENOENT);
}
return (ENOENT);
}
/*
* Returns true if the specified device is blacklisted because MSI
* doesn't work.
*/
int
pci_msi_device_blacklisted(device_t dev)
{
if (!pci_honor_msi_blacklist)
return (0);
return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
}
/*
* Determine if MSI is blacklisted globally on this system. Currently,
* we just check for blacklisted chipsets as represented by the
* host-PCI bridge at device 0:0:0. In the future, it may become
* necessary to check other system attributes, such as the kenv values
* that give the motherboard manufacturer and model number.
*/
static int
pci_msi_blacklisted(void)
{
device_t dev;
if (!pci_honor_msi_blacklist)
return (0);
/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
if (!(pcie_chipset || pcix_chipset)) {
if (vm_guest != VM_GUEST_NO) {
/*
* Whitelist older chipsets in virtual
* machines known to support MSI.
*/
dev = pci_find_bsf(0, 0, 0);
if (dev != NULL)
return (!pci_has_quirk(pci_get_devid(dev),
PCI_QUIRK_ENABLE_MSI_VM));
}
return (1);
}
dev = pci_find_bsf(0, 0, 0);
if (dev != NULL)
return (pci_msi_device_blacklisted(dev));
return (0);
}
/*
* Returns true if the specified device is blacklisted because MSI-X
* doesn't work. Note that this assumes that if MSI doesn't work,
* MSI-X doesn't either.
*/
int
pci_msix_device_blacklisted(device_t dev)
{
if (!pci_honor_msi_blacklist)
return (0);
if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
return (1);
return (pci_msi_device_blacklisted(dev));
}
/*
* Determine if MSI-X is blacklisted globally on this system. If MSI
* is blacklisted, assume that MSI-X is as well. Check for additional
* chipsets where MSI works but MSI-X does not.
*/
static int
pci_msix_blacklisted(void)
{
device_t dev;
if (!pci_honor_msi_blacklist)
return (0);
dev = pci_find_bsf(0, 0, 0);
if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
PCI_QUIRK_DISABLE_MSIX))
return (1);
return (pci_msi_blacklisted());
}
/*
* Attempt to allocate *count MSI messages. The actual number allocated is
* returned in *count. After this function returns, each message will be
* available to the driver as SYS_RES_IRQ resources starting at a rid 1.
*/
int
pci_alloc_msi_method(device_t dev, device_t child, int *count)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
struct resource_list_entry *rle;
int actual, error, i, irqs[32];
uint16_t ctrl;
/* Don't let count == 0 get us into trouble. */
if (*count == 0)
return (EINVAL);
/* If rid 0 is allocated, then fail. */
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
if (rle != NULL && rle->res != NULL)
return (ENXIO);
/* Already have allocated messages? */
if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
return (ENXIO);
/* If MSI is blacklisted for this system, fail. */
if (pci_msi_blacklisted())
return (ENXIO);
/* MSI capability present? */
if (cfg->msi.msi_location == 0 || !pci_do_msi)
return (ENODEV);
if (bootverbose)
device_printf(child,
"attempting to allocate %d MSI vectors (%d supported)\n",
*count, cfg->msi.msi_msgnum);
/* Don't ask for more than the device supports. */
actual = min(*count, cfg->msi.msi_msgnum);
/* Don't ask for more than 32 messages. */
actual = min(actual, 32);
/* MSI requires power of 2 number of messages. */
if (!powerof2(actual))
return (EINVAL);
for (;;) {
/* Try to allocate N messages. */
error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
actual, irqs);
if (error == 0)
break;
if (actual == 1)
return (error);
/* Try N / 2. */
actual >>= 1;
}
/*
* We now have N actual messages mapped onto SYS_RES_IRQ
* resources in the irqs[] array, so add new resources
* starting at rid 1.
*/
for (i = 0; i < actual; i++)
resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
irqs[i], irqs[i], 1);
if (bootverbose) {
if (actual == 1)
device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
else {
int run;
/*
* Be fancy and try to print contiguous runs
* of IRQ values as ranges. 'run' is true if
* we are in a range.
*/
device_printf(child, "using IRQs %d", irqs[0]);
run = 0;
for (i = 1; i < actual; i++) {
/* Still in a run? */
if (irqs[i] == irqs[i - 1] + 1) {
run = 1;
continue;
}
/* Finish previous range. */
if (run) {
printf("-%d", irqs[i - 1]);
run = 0;
}
/* Start new range. */
printf(",%d", irqs[i]);
}
/* Unfinished range? */
if (run)
printf("-%d", irqs[actual - 1]);
printf(" for MSI\n");
}
}
/* Update control register with actual count. */
ctrl = cfg->msi.msi_ctrl;
ctrl &= ~PCIM_MSICTRL_MME_MASK;
ctrl |= (ffs(actual) - 1) << 4;
cfg->msi.msi_ctrl = ctrl;
pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
/* Update counts of alloc'd messages. */
cfg->msi.msi_alloc = actual;
cfg->msi.msi_handlers = 0;
*count = actual;
return (0);
}
/* Release the MSI messages associated with this device. */
int
pci_release_msi_method(device_t dev, device_t child)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
struct pcicfg_msi *msi = &dinfo->cfg.msi;
struct resource_list_entry *rle;
int error, i, irqs[32];
/* Try MSI-X first. */
error = pci_release_msix(dev, child);
if (error != ENODEV)
return (error);
/* Do we have any messages to release? */
if (msi->msi_alloc == 0)
return (ENODEV);
KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
/* Make sure none of the resources are allocated. */
if (msi->msi_handlers > 0)
return (EBUSY);
for (i = 0; i < msi->msi_alloc; i++) {
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
KASSERT(rle != NULL, ("missing MSI resource"));
if (rle->res != NULL)
return (EBUSY);
irqs[i] = rle->start;
}
/* Update control register with 0 count. */
KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
("%s: MSI still enabled", __func__));
msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
msi->msi_ctrl, 2);
/* Release the messages. */
PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
for (i = 0; i < msi->msi_alloc; i++)
resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
/* Update alloc count. */
msi->msi_alloc = 0;
msi->msi_addr = 0;
msi->msi_data = 0;
return (0);
}
/*
* Return the max supported MSI messages this device supports.
* Basically, assuming the MD code can alloc messages, this function
* should return the maximum value that pci_alloc_msi() can return.
* Thus, it is subject to the tunables, etc.
*/
int
pci_msi_count_method(device_t dev, device_t child)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
struct pcicfg_msi *msi = &dinfo->cfg.msi;
if (pci_do_msi && msi->msi_location != 0)
return (msi->msi_msgnum);
return (0);
}
/* free pcicfgregs structure and all depending data structures */
int
pci_freecfg(struct pci_devinfo *dinfo)
{
struct devlist *devlist_head;
struct pci_map *pm, *next;
int i;
devlist_head = &pci_devq;
if (dinfo->cfg.vpd.vpd_reg) {
free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF);
for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++)
free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF);
free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF);
for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++)
free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF);
free(dinfo->cfg.vpd.vpd_w, M_DEVBUF);
}
STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
free(pm, M_DEVBUF);
}
STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
free(dinfo, M_DEVBUF);
/* increment the generation count */
pci_generation++;
/* we're losing one device */
pci_numdevs--;
return (0);
}
/*
* PCI power manangement
*/
int
pci_set_powerstate_method(device_t dev, device_t child, int state)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
uint16_t status;
int oldstate, highest, delay;
if (cfg->pp.pp_cap == 0)
return (EOPNOTSUPP);
/*
* Optimize a no state change request away. While it would be OK to
* write to the hardware in theory, some devices have shown odd
* behavior when going from D3 -> D3.
*/
oldstate = pci_get_powerstate(child);
if (oldstate == state)
return (0);
/*
* The PCI power management specification states that after a state
* transition between PCI power states, system software must
* guarantee a minimal delay before the function accesses the device.
* Compute the worst case delay that we need to guarantee before we
* access the device. Many devices will be responsive much more
* quickly than this delay, but there are some that don't respond
* instantly to state changes. Transitions to/from D3 state require
* 10ms, while D2 requires 200us, and D0/1 require none. The delay
* is done below with DELAY rather than a sleeper function because
* this function can be called from contexts where we cannot sleep.
*/
highest = (oldstate > state) ? oldstate : state;
if (highest == PCI_POWERSTATE_D3)
delay = 10000;
else if (highest == PCI_POWERSTATE_D2)
delay = 200;
else
delay = 0;
status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
& ~PCIM_PSTAT_DMASK;
switch (state) {
case PCI_POWERSTATE_D0:
status |= PCIM_PSTAT_D0;
break;
case PCI_POWERSTATE_D1:
if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
return (EOPNOTSUPP);
status |= PCIM_PSTAT_D1;
break;
case PCI_POWERSTATE_D2:
if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
return (EOPNOTSUPP);
status |= PCIM_PSTAT_D2;
break;
case PCI_POWERSTATE_D3:
status |= PCIM_PSTAT_D3;
break;
default:
return (EINVAL);
}
if (bootverbose)
pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
state);
PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
if (delay)
DELAY(delay);
return (0);
}
int
pci_get_powerstate_method(device_t dev, device_t child)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
uint16_t status;
int result;
if (cfg->pp.pp_cap != 0) {
status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
switch (status & PCIM_PSTAT_DMASK) {
case PCIM_PSTAT_D0:
result = PCI_POWERSTATE_D0;
break;
case PCIM_PSTAT_D1:
result = PCI_POWERSTATE_D1;
break;
case PCIM_PSTAT_D2:
result = PCI_POWERSTATE_D2;
break;
case PCIM_PSTAT_D3:
result = PCI_POWERSTATE_D3;
break;
default:
result = PCI_POWERSTATE_UNKNOWN;
break;
}
} else {
/* No support, device is always at D0 */
result = PCI_POWERSTATE_D0;
}
return (result);
}
/*
* Some convenience functions for PCI device drivers.
*/
static __inline void
pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
{
uint16_t command;
command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
command |= bit;
PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
}
static __inline void
pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
{
uint16_t command;
command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
command &= ~bit;
PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
}
int
pci_enable_busmaster_method(device_t dev, device_t child)
{
pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
return (0);
}
int
pci_disable_busmaster_method(device_t dev, device_t child)
{
pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
return (0);
}
int
pci_enable_io_method(device_t dev, device_t child, int space)
{
uint16_t bit;
switch(space) {
case SYS_RES_IOPORT:
bit = PCIM_CMD_PORTEN;
break;
case SYS_RES_MEMORY:
bit = PCIM_CMD_MEMEN;
break;
default:
return (EINVAL);
}
pci_set_command_bit(dev, child, bit);
return (0);
}
int
pci_disable_io_method(device_t dev, device_t child, int space)
{
uint16_t bit;
switch(space) {
case SYS_RES_IOPORT:
bit = PCIM_CMD_PORTEN;
break;
case SYS_RES_MEMORY:
bit = PCIM_CMD_MEMEN;
break;
default:
return (EINVAL);
}
pci_clear_command_bit(dev, child, bit);
return (0);
}
/*
* New style pci driver. Parent device is either a pci-host-bridge or a
* pci-pci-bridge. Both kinds are represented by instances of pcib.
*/
void
pci_print_verbose(struct pci_devinfo *dinfo)
{
if (bootverbose) {
pcicfgregs *cfg = &dinfo->cfg;
printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
cfg->vendor, cfg->device, cfg->revid);
printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
cfg->domain, cfg->bus, cfg->slot, cfg->func);
printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
cfg->mfdev);
printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
if (cfg->intpin > 0)
printf("\tintpin=%c, irq=%d\n",
cfg->intpin +'a' -1, cfg->intline);
if (cfg->pp.pp_cap) {
uint16_t status;
status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
printf("\tpowerspec %d supports D0%s%s D3 current D%d\n",
cfg->pp.pp_cap & PCIM_PCAP_SPEC,
cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
status & PCIM_PSTAT_DMASK);
}
if (cfg->msi.msi_location) {
int ctrl;
ctrl = cfg->msi.msi_ctrl;
printf("\tMSI supports %d message%s%s%s\n",
cfg->msi.msi_msgnum,
(cfg->msi.msi_msgnum == 1) ? "" : "s",
(ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
(ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
}
if (cfg->msix.msix_location) {
printf("\tMSI-X supports %d message%s ",
cfg->msix.msix_msgnum,
(cfg->msix.msix_msgnum == 1) ? "" : "s");
if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
printf("in map 0x%x\n",
cfg->msix.msix_table_bar);
else
printf("in maps 0x%x and 0x%x\n",
cfg->msix.msix_table_bar,
cfg->msix.msix_pba_bar);
}
}
}
static int
pci_porten(device_t dev)
{
return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
}
static int
pci_memen(device_t dev)
{
return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
}
void
pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
int *bar64)
{
struct pci_devinfo *dinfo;
pci_addr_t map, testval;
int ln2range;
uint16_t cmd;
/*
* The device ROM BAR is special. It is always a 32-bit
* memory BAR. Bit 0 is special and should not be set when
* sizing the BAR.
*/
dinfo = device_get_ivars(dev);
if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
map = pci_read_config(dev, reg, 4);
pci_write_config(dev, reg, 0xfffffffe, 4);
testval = pci_read_config(dev, reg, 4);
pci_write_config(dev, reg, map, 4);
*mapp = map;
*testvalp = testval;
if (bar64 != NULL)
*bar64 = 0;
return;
}
map = pci_read_config(dev, reg, 4);
ln2range = pci_maprange(map);
if (ln2range == 64)
map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
/*
* Disable decoding via the command register before
* determining the BAR's length since we will be placing it in
* a weird state.
*/
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
pci_write_config(dev, PCIR_COMMAND,
cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
/*
* Determine the BAR's length by writing all 1's. The bottom
* log_2(size) bits of the BAR will stick as 0 when we read
* the value back.
*
* NB: according to the PCI Local Bus Specification, rev. 3.0:
* "Software writes 0FFFFFFFFh to both registers, reads them back,
* and combines the result into a 64-bit value." (section 6.2.5.1)
*
* Writes to both registers must be performed before attempting to
* read back the size value.
*/
testval = 0;
pci_write_config(dev, reg, 0xffffffff, 4);
if (ln2range == 64) {
pci_write_config(dev, reg + 4, 0xffffffff, 4);
testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
}
testval |= pci_read_config(dev, reg, 4);
/*
* Restore the original value of the BAR. We may have reprogrammed
* the BAR of the low-level console device and when booting verbose,
* we need the console device addressable.
*/
pci_write_config(dev, reg, map, 4);
if (ln2range == 64)
pci_write_config(dev, reg + 4, map >> 32, 4);
pci_write_config(dev, PCIR_COMMAND, cmd, 2);
*mapp = map;
*testvalp = testval;
if (bar64 != NULL)
*bar64 = (ln2range == 64);
}
static void
pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
{
struct pci_devinfo *dinfo;
int ln2range;
/* The device ROM BAR is always a 32-bit memory BAR. */
dinfo = device_get_ivars(dev);
if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
ln2range = 32;
else
ln2range = pci_maprange(pm->pm_value);
pci_write_config(dev, pm->pm_reg, base, 4);
if (ln2range == 64)
pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
if (ln2range == 64)
pm->pm_value |= (pci_addr_t)pci_read_config(dev,
pm->pm_reg + 4, 4) << 32;
}
struct pci_map *
pci_find_bar(device_t dev, int reg)
{
struct pci_devinfo *dinfo;
struct pci_map *pm;
dinfo = device_get_ivars(dev);
STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
if (pm->pm_reg == reg)
return (pm);
}
return (NULL);
}
int
pci_bar_enabled(device_t dev, struct pci_map *pm)
{
struct pci_devinfo *dinfo;
uint16_t cmd;
dinfo = device_get_ivars(dev);
if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
!(pm->pm_value & PCIM_BIOS_ENABLE))
return (0);
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
return ((cmd & PCIM_CMD_MEMEN) != 0);
else
return ((cmd & PCIM_CMD_PORTEN) != 0);
}
struct pci_map *
pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
{
struct pci_devinfo *dinfo;
struct pci_map *pm, *prev;
dinfo = device_get_ivars(dev);
pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
pm->pm_reg = reg;
pm->pm_value = value;
pm->pm_size = size;
STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
reg));
if (STAILQ_NEXT(prev, pm_link) == NULL ||
STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
break;
}
if (prev != NULL)
STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
else
STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
return (pm);
}
static void
pci_restore_bars(device_t dev)
{
struct pci_devinfo *dinfo;
struct pci_map *pm;
int ln2range;
dinfo = device_get_ivars(dev);
STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
ln2range = 32;
else
ln2range = pci_maprange(pm->pm_value);
pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
if (ln2range == 64)
pci_write_config(dev, pm->pm_reg + 4,
pm->pm_value >> 32, 4);
}
}
/*
* Add a resource based on a pci map register. Return 1 if the map
* register is a 32bit map register or 2 if it is a 64bit register.
*/
static int
pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
int force, int prefetch)
{
struct pci_map *pm;
pci_addr_t base, map, testval;
pci_addr_t start, end, count;
int barlen, basezero, flags, maprange, mapsize, type;
uint16_t cmd;
struct resource *res;
/*
* The BAR may already exist if the device is a CardBus card
* whose CIS is stored in this BAR.
*/
pm = pci_find_bar(dev, reg);
if (pm != NULL) {
maprange = pci_maprange(pm->pm_value);
barlen = maprange == 64 ? 2 : 1;
return (barlen);
}
pci_read_bar(dev, reg, &map, &testval, NULL);
if (PCI_BAR_MEM(map)) {
type = SYS_RES_MEMORY;
if (map & PCIM_BAR_MEM_PREFETCH)
prefetch = 1;
} else
type = SYS_RES_IOPORT;
mapsize = pci_mapsize(testval);
base = pci_mapbase(map);
#ifdef __PCI_BAR_ZERO_VALID
basezero = 0;
#else
basezero = base == 0;
#endif
maprange = pci_maprange(map);
barlen = maprange == 64 ? 2 : 1;
/*
* For I/O registers, if bottom bit is set, and the next bit up
* isn't clear, we know we have a BAR that doesn't conform to the
* spec, so ignore it. Also, sanity check the size of the data
* areas to the type of memory involved. Memory must be at least
* 16 bytes in size, while I/O ranges must be at least 4.
*/
if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
return (barlen);
if ((type == SYS_RES_MEMORY && mapsize < 4) ||
(type == SYS_RES_IOPORT && mapsize < 2))
return (barlen);
/* Save a record of this BAR. */
pm = pci_add_bar(dev, reg, map, mapsize);
if (bootverbose) {
printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
if (type == SYS_RES_IOPORT && !pci_porten(dev))
printf(", port disabled\n");
else if (type == SYS_RES_MEMORY && !pci_memen(dev))
printf(", memory disabled\n");
else
printf(", enabled\n");
}
/*
* If base is 0, then we have problems if this architecture does
* not allow that. It is best to ignore such entries for the
* moment. These will be allocated later if the driver specifically
* requests them. However, some removable buses look better when
* all resources are allocated, so allow '0' to be overriden.
*
* Similarly treat maps whose values is the same as the test value
* read back. These maps have had all f's written to them by the
* BIOS in an attempt to disable the resources.
*/
if (!force && (basezero || map == testval))
return (barlen);
if ((u_long)base != base) {
device_printf(bus,
"pci%d:%d:%d:%d bar %#x too many address bits",
pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
pci_get_function(dev), reg);
return (barlen);
}
/*
* This code theoretically does the right thing, but has
* undesirable side effects in some cases where peripherals
* respond oddly to having these bits enabled. Let the user
* be able to turn them off (since pci_enable_io_modes is 1 by
* default).
*/
if (pci_enable_io_modes) {
/* Turn on resources that have been left off by a lazy BIOS */
if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
cmd |= PCIM_CMD_PORTEN;
pci_write_config(dev, PCIR_COMMAND, cmd, 2);
}
if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
cmd |= PCIM_CMD_MEMEN;
pci_write_config(dev, PCIR_COMMAND, cmd, 2);
}
} else {
if (type == SYS_RES_IOPORT && !pci_porten(dev))
return (barlen);
if (type == SYS_RES_MEMORY && !pci_memen(dev))
return (barlen);
}
count = (pci_addr_t)1 << mapsize;
flags = RF_ALIGNMENT_LOG2(mapsize);
if (prefetch)
flags |= RF_PREFETCHABLE;
if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
start = 0; /* Let the parent decide. */
end = ~0;
} else {
start = base;
end = base + count - 1;
}
resource_list_add(rl, type, reg, start, end, count);
/*
* Try to allocate the resource for this BAR from our parent
* so that this resource range is already reserved. The
* driver for this device will later inherit this resource in
* pci_alloc_resource().
*/
res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
flags);
if ((pci_do_realloc_bars
|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
&& res == NULL && (start != 0 || end != ~0)) {
/*
* If the allocation fails, try to allocate a resource for
* this BAR using any available range. The firmware felt
* it was important enough to assign a resource, so don't
* disable decoding if we can help it.
*/
resource_list_delete(rl, type, reg);
resource_list_add(rl, type, reg, 0, ~0, count);
res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
count, flags);
}
if (res == NULL) {
/*
* If the allocation fails, delete the resource list entry
* and disable decoding for this device.
*
* If the driver requests this resource in the future,
* pci_reserve_map() will try to allocate a fresh
* resource range.
*/
resource_list_delete(rl, type, reg);
pci_disable_io(dev, type);
if (bootverbose)
device_printf(bus,
"pci%d:%d:%d:%d bar %#x failed to allocate\n",
pci_get_domain(dev), pci_get_bus(dev),
pci_get_slot(dev), pci_get_function(dev), reg);
} else {
start = rman_get_start(res);
pci_write_bar(dev, pm, start);
}
return (barlen);
}
/*
* For ATA devices we need to decide early what addressing mode to use.
* Legacy demands that the primary and secondary ATA ports sits on the
* same addresses that old ISA hardware did. This dictates that we use
* those addresses and ignore the BAR's if we cannot set PCI native
* addressing mode.
*/
static void
pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
uint32_t prefetchmask)
{
int rid, type, progif;
#if 0
/* if this device supports PCI native addressing use it */
progif = pci_read_config(dev, PCIR_PROGIF, 1);
if ((progif & 0x8a) == 0x8a) {
if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
printf("Trying ATA native PCI addressing mode\n");
pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
}
}
#endif
progif = pci_read_config(dev, PCIR_PROGIF, 1);
type = SYS_RES_IOPORT;
if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
prefetchmask & (1 << 0));
pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
prefetchmask & (1 << 1));
} else {
rid = PCIR_BAR(0);
resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
0x1f7, 8, 0);
rid = PCIR_BAR(1);
resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
0x3f6, 1, 0);
}
if (progif & PCIP_STORAGE_IDE_MODESEC) {
pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
prefetchmask & (1 << 2));
pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
prefetchmask & (1 << 3));
} else {
rid = PCIR_BAR(2);
resource_list_add(rl, type, rid, 0x170, 0x177, 8);
(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
0x177, 8, 0);
rid = PCIR_BAR(3);
resource_list_add(rl, type, rid, 0x376, 0x376, 1);
(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
0x376, 1, 0);
}
pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
prefetchmask & (1 << 4));
pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
prefetchmask & (1 << 5));
}
static void
pci_assign_interrupt(device_t bus, device_t dev, int force_route)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
pcicfgregs *cfg = &dinfo->cfg;
char tunable_name[64];
int irq;
/* Has to have an intpin to have an interrupt. */
if (cfg->intpin == 0)
return;
/* Let the user override the IRQ with a tunable. */
irq = PCI_INVALID_IRQ;
snprintf(tunable_name, sizeof(tunable_name),
"hw.pci%d.%d.%d.INT%c.irq",
cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
irq = PCI_INVALID_IRQ;
/*
* If we didn't get an IRQ via the tunable, then we either use the
* IRQ value in the intline register or we ask the bus to route an
* interrupt for us. If force_route is true, then we only use the
* value in the intline register if the bus was unable to assign an
* IRQ.
*/
if (!PCI_INTERRUPT_VALID(irq)) {
if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
irq = PCI_ASSIGN_INTERRUPT(bus, dev);
if (!PCI_INTERRUPT_VALID(irq))
irq = cfg->intline;
}
/* If after all that we don't have an IRQ, just bail. */
if (!PCI_INTERRUPT_VALID(irq))
return;
/* Update the config register if it changed. */
if (irq != cfg->intline) {
cfg->intline = irq;
pci_write_config(dev, PCIR_INTLINE, irq, 1);
}
/* Add this IRQ as rid 0 interrupt resource. */
resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
}
/* Perform early OHCI takeover from SMM. */
static void
ohci_early_takeover(device_t self)
{
struct resource *res;
uint32_t ctl;
int rid;
int i;
rid = PCIR_BAR(0);
res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (res == NULL)
return;
ctl = bus_read_4(res, OHCI_CONTROL);
if (ctl & OHCI_IR) {
if (bootverbose)
printf("ohci early: "
"SMM active, request owner change\n");
bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
DELAY(1000);
ctl = bus_read_4(res, OHCI_CONTROL);
}
if (ctl & OHCI_IR) {
if (bootverbose)
printf("ohci early: "
"SMM does not respond, resetting\n");
bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
}
/* Disable interrupts */
bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
}
bus_release_resource(self, SYS_RES_MEMORY, rid, res);
}
/* Perform early UHCI takeover from SMM. */
static void
uhci_early_takeover(device_t self)
{
struct resource *res;
int rid;
/*
* Set the PIRQD enable bit and switch off all the others. We don't
* want legacy support to interfere with us XXX Does this also mean
* that the BIOS won't touch the keyboard anymore if it is connected
* to the ports of the root hub?
*/
pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
/* Disable interrupts */
rid = PCI_UHCI_BASE_REG;
res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
if (res != NULL) {
bus_write_2(res, UHCI_INTR, 0);
bus_release_resource(self, SYS_RES_IOPORT, rid, res);
}
}
/* Perform early EHCI takeover from SMM. */
static void
ehci_early_takeover(device_t self)
{
struct resource *res;
uint32_t cparams;
uint32_t eec;
uint8_t eecp;
uint8_t bios_sem;
uint8_t offs;
int rid;
int i;
rid = PCIR_BAR(0);
res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (res == NULL)
return;
cparams = bus_read_4(res, EHCI_HCCPARAMS);
/* Synchronise with the BIOS if it owns the controller. */
for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
eecp = EHCI_EECP_NEXT(eec)) {
eec = pci_read_config(self, eecp, 4);
if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
continue;
}
bios_sem = pci_read_config(self, eecp +
EHCI_LEGSUP_BIOS_SEM, 1);
if (bios_sem == 0) {
continue;
}
if (bootverbose)
printf("ehci early: "
"SMM active, request owner change\n");
pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
for (i = 0; (i < 100) && (bios_sem != 0); i++) {
DELAY(1000);
bios_sem = pci_read_config(self, eecp +
EHCI_LEGSUP_BIOS_SEM, 1);
}
if (bios_sem != 0) {
if (bootverbose)
printf("ehci early: "
"SMM does not respond\n");
}
/* Disable interrupts */
offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
bus_write_4(res, offs + EHCI_USBINTR, 0);
}
bus_release_resource(self, SYS_RES_MEMORY, rid, res);
}
/* Perform early XHCI takeover from SMM. */
static void
xhci_early_takeover(device_t self)
{
struct resource *res;
uint32_t cparams;
uint32_t eec;
uint8_t eecp;
uint8_t bios_sem;
uint8_t offs;
int rid;
int i;
rid = PCIR_BAR(0);
res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (res == NULL)
return;
cparams = bus_read_4(res, XHCI_HCSPARAMS0);
eec = -1;
/* Synchronise with the BIOS if it owns the controller. */
for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
eecp += XHCI_XECP_NEXT(eec) << 2) {
eec = bus_read_4(res, eecp);
if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
continue;
bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
if (bios_sem == 0)
continue;
if (bootverbose)
printf("xhci early: "
"SMM active, request owner change\n");
bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
/* wait a maximum of 5 second */
for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
DELAY(1000);
bios_sem = bus_read_1(res, eecp +
XHCI_XECP_BIOS_SEM);
}
if (bios_sem != 0) {
if (bootverbose)
printf("xhci early: "
"SMM does not respond\n");
}
/* Disable interrupts */
offs = bus_read_1(res, XHCI_CAPLENGTH);
bus_write_4(res, offs + XHCI_USBCMD, 0);
bus_read_4(res, offs + XHCI_USBSTS);
}
bus_release_resource(self, SYS_RES_MEMORY, rid, res);
}
#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
static void
pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
struct resource_list *rl)
{
struct resource *res;
char *cp;
rman_res_t start, end, count;
int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
switch (cfg->hdrtype & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_BRIDGE:
sec_reg = PCIR_SECBUS_1;
sub_reg = PCIR_SUBBUS_1;
break;
case PCIM_HDRTYPE_CARDBUS:
sec_reg = PCIR_SECBUS_2;
sub_reg = PCIR_SUBBUS_2;
break;
default:
return;
}
/*
* If the existing bus range is valid, attempt to reserve it
* from our parent. If this fails for any reason, clear the
* secbus and subbus registers.
*
* XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
* This would at least preserve the existing sec_bus if it is
* valid.
*/
sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
/* Quirk handling. */
switch (pci_get_devid(dev)) {
case 0x12258086: /* Intel 82454KX/GX (Orion) */
sup_bus = pci_read_config(dev, 0x41, 1);
if (sup_bus != 0xff) {
sec_bus = sup_bus + 1;
sub_bus = sup_bus + 1;
PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
}
break;
case 0x00dd10de:
/* Compaq R3000 BIOS sets wrong subordinate bus number. */
if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
break;
if (strncmp(cp, "Compal", 6) != 0) {
freeenv(cp);
break;
}
freeenv(cp);
if ((cp = kern_getenv("smbios.planar.product")) == NULL)
break;
if (strncmp(cp, "08A0", 4) != 0) {
freeenv(cp);
break;
}
freeenv(cp);
if (sub_bus < 0xa) {
sub_bus = 0xa;
PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
}
break;
}
if (bootverbose)
printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
if (sec_bus > 0 && sub_bus >= sec_bus) {
start = sec_bus;
end = sub_bus;
count = end - start + 1;
resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
/*
* If requested, clear secondary bus registers in
* bridge devices to force a complete renumbering
* rather than reserving the existing range. However,
* preserve the existing size.
*/
if (pci_clear_buses)
goto clear;
rid = 0;
res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
start, end, count, 0);
if (res != NULL)
return;
if (bootverbose)
device_printf(bus,
"pci%d:%d:%d:%d secbus failed to allocate\n",
pci_get_domain(dev), pci_get_bus(dev),
pci_get_slot(dev), pci_get_function(dev));
}
clear:
PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
}
static struct resource *
pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
rman_res_t end, rman_res_t count, u_int flags)
{
struct pci_devinfo *dinfo;
pcicfgregs *cfg;
struct resource_list *rl;
struct resource *res;
int sec_reg, sub_reg;
dinfo = device_get_ivars(child);
cfg = &dinfo->cfg;
rl = &dinfo->resources;
switch (cfg->hdrtype & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_BRIDGE:
sec_reg = PCIR_SECBUS_1;
sub_reg = PCIR_SUBBUS_1;
break;
case PCIM_HDRTYPE_CARDBUS:
sec_reg = PCIR_SECBUS_2;
sub_reg = PCIR_SUBBUS_2;
break;
default:
return (NULL);
}
if (*rid != 0)
return (NULL);
if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
start, end, count, flags & ~RF_ACTIVE);
if (res == NULL) {
resource_list_delete(rl, PCI_RES_BUS, *rid);
device_printf(child, "allocating %ju bus%s failed\n",
count, count == 1 ? "" : "es");
return (NULL);
}
if (bootverbose)
device_printf(child,
"Lazy allocation of %ju bus%s at %ju\n", count,
count == 1 ? "" : "es", rman_get_start(res));
PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
}
return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
end, count, flags));
}
#endif
static int
pci_ea_bei_to_rid(device_t dev, int bei)
{
#ifdef PCI_IOV
struct pci_devinfo *dinfo;
int iov_pos;
struct pcicfg_iov *iov;
dinfo = device_get_ivars(dev);
iov = dinfo->cfg.iov;
if (iov != NULL)
iov_pos = iov->iov_pos;
else
iov_pos = 0;
#endif
/* Check if matches BAR */
if ((bei >= PCIM_EA_BEI_BAR_0) &&
(bei <= PCIM_EA_BEI_BAR_5))
return (PCIR_BAR(bei));
/* Check ROM */
if (bei == PCIM_EA_BEI_ROM)
return (PCIR_BIOS);
#ifdef PCI_IOV
/* Check if matches VF_BAR */
if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
(bei <= PCIM_EA_BEI_VF_BAR_5))
return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
iov_pos);
#endif
return (-1);
}
int
pci_ea_is_enabled(device_t dev, int rid)
{
struct pci_ea_entry *ea;
struct pci_devinfo *dinfo;
dinfo = device_get_ivars(dev);
STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
}
return (0);
}
void
pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
{
struct pci_ea_entry *ea;
struct pci_devinfo *dinfo;
pci_addr_t start, end, count;
struct resource_list *rl;
int type, flags, rid;
struct resource *res;
uint32_t tmp;
#ifdef PCI_IOV
struct pcicfg_iov *iov;
#endif
dinfo = device_get_ivars(dev);
rl = &dinfo->resources;
flags = 0;
#ifdef PCI_IOV
iov = dinfo->cfg.iov;
#endif
if (dinfo->cfg.ea.ea_location == 0)
return;
STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
/*
* TODO: Ignore EA-BAR if is not enabled.
* Currently the EA implementation supports
* only situation, where EA structure contains
* predefined entries. In case they are not enabled
* leave them unallocated and proceed with
* a legacy-BAR mechanism.
*/
if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
continue;
switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
case PCIM_EA_P_MEM_PREFETCH:
case PCIM_EA_P_VF_MEM_PREFETCH:
flags = RF_PREFETCHABLE;
/* FALLTHROUGH */
case PCIM_EA_P_VF_MEM:
case PCIM_EA_P_MEM:
type = SYS_RES_MEMORY;
break;
case PCIM_EA_P_IO:
type = SYS_RES_IOPORT;
break;
default:
continue;
}
if (alloc_iov != 0) {
#ifdef PCI_IOV
/* Allocating IOV, confirm BEI matches */
if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
(ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
continue;
#else
continue;
#endif
} else {
/* Allocating BAR, confirm BEI matches */
if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
(ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
(ea->eae_bei != PCIM_EA_BEI_ROM))
continue;
}
rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
if (rid < 0)
continue;
/* Skip resources already allocated by EA */
if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
(resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
continue;
start = ea->eae_base;
count = ea->eae_max_offset + 1;
#ifdef PCI_IOV
if (iov != NULL)
count = count * iov->iov_num_vfs;
#endif
end = start + count - 1;
if (count == 0)
continue;
resource_list_add(rl, type, rid, start, end, count);
res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
flags);
if (res == NULL) {
resource_list_delete(rl, type, rid);
/*
* Failed to allocate using EA, disable entry.
* Another attempt to allocation will be performed
* further, but this time using legacy BAR registers
*/
tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
tmp &= ~PCIM_EA_ENABLE;
pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
/*
* Disabling entry might fail in case it is hardwired.
* Read flags again to match current status.
*/
ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
continue;
}
/* As per specification, fill BAR with zeros */
pci_write_config(dev, rid, 0, 4);
}
}
void
pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
{
struct pci_devinfo *dinfo;
pcicfgregs *cfg;
struct resource_list *rl;
const struct pci_quirk *q;
uint32_t devid;
int i;
dinfo = device_get_ivars(dev);
cfg = &dinfo->cfg;
rl = &dinfo->resources;
devid = (cfg->device << 16) | cfg->vendor;
/* Allocate resources using Enhanced Allocation */
pci_add_resources_ea(bus, dev, 0);
/* ATA devices needs special map treatment */
if ((pci_get_class(dev) == PCIC_STORAGE) &&
(pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
(!pci_read_config(dev, PCIR_BAR(0), 4) &&
!pci_read_config(dev, PCIR_BAR(2), 4))) )
pci_ata_maps(bus, dev, rl, force, prefetchmask);
else
for (i = 0; i < cfg->nummaps;) {
/* Skip resources already managed by EA */
if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
(resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
pci_ea_is_enabled(dev, PCIR_BAR(i))) {
i++;
continue;
}
/*
* Skip quirked resources.
*/
for (q = &pci_quirks[0]; q->devid != 0; q++)
if (q->devid == devid &&
q->type == PCI_QUIRK_UNMAP_REG &&
q->arg1 == PCIR_BAR(i))
break;
if (q->devid != 0) {
i++;
continue;
}
i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
prefetchmask & (1 << i));
}
/*
* Add additional, quirked resources.
*/
for (q = &pci_quirks[0]; q->devid != 0; q++)
if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
pci_add_map(bus, dev, q->arg1, rl, force, 0);
if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
#ifdef __PCI_REROUTE_INTERRUPT
/*
* Try to re-route interrupts. Sometimes the BIOS or
* firmware may leave bogus values in these registers.
* If the re-route fails, then just stick with what we
* have.
*/
pci_assign_interrupt(bus, dev, 1);
#else
pci_assign_interrupt(bus, dev, 0);
#endif
}
if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
xhci_early_takeover(dev);
else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
ehci_early_takeover(dev);
else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
ohci_early_takeover(dev);
else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
uhci_early_takeover(dev);
}
#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
/*
* Reserve resources for secondary bus ranges behind bridge
* devices.
*/
pci_reserve_secbus(bus, dev, cfg, rl);
#endif
}
static struct pci_devinfo *
pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
int slot, int func)
{
struct pci_devinfo *dinfo;
dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
if (dinfo != NULL)
pci_add_child(dev, dinfo);
return (dinfo);
}
void
pci_add_children(device_t dev, int domain, int busno)
{
#define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
device_t pcib = device_get_parent(dev);
struct pci_devinfo *dinfo;
int maxslots;
int s, f, pcifunchigh;
uint8_t hdrtype;
int first_func;
/*
* Try to detect a device at slot 0, function 0. If it exists, try to
* enable ARI. We must enable ARI before detecting the rest of the
* functions on this bus as ARI changes the set of slots and functions
* that are legal on this bus.
*/
dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
if (dinfo != NULL && pci_enable_ari)
PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
/*
* Start looking for new devices on slot 0 at function 1 because we
* just identified the device at slot 0, function 0.
*/
first_func = 1;
maxslots = PCIB_MAXSLOTS(pcib);
for (s = 0; s <= maxslots; s++, first_func = 0) {
pcifunchigh = 0;
f = 0;
DELAY(1);
hdrtype = REG(PCIR_HDRTYPE, 1);
if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
continue;
if (hdrtype & PCIM_MFDEV)
pcifunchigh = PCIB_MAXFUNCS(pcib);
for (f = first_func; f <= pcifunchigh; f++)
pci_identify_function(pcib, dev, domain, busno, s, f);
}
#undef REG
}
int
pci_rescan_method(device_t dev)
{
#define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
device_t pcib = device_get_parent(dev);
device_t child, *devlist, *unchanged;
int devcount, error, i, j, maxslots, oldcount;
int busno, domain, s, f, pcifunchigh;
uint8_t hdrtype;
/* No need to check for ARI on a rescan. */
error = device_get_children(dev, &devlist, &devcount);
if (error)
return (error);
if (devcount != 0) {
unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
M_NOWAIT | M_ZERO);
if (unchanged == NULL) {
free(devlist, M_TEMP);
return (ENOMEM);
}
} else
unchanged = NULL;
domain = pcib_get_domain(dev);
busno = pcib_get_bus(dev);
maxslots = PCIB_MAXSLOTS(pcib);
for (s = 0; s <= maxslots; s++) {
/* If function 0 is not present, skip to the next slot. */
f = 0;
if (REG(PCIR_VENDOR, 2) == 0xffff)
continue;
pcifunchigh = 0;
hdrtype = REG(PCIR_HDRTYPE, 1);
if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
continue;
if (hdrtype & PCIM_MFDEV)
pcifunchigh = PCIB_MAXFUNCS(pcib);
for (f = 0; f <= pcifunchigh; f++) {
if (REG(PCIR_VENDOR, 2) == 0xffff)
continue;
/*
* Found a valid function. Check if a
* device_t for this device already exists.
*/
for (i = 0; i < devcount; i++) {
child = devlist[i];
if (child == NULL)
continue;
if (pci_get_slot(child) == s &&
pci_get_function(child) == f) {
unchanged[i] = child;
goto next_func;
}
}
pci_identify_function(pcib, dev, domain, busno, s, f);
next_func:;
}
}
/* Remove devices that are no longer present. */
for (i = 0; i < devcount; i++) {
if (unchanged[i] != NULL)
continue;
device_delete_child(dev, devlist[i]);
}
free(devlist, M_TEMP);
oldcount = devcount;
/* Try to attach the devices just added. */
error = device_get_children(dev, &devlist, &devcount);
if (error) {
free(unchanged, M_TEMP);
return (error);
}
for (i = 0; i < devcount; i++) {
for (j = 0; j < oldcount; j++) {
if (devlist[i] == unchanged[j])
goto next_device;
}
device_probe_and_attach(devlist[i]);
next_device:;
}
free(unchanged, M_TEMP);
free(devlist, M_TEMP);
return (0);
#undef REG
}
#ifdef PCI_IOV
device_t
pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
uint16_t did)
{
struct pci_devinfo *vf_dinfo;
device_t pcib;
int busno, slot, func;
pcib = device_get_parent(bus);
PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
slot, func, vid, did);
vf_dinfo->cfg.flags |= PCICFG_VF;
pci_add_child(bus, vf_dinfo);
return (vf_dinfo->cfg.dev);
}
device_t
pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
uint16_t vid, uint16_t did)
{
return (pci_add_iov_child(bus, pf, rid, vid, did));
}
#endif
static void
pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
{
int aer;
uint32_t r;
uint16_t r2;
if (dinfo->cfg.pcie.pcie_location != 0 &&
dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
PCIER_ROOT_CTL, 2);
r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
PCIER_ROOT_CTL, r2, 2);
}
if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
if (r != 0 && bootverbose) {
pci_printf(&dinfo->cfg,
"clearing AER UC 0x%08x -> 0x%08x\n",
r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4));
}
r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
r &= ~(PCIM_AER_UC_TRAINING_ERROR |
PCIM_AER_UC_DL_PROTOCOL_ERROR |
PCIM_AER_UC_SURPRISE_LINK_DOWN |
PCIM_AER_UC_POISONED_TLP |
PCIM_AER_UC_FC_PROTOCOL_ERROR |
PCIM_AER_UC_COMPLETION_TIMEOUT |
PCIM_AER_UC_COMPLETER_ABORT |
PCIM_AER_UC_UNEXPECTED_COMPLETION |
PCIM_AER_UC_RECEIVER_OVERFLOW |
PCIM_AER_UC_MALFORMED_TLP |
PCIM_AER_UC_ECRC_ERROR |
PCIM_AER_UC_UNSUPPORTED_REQUEST |
PCIM_AER_UC_ACS_VIOLATION |
PCIM_AER_UC_INTERNAL_ERROR |
PCIM_AER_UC_MC_BLOCKED_TLP |
PCIM_AER_UC_ATOMIC_EGRESS_BLK |
PCIM_AER_UC_TLP_PREFIX_BLOCKED);
pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
if (r != 0 && bootverbose) {
pci_printf(&dinfo->cfg,
"clearing AER COR 0x%08x -> 0x%08x\n",
r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4));
}
r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
PCIM_AER_COR_BAD_TLP |
PCIM_AER_COR_BAD_DLLP |
PCIM_AER_COR_REPLAY_ROLLOVER |
PCIM_AER_COR_REPLAY_TIMEOUT |
PCIM_AER_COR_ADVISORY_NF_ERROR |
PCIM_AER_COR_INTERNAL_ERROR |
PCIM_AER_COR_HEADER_LOG_OVFLOW);
pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
PCIER_DEVICE_CTL, 2);
r |= PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
PCIER_DEVICE_CTL, r, 2);
}
}
void
pci_add_child(device_t bus, struct pci_devinfo *dinfo)
{
device_t dev;
dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1);
device_set_ivars(dev, dinfo);
resource_list_init(&dinfo->resources);
pci_cfg_save(dev, dinfo, 0);
pci_cfg_restore(dev, dinfo);
pci_print_verbose(dinfo);
pci_add_resources(bus, dev, 0, 0);
pci_child_added(dinfo->cfg.dev);
if (pci_clear_aer_on_attach)
pci_add_child_clear_aer(dev, dinfo);
EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
}
void
pci_child_added_method(device_t dev, device_t child)
{
}
static int
pci_probe(device_t dev)
{
device_set_desc(dev, "PCI bus");
/* Allow other subclasses to override this driver. */
return (BUS_PROBE_GENERIC);
}
int
pci_attach_common(device_t dev)
{
struct pci_softc *sc;
int busno, domain;
#ifdef PCI_RES_BUS
int rid;
#endif
sc = device_get_softc(dev);
domain = pcib_get_domain(dev);
busno = pcib_get_bus(dev);
#ifdef PCI_RES_BUS
rid = 0;
sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
1, 0);
if (sc->sc_bus == NULL) {
device_printf(dev, "failed to allocate bus number\n");
return (ENXIO);
}
#endif
if (bootverbose)
device_printf(dev, "domain=%d, physical bus=%d\n",
domain, busno);
sc->sc_dma_tag = bus_get_dma_tag(dev);
return (0);
}
static int
pci_attach(device_t dev)
{
int busno, domain, error;
error = pci_attach_common(dev);
if (error)
return (error);
/*
* Since there can be multiple independently numbered PCI
* buses on systems with multiple PCI domains, we can't use
* the unit number to decide which bus we are probing. We ask
* the parent pcib what our domain and bus numbers are.
*/
domain = pcib_get_domain(dev);
busno = pcib_get_bus(dev);
pci_add_children(dev, domain, busno);
return (bus_generic_attach(dev));
}
static int
pci_detach(device_t dev)
{
#ifdef PCI_RES_BUS
struct pci_softc *sc;
#endif
int error;
error = bus_generic_detach(dev);
if (error)
return (error);
#ifdef PCI_RES_BUS
sc = device_get_softc(dev);
error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
if (error)
return (error);
#endif
return (device_delete_children(dev));
}
static void
pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
{
int line, unit;
const char *at;
char me1[24], me2[32];
uint8_t b, s, f;
uint32_t d;
d = pci_get_domain(child);
b = pci_get_bus(child);
s = pci_get_slot(child);
f = pci_get_function(child);
snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
line = 0;
while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
resource_string_value(name, unit, "at", &at);
if (strcmp(at, me1) != 0 && strcmp(at, me2) != 0)
continue; /* No match, try next candidate */
*unitp = unit;
return;
}
}
static void
pci_set_power_child(device_t dev, device_t child, int state)
{
device_t pcib;
int dstate;
/*
* Set the device to the given state. If the firmware suggests
* a different power state, use it instead. If power management
* is not present, the firmware is responsible for managing
* device power. Skip children who aren't attached since they
* are handled separately.
*/
pcib = device_get_parent(dev);
dstate = state;
if (device_is_attached(child) &&
PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
pci_set_powerstate(child, dstate);
}
int
pci_suspend_child(device_t dev, device_t child)
{
struct pci_devinfo *dinfo;
struct resource_list_entry *rle;
int error;
dinfo = device_get_ivars(child);
/*
* Save the PCI configuration space for the child and set the
* device in the appropriate power state for this sleep state.
*/
pci_cfg_save(child, dinfo, 0);
/* Suspend devices before potentially powering them down. */
error = bus_generic_suspend_child(dev, child);
if (error)
return (error);
if (pci_do_power_suspend) {
/*
* Make sure this device's interrupt handler is not invoked
* in the case the device uses a shared interrupt that can
* be raised by some other device.
* This is applicable only to regular (legacy) PCI interrupts
* as MSI/MSI-X interrupts are never shared.
*/
rle = resource_list_find(&dinfo->resources,
SYS_RES_IRQ, 0);
if (rle != NULL && rle->res != NULL)
(void)bus_suspend_intr(child, rle->res);
pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
}
return (0);
}
int
pci_resume_child(device_t dev, device_t child)
{
struct pci_devinfo *dinfo;
struct resource_list_entry *rle;
if (pci_do_power_resume)
pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
dinfo = device_get_ivars(child);
pci_cfg_restore(child, dinfo);
if (!device_is_attached(child))
pci_cfg_save(child, dinfo, 1);
bus_generic_resume_child(dev, child);
/*
* Allow interrupts only after fully resuming the driver and hardware.
*/
if (pci_do_power_suspend) {
/* See pci_suspend_child for details. */
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
if (rle != NULL && rle->res != NULL)
(void)bus_resume_intr(child, rle->res);
}
return (0);
}
int
pci_resume(device_t dev)
{
device_t child, *devlist;
int error, i, numdevs;
if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
return (error);
/*
* Resume critical devices first, then everything else later.
*/
for (i = 0; i < numdevs; i++) {
child = devlist[i];
switch (pci_get_class(child)) {
case PCIC_DISPLAY:
case PCIC_MEMORY:
case PCIC_BRIDGE:
case PCIC_BASEPERIPH:
BUS_RESUME_CHILD(dev, child);
break;
}
}
for (i = 0; i < numdevs; i++) {
child = devlist[i];
switch (pci_get_class(child)) {
case PCIC_DISPLAY:
case PCIC_MEMORY:
case PCIC_BRIDGE:
case PCIC_BASEPERIPH:
break;
default:
BUS_RESUME_CHILD(dev, child);
}
}
free(devlist, M_TEMP);
return (0);
}
static void
pci_load_vendor_data(void)
{
caddr_t data;
void *ptr;
size_t sz;
data = preload_search_by_type("pci_vendor_data");
if (data != NULL) {
ptr = preload_fetch_addr(data);
sz = preload_fetch_size(data);
if (ptr != NULL && sz != 0) {
pci_vendordata = ptr;
pci_vendordata_size = sz;
/* terminate the database */
pci_vendordata[pci_vendordata_size] = '\n';
}
}
}
void
pci_driver_added(device_t dev, driver_t *driver)
{
int numdevs;
device_t *devlist;
device_t child;
struct pci_devinfo *dinfo;
int i;
if (bootverbose)
device_printf(dev, "driver added\n");
DEVICE_IDENTIFY(driver, dev);
if (device_get_children(dev, &devlist, &numdevs) != 0)
return;
for (i = 0; i < numdevs; i++) {
child = devlist[i];
if (device_get_state(child) != DS_NOTPRESENT)
continue;
dinfo = device_get_ivars(child);
pci_print_verbose(dinfo);
if (bootverbose)
pci_printf(&dinfo->cfg, "reprobing on driver added\n");
pci_cfg_restore(child, dinfo);
if (device_probe_and_attach(child) != 0)
pci_child_detached(dev, child);
}
free(devlist, M_TEMP);
}
int
pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
{
struct pci_devinfo *dinfo;
struct msix_table_entry *mte;
struct msix_vector *mv;
uint64_t addr;
uint32_t data;
void *cookie;
int error, rid;
error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
arg, &cookie);
if (error)
return (error);
/* If this is not a direct child, just bail out. */
if (device_get_parent(child) != dev) {
*cookiep = cookie;
return(0);
}
rid = rman_get_rid(irq);
if (rid == 0) {
/* Make sure that INTx is enabled */
pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
} else {
/*
* Check to see if the interrupt is MSI or MSI-X.
* Ask our parent to map the MSI and give
* us the address and data register values.
* If we fail for some reason, teardown the
* interrupt handler.
*/
dinfo = device_get_ivars(child);
if (dinfo->cfg.msi.msi_alloc > 0) {
if (dinfo->cfg.msi.msi_addr == 0) {
KASSERT(dinfo->cfg.msi.msi_handlers == 0,
("MSI has handlers, but vectors not mapped"));
error = PCIB_MAP_MSI(device_get_parent(dev),
child, rman_get_start(irq), &addr, &data);
if (error)
goto bad;
dinfo->cfg.msi.msi_addr = addr;
dinfo->cfg.msi.msi_data = data;
}
if (dinfo->cfg.msi.msi_handlers == 0)
pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
dinfo->cfg.msi.msi_data);
dinfo->cfg.msi.msi_handlers++;
} else {
KASSERT(dinfo->cfg.msix.msix_alloc > 0,
("No MSI or MSI-X interrupts allocated"));
KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
("MSI-X index too high"));
mte = &dinfo->cfg.msix.msix_table[rid - 1];
KASSERT(mte->mte_vector != 0, ("no message vector"));
mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
KASSERT(mv->mv_irq == rman_get_start(irq),
("IRQ mismatch"));
if (mv->mv_address == 0) {
KASSERT(mte->mte_handlers == 0,
("MSI-X table entry has handlers, but vector not mapped"));
error = PCIB_MAP_MSI(device_get_parent(dev),
child, rman_get_start(irq), &addr, &data);
if (error)
goto bad;
mv->mv_address = addr;
mv->mv_data = data;
}
/*
* The MSIX table entry must be made valid by
* incrementing the mte_handlers before
* calling pci_enable_msix() and
* pci_resume_msix(). Else the MSIX rewrite
* table quirk will not work as expected.
*/
mte->mte_handlers++;
if (mte->mte_handlers == 1) {
pci_enable_msix(child, rid - 1, mv->mv_address,
mv->mv_data);
pci_unmask_msix(child, rid - 1);
}
}
/*
* Make sure that INTx is disabled if we are using MSI/MSI-X,
* unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
* in which case we "enable" INTx so MSI/MSI-X actually works.
*/
if (!pci_has_quirk(pci_get_devid(child),
PCI_QUIRK_MSI_INTX_BUG))
pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
else
pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
bad:
if (error) {
(void)bus_generic_teardown_intr(dev, child, irq,
cookie);
return (error);
}
}
*cookiep = cookie;
return (0);
}
int
pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
void *cookie)
{
struct msix_table_entry *mte;
struct resource_list_entry *rle;
struct pci_devinfo *dinfo;
int error, rid;
if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
return (EINVAL);
/* If this isn't a direct child, just bail out */
if (device_get_parent(child) != dev)
return(bus_generic_teardown_intr(dev, child, irq, cookie));
rid = rman_get_rid(irq);
if (rid == 0) {
/* Mask INTx */
pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
} else {
/*
* Check to see if the interrupt is MSI or MSI-X. If so,
* decrement the appropriate handlers count and mask the
* MSI-X message, or disable MSI messages if the count
* drops to 0.
*/
dinfo = device_get_ivars(child);
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
if (rle->res != irq)
return (EINVAL);
if (dinfo->cfg.msi.msi_alloc > 0) {
KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
("MSI-X index too high"));
if (dinfo->cfg.msi.msi_handlers == 0)
return (EINVAL);
dinfo->cfg.msi.msi_handlers--;
if (dinfo->cfg.msi.msi_handlers == 0)
pci_disable_msi(child);
} else {
KASSERT(dinfo->cfg.msix.msix_alloc > 0,
("No MSI or MSI-X interrupts allocated"));
KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
("MSI-X index too high"));
mte = &dinfo->cfg.msix.msix_table[rid - 1];
if (mte->mte_handlers == 0)
return (EINVAL);
mte->mte_handlers--;
if (mte->mte_handlers == 0)
pci_mask_msix(child, rid - 1);
}
}
error = bus_generic_teardown_intr(dev, child, irq, cookie);
if (rid > 0)
KASSERT(error == 0,
("%s: generic teardown failed for MSI/MSI-X", __func__));
return (error);
}
int
pci_print_child(device_t dev, device_t child)
{
struct pci_devinfo *dinfo;
struct resource_list *rl;
int retval = 0;
dinfo = device_get_ivars(child);
rl = &dinfo->resources;
retval += bus_print_child_header(dev, child);
retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
if (device_get_flags(dev))
retval += printf(" flags %#x", device_get_flags(dev));
retval += printf(" at device %d.%d", pci_get_slot(child),
pci_get_function(child));
retval += bus_print_child_domain(dev, child);
retval += bus_print_child_footer(dev, child);
return (retval);
}
static const struct
{
int class;
int subclass;
int report; /* 0 = bootverbose, 1 = always */
const char *desc;
} pci_nomatch_tab[] = {
{PCIC_OLD, -1, 1, "old"},
{PCIC_OLD, PCIS_OLD_NONVGA, 1, "non-VGA display device"},
{PCIC_OLD, PCIS_OLD_VGA, 1, "VGA-compatible display device"},
{PCIC_STORAGE, -1, 1, "mass storage"},
{PCIC_STORAGE, PCIS_STORAGE_SCSI, 1, "SCSI"},
{PCIC_STORAGE, PCIS_STORAGE_IDE, 1, "ATA"},
{PCIC_STORAGE, PCIS_STORAGE_FLOPPY, 1, "floppy disk"},
{PCIC_STORAGE, PCIS_STORAGE_IPI, 1, "IPI"},
{PCIC_STORAGE, PCIS_STORAGE_RAID, 1, "RAID"},
{PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, 1, "ATA (ADMA)"},
{PCIC_STORAGE, PCIS_STORAGE_SATA, 1, "SATA"},
{PCIC_STORAGE, PCIS_STORAGE_SAS, 1, "SAS"},
{PCIC_STORAGE, PCIS_STORAGE_NVM, 1, "NVM"},
{PCIC_NETWORK, -1, 1, "network"},
{PCIC_NETWORK, PCIS_NETWORK_ETHERNET, 1, "ethernet"},
{PCIC_NETWORK, PCIS_NETWORK_TOKENRING, 1, "token ring"},
{PCIC_NETWORK, PCIS_NETWORK_FDDI, 1, "fddi"},
{PCIC_NETWORK, PCIS_NETWORK_ATM, 1, "ATM"},
{PCIC_NETWORK, PCIS_NETWORK_ISDN, 1, "ISDN"},
{PCIC_DISPLAY, -1, 1, "display"},
{PCIC_DISPLAY, PCIS_DISPLAY_VGA, 1, "VGA"},
{PCIC_DISPLAY, PCIS_DISPLAY_XGA, 1, "XGA"},
{PCIC_DISPLAY, PCIS_DISPLAY_3D, 1, "3D"},
{PCIC_MULTIMEDIA, -1, 1, "multimedia"},
{PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, 1, "video"},
{PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, 1, "audio"},
{PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, 1, "telephony"},
{PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, 1, "HDA"},
{PCIC_MEMORY, -1, 1, "memory"},
{PCIC_MEMORY, PCIS_MEMORY_RAM, 1, "RAM"},
{PCIC_MEMORY, PCIS_MEMORY_FLASH, 1, "flash"},
{PCIC_BRIDGE, -1, 1, "bridge"},
{PCIC_BRIDGE, PCIS_BRIDGE_HOST, 1, "HOST-PCI"},
{PCIC_BRIDGE, PCIS_BRIDGE_ISA, 1, "PCI-ISA"},
{PCIC_BRIDGE, PCIS_BRIDGE_EISA, 1, "PCI-EISA"},
{PCIC_BRIDGE, PCIS_BRIDGE_MCA, 1, "PCI-MCA"},
{PCIC_BRIDGE, PCIS_BRIDGE_PCI, 1, "PCI-PCI"},
{PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, 1, "PCI-PCMCIA"},
{PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, 1, "PCI-NuBus"},
{PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, 1, "PCI-CardBus"},
{PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, 1, "PCI-RACEway"},
{PCIC_SIMPLECOMM, -1, 1, "simple comms"},
{PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, 1, "UART"}, /* could detect 16550 */
{PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, 1, "parallel port"},
{PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, 1, "multiport serial"},
{PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, 1, "generic modem"},
{PCIC_BASEPERIPH, -1, 0, "base peripheral"},
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, 1, "interrupt controller"},
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, 1, "DMA controller"},
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, 1, "timer"},
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, 1, "realtime clock"},
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, 1, "PCI hot-plug controller"},
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, 1, "SD host controller"},
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_IOMMU, 1, "IOMMU"},
{PCIC_INPUTDEV, -1, 1, "input device"},
{PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, 1, "keyboard"},
{PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
{PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, 1, "mouse"},
{PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, 1, "scanner"},
{PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, 1, "gameport"},
{PCIC_DOCKING, -1, 1, "docking station"},
{PCIC_PROCESSOR, -1, 1, "processor"},
{PCIC_SERIALBUS, -1, 1, "serial bus"},
{PCIC_SERIALBUS, PCIS_SERIALBUS_FW, 1, "FireWire"},
{PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, 1, "AccessBus"},
{PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, 1, "SSA"},
{PCIC_SERIALBUS, PCIS_SERIALBUS_USB, 1, "USB"},
{PCIC_SERIALBUS, PCIS_SERIALBUS_FC, 1, "Fibre Channel"},
{PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, 0, "SMBus"},
{PCIC_WIRELESS, -1, 1, "wireless controller"},
{PCIC_WIRELESS, PCIS_WIRELESS_IRDA, 1, "iRDA"},
{PCIC_WIRELESS, PCIS_WIRELESS_IR, 1, "IR"},
{PCIC_WIRELESS, PCIS_WIRELESS_RF, 1, "RF"},
{PCIC_INTELLIIO, -1, 1, "intelligent I/O controller"},
{PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, 1, "I2O"},
{PCIC_SATCOM, -1, 1, "satellite communication"},
{PCIC_SATCOM, PCIS_SATCOM_TV, 1, "sat TV"},
{PCIC_SATCOM, PCIS_SATCOM_AUDIO, 1, "sat audio"},
{PCIC_SATCOM, PCIS_SATCOM_VOICE, 1, "sat voice"},
{PCIC_SATCOM, PCIS_SATCOM_DATA, 1, "sat data"},
{PCIC_CRYPTO, -1, 1, "encrypt/decrypt"},
{PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, 1, "network/computer crypto"},
{PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, 1, "entertainment crypto"},
{PCIC_DASP, -1, 0, "dasp"},
{PCIC_DASP, PCIS_DASP_DPIO, 1, "DPIO module"},
{PCIC_DASP, PCIS_DASP_PERFCNTRS, 1, "performance counters"},
{PCIC_DASP, PCIS_DASP_COMM_SYNC, 1, "communication synchronizer"},
{PCIC_DASP, PCIS_DASP_MGMT_CARD, 1, "signal processing management"},
{0, 0, 0, NULL}
};
void
pci_probe_nomatch(device_t dev, device_t child)
{
int i, report;
const char *cp, *scp;
char *device;
/*
* Look for a listing for this device in a loaded device database.
*/
report = 1;
if ((device = pci_describe_device(child)) != NULL) {
device_printf(dev, "<%s>", device);
free(device, M_DEVBUF);
} else {
/*
* Scan the class/subclass descriptions for a general
* description.
*/
cp = "unknown";
scp = NULL;
for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
if (pci_nomatch_tab[i].class == pci_get_class(child)) {
if (pci_nomatch_tab[i].subclass == -1) {
cp = pci_nomatch_tab[i].desc;
report = pci_nomatch_tab[i].report;
} else if (pci_nomatch_tab[i].subclass ==
pci_get_subclass(child)) {
scp = pci_nomatch_tab[i].desc;
report = pci_nomatch_tab[i].report;
}
}
}
if (report || bootverbose) {
device_printf(dev, "<%s%s%s>",
cp ? cp : "",
((cp != NULL) && (scp != NULL)) ? ", " : "",
scp ? scp : "");
}
}
if (report || bootverbose) {
printf(" at device %d.%d (no driver attached)\n",
pci_get_slot(child), pci_get_function(child));
}
pci_cfg_save(child, device_get_ivars(child), 1);
}
void
pci_child_detached(device_t dev, device_t child)
{
struct pci_devinfo *dinfo;
struct resource_list *rl;
dinfo = device_get_ivars(child);
rl = &dinfo->resources;
/*
* Have to deallocate IRQs before releasing any MSI messages and
* have to release MSI messages before deallocating any memory
* BARs.
*/
if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
pci_printf(&dinfo->cfg, "Device leaked MSI vectors\n");
(void)pci_release_msi(child);
}
if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
#ifdef PCI_RES_BUS
if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
#endif
pci_cfg_save(child, dinfo, 1);
}
/*
* Parse the PCI device database, if loaded, and return a pointer to a
* description of the device.
*
* The database is flat text formatted as follows:
*
* Any line not in a valid format is ignored.
* Lines are terminated with newline '\n' characters.
*
* A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
* the vendor name.
*
* A DEVICE line is entered immediately below the corresponding VENDOR ID.
* - devices cannot be listed without a corresponding VENDOR line.
* A DEVICE line consists of a TAB, the 4 digit (hex) device code,
* another TAB, then the device name.
*/
/*
* Assuming (ptr) points to the beginning of a line in the database,
* return the vendor or device and description of the next entry.
* The value of (vendor) or (device) inappropriate for the entry type
* is set to -1. Returns nonzero at the end of the database.
*
* Note that this is slightly unrobust in the face of corrupt data;
* we attempt to safeguard against this by spamming the end of the
* database with a newline when we initialise.
*/
static int
pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
{
char *cp = *ptr;
int left;
*device = -1;
*vendor = -1;
**desc = '\0';
for (;;) {
left = pci_vendordata_size - (cp - pci_vendordata);
if (left <= 0) {
*ptr = cp;
return(1);
}
/* vendor entry? */
if (*cp != '\t' &&
sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
break;
/* device entry? */
if (*cp == '\t' &&
sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
break;
/* skip to next line */
while (*cp != '\n' && left > 0) {
cp++;
left--;
}
if (*cp == '\n') {
cp++;
left--;
}
}
/* skip to next line */
while (*cp != '\n' && left > 0) {
cp++;
left--;
}
if (*cp == '\n' && left > 0)
cp++;
*ptr = cp;
return(0);
}
static char *
pci_describe_device(device_t dev)
{
int vendor, device;
char *desc, *vp, *dp, *line;
desc = vp = dp = NULL;
/*
* If we have no vendor data, we can't do anything.
*/
if (pci_vendordata == NULL)
goto out;
/*
* Scan the vendor data looking for this device
*/
line = pci_vendordata;
if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
goto out;
for (;;) {
if (pci_describe_parse_line(&line, &vendor, &device, &vp))
goto out;
if (vendor == pci_get_vendor(dev))
break;
}
if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
goto out;
for (;;) {
if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
*dp = 0;
break;
}
if (vendor != -1) {
*dp = 0;
break;
}
if (device == pci_get_device(dev))
break;
}
if (dp[0] == '\0')
snprintf(dp, 80, "0x%x", pci_get_device(dev));
if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
NULL)
sprintf(desc, "%s, %s", vp, dp);
out:
if (vp != NULL)
free(vp, M_DEVBUF);
if (dp != NULL)
free(dp, M_DEVBUF);
return(desc);
}
int
pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct pci_devinfo *dinfo;
pcicfgregs *cfg;
dinfo = device_get_ivars(child);
cfg = &dinfo->cfg;
switch (which) {
case PCI_IVAR_ETHADDR:
/*
* The generic accessor doesn't deal with failure, so
* we set the return value, then return an error.
*/
*((uint8_t **) result) = NULL;
return (EINVAL);
case PCI_IVAR_SUBVENDOR:
*result = cfg->subvendor;
break;
case PCI_IVAR_SUBDEVICE:
*result = cfg->subdevice;
break;
case PCI_IVAR_VENDOR:
*result = cfg->vendor;
break;
case PCI_IVAR_DEVICE:
*result = cfg->device;
break;
case PCI_IVAR_DEVID:
*result = (cfg->device << 16) | cfg->vendor;
break;
case PCI_IVAR_CLASS:
*result = cfg->baseclass;
break;
case PCI_IVAR_SUBCLASS:
*result = cfg->subclass;
break;
case PCI_IVAR_PROGIF:
*result = cfg->progif;
break;
case PCI_IVAR_REVID:
*result = cfg->revid;
break;
case PCI_IVAR_INTPIN:
*result = cfg->intpin;
break;
case PCI_IVAR_IRQ:
*result = cfg->intline;
break;
case PCI_IVAR_DOMAIN:
*result = cfg->domain;
break;
case PCI_IVAR_BUS:
*result = cfg->bus;
break;
case PCI_IVAR_SLOT:
*result = cfg->slot;
break;
case PCI_IVAR_FUNCTION:
*result = cfg->func;
break;
case PCI_IVAR_CMDREG:
*result = cfg->cmdreg;
break;
case PCI_IVAR_CACHELNSZ:
*result = cfg->cachelnsz;
break;
case PCI_IVAR_MINGNT:
if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
*result = -1;
return (EINVAL);
}
*result = cfg->mingnt;
break;
case PCI_IVAR_MAXLAT:
if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
*result = -1;
return (EINVAL);
}
*result = cfg->maxlat;
break;
case PCI_IVAR_LATTIMER:
*result = cfg->lattimer;
break;
default:
return (ENOENT);
}
return (0);
}
int
pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
{
struct pci_devinfo *dinfo;
dinfo = device_get_ivars(child);
switch (which) {
case PCI_IVAR_INTPIN:
dinfo->cfg.intpin = value;
return (0);
case PCI_IVAR_ETHADDR:
case PCI_IVAR_SUBVENDOR:
case PCI_IVAR_SUBDEVICE:
case PCI_IVAR_VENDOR:
case PCI_IVAR_DEVICE:
case PCI_IVAR_DEVID:
case PCI_IVAR_CLASS:
case PCI_IVAR_SUBCLASS:
case PCI_IVAR_PROGIF:
case PCI_IVAR_REVID:
case PCI_IVAR_IRQ:
case PCI_IVAR_DOMAIN:
case PCI_IVAR_BUS:
case PCI_IVAR_SLOT:
case PCI_IVAR_FUNCTION:
return (EINVAL); /* disallow for now */
default:
return (ENOENT);
}
}
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
#include <sys/cons.h>
/*
* List resources based on pci map registers, used for within ddb
*/
DB_SHOW_COMMAND(pciregs, db_pci_dump)
{
struct pci_devinfo *dinfo;
struct devlist *devlist_head;
struct pci_conf *p;
const char *name;
int i, error, none_count;
none_count = 0;
/* get the head of the device queue */
devlist_head = &pci_devq;
/*
* Go through the list of devices and print out devices
*/
for (error = 0, i = 0,
dinfo = STAILQ_FIRST(devlist_head);
(dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
/* Populate pd_name and pd_unit */
name = NULL;
if (dinfo->cfg.dev)
name = device_get_name(dinfo->cfg.dev);
p = &dinfo->conf;
db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
(name && *name) ? name : "none",
(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
none_count++,
p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
p->pc_sel.pc_func, (p->pc_class << 16) |
(p->pc_subclass << 8) | p->pc_progif,
(p->pc_subdevice << 16) | p->pc_subvendor,
(p->pc_device << 16) | p->pc_vendor,
p->pc_revid, p->pc_hdr);
}
}
#endif /* DDB */
static struct resource *
pci_reserve_map(device_t dev, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
u_int flags)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
struct resource_list *rl = &dinfo->resources;
struct resource *res;
struct pci_map *pm;
uint16_t cmd;
pci_addr_t map, testval;
int mapsize;
res = NULL;
/* If rid is managed by EA, ignore it */
if (pci_ea_is_enabled(child, *rid))
goto out;
pm = pci_find_bar(child, *rid);
if (pm != NULL) {
/* This is a BAR that we failed to allocate earlier. */
mapsize = pm->pm_size;
map = pm->pm_value;
} else {
/*
* Weed out the bogons, and figure out how large the
* BAR/map is. BARs that read back 0 here are bogus
* and unimplemented. Note: atapci in legacy mode are
* special and handled elsewhere in the code. If you
* have a atapci device in legacy mode and it fails
* here, that other code is broken.
*/
pci_read_bar(child, *rid, &map, &testval, NULL);
/*
* Determine the size of the BAR and ignore BARs with a size
* of 0. Device ROM BARs use a different mask value.
*/
if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
mapsize = pci_romsize(testval);
else
mapsize = pci_mapsize(testval);
if (mapsize == 0)
goto out;
pm = pci_add_bar(child, *rid, map, mapsize);
}
if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
if (type != SYS_RES_MEMORY) {
if (bootverbose)
device_printf(dev,
"child %s requested type %d for rid %#x,"
" but the BAR says it is an memio\n",
device_get_nameunit(child), type, *rid);
goto out;
}
} else {
if (type != SYS_RES_IOPORT) {
if (bootverbose)
device_printf(dev,
"child %s requested type %d for rid %#x,"
" but the BAR says it is an ioport\n",
device_get_nameunit(child), type, *rid);
goto out;
}
}
/*
* For real BARs, we need to override the size that
* the driver requests, because that's what the BAR
* actually uses and we would otherwise have a
* situation where we might allocate the excess to
* another driver, which won't work.
*/
count = ((pci_addr_t)1 << mapsize) * num;
if (RF_ALIGNMENT(flags) < mapsize)
flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
flags |= RF_PREFETCHABLE;
/*
* Allocate enough resource, and then write back the
* appropriate BAR for that resource.
*/
resource_list_add(rl, type, *rid, start, end, count);
res = resource_list_reserve(rl, dev, child, type, rid, start, end,
count, flags & ~RF_ACTIVE);
if (res == NULL) {
resource_list_delete(rl, type, *rid);
device_printf(child,
"%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
count, *rid, type, start, end);
goto out;
}
if (bootverbose)
device_printf(child,
"Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
count, *rid, type, rman_get_start(res));
/* Disable decoding via the CMD register before updating the BAR */
cmd = pci_read_config(child, PCIR_COMMAND, 2);
pci_write_config(child, PCIR_COMMAND,
cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
map = rman_get_start(res);
pci_write_bar(child, pm, map);
/* Restore the original value of the CMD register */
pci_write_config(child, PCIR_COMMAND, cmd, 2);
out:
return (res);
}
struct resource *
pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
u_int flags)
{
struct pci_devinfo *dinfo;
struct resource_list *rl;
struct resource_list_entry *rle;
struct resource *res;
pcicfgregs *cfg;
/*
* Perform lazy resource allocation
*/
dinfo = device_get_ivars(child);
rl = &dinfo->resources;
cfg = &dinfo->cfg;
switch (type) {
#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
case PCI_RES_BUS:
return (pci_alloc_secbus(dev, child, rid, start, end, count,
flags));
#endif
case SYS_RES_IRQ:
/*
* Can't alloc legacy interrupt once MSI messages have
* been allocated.
*/
if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
cfg->msix.msix_alloc > 0))
return (NULL);
/*
* If the child device doesn't have an interrupt
* routed and is deserving of an interrupt, try to
* assign it one.
*/
if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
(cfg->intpin != 0))
pci_assign_interrupt(dev, child, 0);
break;
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
#ifdef NEW_PCIB
/*
* PCI-PCI bridge I/O window resources are not BARs.
* For those allocations just pass the request up the
* tree.
*/
if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
switch (*rid) {
case PCIR_IOBASEL_1:
case PCIR_MEMBASE_1:
case PCIR_PMBASEL_1:
/*
* XXX: Should we bother creating a resource
* list entry?
*/
return (bus_generic_alloc_resource(dev, child,
type, rid, start, end, count, flags));
}
}
#endif
/* Reserve resources for this BAR if needed. */
rle = resource_list_find(rl, type, *rid);
if (rle == NULL) {
res = pci_reserve_map(dev, child, type, rid, start, end,
count, num, flags);
if (res == NULL)
return (NULL);
}
}
return (resource_list_alloc(rl, dev, child, type, rid,
start, end, count, flags));
}
struct resource *
pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
#ifdef PCI_IOV
struct pci_devinfo *dinfo;
#endif
if (device_get_parent(child) != dev)
return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
type, rid, start, end, count, flags));
#ifdef PCI_IOV
dinfo = device_get_ivars(child);
if (dinfo->cfg.flags & PCICFG_VF) {
switch (type) {
/* VFs can't have I/O BARs. */
case SYS_RES_IOPORT:
return (NULL);
case SYS_RES_MEMORY:
return (pci_vf_alloc_mem_resource(dev, child, rid,
start, end, count, flags));
}
/* Fall through for other types of resource allocations. */
}
#endif
return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
count, 1, flags));
}
int
pci_release_resource(device_t dev, device_t child, int type, int rid,
struct resource *r)
{
struct pci_devinfo *dinfo;
struct resource_list *rl;
pcicfgregs *cfg;
if (device_get_parent(child) != dev)
return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
type, rid, r));
dinfo = device_get_ivars(child);
cfg = &dinfo->cfg;
#ifdef PCI_IOV
if (dinfo->cfg.flags & PCICFG_VF) {
switch (type) {
/* VFs can't have I/O BARs. */
case SYS_RES_IOPORT:
return (EDOOFUS);
case SYS_RES_MEMORY:
return (pci_vf_release_mem_resource(dev, child, rid,
r));
}
/* Fall through for other types of resource allocations. */
}
#endif
#ifdef NEW_PCIB
/*
* PCI-PCI bridge I/O window resources are not BARs. For
* those allocations just pass the request up the tree.
*/
if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) {
switch (rid) {
case PCIR_IOBASEL_1:
case PCIR_MEMBASE_1:
case PCIR_PMBASEL_1:
return (bus_generic_release_resource(dev, child, type,
rid, r));
}
}
#endif
rl = &dinfo->resources;
return (resource_list_release(rl, dev, child, type, rid, r));
}
int
pci_activate_resource(device_t dev, device_t child, int type, int rid,
struct resource *r)
{
struct pci_devinfo *dinfo;
int error;
error = bus_generic_activate_resource(dev, child, type, rid, r);
if (error)
return (error);
/* Enable decoding in the command register when activating BARs. */
if (device_get_parent(child) == dev) {
/* Device ROMs need their decoding explicitly enabled. */
dinfo = device_get_ivars(child);
if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
pci_write_bar(child, pci_find_bar(child, rid),
rman_get_start(r) | PCIM_BIOS_ENABLE);
switch (type) {
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
error = PCI_ENABLE_IO(dev, child, type);
break;
}
}
return (error);
}
int
pci_deactivate_resource(device_t dev, device_t child, int type,
int rid, struct resource *r)
{
struct pci_devinfo *dinfo;
int error;
error = bus_generic_deactivate_resource(dev, child, type, rid, r);
if (error)
return (error);
/* Disable decoding for device ROMs. */
if (device_get_parent(child) == dev) {
dinfo = device_get_ivars(child);
if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
pci_write_bar(child, pci_find_bar(child, rid),
rman_get_start(r));
}
return (0);
}
void
pci_child_deleted(device_t dev, device_t child)
{
struct resource_list_entry *rle;
struct resource_list *rl;
struct pci_devinfo *dinfo;
dinfo = device_get_ivars(child);
rl = &dinfo->resources;
EVENTHANDLER_INVOKE(pci_delete_device, child);
/* Turn off access to resources we're about to free */
if (bus_child_present(child) != 0) {
pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
pci_disable_busmaster(child);
}
/* Free all allocated resources */
STAILQ_FOREACH(rle, rl, link) {
if (rle->res) {
if (rman_get_flags(rle->res) & RF_ACTIVE ||
resource_list_busy(rl, rle->type, rle->rid)) {
pci_printf(&dinfo->cfg,
"Resource still owned, oops. "
"(type=%d, rid=%d, addr=%lx)\n",
rle->type, rle->rid,
rman_get_start(rle->res));
bus_release_resource(child, rle->type, rle->rid,
rle->res);
}
resource_list_unreserve(rl, dev, child, rle->type,
rle->rid);
}
}
resource_list_free(rl);
pci_freecfg(dinfo);
}
void
pci_delete_resource(device_t dev, device_t child, int type, int rid)
{
struct pci_devinfo *dinfo;
struct resource_list *rl;
struct resource_list_entry *rle;
if (device_get_parent(child) != dev)
return;
dinfo = device_get_ivars(child);
rl = &dinfo->resources;
rle = resource_list_find(rl, type, rid);
if (rle == NULL)
return;
if (rle->res) {
if (rman_get_flags(rle->res) & RF_ACTIVE ||
resource_list_busy(rl, type, rid)) {
device_printf(dev, "delete_resource: "
"Resource still owned by child, oops. "
"(type=%d, rid=%d, addr=%jx)\n",
type, rid, rman_get_start(rle->res));
return;
}
resource_list_unreserve(rl, dev, child, type, rid);
}
resource_list_delete(rl, type, rid);
}
struct resource_list *
pci_get_resource_list (device_t dev, device_t child)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
return (&dinfo->resources);
}
#ifdef ACPI_DMAR
bus_dma_tag_t dmar_get_dma_tag(device_t dev, device_t child);
bus_dma_tag_t
pci_get_dma_tag(device_t bus, device_t dev)
{
bus_dma_tag_t tag;
struct pci_softc *sc;
if (device_get_parent(dev) == bus) {
/* try dmar and return if it works */
tag = dmar_get_dma_tag(bus, dev);
} else
tag = NULL;
if (tag == NULL) {
sc = device_get_softc(bus);
tag = sc->sc_dma_tag;
}
return (tag);
}
#else
bus_dma_tag_t
pci_get_dma_tag(device_t bus, device_t dev)
{
struct pci_softc *sc = device_get_softc(bus);
return (sc->sc_dma_tag);
}
#endif
uint32_t
pci_read_config_method(device_t dev, device_t child, int reg, int width)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
#ifdef PCI_IOV
/*
* SR-IOV VFs don't implement the VID or DID registers, so we have to
* emulate them here.
*/
if (cfg->flags & PCICFG_VF) {
if (reg == PCIR_VENDOR) {
switch (width) {
case 4:
return (cfg->device << 16 | cfg->vendor);
case 2:
return (cfg->vendor);
case 1:
return (cfg->vendor & 0xff);
default:
return (0xffffffff);
}
} else if (reg == PCIR_DEVICE) {
switch (width) {
/* Note that an unaligned 4-byte read is an error. */
case 2:
return (cfg->device);
case 1:
return (cfg->device & 0xff);
default:
return (0xffffffff);
}
}
}
#endif
return (PCIB_READ_CONFIG(device_get_parent(dev),
cfg->bus, cfg->slot, cfg->func, reg, width));
}
void
pci_write_config_method(device_t dev, device_t child, int reg,
uint32_t val, int width)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
PCIB_WRITE_CONFIG(device_get_parent(dev),
cfg->bus, cfg->slot, cfg->func, reg, val, width);
}
int
pci_child_location_str_method(device_t dev, device_t child, char *buf,
size_t buflen)
{
snprintf(buf, buflen, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
return (0);
}
int
pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
size_t buflen)
{
struct pci_devinfo *dinfo;
pcicfgregs *cfg;
dinfo = device_get_ivars(child);
cfg = &dinfo->cfg;
snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
"subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
cfg->progif);
return (0);
}
int
pci_assign_interrupt_method(device_t dev, device_t child)
{
struct pci_devinfo *dinfo = device_get_ivars(child);
pcicfgregs *cfg = &dinfo->cfg;
return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
cfg->intpin));
}
static void
pci_lookup(void *arg, const char *name, device_t *dev)
{
long val;
char *end;
int domain, bus, slot, func;
if (*dev != NULL)
return;
/*
* Accept pciconf-style selectors of either pciD:B:S:F or
* pciB:S:F. In the latter case, the domain is assumed to
* be zero.
*/
if (strncmp(name, "pci", 3) != 0)
return;
val = strtol(name + 3, &end, 10);
if (val < 0 || val > INT_MAX || *end != ':')
return;
domain = val;
val = strtol(end + 1, &end, 10);
if (val < 0 || val > INT_MAX || *end != ':')
return;
bus = val;
val = strtol(end + 1, &end, 10);
if (val < 0 || val > INT_MAX)
return;
slot = val;
if (*end == ':') {
val = strtol(end + 1, &end, 10);
if (val < 0 || val > INT_MAX || *end != '\0')
return;
func = val;
} else if (*end == '\0') {
func = slot;
slot = bus;
bus = domain;
domain = 0;
} else
return;
if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
return;
*dev = pci_find_dbsf(domain, bus, slot, func);
}
static int
pci_modevent(module_t mod, int what, void *arg)
{
static struct cdev *pci_cdev;
static eventhandler_tag tag;
switch (what) {
case MOD_LOAD:
STAILQ_INIT(&pci_devq);
pci_generation = 0;
pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
"pci");
pci_load_vendor_data();
tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
1000);
break;
case MOD_UNLOAD:
if (tag != NULL)
EVENTHANDLER_DEREGISTER(dev_lookup, tag);
destroy_dev(pci_cdev);
break;
}
return (0);
}
static void
pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
{
#define WREG(n, v) pci_write_config(dev, pos + (n), (v), 2)
struct pcicfg_pcie *cfg;
int version, pos;
cfg = &dinfo->cfg.pcie;
pos = cfg->pcie_location;
version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
(cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
(cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
if (version > 1) {
WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
}
#undef WREG
}
static void
pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
{
pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
dinfo->cfg.pcix.pcix_command, 2);
}
void
pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
{
/*
* Restore the device to full power mode. We must do this
* before we restore the registers because moving from D3 to
* D0 will cause the chip's BARs and some other registers to
* be reset to some unknown power on reset values. Cut down
* the noise on boot by doing nothing if we are already in
* state D0.
*/
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_NORMAL:
pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
break;
case PCIM_HDRTYPE_BRIDGE:
pci_write_config(dev, PCIR_SECLAT_1,
dinfo->cfg.bridge.br_seclat, 1);
pci_write_config(dev, PCIR_SUBBUS_1,
dinfo->cfg.bridge.br_subbus, 1);
pci_write_config(dev, PCIR_SECBUS_1,
dinfo->cfg.bridge.br_secbus, 1);
pci_write_config(dev, PCIR_PRIBUS_1,
dinfo->cfg.bridge.br_pribus, 1);
pci_write_config(dev, PCIR_BRIDGECTL_1,
dinfo->cfg.bridge.br_control, 2);
break;
case PCIM_HDRTYPE_CARDBUS:
pci_write_config(dev, PCIR_SECLAT_2,
dinfo->cfg.bridge.br_seclat, 1);
pci_write_config(dev, PCIR_SUBBUS_2,
dinfo->cfg.bridge.br_subbus, 1);
pci_write_config(dev, PCIR_SECBUS_2,
dinfo->cfg.bridge.br_secbus, 1);
pci_write_config(dev, PCIR_PRIBUS_2,
dinfo->cfg.bridge.br_pribus, 1);
pci_write_config(dev, PCIR_BRIDGECTL_2,
dinfo->cfg.bridge.br_control, 2);
break;
}
pci_restore_bars(dev);
/*
* Restore extended capabilities for PCI-Express and PCI-X
*/
if (dinfo->cfg.pcie.pcie_location != 0)
pci_cfg_restore_pcie(dev, dinfo);
if (dinfo->cfg.pcix.pcix_location != 0)
pci_cfg_restore_pcix(dev, dinfo);
/* Restore MSI and MSI-X configurations if they are present. */
if (dinfo->cfg.msi.msi_location != 0)
pci_resume_msi(dev);
if (dinfo->cfg.msix.msix_location != 0)
pci_resume_msix(dev);
#ifdef PCI_IOV
if (dinfo->cfg.iov != NULL)
pci_iov_cfg_restore(dev, dinfo);
#endif
}
static void
pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
{
#define RREG(n) pci_read_config(dev, pos + (n), 2)
struct pcicfg_pcie *cfg;
int version, pos;
cfg = &dinfo->cfg.pcie;
pos = cfg->pcie_location;
cfg->pcie_flags = RREG(PCIER_FLAGS);
version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
(cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
(cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
if (version > 1) {
cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
}
#undef RREG
}
static void
pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
{
dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
}
void
pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
{
uint32_t cls;
int ps;
/*
* Some drivers apparently write to these registers w/o updating our
* cached copy. No harm happens if we update the copy, so do so here
* so we can restore them. The COMMAND register is modified by the
* bus w/o updating the cache. This should represent the normally
* writable portion of the 'defined' part of type 0/1/2 headers.
*/
dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_NORMAL:
dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
break;
case PCIM_HDRTYPE_BRIDGE:
dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
PCIR_SECLAT_1, 1);
dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
PCIR_SUBBUS_1, 1);
dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
PCIR_SECBUS_1, 1);
dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
PCIR_PRIBUS_1, 1);
dinfo->cfg.bridge.br_control = pci_read_config(dev,
PCIR_BRIDGECTL_1, 2);
break;
case PCIM_HDRTYPE_CARDBUS:
dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
PCIR_SECLAT_2, 1);
dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
PCIR_SUBBUS_2, 1);
dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
PCIR_SECBUS_2, 1);
dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
PCIR_PRIBUS_2, 1);
dinfo->cfg.bridge.br_control = pci_read_config(dev,
PCIR_BRIDGECTL_2, 2);
dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
break;
}
if (dinfo->cfg.pcie.pcie_location != 0)
pci_cfg_save_pcie(dev, dinfo);
if (dinfo->cfg.pcix.pcix_location != 0)
pci_cfg_save_pcix(dev, dinfo);
#ifdef PCI_IOV
if (dinfo->cfg.iov != NULL)
pci_iov_cfg_save(dev, dinfo);
#endif
/*
* don't set the state for display devices, base peripherals and
* memory devices since bad things happen when they are powered down.
* We should (a) have drivers that can easily detach and (b) use
* generic drivers for these devices so that some device actually
* attaches. We need to make sure that when we implement (a) we don't
* power the device down on a reattach.
*/
cls = pci_get_class(dev);
if (!setstate)
return;
switch (pci_do_power_nodriver)
{
case 0: /* NO powerdown at all */
return;
case 1: /* Conservative about what to power down */
if (cls == PCIC_STORAGE)
return;
/*FALLTHROUGH*/
case 2: /* Aggressive about what to power down */
if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
cls == PCIC_BASEPERIPH)
return;
/*FALLTHROUGH*/
case 3: /* Power down everything */
break;
}
/*
* PCI spec says we can only go into D3 state from D0 state.
* Transition from D[12] into D0 before going to D3 state.
*/
ps = pci_get_powerstate(dev);
if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
pci_set_powerstate(dev, PCI_POWERSTATE_D3);
}
/* Wrapper APIs suitable for device driver use. */
void
pci_save_state(device_t dev)
{
struct pci_devinfo *dinfo;
dinfo = device_get_ivars(dev);
pci_cfg_save(dev, dinfo, 0);
}
void
pci_restore_state(device_t dev)
{
struct pci_devinfo *dinfo;
dinfo = device_get_ivars(dev);
pci_cfg_restore(dev, dinfo);
}
static int
pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
uintptr_t *id)
{
return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
}
/* Find the upstream port of a given PCI device in a root complex. */
device_t
pci_find_pcie_root_port(device_t dev)
{
struct pci_devinfo *dinfo;
devclass_t pci_class;
device_t pcib, bus;
pci_class = devclass_find("pci");
KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
/*
* Walk the bridge hierarchy until we find a PCI-e root
* port or a non-PCI device.
*/
for (;;) {
bus = device_get_parent(dev);
KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
device_get_nameunit(dev)));
pcib = device_get_parent(bus);
KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
device_get_nameunit(bus)));
/*
* pcib's parent must be a PCI bus for this to be a
* PCI-PCI bridge.
*/
if (device_get_devclass(device_get_parent(pcib)) != pci_class)
return (NULL);
dinfo = device_get_ivars(pcib);
if (dinfo->cfg.pcie.pcie_location != 0 &&
dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
return (pcib);
dev = pcib;
}
}
/*
* Wait for pending transactions to complete on a PCI-express function.
*
* The maximum delay is specified in milliseconds in max_delay. Note
* that this function may sleep.
*
* Returns true if the function is idle and false if the timeout is
* exceeded. If dev is not a PCI-express function, this returns true.
*/
bool
pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
uint16_t sta;
int cap;
cap = dinfo->cfg.pcie.pcie_location;
if (cap == 0)
return (true);
sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
while (sta & PCIEM_STA_TRANSACTION_PND) {
if (max_delay == 0)
return (false);
/* Poll once every 100 milliseconds up to the timeout. */
if (max_delay > 100) {
pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
max_delay -= 100;
} else {
pause_sbt("pcietp", max_delay * SBT_1MS, 0,
C_HARDCLOCK);
max_delay = 0;
}
sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
}
return (true);
}
/*
* Determine the maximum Completion Timeout in microseconds.
*
* For non-PCI-express functions this returns 0.
*/
int
pcie_get_max_completion_timeout(device_t dev)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
int cap;
cap = dinfo->cfg.pcie.pcie_location;
if (cap == 0)
return (0);
/*
* Functions using the 1.x spec use the default timeout range of
* 50 microseconds to 50 milliseconds. Functions that do not
* support programmable timeouts also use this range.
*/
if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
(pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
return (50 * 1000);
switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
PCIEM_CTL2_COMP_TIMO_VAL) {
case PCIEM_CTL2_COMP_TIMO_100US:
return (100);
case PCIEM_CTL2_COMP_TIMO_10MS:
return (10 * 1000);
case PCIEM_CTL2_COMP_TIMO_55MS:
return (55 * 1000);
case PCIEM_CTL2_COMP_TIMO_210MS:
return (210 * 1000);
case PCIEM_CTL2_COMP_TIMO_900MS:
return (900 * 1000);
case PCIEM_CTL2_COMP_TIMO_3500MS:
return (3500 * 1000);
case PCIEM_CTL2_COMP_TIMO_13S:
return (13 * 1000 * 1000);
case PCIEM_CTL2_COMP_TIMO_64S:
return (64 * 1000 * 1000);
default:
return (50 * 1000);
}
}
/*
* Perform a Function Level Reset (FLR) on a device.
*
* This function first waits for any pending transactions to complete
* within the timeout specified by max_delay. If transactions are
* still pending, the function will return false without attempting a
* reset.
*
* If dev is not a PCI-express function or does not support FLR, this
* function returns false.
*
* Note that no registers are saved or restored. The caller is
* responsible for saving and restoring any registers including
* PCI-standard registers via pci_save_state() and
* pci_restore_state().
*/
bool
pcie_flr(device_t dev, u_int max_delay, bool force)
{
struct pci_devinfo *dinfo = device_get_ivars(dev);
uint16_t cmd, ctl;
int compl_delay;
int cap;
cap = dinfo->cfg.pcie.pcie_location;
if (cap == 0)
return (false);
if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
return (false);
/*
* Disable busmastering to prevent generation of new
* transactions while waiting for the device to go idle. If
* the idle timeout fails, the command register is restored
* which will re-enable busmastering.
*/
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
if (!force) {
pci_write_config(dev, PCIR_COMMAND, cmd, 2);
return (false);
}
pci_printf(&dinfo->cfg,
"Resetting with transactions pending after %d ms\n",
max_delay);
/*
* Extend the post-FLR delay to cover the maximum
* Completion Timeout delay of anything in flight
* during the FLR delay. Enforce a minimum delay of
* at least 10ms.
*/
compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
if (compl_delay < 10)
compl_delay = 10;
} else
compl_delay = 0;
/* Initiate the reset. */
ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
PCIEM_CTL_INITIATE_FLR, 2);
/* Wait for 100ms. */
pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
PCIEM_STA_TRANSACTION_PND)
pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
return (true);
}
/*
* Attempt a power-management reset by cycling the device in/out of D3
* state. PCI spec says we can only go into D3 state from D0 state.
* Transition from D[12] into D0 before going to D3 state.
*/
int
pci_power_reset(device_t dev)
{
int ps;
ps = pci_get_powerstate(dev);
if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
pci_set_powerstate(dev, PCI_POWERSTATE_D3);
pci_set_powerstate(dev, ps);
return (0);
}
/*
* Try link drop and retrain of the downstream port of upstream
* switch, for PCIe. According to the PCIe 3.0 spec 6.6.1, this must
* cause Conventional Hot reset of the device in the slot.
* Alternative, for PCIe, could be the secondary bus reset initiatied
* on the upstream switch PCIR_BRIDGECTL_1, bit 6.
*/
int
pcie_link_reset(device_t port, int pcie_location)
{
uint16_t v;
v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
v |= PCIEM_LINK_CTL_LINK_DIS;
pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
pause_sbt("pcier1", mstosbt(20), 0, 0);
v &= ~PCIEM_LINK_CTL_LINK_DIS;
v |= PCIEM_LINK_CTL_RETRAIN_LINK;
pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
}
static int
pci_reset_post(device_t dev, device_t child)
{
if (dev == device_get_parent(child))
pci_restore_state(child);
return (0);
}
static int
pci_reset_prepare(device_t dev, device_t child)
{
if (dev == device_get_parent(child))
pci_save_state(child);
return (0);
}
static int
pci_reset_child(device_t dev, device_t child, int flags)
{
int error;
if (dev == NULL || device_get_parent(child) != dev)
return (0);
if ((flags & DEVF_RESET_DETACH) != 0) {
error = device_get_state(child) == DS_ATTACHED ?
device_detach(child) : 0;
} else {
error = BUS_SUSPEND_CHILD(dev, child);
}
if (error == 0) {
if (!pcie_flr(child, 1000, false)) {
error = BUS_RESET_PREPARE(dev, child);
if (error == 0)
pci_power_reset(child);
BUS_RESET_POST(dev, child);
}
if ((flags & DEVF_RESET_DETACH) != 0)
device_probe_and_attach(child);
else
BUS_RESUME_CHILD(dev, child);
}
return (error);
}
const struct pci_device_table *
pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
{
bool match;
uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
vendor = pci_get_vendor(child);
device = pci_get_device(child);
subvendor = pci_get_subvendor(child);
subdevice = pci_get_subdevice(child);
class = pci_get_class(child);
subclass = pci_get_subclass(child);
revid = pci_get_revid(child);
while (nelt-- > 0) {
match = true;
if (id->match_flag_vendor)
match &= vendor == id->vendor;
if (id->match_flag_device)
match &= device == id->device;
if (id->match_flag_subvendor)
match &= subvendor == id->subvendor;
if (id->match_flag_subdevice)
match &= subdevice == id->subdevice;
if (id->match_flag_class)
match &= class == id->class_id;
if (id->match_flag_subclass)
match &= subclass == id->subclass;
if (id->match_flag_revid)
match &= revid == id->revid;
if (match)
return (id);
id++;
}
return (NULL);
}
static void
pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
{
const char *dev_name;
device_t dev;
dev = dinfo->cfg.dev;
printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
dinfo->cfg.slot, dinfo->cfg.func);
dev_name = device_get_name(dev);
if (dev_name != NULL)
printf(" (%s%d)", dev_name, device_get_unit(dev));
}
void
pci_print_faulted_dev(void)
{
struct pci_devinfo *dinfo;
device_t dev;
int aer, i;
uint32_t r1, r2;
uint16_t status;
STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
dev = dinfo->cfg.dev;
status = pci_read_config(dev, PCIR_STATUS, 2);
status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
PCIM_STATUS_SERR | PCIM_STATUS_PERR;
if (status != 0) {
pci_print_faulted_dev_name(dinfo);
printf(" error 0x%04x\n", status);
}
if (dinfo->cfg.pcie.pcie_location != 0) {
status = pci_read_config(dev,
dinfo->cfg.pcie.pcie_location +
PCIER_DEVICE_STA, 2);
if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
pci_print_faulted_dev_name(dinfo);
printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
pci_read_config(dev,
dinfo->cfg.pcie.pcie_location +
PCIER_DEVICE_CTL, 2),
status);
}
}
if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
if (r1 != 0 || r2 != 0) {
pci_print_faulted_dev_name(dinfo);
printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
" COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
r1, pci_read_config(dev, aer +
PCIR_AER_UC_MASK, 4),
pci_read_config(dev, aer +
PCIR_AER_UC_SEVERITY, 4),
r2, pci_read_config(dev, aer +
PCIR_AER_COR_MASK, 4),
pci_read_config(dev, aer +
PCIR_AER_CAP_CONTROL, 4));
for (i = 0; i < 4; i++) {
r1 = pci_read_config(dev, aer +
PCIR_AER_HEADER_LOG + i * 4, 4);
printf(" HL%d: 0x%08x\n", i, r1);
}
}
}
}
}
#ifdef DDB
DB_SHOW_COMMAND(pcierr, pci_print_faulted_dev_db)
{
pci_print_faulted_dev();
}
static void
db_clear_pcie_errors(const struct pci_devinfo *dinfo)
{
device_t dev;
int aer;
uint32_t r;
dev = dinfo->cfg.dev;
r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
PCIER_DEVICE_STA, 2);
pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
PCIER_DEVICE_STA, r, 2);
if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
return;
r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
if (r != 0)
pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
if (r != 0)
pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
}
DB_COMMAND(pci_clearerr, db_pci_clearerr)
{
struct pci_devinfo *dinfo;
device_t dev;
uint16_t status, status1;
STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
dev = dinfo->cfg.dev;
status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
PCIM_STATUS_SERR | PCIM_STATUS_PERR;
if (status1 != 0) {
status &= ~status1;
pci_write_config(dev, PCIR_STATUS, status, 2);
}
if (dinfo->cfg.pcie.pcie_location != 0)
db_clear_pcie_errors(dinfo);
}
}
#endif