Tom Caputi c3bd3fb4ac OpenZFS 9403 - assertion failed in arc_buf_destroy()
Assertion failed in arc_buf_destroy() when concurrently reading
block with checksum error.

Porting notes:
* The ability to zinject decompression errors has been added, but
  this only works at the zio_decompress() level, where we have all
  of the info we need to match against the user's zinject options.
* The decompress_fault test has been added to test the new zinject
  functionality
* We attempted to set zio_decompress_fail_fraction to (1 << 18) in
  ztest for further test coverage. Although this did uncover a few
  low priority issues, this unfortuantely also causes ztest to
  ASSERT in many locations where the code is working correctly since
  it is designed to fail on IO errors. Developers can manually set
  this variable with the '-o' option to find and debug issues.

Authored by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Matt Ahrens <mahrens@delphix.com>
Ported-by: Tom Caputi <tcaputi@datto.com>

OpenZFS-issue: https://illumos.org/issues/9403
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/fa98e487a9
Closes #7822
2018-08-29 11:33:33 -07:00

4780 lines
137 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
* Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
*/
#include <sys/sysmacros.h>
#include <sys/zfs_context.h>
#include <sys/fm/fs/zfs.h>
#include <sys/spa.h>
#include <sys/txg.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/zio_impl.h>
#include <sys/zio_compress.h>
#include <sys/zio_checksum.h>
#include <sys/dmu_objset.h>
#include <sys/arc.h>
#include <sys/ddt.h>
#include <sys/blkptr.h>
#include <sys/zfeature.h>
#include <sys/dsl_scan.h>
#include <sys/metaslab_impl.h>
#include <sys/time.h>
#include <sys/trace_zio.h>
#include <sys/abd.h>
#include <sys/dsl_crypt.h>
#include <sys/cityhash.h>
/*
* ==========================================================================
* I/O type descriptions
* ==========================================================================
*/
const char *zio_type_name[ZIO_TYPES] = {
/*
* Note: Linux kernel thread name length is limited
* so these names will differ from upstream open zfs.
*/
"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
};
int zio_dva_throttle_enabled = B_TRUE;
/*
* ==========================================================================
* I/O kmem caches
* ==========================================================================
*/
kmem_cache_t *zio_cache;
kmem_cache_t *zio_link_cache;
kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
#if defined(ZFS_DEBUG) && !defined(_KERNEL)
uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
#endif
int zio_delay_max = ZIO_DELAY_MAX;
#define BP_SPANB(indblkshift, level) \
(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
#define COMPARE_META_LEVEL 0x80000000ul
/*
* The following actions directly effect the spa's sync-to-convergence logic.
* The values below define the sync pass when we start performing the action.
* Care should be taken when changing these values as they directly impact
* spa_sync() performance. Tuning these values may introduce subtle performance
* pathologies and should only be done in the context of performance analysis.
* These tunables will eventually be removed and replaced with #defines once
* enough analysis has been done to determine optimal values.
*
* The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
* regular blocks are not deferred.
*/
int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
/*
* An allocating zio is one that either currently has the DVA allocate
* stage set or will have it later in its lifetime.
*/
#define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
int zio_requeue_io_start_cut_in_line = 1;
#ifdef ZFS_DEBUG
int zio_buf_debug_limit = 16384;
#else
int zio_buf_debug_limit = 0;
#endif
static inline void __zio_execute(zio_t *zio);
static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
void
zio_init(void)
{
size_t c;
vmem_t *data_alloc_arena = NULL;
zio_cache = kmem_cache_create("zio_cache",
sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
zio_link_cache = kmem_cache_create("zio_link_cache",
sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
/*
* For small buffers, we want a cache for each multiple of
* SPA_MINBLOCKSIZE. For larger buffers, we want a cache
* for each quarter-power of 2.
*/
for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
size_t p2 = size;
size_t align = 0;
size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
#if defined(_ILP32) && defined(_KERNEL)
/*
* Cache size limited to 1M on 32-bit platforms until ARC
* buffers no longer require virtual address space.
*/
if (size > zfs_max_recordsize)
break;
#endif
while (!ISP2(p2))
p2 &= p2 - 1;
#ifndef _KERNEL
/*
* If we are using watchpoints, put each buffer on its own page,
* to eliminate the performance overhead of trapping to the
* kernel when modifying a non-watched buffer that shares the
* page with a watched buffer.
*/
if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
continue;
/*
* Here's the problem - on 4K native devices in userland on
* Linux using O_DIRECT, buffers must be 4K aligned or I/O
* will fail with EINVAL, causing zdb (and others) to coredump.
* Since userland probably doesn't need optimized buffer caches,
* we just force 4K alignment on everything.
*/
align = 8 * SPA_MINBLOCKSIZE;
#else
if (size < PAGESIZE) {
align = SPA_MINBLOCKSIZE;
} else if (IS_P2ALIGNED(size, p2 >> 2)) {
align = PAGESIZE;
}
#endif
if (align != 0) {
char name[36];
(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
zio_buf_cache[c] = kmem_cache_create(name, size,
align, NULL, NULL, NULL, NULL, NULL, cflags);
(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
zio_data_buf_cache[c] = kmem_cache_create(name, size,
align, NULL, NULL, NULL, NULL,
data_alloc_arena, cflags);
}
}
while (--c != 0) {
ASSERT(zio_buf_cache[c] != NULL);
if (zio_buf_cache[c - 1] == NULL)
zio_buf_cache[c - 1] = zio_buf_cache[c];
ASSERT(zio_data_buf_cache[c] != NULL);
if (zio_data_buf_cache[c - 1] == NULL)
zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
}
zio_inject_init();
lz4_init();
}
void
zio_fini(void)
{
size_t c;
kmem_cache_t *last_cache = NULL;
kmem_cache_t *last_data_cache = NULL;
for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
#ifdef _ILP32
/*
* Cache size limited to 1M on 32-bit platforms until ARC
* buffers no longer require virtual address space.
*/
if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize)
break;
#endif
#if defined(ZFS_DEBUG) && !defined(_KERNEL)
if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c])
(void) printf("zio_fini: [%d] %llu != %llu\n",
(int)((c + 1) << SPA_MINBLOCKSHIFT),
(long long unsigned)zio_buf_cache_allocs[c],
(long long unsigned)zio_buf_cache_frees[c]);
#endif
if (zio_buf_cache[c] != last_cache) {
last_cache = zio_buf_cache[c];
kmem_cache_destroy(zio_buf_cache[c]);
}
zio_buf_cache[c] = NULL;
if (zio_data_buf_cache[c] != last_data_cache) {
last_data_cache = zio_data_buf_cache[c];
kmem_cache_destroy(zio_data_buf_cache[c]);
}
zio_data_buf_cache[c] = NULL;
}
kmem_cache_destroy(zio_link_cache);
kmem_cache_destroy(zio_cache);
zio_inject_fini();
lz4_fini();
}
/*
* ==========================================================================
* Allocate and free I/O buffers
* ==========================================================================
*/
/*
* Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
* crashdump if the kernel panics, so use it judiciously. Obviously, it's
* useful to inspect ZFS metadata, but if possible, we should avoid keeping
* excess / transient data in-core during a crashdump.
*/
void *
zio_buf_alloc(size_t size)
{
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
#if defined(ZFS_DEBUG) && !defined(_KERNEL)
atomic_add_64(&zio_buf_cache_allocs[c], 1);
#endif
return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
}
/*
* Use zio_data_buf_alloc to allocate data. The data will not appear in a
* crashdump if the kernel panics. This exists so that we will limit the amount
* of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
* of kernel heap dumped to disk when the kernel panics)
*/
void *
zio_data_buf_alloc(size_t size)
{
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
}
void
zio_buf_free(void *buf, size_t size)
{
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
#if defined(ZFS_DEBUG) && !defined(_KERNEL)
atomic_add_64(&zio_buf_cache_frees[c], 1);
#endif
kmem_cache_free(zio_buf_cache[c], buf);
}
void
zio_data_buf_free(void *buf, size_t size)
{
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
kmem_cache_free(zio_data_buf_cache[c], buf);
}
static void
zio_abd_free(void *abd, size_t size)
{
abd_free((abd_t *)abd);
}
/*
* ==========================================================================
* Push and pop I/O transform buffers
* ==========================================================================
*/
void
zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
zio_transform_func_t *transform)
{
zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
/*
* Ensure that anyone expecting this zio to contain a linear ABD isn't
* going to get a nasty surprise when they try to access the data.
*/
IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
zt->zt_orig_abd = zio->io_abd;
zt->zt_orig_size = zio->io_size;
zt->zt_bufsize = bufsize;
zt->zt_transform = transform;
zt->zt_next = zio->io_transform_stack;
zio->io_transform_stack = zt;
zio->io_abd = data;
zio->io_size = size;
}
void
zio_pop_transforms(zio_t *zio)
{
zio_transform_t *zt;
while ((zt = zio->io_transform_stack) != NULL) {
if (zt->zt_transform != NULL)
zt->zt_transform(zio,
zt->zt_orig_abd, zt->zt_orig_size);
if (zt->zt_bufsize != 0)
abd_free(zio->io_abd);
zio->io_abd = zt->zt_orig_abd;
zio->io_size = zt->zt_orig_size;
zio->io_transform_stack = zt->zt_next;
kmem_free(zt, sizeof (zio_transform_t));
}
}
/*
* ==========================================================================
* I/O transform callbacks for subblocks, decompression, and decryption
* ==========================================================================
*/
static void
zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
{
ASSERT(zio->io_size > size);
if (zio->io_type == ZIO_TYPE_READ)
abd_copy(data, zio->io_abd, size);
}
static void
zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
{
if (zio->io_error == 0) {
void *tmp = abd_borrow_buf(data, size);
int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
zio->io_abd, tmp, zio->io_size, size);
abd_return_buf_copy(data, tmp, size);
if (zio_injection_enabled && ret == 0)
ret = zio_handle_fault_injection(zio, EINVAL);
if (ret != 0)
zio->io_error = SET_ERROR(EIO);
}
}
static void
zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
{
int ret;
void *tmp;
blkptr_t *bp = zio->io_bp;
spa_t *spa = zio->io_spa;
uint64_t dsobj = zio->io_bookmark.zb_objset;
uint64_t lsize = BP_GET_LSIZE(bp);
dmu_object_type_t ot = BP_GET_TYPE(bp);
uint8_t salt[ZIO_DATA_SALT_LEN];
uint8_t iv[ZIO_DATA_IV_LEN];
uint8_t mac[ZIO_DATA_MAC_LEN];
boolean_t no_crypt = B_FALSE;
ASSERT(BP_USES_CRYPT(bp));
ASSERT3U(size, !=, 0);
if (zio->io_error != 0)
return;
/*
* Verify the cksum of MACs stored in an indirect bp. It will always
* be possible to verify this since it does not require an encryption
* key.
*/
if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
zio_crypt_decode_mac_bp(bp, mac);
if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
/*
* We haven't decompressed the data yet, but
* zio_crypt_do_indirect_mac_checksum() requires
* decompressed data to be able to parse out the MACs
* from the indirect block. We decompress it now and
* throw away the result after we are finished.
*/
tmp = zio_buf_alloc(lsize);
ret = zio_decompress_data(BP_GET_COMPRESS(bp),
zio->io_abd, tmp, zio->io_size, lsize);
if (ret != 0) {
ret = SET_ERROR(EIO);
goto error;
}
ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
zio_buf_free(tmp, lsize);
} else {
ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
}
abd_copy(data, zio->io_abd, size);
if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
ret = zio_handle_decrypt_injection(spa,
&zio->io_bookmark, ot, ECKSUM);
}
if (ret != 0)
goto error;
return;
}
/*
* If this is an authenticated block, just check the MAC. It would be
* nice to separate this out into its own flag, but for the moment
* enum zio_flag is out of bits.
*/
if (BP_IS_AUTHENTICATED(bp)) {
if (ot == DMU_OT_OBJSET) {
ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
} else {
zio_crypt_decode_mac_bp(bp, mac);
ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
zio->io_abd, size, mac);
if (zio_injection_enabled && ret == 0) {
ret = zio_handle_decrypt_injection(spa,
&zio->io_bookmark, ot, ECKSUM);
}
}
abd_copy(data, zio->io_abd, size);
if (ret != 0)
goto error;
return;
}
zio_crypt_decode_params_bp(bp, salt, iv);
if (ot == DMU_OT_INTENT_LOG) {
tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
zio_crypt_decode_mac_zil(tmp, mac);
abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
} else {
zio_crypt_decode_mac_bp(bp, mac);
}
ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
zio->io_abd, &no_crypt);
if (no_crypt)
abd_copy(data, zio->io_abd, size);
if (ret != 0)
goto error;
return;
error:
/* assert that the key was found unless this was speculative */
ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
/*
* If there was a decryption / authentication error return EIO as
* the io_error. If this was not a speculative zio, create an ereport.
*/
if (ret == ECKSUM) {
zio->io_error = SET_ERROR(EIO);
if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
spa_log_error(spa, &zio->io_bookmark);
zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
spa, NULL, &zio->io_bookmark, zio, 0, 0);
}
} else {
zio->io_error = ret;
}
}
/*
* ==========================================================================
* I/O parent/child relationships and pipeline interlocks
* ==========================================================================
*/
zio_t *
zio_walk_parents(zio_t *cio, zio_link_t **zl)
{
list_t *pl = &cio->io_parent_list;
*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
if (*zl == NULL)
return (NULL);
ASSERT((*zl)->zl_child == cio);
return ((*zl)->zl_parent);
}
zio_t *
zio_walk_children(zio_t *pio, zio_link_t **zl)
{
list_t *cl = &pio->io_child_list;
ASSERT(MUTEX_HELD(&pio->io_lock));
*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
if (*zl == NULL)
return (NULL);
ASSERT((*zl)->zl_parent == pio);
return ((*zl)->zl_child);
}
zio_t *
zio_unique_parent(zio_t *cio)
{
zio_link_t *zl = NULL;
zio_t *pio = zio_walk_parents(cio, &zl);
VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
return (pio);
}
void
zio_add_child(zio_t *pio, zio_t *cio)
{
zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
/*
* Logical I/Os can have logical, gang, or vdev children.
* Gang I/Os can have gang or vdev children.
* Vdev I/Os can only have vdev children.
* The following ASSERT captures all of these constraints.
*/
ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
zl->zl_parent = pio;
zl->zl_child = cio;
mutex_enter(&pio->io_lock);
mutex_enter(&cio->io_lock);
ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
for (int w = 0; w < ZIO_WAIT_TYPES; w++)
pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
list_insert_head(&pio->io_child_list, zl);
list_insert_head(&cio->io_parent_list, zl);
pio->io_child_count++;
cio->io_parent_count++;
mutex_exit(&cio->io_lock);
mutex_exit(&pio->io_lock);
}
static void
zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
{
ASSERT(zl->zl_parent == pio);
ASSERT(zl->zl_child == cio);
mutex_enter(&pio->io_lock);
mutex_enter(&cio->io_lock);
list_remove(&pio->io_child_list, zl);
list_remove(&cio->io_parent_list, zl);
pio->io_child_count--;
cio->io_parent_count--;
mutex_exit(&cio->io_lock);
mutex_exit(&pio->io_lock);
kmem_cache_free(zio_link_cache, zl);
}
static boolean_t
zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
{
boolean_t waiting = B_FALSE;
mutex_enter(&zio->io_lock);
ASSERT(zio->io_stall == NULL);
for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
continue;
uint64_t *countp = &zio->io_children[c][wait];
if (*countp != 0) {
zio->io_stage >>= 1;
ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
zio->io_stall = countp;
waiting = B_TRUE;
break;
}
}
mutex_exit(&zio->io_lock);
return (waiting);
}
__attribute__((always_inline))
static inline void
zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
zio_t **next_to_executep)
{
uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
int *errorp = &pio->io_child_error[zio->io_child_type];
mutex_enter(&pio->io_lock);
if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
*errorp = zio_worst_error(*errorp, zio->io_error);
pio->io_reexecute |= zio->io_reexecute;
ASSERT3U(*countp, >, 0);
(*countp)--;
if (*countp == 0 && pio->io_stall == countp) {
zio_taskq_type_t type =
pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
ZIO_TASKQ_INTERRUPT;
pio->io_stall = NULL;
mutex_exit(&pio->io_lock);
/*
* If we can tell the caller to execute this parent next, do
* so. Otherwise dispatch the parent zio as its own task.
*
* Having the caller execute the parent when possible reduces
* locking on the zio taskq's, reduces context switch
* overhead, and has no recursion penalty. Note that one
* read from disk typically causes at least 3 zio's: a
* zio_null(), the logical zio_read(), and then a physical
* zio. When the physical ZIO completes, we are able to call
* zio_done() on all 3 of these zio's from one invocation of
* zio_execute() by returning the parent back to
* zio_execute(). Since the parent isn't executed until this
* thread returns back to zio_execute(), the caller should do
* so promptly.
*
* In other cases, dispatching the parent prevents
* overflowing the stack when we have deeply nested
* parent-child relationships, as we do with the "mega zio"
* of writes for spa_sync(), and the chain of ZIL blocks.
*/
if (next_to_executep != NULL && *next_to_executep == NULL) {
*next_to_executep = pio;
} else {
zio_taskq_dispatch(pio, type, B_FALSE);
}
} else {
mutex_exit(&pio->io_lock);
}
}
static void
zio_inherit_child_errors(zio_t *zio, enum zio_child c)
{
if (zio->io_child_error[c] != 0 && zio->io_error == 0)
zio->io_error = zio->io_child_error[c];
}
int
zio_bookmark_compare(const void *x1, const void *x2)
{
const zio_t *z1 = x1;
const zio_t *z2 = x2;
if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
return (-1);
if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
return (1);
if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
return (-1);
if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
return (1);
if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
return (-1);
if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
return (1);
if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
return (-1);
if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
return (1);
if (z1 < z2)
return (-1);
if (z1 > z2)
return (1);
return (0);
}
/*
* ==========================================================================
* Create the various types of I/O (read, write, free, etc)
* ==========================================================================
*/
static zio_t *
zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
void *private, zio_type_t type, zio_priority_t priority,
enum zio_flag flags, vdev_t *vd, uint64_t offset,
const zbookmark_phys_t *zb, enum zio_stage stage,
enum zio_stage pipeline)
{
zio_t *zio;
ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
ASSERT(vd || stage == ZIO_STAGE_OPEN);
IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
bzero(zio, sizeof (zio_t));
mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
list_create(&zio->io_parent_list, sizeof (zio_link_t),
offsetof(zio_link_t, zl_parent_node));
list_create(&zio->io_child_list, sizeof (zio_link_t),
offsetof(zio_link_t, zl_child_node));
metaslab_trace_init(&zio->io_alloc_list);
if (vd != NULL)
zio->io_child_type = ZIO_CHILD_VDEV;
else if (flags & ZIO_FLAG_GANG_CHILD)
zio->io_child_type = ZIO_CHILD_GANG;
else if (flags & ZIO_FLAG_DDT_CHILD)
zio->io_child_type = ZIO_CHILD_DDT;
else
zio->io_child_type = ZIO_CHILD_LOGICAL;
if (bp != NULL) {
zio->io_bp = (blkptr_t *)bp;
zio->io_bp_copy = *bp;
zio->io_bp_orig = *bp;
if (type != ZIO_TYPE_WRITE ||
zio->io_child_type == ZIO_CHILD_DDT)
zio->io_bp = &zio->io_bp_copy; /* so caller can free */
if (zio->io_child_type == ZIO_CHILD_LOGICAL)
zio->io_logical = zio;
if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
pipeline |= ZIO_GANG_STAGES;
}
zio->io_spa = spa;
zio->io_txg = txg;
zio->io_done = done;
zio->io_private = private;
zio->io_type = type;
zio->io_priority = priority;
zio->io_vd = vd;
zio->io_offset = offset;
zio->io_orig_abd = zio->io_abd = data;
zio->io_orig_size = zio->io_size = psize;
zio->io_lsize = lsize;
zio->io_orig_flags = zio->io_flags = flags;
zio->io_orig_stage = zio->io_stage = stage;
zio->io_orig_pipeline = zio->io_pipeline = pipeline;
zio->io_pipeline_trace = ZIO_STAGE_OPEN;
zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
if (zb != NULL)
zio->io_bookmark = *zb;
if (pio != NULL) {
if (zio->io_logical == NULL)
zio->io_logical = pio->io_logical;
if (zio->io_child_type == ZIO_CHILD_GANG)
zio->io_gang_leader = pio->io_gang_leader;
zio_add_child(pio, zio);
}
taskq_init_ent(&zio->io_tqent);
return (zio);
}
static void
zio_destroy(zio_t *zio)
{
metaslab_trace_fini(&zio->io_alloc_list);
list_destroy(&zio->io_parent_list);
list_destroy(&zio->io_child_list);
mutex_destroy(&zio->io_lock);
cv_destroy(&zio->io_cv);
kmem_cache_free(zio_cache, zio);
}
zio_t *
zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
void *private, enum zio_flag flags)
{
zio_t *zio;
zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
return (zio);
}
zio_t *
zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
{
return (zio_null(NULL, spa, NULL, done, private, flags));
}
void
zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
{
if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
bp, (longlong_t)BP_GET_TYPE(bp));
}
if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
bp, (longlong_t)BP_GET_CHECKSUM(bp));
}
if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
bp, (longlong_t)BP_GET_COMPRESS(bp));
}
if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
bp, (longlong_t)BP_GET_LSIZE(bp));
}
if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
bp, (longlong_t)BP_GET_PSIZE(bp));
}
if (BP_IS_EMBEDDED(bp)) {
if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
bp, (longlong_t)BPE_GET_ETYPE(bp));
}
}
/*
* Do not verify individual DVAs if the config is not trusted. This
* will be done once the zio is executed in vdev_mirror_map_alloc.
*/
if (!spa->spa_trust_config)
return;
/*
* Pool-specific checks.
*
* Note: it would be nice to verify that the blk_birth and
* BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
* allows the birth time of log blocks (and dmu_sync()-ed blocks
* that are in the log) to be arbitrarily large.
*/
for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
if (vdevid >= spa->spa_root_vdev->vdev_children) {
zfs_panic_recover("blkptr at %p DVA %u has invalid "
"VDEV %llu",
bp, i, (longlong_t)vdevid);
continue;
}
vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
if (vd == NULL) {
zfs_panic_recover("blkptr at %p DVA %u has invalid "
"VDEV %llu",
bp, i, (longlong_t)vdevid);
continue;
}
if (vd->vdev_ops == &vdev_hole_ops) {
zfs_panic_recover("blkptr at %p DVA %u has hole "
"VDEV %llu",
bp, i, (longlong_t)vdevid);
continue;
}
if (vd->vdev_ops == &vdev_missing_ops) {
/*
* "missing" vdevs are valid during import, but we
* don't have their detailed info (e.g. asize), so
* we can't perform any more checks on them.
*/
continue;
}
uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
if (BP_IS_GANG(bp))
asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
if (offset + asize > vd->vdev_asize) {
zfs_panic_recover("blkptr at %p DVA %u has invalid "
"OFFSET %llu",
bp, i, (longlong_t)offset);
}
}
}
boolean_t
zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
{
uint64_t vdevid = DVA_GET_VDEV(dva);
if (vdevid >= spa->spa_root_vdev->vdev_children)
return (B_FALSE);
vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
if (vd == NULL)
return (B_FALSE);
if (vd->vdev_ops == &vdev_hole_ops)
return (B_FALSE);
if (vd->vdev_ops == &vdev_missing_ops) {
return (B_FALSE);
}
uint64_t offset = DVA_GET_OFFSET(dva);
uint64_t asize = DVA_GET_ASIZE(dva);
if (BP_IS_GANG(bp))
asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
if (offset + asize > vd->vdev_asize)
return (B_FALSE);
return (B_TRUE);
}
zio_t *
zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
{
zio_t *zio;
zfs_blkptr_verify(spa, bp);
zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
data, size, size, done, private,
ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
return (zio);
}
zio_t *
zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
zio_done_func_t *ready, zio_done_func_t *children_ready,
zio_done_func_t *physdone, zio_done_func_t *done,
void *private, zio_priority_t priority, enum zio_flag flags,
const zbookmark_phys_t *zb)
{
zio_t *zio;
ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
zp->zp_compress >= ZIO_COMPRESS_OFF &&
zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
DMU_OT_IS_VALID(zp->zp_type) &&
zp->zp_level < 32 &&
zp->zp_copies > 0 &&
zp->zp_copies <= spa_max_replication(spa));
zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
zio->io_ready = ready;
zio->io_children_ready = children_ready;
zio->io_physdone = physdone;
zio->io_prop = *zp;
/*
* Data can be NULL if we are going to call zio_write_override() to
* provide the already-allocated BP. But we may need the data to
* verify a dedup hit (if requested). In this case, don't try to
* dedup (just take the already-allocated BP verbatim). Encrypted
* dedup blocks need data as well so we also disable dedup in this
* case.
*/
if (data == NULL &&
(zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
}
return (zio);
}
zio_t *
zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
uint64_t size, zio_done_func_t *done, void *private,
zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
{
zio_t *zio;
zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
return (zio);
}
void
zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
{
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
/*
* We must reset the io_prop to match the values that existed
* when the bp was first written by dmu_sync() keeping in mind
* that nopwrite and dedup are mutually exclusive.
*/
zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
zio->io_prop.zp_nopwrite = nopwrite;
zio->io_prop.zp_copies = copies;
zio->io_bp_override = bp;
}
void
zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
{
zfs_blkptr_verify(spa, bp);
/*
* The check for EMBEDDED is a performance optimization. We
* process the free here (by ignoring it) rather than
* putting it on the list and then processing it in zio_free_sync().
*/
if (BP_IS_EMBEDDED(bp))
return;
metaslab_check_free(spa, bp);
/*
* Frees that are for the currently-syncing txg, are not going to be
* deferred, and which will not need to do a read (i.e. not GANG or
* DEDUP), can be processed immediately. Otherwise, put them on the
* in-memory list for later processing.
*/
if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
txg != spa->spa_syncing_txg ||
spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
} else {
VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
}
}
zio_t *
zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
enum zio_flag flags)
{
zio_t *zio;
enum zio_stage stage = ZIO_FREE_PIPELINE;
ASSERT(!BP_IS_HOLE(bp));
ASSERT(spa_syncing_txg(spa) == txg);
ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
if (BP_IS_EMBEDDED(bp))
return (zio_null(pio, spa, NULL, NULL, NULL, 0));
metaslab_check_free(spa, bp);
arc_freed(spa, bp);
dsl_scan_freed(spa, bp);
/*
* GANG and DEDUP blocks can induce a read (for the gang block header,
* or the DDT), so issue them asynchronously so that this thread is
* not tied up.
*/
if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
stage |= ZIO_STAGE_ISSUE_ASYNC;
zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
return (zio);
}
zio_t *
zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
zio_done_func_t *done, void *private, enum zio_flag flags)
{
zio_t *zio;
zfs_blkptr_verify(spa, bp);
if (BP_IS_EMBEDDED(bp))
return (zio_null(pio, spa, NULL, NULL, NULL, 0));
/*
* A claim is an allocation of a specific block. Claims are needed
* to support immediate writes in the intent log. The issue is that
* immediate writes contain committed data, but in a txg that was
* *not* committed. Upon opening the pool after an unclean shutdown,
* the intent log claims all blocks that contain immediate write data
* so that the SPA knows they're in use.
*
* All claims *must* be resolved in the first txg -- before the SPA
* starts allocating blocks -- so that nothing is allocated twice.
* If txg == 0 we just verify that the block is claimable.
*/
ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
spa_min_claim_txg(spa));
ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
ASSERT0(zio->io_queued_timestamp);
return (zio);
}
zio_t *
zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
zio_done_func_t *done, void *private, enum zio_flag flags)
{
zio_t *zio;
int c;
if (vd->vdev_children == 0) {
zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
zio->io_cmd = cmd;
} else {
zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
for (c = 0; c < vd->vdev_children; c++)
zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
done, private, flags));
}
return (zio);
}
zio_t *
zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
abd_t *data, int checksum, zio_done_func_t *done, void *private,
zio_priority_t priority, enum zio_flag flags, boolean_t labels)
{
zio_t *zio;
ASSERT(vd->vdev_children == 0);
ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
ASSERT3U(offset + size, <=, vd->vdev_psize);
zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
zio->io_prop.zp_checksum = checksum;
return (zio);
}
zio_t *
zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
abd_t *data, int checksum, zio_done_func_t *done, void *private,
zio_priority_t priority, enum zio_flag flags, boolean_t labels)
{
zio_t *zio;
ASSERT(vd->vdev_children == 0);
ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
ASSERT3U(offset + size, <=, vd->vdev_psize);
zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
zio->io_prop.zp_checksum = checksum;
if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
/*
* zec checksums are necessarily destructive -- they modify
* the end of the write buffer to hold the verifier/checksum.
* Therefore, we must make a local copy in case the data is
* being written to multiple places in parallel.
*/
abd_t *wbuf = abd_alloc_sametype(data, size);
abd_copy(wbuf, data, size);
zio_push_transform(zio, wbuf, size, size, NULL);
}
return (zio);
}
/*
* Create a child I/O to do some work for us.
*/
zio_t *
zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
abd_t *data, uint64_t size, int type, zio_priority_t priority,
enum zio_flag flags, zio_done_func_t *done, void *private)
{
enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
zio_t *zio;
/*
* vdev child I/Os do not propagate their error to the parent.
* Therefore, for correct operation the caller *must* check for
* and handle the error in the child i/o's done callback.
* The only exceptions are i/os that we don't care about
* (OPTIONAL or REPAIR).
*/
ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
done != NULL);
if (type == ZIO_TYPE_READ && bp != NULL) {
/*
* If we have the bp, then the child should perform the
* checksum and the parent need not. This pushes error
* detection as close to the leaves as possible and
* eliminates redundant checksums in the interior nodes.
*/
pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
}
if (vd->vdev_ops->vdev_op_leaf) {
ASSERT0(vd->vdev_children);
offset += VDEV_LABEL_START_SIZE;
}
flags |= ZIO_VDEV_CHILD_FLAGS(pio);
/*
* If we've decided to do a repair, the write is not speculative --
* even if the original read was.
*/
if (flags & ZIO_FLAG_IO_REPAIR)
flags &= ~ZIO_FLAG_SPECULATIVE;
/*
* If we're creating a child I/O that is not associated with a
* top-level vdev, then the child zio is not an allocating I/O.
* If this is a retried I/O then we ignore it since we will
* have already processed the original allocating I/O.
*/
if (flags & ZIO_FLAG_IO_ALLOCATING &&
(vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
ASSERTV(metaslab_class_t *mc = spa_normal_class(pio->io_spa));
ASSERT(mc->mc_alloc_throttle_enabled);
ASSERT(type == ZIO_TYPE_WRITE);
ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
pio->io_child_type == ZIO_CHILD_GANG);
flags &= ~ZIO_FLAG_IO_ALLOCATING;
}
zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
zio->io_physdone = pio->io_physdone;
if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
zio->io_logical->io_phys_children++;
return (zio);
}
zio_t *
zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
zio_type_t type, zio_priority_t priority, enum zio_flag flags,
zio_done_func_t *done, void *private)
{
zio_t *zio;
ASSERT(vd->vdev_ops->vdev_op_leaf);
zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
data, size, size, done, private, type, priority,
flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
vd, offset, NULL,
ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
return (zio);
}
void
zio_flush(zio_t *zio, vdev_t *vd)
{
zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
NULL, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
}
void
zio_shrink(zio_t *zio, uint64_t size)
{
ASSERT3P(zio->io_executor, ==, NULL);
ASSERT3U(zio->io_orig_size, ==, zio->io_size);
ASSERT3U(size, <=, zio->io_size);
/*
* We don't shrink for raidz because of problems with the
* reconstruction when reading back less than the block size.
* Note, BP_IS_RAIDZ() assumes no compression.
*/
ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
if (!BP_IS_RAIDZ(zio->io_bp)) {
/* we are not doing a raw write */
ASSERT3U(zio->io_size, ==, zio->io_lsize);
zio->io_orig_size = zio->io_size = zio->io_lsize = size;
}
}
/*
* ==========================================================================
* Prepare to read and write logical blocks
* ==========================================================================
*/
static zio_t *
zio_read_bp_init(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
uint64_t psize =
BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
zio->io_child_type == ZIO_CHILD_LOGICAL &&
!(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
psize, psize, zio_decompress);
}
if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
zio->io_child_type == ZIO_CHILD_LOGICAL) {
zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
psize, psize, zio_decrypt);
}
if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
int psize = BPE_GET_PSIZE(bp);
void *data = abd_borrow_buf(zio->io_abd, psize);
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
decode_embedded_bp_compressed(bp, data);
abd_return_buf_copy(zio->io_abd, data, psize);
} else {
ASSERT(!BP_IS_EMBEDDED(bp));
ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
}
if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
zio->io_flags |= ZIO_FLAG_DONT_CACHE;
if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
zio->io_flags |= ZIO_FLAG_DONT_CACHE;
if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
return (zio);
}
static zio_t *
zio_write_bp_init(zio_t *zio)
{
if (!IO_IS_ALLOCATING(zio))
return (zio);
ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
if (zio->io_bp_override) {
blkptr_t *bp = zio->io_bp;
zio_prop_t *zp = &zio->io_prop;
ASSERT(bp->blk_birth != zio->io_txg);
ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
*bp = *zio->io_bp_override;
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
if (BP_IS_EMBEDDED(bp))
return (zio);
/*
* If we've been overridden and nopwrite is set then
* set the flag accordingly to indicate that a nopwrite
* has already occurred.
*/
if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
ASSERT(!zp->zp_dedup);
ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
zio->io_flags |= ZIO_FLAG_NOPWRITE;
return (zio);
}
ASSERT(!zp->zp_nopwrite);
if (BP_IS_HOLE(bp) || !zp->zp_dedup)
return (zio);
ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
!zp->zp_encrypt) {
BP_SET_DEDUP(bp, 1);
zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
return (zio);
}
/*
* We were unable to handle this as an override bp, treat
* it as a regular write I/O.
*/
zio->io_bp_override = NULL;
*bp = zio->io_bp_orig;
zio->io_pipeline = zio->io_orig_pipeline;
}
return (zio);
}
static zio_t *
zio_write_compress(zio_t *zio)
{
spa_t *spa = zio->io_spa;
zio_prop_t *zp = &zio->io_prop;
enum zio_compress compress = zp->zp_compress;
blkptr_t *bp = zio->io_bp;
uint64_t lsize = zio->io_lsize;
uint64_t psize = zio->io_size;
int pass = 1;
/*
* If our children haven't all reached the ready stage,
* wait for them and then repeat this pipeline stage.
*/
if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
return (NULL);
}
if (!IO_IS_ALLOCATING(zio))
return (zio);
if (zio->io_children_ready != NULL) {
/*
* Now that all our children are ready, run the callback
* associated with this zio in case it wants to modify the
* data to be written.
*/
ASSERT3U(zp->zp_level, >, 0);
zio->io_children_ready(zio);
}
ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
ASSERT(zio->io_bp_override == NULL);
if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
/*
* We're rewriting an existing block, which means we're
* working on behalf of spa_sync(). For spa_sync() to
* converge, it must eventually be the case that we don't
* have to allocate new blocks. But compression changes
* the blocksize, which forces a reallocate, and makes
* convergence take longer. Therefore, after the first
* few passes, stop compressing to ensure convergence.
*/
pass = spa_sync_pass(spa);
ASSERT(zio->io_txg == spa_syncing_txg(spa));
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
ASSERT(!BP_GET_DEDUP(bp));
if (pass >= zfs_sync_pass_dont_compress)
compress = ZIO_COMPRESS_OFF;
/* Make sure someone doesn't change their mind on overwrites */
ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
spa_max_replication(spa)) == BP_GET_NDVAS(bp));
}
/* If it's a compressed write that is not raw, compress the buffer. */
if (compress != ZIO_COMPRESS_OFF &&
!(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
void *cbuf = zio_buf_alloc(lsize);
psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
if (psize == 0 || psize == lsize) {
compress = ZIO_COMPRESS_OFF;
zio_buf_free(cbuf, lsize);
} else if (!zp->zp_dedup && !zp->zp_encrypt &&
psize <= BPE_PAYLOAD_SIZE &&
zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
encode_embedded_bp_compressed(bp,
cbuf, compress, lsize, psize);
BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
BP_SET_TYPE(bp, zio->io_prop.zp_type);
BP_SET_LEVEL(bp, zio->io_prop.zp_level);
zio_buf_free(cbuf, lsize);
bp->blk_birth = zio->io_txg;
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
ASSERT(spa_feature_is_active(spa,
SPA_FEATURE_EMBEDDED_DATA));
return (zio);
} else {
/*
* Round up compressed size up to the ashift
* of the smallest-ashift device, and zero the tail.
* This ensures that the compressed size of the BP
* (and thus compressratio property) are correct,
* in that we charge for the padding used to fill out
* the last sector.
*/
ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
size_t rounded = (size_t)P2ROUNDUP(psize,
1ULL << spa->spa_min_ashift);
if (rounded >= lsize) {
compress = ZIO_COMPRESS_OFF;
zio_buf_free(cbuf, lsize);
psize = lsize;
} else {
abd_t *cdata = abd_get_from_buf(cbuf, lsize);
abd_take_ownership_of_buf(cdata, B_TRUE);
abd_zero_off(cdata, psize, rounded - psize);
psize = rounded;
zio_push_transform(zio, cdata,
psize, lsize, NULL);
}
}
/*
* We were unable to handle this as an override bp, treat
* it as a regular write I/O.
*/
zio->io_bp_override = NULL;
*bp = zio->io_bp_orig;
zio->io_pipeline = zio->io_orig_pipeline;
} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
zp->zp_type == DMU_OT_DNODE) {
/*
* The DMU actually relies on the zio layer's compression
* to free metadnode blocks that have had all contained
* dnodes freed. As a result, even when doing a raw
* receive, we must check whether the block can be compressed
* to a hole.
*/
psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
zio->io_abd, NULL, lsize);
if (psize == 0)
compress = ZIO_COMPRESS_OFF;
} else {
ASSERT3U(psize, !=, 0);
}
/*
* The final pass of spa_sync() must be all rewrites, but the first
* few passes offer a trade-off: allocating blocks defers convergence,
* but newly allocated blocks are sequential, so they can be written
* to disk faster. Therefore, we allow the first few passes of
* spa_sync() to allocate new blocks, but force rewrites after that.
* There should only be a handful of blocks after pass 1 in any case.
*/
if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
BP_GET_PSIZE(bp) == psize &&
pass >= zfs_sync_pass_rewrite) {
ASSERT(psize != 0);
enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
zio->io_flags |= ZIO_FLAG_IO_REWRITE;
} else {
BP_ZERO(bp);
zio->io_pipeline = ZIO_WRITE_PIPELINE;
}
if (psize == 0) {
if (zio->io_bp_orig.blk_birth != 0 &&
spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
BP_SET_LSIZE(bp, lsize);
BP_SET_TYPE(bp, zp->zp_type);
BP_SET_LEVEL(bp, zp->zp_level);
BP_SET_BIRTH(bp, zio->io_txg, 0);
}
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
} else {
ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
BP_SET_LSIZE(bp, lsize);
BP_SET_TYPE(bp, zp->zp_type);
BP_SET_LEVEL(bp, zp->zp_level);
BP_SET_PSIZE(bp, psize);
BP_SET_COMPRESS(bp, compress);
BP_SET_CHECKSUM(bp, zp->zp_checksum);
BP_SET_DEDUP(bp, zp->zp_dedup);
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
if (zp->zp_dedup) {
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
ASSERT(!zp->zp_encrypt ||
DMU_OT_IS_ENCRYPTED(zp->zp_type));
zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
}
if (zp->zp_nopwrite) {
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
}
}
return (zio);
}
static zio_t *
zio_free_bp_init(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
if (BP_GET_DEDUP(bp))
zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
}
ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
return (zio);
}
/*
* ==========================================================================
* Execute the I/O pipeline
* ==========================================================================
*/
static void
zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
{
spa_t *spa = zio->io_spa;
zio_type_t t = zio->io_type;
int flags = (cutinline ? TQ_FRONT : 0);
/*
* If we're a config writer or a probe, the normal issue and
* interrupt threads may all be blocked waiting for the config lock.
* In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
*/
if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
t = ZIO_TYPE_NULL;
/*
* A similar issue exists for the L2ARC write thread until L2ARC 2.0.
*/
if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
t = ZIO_TYPE_NULL;
/*
* If this is a high priority I/O, then use the high priority taskq if
* available.
*/
if (zio->io_priority == ZIO_PRIORITY_NOW &&
spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
q++;
ASSERT3U(q, <, ZIO_TASKQ_TYPES);
/*
* NB: We are assuming that the zio can only be dispatched
* to a single taskq at a time. It would be a grievous error
* to dispatch the zio to another taskq at the same time.
*/
ASSERT(taskq_empty_ent(&zio->io_tqent));
spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
flags, &zio->io_tqent);
}
static boolean_t
zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
{
kthread_t *executor = zio->io_executor;
spa_t *spa = zio->io_spa;
for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
uint_t i;
for (i = 0; i < tqs->stqs_count; i++) {
if (taskq_member(tqs->stqs_taskq[i], executor))
return (B_TRUE);
}
}
return (B_FALSE);
}
static zio_t *
zio_issue_async(zio_t *zio)
{
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
return (NULL);
}
void
zio_interrupt(zio_t *zio)
{
zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
}
void
zio_delay_interrupt(zio_t *zio)
{
/*
* The timeout_generic() function isn't defined in userspace, so
* rather than trying to implement the function, the zio delay
* functionality has been disabled for userspace builds.
*/
#ifdef _KERNEL
/*
* If io_target_timestamp is zero, then no delay has been registered
* for this IO, thus jump to the end of this function and "skip" the
* delay; issuing it directly to the zio layer.
*/
if (zio->io_target_timestamp != 0) {
hrtime_t now = gethrtime();
if (now >= zio->io_target_timestamp) {
/*
* This IO has already taken longer than the target
* delay to complete, so we don't want to delay it
* any longer; we "miss" the delay and issue it
* directly to the zio layer. This is likely due to
* the target latency being set to a value less than
* the underlying hardware can satisfy (e.g. delay
* set to 1ms, but the disks take 10ms to complete an
* IO request).
*/
DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
hrtime_t, now);
zio_interrupt(zio);
} else {
taskqid_t tid;
hrtime_t diff = zio->io_target_timestamp - now;
clock_t expire_at_tick = ddi_get_lbolt() +
NSEC_TO_TICK(diff);
DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
hrtime_t, now, hrtime_t, diff);
if (NSEC_TO_TICK(diff) == 0) {
/* Our delay is less than a jiffy - just spin */
zfs_sleep_until(zio->io_target_timestamp);
} else {
/*
* Use taskq_dispatch_delay() in the place of
* OpenZFS's timeout_generic().
*/
tid = taskq_dispatch_delay(system_taskq,
(task_func_t *)zio_interrupt,
zio, TQ_NOSLEEP, expire_at_tick);
if (tid == TASKQID_INVALID) {
/*
* Couldn't allocate a task. Just
* finish the zio without a delay.
*/
zio_interrupt(zio);
}
}
}
return;
}
#endif
DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
zio_interrupt(zio);
}
static void
zio_deadman_impl(zio_t *pio)
{
zio_t *cio, *cio_next;
zio_link_t *zl = NULL;
vdev_t *vd = pio->io_vd;
if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
vdev_queue_t *vq = &vd->vdev_queue;
zbookmark_phys_t *zb = &pio->io_bookmark;
uint64_t delta = gethrtime() - pio->io_timestamp;
uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
zfs_dbgmsg("slow zio: zio=%p timestamp=%llu "
"delta=%llu queued=%llu io=%llu "
"path=%s last=%llu "
"type=%d priority=%d flags=0x%x "
"stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
"objset=%llu object=%llu level=%llu blkid=%llu "
"offset=%llu size=%llu error=%d",
pio, pio->io_timestamp,
delta, pio->io_delta, pio->io_delay,
vd->vdev_path, vq->vq_io_complete_ts,
pio->io_type, pio->io_priority, pio->io_flags,
pio->io_state, pio->io_pipeline, pio->io_pipeline_trace,
zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
pio->io_offset, pio->io_size, pio->io_error);
zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
pio->io_spa, vd, zb, pio, 0, 0);
if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
taskq_empty_ent(&pio->io_tqent)) {
zio_interrupt(pio);
}
}
mutex_enter(&pio->io_lock);
for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
cio_next = zio_walk_children(pio, &zl);
zio_deadman_impl(cio);
}
mutex_exit(&pio->io_lock);
}
/*
* Log the critical information describing this zio and all of its children
* using the zfs_dbgmsg() interface then post deadman event for the ZED.
*/
void
zio_deadman(zio_t *pio, char *tag)
{
spa_t *spa = pio->io_spa;
char *name = spa_name(spa);
if (!zfs_deadman_enabled || spa_suspended(spa))
return;
zio_deadman_impl(pio);
switch (spa_get_deadman_failmode(spa)) {
case ZIO_FAILURE_MODE_WAIT:
zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
break;
case ZIO_FAILURE_MODE_CONTINUE:
zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
break;
case ZIO_FAILURE_MODE_PANIC:
fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
break;
}
}
/*
* Execute the I/O pipeline until one of the following occurs:
* (1) the I/O completes; (2) the pipeline stalls waiting for
* dependent child I/Os; (3) the I/O issues, so we're waiting
* for an I/O completion interrupt; (4) the I/O is delegated by
* vdev-level caching or aggregation; (5) the I/O is deferred
* due to vdev-level queueing; (6) the I/O is handed off to
* another thread. In all cases, the pipeline stops whenever
* there's no CPU work; it never burns a thread in cv_wait_io().
*
* There's no locking on io_stage because there's no legitimate way
* for multiple threads to be attempting to process the same I/O.
*/
static zio_pipe_stage_t *zio_pipeline[];
/*
* zio_execute() is a wrapper around the static function
* __zio_execute() so that we can force __zio_execute() to be
* inlined. This reduces stack overhead which is important
* because __zio_execute() is called recursively in several zio
* code paths. zio_execute() itself cannot be inlined because
* it is externally visible.
*/
void
zio_execute(zio_t *zio)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
__zio_execute(zio);
spl_fstrans_unmark(cookie);
}
/*
* Used to determine if in the current context the stack is sized large
* enough to allow zio_execute() to be called recursively. A minimum
* stack size of 16K is required to avoid needing to re-dispatch the zio.
*/
boolean_t
zio_execute_stack_check(zio_t *zio)
{
#if !defined(HAVE_LARGE_STACKS)
dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
/* Executing in txg_sync_thread() context. */
if (dp && curthread == dp->dp_tx.tx_sync_thread)
return (B_TRUE);
/* Pool initialization outside of zio_taskq context. */
if (dp && spa_is_initializing(dp->dp_spa) &&
!zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
!zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
return (B_TRUE);
#endif /* HAVE_LARGE_STACKS */
return (B_FALSE);
}
__attribute__((always_inline))
static inline void
__zio_execute(zio_t *zio)
{
ASSERT3U(zio->io_queued_timestamp, >, 0);
while (zio->io_stage < ZIO_STAGE_DONE) {
enum zio_stage pipeline = zio->io_pipeline;
enum zio_stage stage = zio->io_stage;
zio->io_executor = curthread;
ASSERT(!MUTEX_HELD(&zio->io_lock));
ASSERT(ISP2(stage));
ASSERT(zio->io_stall == NULL);
do {
stage <<= 1;
} while ((stage & pipeline) == 0);
ASSERT(stage <= ZIO_STAGE_DONE);
/*
* If we are in interrupt context and this pipeline stage
* will grab a config lock that is held across I/O,
* or may wait for an I/O that needs an interrupt thread
* to complete, issue async to avoid deadlock.
*
* For VDEV_IO_START, we cut in line so that the io will
* be sent to disk promptly.
*/
if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
zio_requeue_io_start_cut_in_line : B_FALSE;
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
return;
}
/*
* If the current context doesn't have large enough stacks
* the zio must be issued asynchronously to prevent overflow.
*/
if (zio_execute_stack_check(zio)) {
boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
zio_requeue_io_start_cut_in_line : B_FALSE;
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
return;
}
zio->io_stage = stage;
zio->io_pipeline_trace |= zio->io_stage;
/*
* The zio pipeline stage returns the next zio to execute
* (typically the same as this one), or NULL if we should
* stop.
*/
zio = zio_pipeline[highbit64(stage) - 1](zio);
if (zio == NULL)
return;
}
}
/*
* ==========================================================================
* Initiate I/O, either sync or async
* ==========================================================================
*/
int
zio_wait(zio_t *zio)
{
long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
int error;
ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
ASSERT3P(zio->io_executor, ==, NULL);
zio->io_waiter = curthread;
ASSERT0(zio->io_queued_timestamp);
zio->io_queued_timestamp = gethrtime();
__zio_execute(zio);
mutex_enter(&zio->io_lock);
while (zio->io_executor != NULL) {
error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
ddi_get_lbolt() + timeout);
if (zfs_deadman_enabled && error == -1 &&
gethrtime() - zio->io_queued_timestamp >
spa_deadman_ziotime(zio->io_spa)) {
mutex_exit(&zio->io_lock);
timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
zio_deadman(zio, FTAG);
mutex_enter(&zio->io_lock);
}
}
mutex_exit(&zio->io_lock);
error = zio->io_error;
zio_destroy(zio);
return (error);
}
void
zio_nowait(zio_t *zio)
{
ASSERT3P(zio->io_executor, ==, NULL);
if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
zio_unique_parent(zio) == NULL) {
zio_t *pio;
/*
* This is a logical async I/O with no parent to wait for it.
* We add it to the spa_async_root_zio "Godfather" I/O which
* will ensure they complete prior to unloading the pool.
*/
spa_t *spa = zio->io_spa;
kpreempt_disable();
pio = spa->spa_async_zio_root[CPU_SEQID];
kpreempt_enable();
zio_add_child(pio, zio);
}
ASSERT0(zio->io_queued_timestamp);
zio->io_queued_timestamp = gethrtime();
__zio_execute(zio);
}
/*
* ==========================================================================
* Reexecute, cancel, or suspend/resume failed I/O
* ==========================================================================
*/
static void
zio_reexecute(zio_t *pio)
{
zio_t *cio, *cio_next;
ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
ASSERT(pio->io_gang_leader == NULL);
ASSERT(pio->io_gang_tree == NULL);
pio->io_flags = pio->io_orig_flags;
pio->io_stage = pio->io_orig_stage;
pio->io_pipeline = pio->io_orig_pipeline;
pio->io_reexecute = 0;
pio->io_flags |= ZIO_FLAG_REEXECUTED;
pio->io_pipeline_trace = 0;
pio->io_error = 0;
for (int w = 0; w < ZIO_WAIT_TYPES; w++)
pio->io_state[w] = 0;
for (int c = 0; c < ZIO_CHILD_TYPES; c++)
pio->io_child_error[c] = 0;
if (IO_IS_ALLOCATING(pio))
BP_ZERO(pio->io_bp);
/*
* As we reexecute pio's children, new children could be created.
* New children go to the head of pio's io_child_list, however,
* so we will (correctly) not reexecute them. The key is that
* the remainder of pio's io_child_list, from 'cio_next' onward,
* cannot be affected by any side effects of reexecuting 'cio'.
*/
zio_link_t *zl = NULL;
mutex_enter(&pio->io_lock);
for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
cio_next = zio_walk_children(pio, &zl);
for (int w = 0; w < ZIO_WAIT_TYPES; w++)
pio->io_children[cio->io_child_type][w]++;
mutex_exit(&pio->io_lock);
zio_reexecute(cio);
mutex_enter(&pio->io_lock);
}
mutex_exit(&pio->io_lock);
/*
* Now that all children have been reexecuted, execute the parent.
* We don't reexecute "The Godfather" I/O here as it's the
* responsibility of the caller to wait on it.
*/
if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
pio->io_queued_timestamp = gethrtime();
__zio_execute(pio);
}
}
void
zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
{
if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
fm_panic("Pool '%s' has encountered an uncorrectable I/O "
"failure and the failure mode property for this pool "
"is set to panic.", spa_name(spa));
cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
"failure and has been suspended.\n", spa_name(spa));
zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
NULL, NULL, 0, 0);
mutex_enter(&spa->spa_suspend_lock);
if (spa->spa_suspend_zio_root == NULL)
spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
ZIO_FLAG_GODFATHER);
spa->spa_suspended = reason;
if (zio != NULL) {
ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
ASSERT(zio != spa->spa_suspend_zio_root);
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
ASSERT(zio_unique_parent(zio) == NULL);
ASSERT(zio->io_stage == ZIO_STAGE_DONE);
zio_add_child(spa->spa_suspend_zio_root, zio);
}
mutex_exit(&spa->spa_suspend_lock);
}
int
zio_resume(spa_t *spa)
{
zio_t *pio;
/*
* Reexecute all previously suspended i/o.
*/
mutex_enter(&spa->spa_suspend_lock);
spa->spa_suspended = ZIO_SUSPEND_NONE;
cv_broadcast(&spa->spa_suspend_cv);
pio = spa->spa_suspend_zio_root;
spa->spa_suspend_zio_root = NULL;
mutex_exit(&spa->spa_suspend_lock);
if (pio == NULL)
return (0);
zio_reexecute(pio);
return (zio_wait(pio));
}
void
zio_resume_wait(spa_t *spa)
{
mutex_enter(&spa->spa_suspend_lock);
while (spa_suspended(spa))
cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
mutex_exit(&spa->spa_suspend_lock);
}
/*
* ==========================================================================
* Gang blocks.
*
* A gang block is a collection of small blocks that looks to the DMU
* like one large block. When zio_dva_allocate() cannot find a block
* of the requested size, due to either severe fragmentation or the pool
* being nearly full, it calls zio_write_gang_block() to construct the
* block from smaller fragments.
*
* A gang block consists of a gang header (zio_gbh_phys_t) and up to
* three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
* an indirect block: it's an array of block pointers. It consumes
* only one sector and hence is allocatable regardless of fragmentation.
* The gang header's bps point to its gang members, which hold the data.
*
* Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
* as the verifier to ensure uniqueness of the SHA256 checksum.
* Critically, the gang block bp's blk_cksum is the checksum of the data,
* not the gang header. This ensures that data block signatures (needed for
* deduplication) are independent of how the block is physically stored.
*
* Gang blocks can be nested: a gang member may itself be a gang block.
* Thus every gang block is a tree in which root and all interior nodes are
* gang headers, and the leaves are normal blocks that contain user data.
* The root of the gang tree is called the gang leader.
*
* To perform any operation (read, rewrite, free, claim) on a gang block,
* zio_gang_assemble() first assembles the gang tree (minus data leaves)
* in the io_gang_tree field of the original logical i/o by recursively
* reading the gang leader and all gang headers below it. This yields
* an in-core tree containing the contents of every gang header and the
* bps for every constituent of the gang block.
*
* With the gang tree now assembled, zio_gang_issue() just walks the gang tree
* and invokes a callback on each bp. To free a gang block, zio_gang_issue()
* calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
* zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
* zio_read_gang() is a wrapper around zio_read() that omits reading gang
* headers, since we already have those in io_gang_tree. zio_rewrite_gang()
* performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
* of the gang header plus zio_checksum_compute() of the data to update the
* gang header's blk_cksum as described above.
*
* The two-phase assemble/issue model solves the problem of partial failure --
* what if you'd freed part of a gang block but then couldn't read the
* gang header for another part? Assembling the entire gang tree first
* ensures that all the necessary gang header I/O has succeeded before
* starting the actual work of free, claim, or write. Once the gang tree
* is assembled, free and claim are in-memory operations that cannot fail.
*
* In the event that a gang write fails, zio_dva_unallocate() walks the
* gang tree to immediately free (i.e. insert back into the space map)
* everything we've allocated. This ensures that we don't get ENOSPC
* errors during repeated suspend/resume cycles due to a flaky device.
*
* Gang rewrites only happen during sync-to-convergence. If we can't assemble
* the gang tree, we won't modify the block, so we can safely defer the free
* (knowing that the block is still intact). If we *can* assemble the gang
* tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
* each constituent bp and we can allocate a new block on the next sync pass.
*
* In all cases, the gang tree allows complete recovery from partial failure.
* ==========================================================================
*/
static void
zio_gang_issue_func_done(zio_t *zio)
{
abd_put(zio->io_abd);
}
static zio_t *
zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
uint64_t offset)
{
if (gn != NULL)
return (pio);
return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
BP_GET_PSIZE(bp), zio_gang_issue_func_done,
NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
&pio->io_bookmark));
}
static zio_t *
zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
uint64_t offset)
{
zio_t *zio;
if (gn != NULL) {
abd_t *gbh_abd =
abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
&pio->io_bookmark);
/*
* As we rewrite each gang header, the pipeline will compute
* a new gang block header checksum for it; but no one will
* compute a new data checksum, so we do that here. The one
* exception is the gang leader: the pipeline already computed
* its data checksum because that stage precedes gang assembly.
* (Presently, nothing actually uses interior data checksums;
* this is just good hygiene.)
*/
if (gn != pio->io_gang_leader->io_gang_tree) {
abd_t *buf = abd_get_offset(data, offset);
zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
buf, BP_GET_PSIZE(bp));
abd_put(buf);
}
/*
* If we are here to damage data for testing purposes,
* leave the GBH alone so that we can detect the damage.
*/
if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
} else {
zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
abd_get_offset(data, offset), BP_GET_PSIZE(bp),
zio_gang_issue_func_done, NULL, pio->io_priority,
ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
}
return (zio);
}
/* ARGSUSED */
static zio_t *
zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
uint64_t offset)
{
return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
ZIO_GANG_CHILD_FLAGS(pio)));
}
/* ARGSUSED */
static zio_t *
zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
uint64_t offset)
{
return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
}
static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
NULL,
zio_read_gang,
zio_rewrite_gang,
zio_free_gang,
zio_claim_gang,
NULL
};
static void zio_gang_tree_assemble_done(zio_t *zio);
static zio_gang_node_t *
zio_gang_node_alloc(zio_gang_node_t **gnpp)
{
zio_gang_node_t *gn;
ASSERT(*gnpp == NULL);
gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
*gnpp = gn;
return (gn);
}
static void
zio_gang_node_free(zio_gang_node_t **gnpp)
{
zio_gang_node_t *gn = *gnpp;
for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
ASSERT(gn->gn_child[g] == NULL);
zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
kmem_free(gn, sizeof (*gn));
*gnpp = NULL;
}
static void
zio_gang_tree_free(zio_gang_node_t **gnpp)
{
zio_gang_node_t *gn = *gnpp;
if (gn == NULL)
return;
for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
zio_gang_tree_free(&gn->gn_child[g]);
zio_gang_node_free(gnpp);
}
static void
zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
{
zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
ASSERT(gio->io_gang_leader == gio);
ASSERT(BP_IS_GANG(bp));
zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
zio_gang_tree_assemble_done, gn, gio->io_priority,
ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
}
static void
zio_gang_tree_assemble_done(zio_t *zio)
{
zio_t *gio = zio->io_gang_leader;
zio_gang_node_t *gn = zio->io_private;
blkptr_t *bp = zio->io_bp;
ASSERT(gio == zio_unique_parent(zio));
ASSERT(zio->io_child_count == 0);
if (zio->io_error)
return;
/* this ABD was created from a linear buf in zio_gang_tree_assemble */
if (BP_SHOULD_BYTESWAP(bp))
byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
abd_put(zio->io_abd);
for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
if (!BP_IS_GANG(gbp))
continue;
zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
}
}
static void
zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
uint64_t offset)
{
zio_t *gio = pio->io_gang_leader;
zio_t *zio;
ASSERT(BP_IS_GANG(bp) == !!gn);
ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
/*
* If you're a gang header, your data is in gn->gn_gbh.
* If you're a gang member, your data is in 'data' and gn == NULL.
*/
zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
if (gn != NULL) {
ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
if (BP_IS_HOLE(gbp))
continue;
zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
offset);
offset += BP_GET_PSIZE(gbp);
}
}
if (gn == gio->io_gang_tree)
ASSERT3U(gio->io_size, ==, offset);
if (zio != pio)
zio_nowait(zio);
}
static zio_t *
zio_gang_assemble(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
zio->io_gang_leader = zio;
zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
return (zio);
}
static zio_t *
zio_gang_issue(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
return (NULL);
}
ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
0);
else
zio_gang_tree_free(&zio->io_gang_tree);
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
return (zio);
}
static void
zio_write_gang_member_ready(zio_t *zio)
{
zio_t *pio = zio_unique_parent(zio);
dva_t *cdva = zio->io_bp->blk_dva;
dva_t *pdva = pio->io_bp->blk_dva;
uint64_t asize;
ASSERTV(zio_t *gio = zio->io_gang_leader);
if (BP_IS_HOLE(zio->io_bp))
return;
ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
mutex_enter(&pio->io_lock);
for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
ASSERT(DVA_GET_GANG(&pdva[d]));
asize = DVA_GET_ASIZE(&pdva[d]);
asize += DVA_GET_ASIZE(&cdva[d]);
DVA_SET_ASIZE(&pdva[d], asize);
}
mutex_exit(&pio->io_lock);
}
static void
zio_write_gang_done(zio_t *zio)
{
abd_put(zio->io_abd);
}
static zio_t *
zio_write_gang_block(zio_t *pio)
{
spa_t *spa = pio->io_spa;
metaslab_class_t *mc = spa_normal_class(spa);
blkptr_t *bp = pio->io_bp;
zio_t *gio = pio->io_gang_leader;
zio_t *zio;
zio_gang_node_t *gn, **gnpp;
zio_gbh_phys_t *gbh;
abd_t *gbh_abd;
uint64_t txg = pio->io_txg;
uint64_t resid = pio->io_size;
uint64_t lsize;
int copies = gio->io_prop.zp_copies;
int gbh_copies;
zio_prop_t zp;
int error;
/*
* encrypted blocks need DVA[2] free so encrypted gang headers can't
* have a third copy.
*/
gbh_copies = MIN(copies + 1, spa_max_replication(spa));
if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
gbh_copies = SPA_DVAS_PER_BP - 1;
int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
flags |= METASLAB_ASYNC_ALLOC;
VERIFY(refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
pio));
/*
* The logical zio has already placed a reservation for
* 'copies' allocation slots but gang blocks may require
* additional copies. These additional copies
* (i.e. gbh_copies - copies) are guaranteed to succeed
* since metaslab_class_throttle_reserve() always allows
* additional reservations for gang blocks.
*/
VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
pio->io_allocator, pio, flags));
}
error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
&pio->io_alloc_list, pio, pio->io_allocator);
if (error) {
if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
/*
* If we failed to allocate the gang block header then
* we remove any additional allocation reservations that
* we placed here. The original reservation will
* be removed when the logical I/O goes to the ready
* stage.
*/
metaslab_class_throttle_unreserve(mc,
gbh_copies - copies, pio->io_allocator, pio);
}
pio->io_error = error;
return (pio);
}
if (pio == gio) {
gnpp = &gio->io_gang_tree;
} else {
gnpp = pio->io_private;
ASSERT(pio->io_ready == zio_write_gang_member_ready);
}
gn = zio_gang_node_alloc(gnpp);
gbh = gn->gn_gbh;
bzero(gbh, SPA_GANGBLOCKSIZE);
gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
/*
* Create the gang header.
*/
zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
zio_write_gang_done, NULL, pio->io_priority,
ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
/*
* Create and nowait the gang children.
*/
for (int g = 0; resid != 0; resid -= lsize, g++) {
lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
SPA_MINBLOCKSIZE);
ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
zp.zp_checksum = gio->io_prop.zp_checksum;
zp.zp_compress = ZIO_COMPRESS_OFF;
zp.zp_type = DMU_OT_NONE;
zp.zp_level = 0;
zp.zp_copies = gio->io_prop.zp_copies;
zp.zp_dedup = B_FALSE;
zp.zp_dedup_verify = B_FALSE;
zp.zp_nopwrite = B_FALSE;
zp.zp_encrypt = gio->io_prop.zp_encrypt;
zp.zp_byteorder = gio->io_prop.zp_byteorder;
bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
/*
* Gang children won't throttle but we should
* account for their work, so reserve an allocation
* slot for them here.
*/
VERIFY(metaslab_class_throttle_reserve(mc,
zp.zp_copies, cio->io_allocator, cio, flags));
}
zio_nowait(cio);
}
/*
* Set pio's pipeline to just wait for zio to finish.
*/
pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
/*
* We didn't allocate this bp, so make sure it doesn't get unmarked.
*/
pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
zio_nowait(zio);
return (pio);
}
/*
* The zio_nop_write stage in the pipeline determines if allocating a
* new bp is necessary. The nopwrite feature can handle writes in
* either syncing or open context (i.e. zil writes) and as a result is
* mutually exclusive with dedup.
*
* By leveraging a cryptographically secure checksum, such as SHA256, we
* can compare the checksums of the new data and the old to determine if
* allocating a new block is required. Note that our requirements for
* cryptographic strength are fairly weak: there can't be any accidental
* hash collisions, but we don't need to be secure against intentional
* (malicious) collisions. To trigger a nopwrite, you have to be able
* to write the file to begin with, and triggering an incorrect (hash
* collision) nopwrite is no worse than simply writing to the file.
* That said, there are no known attacks against the checksum algorithms
* used for nopwrite, assuming that the salt and the checksums
* themselves remain secret.
*/
static zio_t *
zio_nop_write(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
blkptr_t *bp_orig = &zio->io_bp_orig;
zio_prop_t *zp = &zio->io_prop;
ASSERT(BP_GET_LEVEL(bp) == 0);
ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
ASSERT(zp->zp_nopwrite);
ASSERT(!zp->zp_dedup);
ASSERT(zio->io_bp_override == NULL);
ASSERT(IO_IS_ALLOCATING(zio));
/*
* Check to see if the original bp and the new bp have matching
* characteristics (i.e. same checksum, compression algorithms, etc).
* If they don't then just continue with the pipeline which will
* allocate a new bp.
*/
if (BP_IS_HOLE(bp_orig) ||
!(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
ZCHECKSUM_FLAG_NOPWRITE) ||
BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
zp->zp_copies != BP_GET_NDVAS(bp_orig))
return (zio);
/*
* If the checksums match then reset the pipeline so that we
* avoid allocating a new bp and issuing any I/O.
*/
if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
ZCHECKSUM_FLAG_NOPWRITE);
ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
sizeof (uint64_t)) == 0);
*bp = *bp_orig;
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
zio->io_flags |= ZIO_FLAG_NOPWRITE;
}
return (zio);
}
/*
* ==========================================================================
* Dedup
* ==========================================================================
*/
static void
zio_ddt_child_read_done(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
ddt_entry_t *dde = zio->io_private;
ddt_phys_t *ddp;
zio_t *pio = zio_unique_parent(zio);
mutex_enter(&pio->io_lock);
ddp = ddt_phys_select(dde, bp);
if (zio->io_error == 0)
ddt_phys_clear(ddp); /* this ddp doesn't need repair */
if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
dde->dde_repair_abd = zio->io_abd;
else
abd_free(zio->io_abd);
mutex_exit(&pio->io_lock);
}
static zio_t *
zio_ddt_read_start(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
ASSERT(BP_GET_DEDUP(bp));
ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
if (zio->io_child_error[ZIO_CHILD_DDT]) {
ddt_t *ddt = ddt_select(zio->io_spa, bp);
ddt_entry_t *dde = ddt_repair_start(ddt, bp);
ddt_phys_t *ddp = dde->dde_phys;
ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
blkptr_t blk;
ASSERT(zio->io_vsd == NULL);
zio->io_vsd = dde;
if (ddp_self == NULL)
return (zio);
for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
continue;
ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
&blk);
zio_nowait(zio_read(zio, zio->io_spa, &blk,
abd_alloc_for_io(zio->io_size, B_TRUE),
zio->io_size, zio_ddt_child_read_done, dde,
zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
}
return (zio);
}
zio_nowait(zio_read(zio, zio->io_spa, bp,
zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
return (zio);
}
static zio_t *
zio_ddt_read_done(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
return (NULL);
}
ASSERT(BP_GET_DEDUP(bp));
ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
if (zio->io_child_error[ZIO_CHILD_DDT]) {
ddt_t *ddt = ddt_select(zio->io_spa, bp);
ddt_entry_t *dde = zio->io_vsd;
if (ddt == NULL) {
ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
return (zio);
}
if (dde == NULL) {
zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
return (NULL);
}
if (dde->dde_repair_abd != NULL) {
abd_copy(zio->io_abd, dde->dde_repair_abd,
zio->io_size);
zio->io_child_error[ZIO_CHILD_DDT] = 0;
}
ddt_repair_done(ddt, dde);
zio->io_vsd = NULL;
}
ASSERT(zio->io_vsd == NULL);
return (zio);
}
static boolean_t
zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
{
spa_t *spa = zio->io_spa;
boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
ASSERT(!(zio->io_bp_override && do_raw));
/*
* Note: we compare the original data, not the transformed data,
* because when zio->io_bp is an override bp, we will not have
* pushed the I/O transforms. That's an important optimization
* because otherwise we'd compress/encrypt all dmu_sync() data twice.
* However, we should never get a raw, override zio so in these
* cases we can compare the io_abd directly. This is useful because
* it allows us to do dedup verification even if we don't have access
* to the original data (for instance, if the encryption keys aren't
* loaded).
*/
for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
zio_t *lio = dde->dde_lead_zio[p];
if (lio != NULL && do_raw) {
return (lio->io_size != zio->io_size ||
abd_cmp(zio->io_abd, lio->io_abd) != 0);
} else if (lio != NULL) {
return (lio->io_orig_size != zio->io_orig_size ||
abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
}
}
for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
ddt_phys_t *ddp = &dde->dde_phys[p];
if (ddp->ddp_phys_birth != 0 && do_raw) {
blkptr_t blk = *zio->io_bp;
uint64_t psize;
abd_t *tmpabd;
int error;
ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
psize = BP_GET_PSIZE(&blk);
if (psize != zio->io_size)
return (B_TRUE);
ddt_exit(ddt);
tmpabd = abd_alloc_for_io(psize, B_TRUE);
error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
ZIO_FLAG_RAW, &zio->io_bookmark));
if (error == 0) {
if (abd_cmp(tmpabd, zio->io_abd) != 0)
error = SET_ERROR(ENOENT);
}
abd_free(tmpabd);
ddt_enter(ddt);
return (error != 0);
} else if (ddp->ddp_phys_birth != 0) {
arc_buf_t *abuf = NULL;
arc_flags_t aflags = ARC_FLAG_WAIT;
blkptr_t blk = *zio->io_bp;
int error;
ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
return (B_TRUE);
ddt_exit(ddt);
error = arc_read(NULL, spa, &blk,
arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
&aflags, &zio->io_bookmark);
if (error == 0) {
if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
zio->io_orig_size) != 0)
error = SET_ERROR(ENOENT);
arc_buf_destroy(abuf, &abuf);
}
ddt_enter(ddt);
return (error != 0);
}
}
return (B_FALSE);
}
static void
zio_ddt_child_write_ready(zio_t *zio)
{
int p = zio->io_prop.zp_copies;
ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
ddt_entry_t *dde = zio->io_private;
ddt_phys_t *ddp = &dde->dde_phys[p];
zio_t *pio;
if (zio->io_error)
return;
ddt_enter(ddt);
ASSERT(dde->dde_lead_zio[p] == zio);
ddt_phys_fill(ddp, zio->io_bp);
zio_link_t *zl = NULL;
while ((pio = zio_walk_parents(zio, &zl)) != NULL)
ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
ddt_exit(ddt);
}
static void
zio_ddt_child_write_done(zio_t *zio)
{
int p = zio->io_prop.zp_copies;
ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
ddt_entry_t *dde = zio->io_private;
ddt_phys_t *ddp = &dde->dde_phys[p];
ddt_enter(ddt);
ASSERT(ddp->ddp_refcnt == 0);
ASSERT(dde->dde_lead_zio[p] == zio);
dde->dde_lead_zio[p] = NULL;
if (zio->io_error == 0) {
zio_link_t *zl = NULL;
while (zio_walk_parents(zio, &zl) != NULL)
ddt_phys_addref(ddp);
} else {
ddt_phys_clear(ddp);
}
ddt_exit(ddt);
}
static void
zio_ddt_ditto_write_done(zio_t *zio)
{
int p = DDT_PHYS_DITTO;
ASSERTV(zio_prop_t *zp = &zio->io_prop);
blkptr_t *bp = zio->io_bp;
ddt_t *ddt = ddt_select(zio->io_spa, bp);
ddt_entry_t *dde = zio->io_private;
ddt_phys_t *ddp = &dde->dde_phys[p];
ddt_key_t *ddk = &dde->dde_key;
ddt_enter(ddt);
ASSERT(ddp->ddp_refcnt == 0);
ASSERT(dde->dde_lead_zio[p] == zio);
dde->dde_lead_zio[p] = NULL;
if (zio->io_error == 0) {
ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
if (ddp->ddp_phys_birth != 0)
ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
ddt_phys_fill(ddp, bp);
}
ddt_exit(ddt);
}
static zio_t *
zio_ddt_write(zio_t *zio)
{
spa_t *spa = zio->io_spa;
blkptr_t *bp = zio->io_bp;
uint64_t txg = zio->io_txg;
zio_prop_t *zp = &zio->io_prop;
int p = zp->zp_copies;
int ditto_copies;
zio_t *cio = NULL;
zio_t *dio = NULL;
ddt_t *ddt = ddt_select(spa, bp);
ddt_entry_t *dde;
ddt_phys_t *ddp;
ASSERT(BP_GET_DEDUP(bp));
ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
ddt_enter(ddt);
dde = ddt_lookup(ddt, bp, B_TRUE);
ddp = &dde->dde_phys[p];
if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
/*
* If we're using a weak checksum, upgrade to a strong checksum
* and try again. If we're already using a strong checksum,
* we can't resolve it, so just convert to an ordinary write.
* (And automatically e-mail a paper to Nature?)
*/
if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
ZCHECKSUM_FLAG_DEDUP)) {
zp->zp_checksum = spa_dedup_checksum(spa);
zio_pop_transforms(zio);
zio->io_stage = ZIO_STAGE_OPEN;
BP_ZERO(bp);
} else {
zp->zp_dedup = B_FALSE;
}
zio->io_pipeline = ZIO_WRITE_PIPELINE;
ddt_exit(ddt);
return (zio);
}
ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
ASSERT(ditto_copies < SPA_DVAS_PER_BP);
if (ditto_copies > ddt_ditto_copies_present(dde) &&
dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
zio_prop_t czp = *zp;
czp.zp_copies = ditto_copies;
/*
* If we arrived here with an override bp, we won't have run
* the transform stack, so we won't have the data we need to
* generate a child i/o. So, toss the override bp and restart.
* This is safe, because using the override bp is just an
* optimization; and it's rare, so the cost doesn't matter.
*/
if (zio->io_bp_override) {
zio_pop_transforms(zio);
zio->io_stage = ZIO_STAGE_OPEN;
zio->io_pipeline = ZIO_WRITE_PIPELINE;
zio->io_bp_override = NULL;
BP_ZERO(bp);
ddt_exit(ddt);
return (zio);
}
dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
}
if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
if (ddp->ddp_phys_birth != 0)
ddt_bp_fill(ddp, bp, txg);
if (dde->dde_lead_zio[p] != NULL)
zio_add_child(zio, dde->dde_lead_zio[p]);
else
ddt_phys_addref(ddp);
} else if (zio->io_bp_override) {
ASSERT(bp->blk_birth == txg);
ASSERT(BP_EQUAL(bp, zio->io_bp_override));
ddt_phys_fill(ddp, bp);
ddt_phys_addref(ddp);
} else {
cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
zio->io_orig_size, zio->io_orig_size, zp,
zio_ddt_child_write_ready, NULL, NULL,
zio_ddt_child_write_done, dde, zio->io_priority,
ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
dde->dde_lead_zio[p] = cio;
}
ddt_exit(ddt);
if (cio)
zio_nowait(cio);
if (dio)
zio_nowait(dio);
return (zio);
}
ddt_entry_t *freedde; /* for debugging */
static zio_t *
zio_ddt_free(zio_t *zio)
{
spa_t *spa = zio->io_spa;
blkptr_t *bp = zio->io_bp;
ddt_t *ddt = ddt_select(spa, bp);
ddt_entry_t *dde;
ddt_phys_t *ddp;
ASSERT(BP_GET_DEDUP(bp));
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
ddt_enter(ddt);
freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
if (dde) {
ddp = ddt_phys_select(dde, bp);
if (ddp)
ddt_phys_decref(ddp);
}
ddt_exit(ddt);
return (zio);
}
/*
* ==========================================================================
* Allocate and free blocks
* ==========================================================================
*/
static zio_t *
zio_io_to_allocate(spa_t *spa, int allocator)
{
zio_t *zio;
ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
zio = avl_first(&spa->spa_alloc_trees[allocator]);
if (zio == NULL)
return (NULL);
ASSERT(IO_IS_ALLOCATING(zio));
/*
* Try to place a reservation for this zio. If we're unable to
* reserve then we throttle.
*/
ASSERT3U(zio->io_allocator, ==, allocator);
if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
return (NULL);
}
avl_remove(&spa->spa_alloc_trees[allocator], zio);
ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
return (zio);
}
static zio_t *
zio_dva_throttle(zio_t *zio)
{
spa_t *spa = zio->io_spa;
zio_t *nio;
if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
!spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
zio->io_child_type == ZIO_CHILD_GANG ||
zio->io_flags & ZIO_FLAG_NODATA) {
return (zio);
}
ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
ASSERT3U(zio->io_queued_timestamp, >, 0);
ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
zbookmark_phys_t *bm = &zio->io_bookmark;
/*
* We want to try to use as many allocators as possible to help improve
* performance, but we also want logically adjacent IOs to be physically
* adjacent to improve sequential read performance. We chunk each object
* into 2^20 block regions, and then hash based on the objset, object,
* level, and region to accomplish both of these goals.
*/
zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
nio = zio_io_to_allocate(zio->io_spa, zio->io_allocator);
mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
return (nio);
}
void
zio_allocate_dispatch(spa_t *spa, int allocator)
{
zio_t *zio;
mutex_enter(&spa->spa_alloc_locks[allocator]);
zio = zio_io_to_allocate(spa, allocator);
mutex_exit(&spa->spa_alloc_locks[allocator]);
if (zio == NULL)
return;
ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
ASSERT0(zio->io_error);
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
}
static zio_t *
zio_dva_allocate(zio_t *zio)
{
spa_t *spa = zio->io_spa;
metaslab_class_t *mc = spa_normal_class(spa);
blkptr_t *bp = zio->io_bp;
int error;
int flags = 0;
if (zio->io_gang_leader == NULL) {
ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
zio->io_gang_leader = zio;
}
ASSERT(BP_IS_HOLE(bp));
ASSERT0(BP_GET_NDVAS(bp));
ASSERT3U(zio->io_prop.zp_copies, >, 0);
ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
if (zio->io_flags & ZIO_FLAG_NODATA)
flags |= METASLAB_DONT_THROTTLE;
if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
flags |= METASLAB_GANG_CHILD;
if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
flags |= METASLAB_ASYNC_ALLOC;
error = metaslab_alloc(spa, mc, zio->io_size, bp,
zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
&zio->io_alloc_list, zio, zio->io_allocator);
if (error != 0) {
zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
"size %llu, error %d", spa_name(spa), zio, zio->io_size,
error);
if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
return (zio_write_gang_block(zio));
zio->io_error = error;
}
return (zio);
}
static zio_t *
zio_dva_free(zio_t *zio)
{
metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
return (zio);
}
static zio_t *
zio_dva_claim(zio_t *zio)
{
int error;
error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
if (error)
zio->io_error = error;
return (zio);
}
/*
* Undo an allocation. This is used by zio_done() when an I/O fails
* and we want to give back the block we just allocated.
* This handles both normal blocks and gang blocks.
*/
static void
zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
{
ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
ASSERT(zio->io_bp_override == NULL);
if (!BP_IS_HOLE(bp))
metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
if (gn != NULL) {
for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
zio_dva_unallocate(zio, gn->gn_child[g],
&gn->gn_gbh->zg_blkptr[g]);
}
}
}
/*
* Try to allocate an intent log block. Return 0 on success, errno on failure.
*/
int
zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
uint64_t size, boolean_t *slog)
{
int error = 1;
zio_alloc_list_t io_alloc_list;
ASSERT(txg > spa_syncing_txg(spa));
metaslab_trace_init(&io_alloc_list);
/*
* When allocating a zil block, we don't have information about
* the final destination of the block except the objset it's part
* of, so we just hash the objset ID to pick the allocator to get
* some parallelism.
*/
error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL,
cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) %
spa->spa_alloc_count);
if (error == 0) {
*slog = TRUE;
} else {
error = metaslab_alloc(spa, spa_normal_class(spa), size,
new_bp, 1, txg, NULL, METASLAB_FASTWRITE,
&io_alloc_list, NULL, cityhash4(0, 0, 0,
os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
if (error == 0)
*slog = FALSE;
}
metaslab_trace_fini(&io_alloc_list);
if (error == 0) {
BP_SET_LSIZE(new_bp, size);
BP_SET_PSIZE(new_bp, size);
BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
BP_SET_CHECKSUM(new_bp,
spa_version(spa) >= SPA_VERSION_SLIM_ZIL
? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
BP_SET_LEVEL(new_bp, 0);
BP_SET_DEDUP(new_bp, 0);
BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
/*
* encrypted blocks will require an IV and salt. We generate
* these now since we will not be rewriting the bp at
* rewrite time.
*/
if (os->os_encrypted) {
uint8_t iv[ZIO_DATA_IV_LEN];
uint8_t salt[ZIO_DATA_SALT_LEN];
BP_SET_CRYPT(new_bp, B_TRUE);
VERIFY0(spa_crypt_get_salt(spa,
dmu_objset_id(os), salt));
VERIFY0(zio_crypt_generate_iv(iv));
zio_crypt_encode_params_bp(new_bp, salt, iv);
}
} else {
zfs_dbgmsg("%s: zil block allocation failure: "
"size %llu, error %d", spa_name(spa), size, error);
}
return (error);
}
/*
* ==========================================================================
* Read and write to physical devices
* ==========================================================================
*/
/*
* Issue an I/O to the underlying vdev. Typically the issue pipeline
* stops after this stage and will resume upon I/O completion.
* However, there are instances where the vdev layer may need to
* continue the pipeline when an I/O was not issued. Since the I/O
* that was sent to the vdev layer might be different than the one
* currently active in the pipeline (see vdev_queue_io()), we explicitly
* force the underlying vdev layers to call either zio_execute() or
* zio_interrupt() to ensure that the pipeline continues with the correct I/O.
*/
static zio_t *
zio_vdev_io_start(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
uint64_t align;
spa_t *spa = zio->io_spa;
zio->io_delay = 0;
ASSERT(zio->io_error == 0);
ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
if (vd == NULL) {
if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
/*
* The mirror_ops handle multiple DVAs in a single BP.
*/
vdev_mirror_ops.vdev_op_io_start(zio);
return (NULL);
}
ASSERT3P(zio->io_logical, !=, zio);
if (zio->io_type == ZIO_TYPE_WRITE) {
ASSERT(spa->spa_trust_config);
/*
* Note: the code can handle other kinds of writes,
* but we don't expect them.
*/
if (zio->io_vd->vdev_removing) {
ASSERT(zio->io_flags &
(ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
}
}
align = 1ULL << vd->vdev_top->vdev_ashift;
if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
P2PHASE(zio->io_size, align) != 0) {
/* Transform logical writes to be a full physical block size. */
uint64_t asize = P2ROUNDUP(zio->io_size, align);
abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
ASSERT(vd == vd->vdev_top);
if (zio->io_type == ZIO_TYPE_WRITE) {
abd_copy(abuf, zio->io_abd, zio->io_size);
abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
}
zio_push_transform(zio, abuf, asize, asize, zio_subblock);
}
/*
* If this is not a physical io, make sure that it is properly aligned
* before proceeding.
*/
if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
ASSERT0(P2PHASE(zio->io_offset, align));
ASSERT0(P2PHASE(zio->io_size, align));
} else {
/*
* For physical writes, we allow 512b aligned writes and assume
* the device will perform a read-modify-write as necessary.
*/
ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
}
VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
/*
* If this is a repair I/O, and there's no self-healing involved --
* that is, we're just resilvering what we expect to resilver --
* then don't do the I/O unless zio's txg is actually in vd's DTL.
* This prevents spurious resilvering.
*
* There are a few ways that we can end up creating these spurious
* resilver i/os:
*
* 1. A resilver i/o will be issued if any DVA in the BP has a
* dirty DTL. The mirror code will issue resilver writes to
* each DVA, including the one(s) that are not on vdevs with dirty
* DTLs.
*
* 2. With nested replication, which happens when we have a
* "replacing" or "spare" vdev that's a child of a mirror or raidz.
* For example, given mirror(replacing(A+B), C), it's likely that
* only A is out of date (it's the new device). In this case, we'll
* read from C, then use the data to resilver A+B -- but we don't
* actually want to resilver B, just A. The top-level mirror has no
* way to know this, so instead we just discard unnecessary repairs
* as we work our way down the vdev tree.
*
* 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
* The same logic applies to any form of nested replication: ditto
* + mirror, RAID-Z + replacing, etc.
*
* However, indirect vdevs point off to other vdevs which may have
* DTL's, so we never bypass them. The child i/os on concrete vdevs
* will be properly bypassed instead.
*/
if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
!(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
zio->io_txg != 0 && /* not a delegated i/o */
vd->vdev_ops != &vdev_indirect_ops &&
!vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
zio_vdev_io_bypass(zio);
return (zio);
}
if (vd->vdev_ops->vdev_op_leaf &&
(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
return (zio);
if ((zio = vdev_queue_io(zio)) == NULL)
return (NULL);
if (!vdev_accessible(vd, zio)) {
zio->io_error = SET_ERROR(ENXIO);
zio_interrupt(zio);
return (NULL);
}
zio->io_delay = gethrtime();
}
vd->vdev_ops->vdev_op_io_start(zio);
return (NULL);
}
static zio_t *
zio_vdev_io_done(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
boolean_t unexpected_error = B_FALSE;
if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
return (NULL);
}
ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
if (zio->io_delay)
zio->io_delay = gethrtime() - zio->io_delay;
if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
vdev_queue_io_done(zio);
if (zio->io_type == ZIO_TYPE_WRITE)
vdev_cache_write(zio);
if (zio_injection_enabled && zio->io_error == 0)
zio->io_error = zio_handle_device_injections(vd, zio,
EIO, EILSEQ);
if (zio_injection_enabled && zio->io_error == 0)
zio->io_error = zio_handle_label_injection(zio, EIO);
if (zio->io_error) {
if (!vdev_accessible(vd, zio)) {
zio->io_error = SET_ERROR(ENXIO);
} else {
unexpected_error = B_TRUE;
}
}
}
ops->vdev_op_io_done(zio);
if (unexpected_error)
VERIFY(vdev_probe(vd, zio) == NULL);
return (zio);
}
/*
* This function is used to change the priority of an existing zio that is
* currently in-flight. This is used by the arc to upgrade priority in the
* event that a demand read is made for a block that is currently queued
* as a scrub or async read IO. Otherwise, the high priority read request
* would end up having to wait for the lower priority IO.
*/
void
zio_change_priority(zio_t *pio, zio_priority_t priority)
{
zio_t *cio, *cio_next;
zio_link_t *zl = NULL;
ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
vdev_queue_change_io_priority(pio, priority);
} else {
pio->io_priority = priority;
}
mutex_enter(&pio->io_lock);
for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
cio_next = zio_walk_children(pio, &zl);
zio_change_priority(cio, priority);
}
mutex_exit(&pio->io_lock);
}
/*
* For non-raidz ZIOs, we can just copy aside the bad data read from the
* disk, and use that to finish the checksum ereport later.
*/
static void
zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
const abd_t *good_buf)
{
/* no processing needed */
zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
}
/*ARGSUSED*/
void
zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
{
void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
abd_copy(abd, zio->io_abd, zio->io_size);
zcr->zcr_cbinfo = zio->io_size;
zcr->zcr_cbdata = abd;
zcr->zcr_finish = zio_vsd_default_cksum_finish;
zcr->zcr_free = zio_abd_free;
}
static zio_t *
zio_vdev_io_assess(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
return (NULL);
}
if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
spa_config_exit(zio->io_spa, SCL_ZIO, zio);
if (zio->io_vsd != NULL) {
zio->io_vsd_ops->vsd_free(zio);
zio->io_vsd = NULL;
}
if (zio_injection_enabled && zio->io_error == 0)
zio->io_error = zio_handle_fault_injection(zio, EIO);
/*
* If the I/O failed, determine whether we should attempt to retry it.
*
* On retry, we cut in line in the issue queue, since we don't want
* compression/checksumming/etc. work to prevent our (cheap) IO reissue.
*/
if (zio->io_error && vd == NULL &&
!(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
zio->io_error = 0;
zio->io_flags |= ZIO_FLAG_IO_RETRY |
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
zio_requeue_io_start_cut_in_line);
return (NULL);
}
/*
* If we got an error on a leaf device, convert it to ENXIO
* if the device is not accessible at all.
*/
if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
!vdev_accessible(vd, zio))
zio->io_error = SET_ERROR(ENXIO);
/*
* If we can't write to an interior vdev (mirror or RAID-Z),
* set vdev_cant_write so that we stop trying to allocate from it.
*/
if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
vd->vdev_cant_write = B_TRUE;
}
/*
* If a cache flush returns ENOTSUP or ENOTTY, we know that no future
* attempts will ever succeed. In this case we set a persistent bit so
* that we don't bother with it in the future.
*/
if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
zio->io_type == ZIO_TYPE_IOCTL &&
zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
vd->vdev_nowritecache = B_TRUE;
if (zio->io_error)
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
zio->io_physdone != NULL) {
ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
zio->io_physdone(zio->io_logical);
}
return (zio);
}
void
zio_vdev_io_reissue(zio_t *zio)
{
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
ASSERT(zio->io_error == 0);
zio->io_stage >>= 1;
}
void
zio_vdev_io_redone(zio_t *zio)
{
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
zio->io_stage >>= 1;
}
void
zio_vdev_io_bypass(zio_t *zio)
{
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
ASSERT(zio->io_error == 0);
zio->io_flags |= ZIO_FLAG_IO_BYPASS;
zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
}
/*
* ==========================================================================
* Encrypt and store encryption parameters
* ==========================================================================
*/
/*
* This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
* managing the storage of encryption parameters and passing them to the
* lower-level encryption functions.
*/
static zio_t *
zio_encrypt(zio_t *zio)
{
zio_prop_t *zp = &zio->io_prop;
spa_t *spa = zio->io_spa;
blkptr_t *bp = zio->io_bp;
uint64_t psize = BP_GET_PSIZE(bp);
uint64_t dsobj = zio->io_bookmark.zb_objset;
dmu_object_type_t ot = BP_GET_TYPE(bp);
void *enc_buf = NULL;
abd_t *eabd = NULL;
uint8_t salt[ZIO_DATA_SALT_LEN];
uint8_t iv[ZIO_DATA_IV_LEN];
uint8_t mac[ZIO_DATA_MAC_LEN];
boolean_t no_crypt = B_FALSE;
/* the root zio already encrypted the data */
if (zio->io_child_type == ZIO_CHILD_GANG)
return (zio);
/* only ZIL blocks are re-encrypted on rewrite */
if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
return (zio);
if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
BP_SET_CRYPT(bp, B_FALSE);
return (zio);
}
/* if we are doing raw encryption set the provided encryption params */
if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
ASSERT0(BP_GET_LEVEL(bp));
BP_SET_CRYPT(bp, B_TRUE);
BP_SET_BYTEORDER(bp, zp->zp_byteorder);
if (ot != DMU_OT_OBJSET)
zio_crypt_encode_mac_bp(bp, zp->zp_mac);
/* dnode blocks must be written out in the provided byteorder */
if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
ot == DMU_OT_DNODE) {
void *bswap_buf = zio_buf_alloc(psize);
abd_t *babd = abd_get_from_buf(bswap_buf, psize);
ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
psize);
abd_take_ownership_of_buf(babd, B_TRUE);
zio_push_transform(zio, babd, psize, psize, NULL);
}
if (DMU_OT_IS_ENCRYPTED(ot))
zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
return (zio);
}
/* indirect blocks only maintain a cksum of the lower level MACs */
if (BP_GET_LEVEL(bp) > 0) {
BP_SET_CRYPT(bp, B_TRUE);
VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
mac));
zio_crypt_encode_mac_bp(bp, mac);
return (zio);
}
/*
* Objset blocks are a special case since they have 2 256-bit MACs
* embedded within them.
*/
if (ot == DMU_OT_OBJSET) {
ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
BP_SET_CRYPT(bp, B_TRUE);
VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
return (zio);
}
/* unencrypted object types are only authenticated with a MAC */
if (!DMU_OT_IS_ENCRYPTED(ot)) {
BP_SET_CRYPT(bp, B_TRUE);
VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
zio->io_abd, psize, mac));
zio_crypt_encode_mac_bp(bp, mac);
return (zio);
}
/*
* Later passes of sync-to-convergence may decide to rewrite data
* in place to avoid more disk reallocations. This presents a problem
* for encryption because this consitutes rewriting the new data with
* the same encryption key and IV. However, this only applies to blocks
* in the MOS (particularly the spacemaps) and we do not encrypt the
* MOS. We assert that the zio is allocating or an intent log write
* to enforce this.
*/
ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
ASSERT3U(psize, !=, 0);
enc_buf = zio_buf_alloc(psize);
eabd = abd_get_from_buf(enc_buf, psize);
abd_take_ownership_of_buf(eabd, B_TRUE);
/*
* For an explanation of what encryption parameters are stored
* where, see the block comment in zio_crypt.c.
*/
if (ot == DMU_OT_INTENT_LOG) {
zio_crypt_decode_params_bp(bp, salt, iv);
} else {
BP_SET_CRYPT(bp, B_TRUE);
}
/* Perform the encryption. This should not fail */
VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
/* encode encryption metadata into the bp */
if (ot == DMU_OT_INTENT_LOG) {
/*
* ZIL blocks store the MAC in the embedded checksum, so the
* transform must always be applied.
*/
zio_crypt_encode_mac_zil(enc_buf, mac);
zio_push_transform(zio, eabd, psize, psize, NULL);
} else {
BP_SET_CRYPT(bp, B_TRUE);
zio_crypt_encode_params_bp(bp, salt, iv);
zio_crypt_encode_mac_bp(bp, mac);
if (no_crypt) {
ASSERT3U(ot, ==, DMU_OT_DNODE);
abd_free(eabd);
} else {
zio_push_transform(zio, eabd, psize, psize, NULL);
}
}
return (zio);
}
/*
* ==========================================================================
* Generate and verify checksums
* ==========================================================================
*/
static zio_t *
zio_checksum_generate(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
enum zio_checksum checksum;
if (bp == NULL) {
/*
* This is zio_write_phys().
* We're either generating a label checksum, or none at all.
*/
checksum = zio->io_prop.zp_checksum;
if (checksum == ZIO_CHECKSUM_OFF)
return (zio);
ASSERT(checksum == ZIO_CHECKSUM_LABEL);
} else {
if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
ASSERT(!IO_IS_ALLOCATING(zio));
checksum = ZIO_CHECKSUM_GANG_HEADER;
} else {
checksum = BP_GET_CHECKSUM(bp);
}
}
zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
return (zio);
}
static zio_t *
zio_checksum_verify(zio_t *zio)
{
zio_bad_cksum_t info;
blkptr_t *bp = zio->io_bp;
int error;
ASSERT(zio->io_vd != NULL);
if (bp == NULL) {
/*
* This is zio_read_phys().
* We're either verifying a label checksum, or nothing at all.
*/
if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
return (zio);
ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
}
if ((error = zio_checksum_error(zio, &info)) != 0) {
zio->io_error = error;
if (error == ECKSUM &&
!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
zfs_ereport_start_checksum(zio->io_spa,
zio->io_vd, &zio->io_bookmark, zio,
zio->io_offset, zio->io_size, NULL, &info);
}
}
return (zio);
}
/*
* Called by RAID-Z to ensure we don't compute the checksum twice.
*/
void
zio_checksum_verified(zio_t *zio)
{
zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
}
/*
* ==========================================================================
* Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
* An error of 0 indicates success. ENXIO indicates whole-device failure,
* which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
* indicate errors that are specific to one I/O, and most likely permanent.
* Any other error is presumed to be worse because we weren't expecting it.
* ==========================================================================
*/
int
zio_worst_error(int e1, int e2)
{
static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
int r1, r2;
for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
if (e1 == zio_error_rank[r1])
break;
for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
if (e2 == zio_error_rank[r2])
break;
return (r1 > r2 ? e1 : e2);
}
/*
* ==========================================================================
* I/O completion
* ==========================================================================
*/
static zio_t *
zio_ready(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
zio_t *pio, *pio_next;
zio_link_t *zl = NULL;
if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
ZIO_WAIT_READY)) {
return (NULL);
}
if (zio->io_ready) {
ASSERT(IO_IS_ALLOCATING(zio));
ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
(zio->io_flags & ZIO_FLAG_NOPWRITE));
ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
zio->io_ready(zio);
}
if (bp != NULL && bp != &zio->io_bp_copy)
zio->io_bp_copy = *bp;
if (zio->io_error != 0) {
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
ASSERT(IO_IS_ALLOCATING(zio));
ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
/*
* We were unable to allocate anything, unreserve and
* issue the next I/O to allocate.
*/
metaslab_class_throttle_unreserve(
spa_normal_class(zio->io_spa),
zio->io_prop.zp_copies, zio->io_allocator, zio);
zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
}
}
mutex_enter(&zio->io_lock);
zio->io_state[ZIO_WAIT_READY] = 1;
pio = zio_walk_parents(zio, &zl);
mutex_exit(&zio->io_lock);
/*
* As we notify zio's parents, new parents could be added.
* New parents go to the head of zio's io_parent_list, however,
* so we will (correctly) not notify them. The remainder of zio's
* io_parent_list, from 'pio_next' onward, cannot change because
* all parents must wait for us to be done before they can be done.
*/
for (; pio != NULL; pio = pio_next) {
pio_next = zio_walk_parents(zio, &zl);
zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
}
if (zio->io_flags & ZIO_FLAG_NODATA) {
if (BP_IS_GANG(bp)) {
zio->io_flags &= ~ZIO_FLAG_NODATA;
} else {
ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
}
}
if (zio_injection_enabled &&
zio->io_spa->spa_syncing_txg == zio->io_txg)
zio_handle_ignored_writes(zio);
return (zio);
}
/*
* Update the allocation throttle accounting.
*/
static void
zio_dva_throttle_done(zio_t *zio)
{
ASSERTV(zio_t *lio = zio->io_logical);
zio_t *pio = zio_unique_parent(zio);
vdev_t *vd = zio->io_vd;
int flags = METASLAB_ASYNC_ALLOC;
ASSERT3P(zio->io_bp, !=, NULL);
ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
ASSERT(vd != NULL);
ASSERT3P(vd, ==, vd->vdev_top);
ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
/*
* Parents of gang children can have two flavors -- ones that
* allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
* and ones that allocated the constituent blocks. The allocation
* throttle needs to know the allocating parent zio so we must find
* it here.
*/
if (pio->io_child_type == ZIO_CHILD_GANG) {
/*
* If our parent is a rewrite gang child then our grandparent
* would have been the one that performed the allocation.
*/
if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
pio = zio_unique_parent(pio);
flags |= METASLAB_GANG_CHILD;
}
ASSERT(IO_IS_ALLOCATING(pio));
ASSERT3P(zio, !=, zio->io_logical);
ASSERT(zio->io_logical != NULL);
ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
mutex_enter(&pio->io_lock);
metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
pio->io_allocator, B_TRUE);
mutex_exit(&pio->io_lock);
metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
1, pio->io_allocator, pio);
/*
* Call into the pipeline to see if there is more work that
* needs to be done. If there is work to be done it will be
* dispatched to another taskq thread.
*/
zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
}
static zio_t *
zio_done(zio_t *zio)
{
/*
* Always attempt to keep stack usage minimal here since
* we can be called recurisvely up to 19 levels deep.
*/
const uint64_t psize = zio->io_size;
zio_t *pio, *pio_next;
ASSERTV(metaslab_class_t *mc = spa_normal_class(zio->io_spa));
zio_link_t *zl = NULL;
/*
* If our children haven't all completed,
* wait for them and then repeat this pipeline stage.
*/
if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
return (NULL);
}
/*
* If the allocation throttle is enabled, then update the accounting.
* We only track child I/Os that are part of an allocating async
* write. We must do this since the allocation is performed
* by the logical I/O but the actual write is done by child I/Os.
*/
if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
zio->io_child_type == ZIO_CHILD_VDEV) {
ASSERT(mc->mc_alloc_throttle_enabled);
zio_dva_throttle_done(zio);
}
/*
* If the allocation throttle is enabled, verify that
* we have decremented the refcounts for every I/O that was throttled.
*/
if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
ASSERT(zio->io_bp != NULL);
metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
zio->io_allocator);
VERIFY(refcount_not_held(&mc->mc_alloc_slots[zio->io_allocator],
zio));
}
for (int c = 0; c < ZIO_CHILD_TYPES; c++)
for (int w = 0; w < ZIO_WAIT_TYPES; w++)
ASSERT(zio->io_children[c][w] == 0);
if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
ASSERT(zio->io_bp->blk_pad[0] == 0);
ASSERT(zio->io_bp->blk_pad[1] == 0);
ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
sizeof (blkptr_t)) == 0 ||
(zio->io_bp == zio_unique_parent(zio)->io_bp));
if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
zio->io_bp_override == NULL &&
!(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
ASSERT3U(zio->io_prop.zp_copies, <=,
BP_GET_NDVAS(zio->io_bp));
ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
(BP_COUNT_GANG(zio->io_bp) ==
BP_GET_NDVAS(zio->io_bp)));
}
if (zio->io_flags & ZIO_FLAG_NOPWRITE)
VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
}
/*
* If there were child vdev/gang/ddt errors, they apply to us now.
*/
zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
/*
* If the I/O on the transformed data was successful, generate any
* checksum reports now while we still have the transformed data.
*/
if (zio->io_error == 0) {
while (zio->io_cksum_report != NULL) {
zio_cksum_report_t *zcr = zio->io_cksum_report;
uint64_t align = zcr->zcr_align;
uint64_t asize = P2ROUNDUP(psize, align);
abd_t *adata = zio->io_abd;
if (asize != psize) {
adata = abd_alloc(asize, B_TRUE);
abd_copy(adata, zio->io_abd, psize);
abd_zero_off(adata, psize, asize - psize);
}
zio->io_cksum_report = zcr->zcr_next;
zcr->zcr_next = NULL;
zcr->zcr_finish(zcr, adata);
zfs_ereport_free_checksum(zcr);
if (asize != psize)
abd_free(adata);
}
}
zio_pop_transforms(zio); /* note: may set zio->io_error */
vdev_stat_update(zio, psize);
/*
* If this I/O is attached to a particular vdev is slow, exceeding
* 30 seconds to complete, post an error described the I/O delay.
* We ignore these errors if the device is currently unavailable.
*/
if (zio->io_delay >= MSEC2NSEC(zio_delay_max)) {
if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd))
zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
zio->io_vd, &zio->io_bookmark, zio, 0, 0);
}
if (zio->io_error) {
/*
* If this I/O is attached to a particular vdev,
* generate an error message describing the I/O failure
* at the block level. We ignore these errors if the
* device is currently unavailable.
*/
if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
!vdev_is_dead(zio->io_vd))
zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
zio->io_vd, &zio->io_bookmark, zio, 0, 0);
if ((zio->io_error == EIO || !(zio->io_flags &
(ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
zio == zio->io_logical) {
/*
* For logical I/O requests, tell the SPA to log the
* error and generate a logical data ereport.
*/
spa_log_error(zio->io_spa, &zio->io_bookmark);
zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa,
NULL, &zio->io_bookmark, zio, 0, 0);
}
}
if (zio->io_error && zio == zio->io_logical) {
/*
* Determine whether zio should be reexecuted. This will
* propagate all the way to the root via zio_notify_parent().
*/
ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
if (IO_IS_ALLOCATING(zio) &&
!(zio->io_flags & ZIO_FLAG_CANFAIL)) {
if (zio->io_error != ENOSPC)
zio->io_reexecute |= ZIO_REEXECUTE_NOW;
else
zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
}
if ((zio->io_type == ZIO_TYPE_READ ||
zio->io_type == ZIO_TYPE_FREE) &&
!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
zio->io_error == ENXIO &&
spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
/*
* Here is a possibly good place to attempt to do
* either combinatorial reconstruction or error correction
* based on checksums. It also might be a good place
* to send out preliminary ereports before we suspend
* processing.
*/
}
/*
* If there were logical child errors, they apply to us now.
* We defer this until now to avoid conflating logical child
* errors with errors that happened to the zio itself when
* updating vdev stats and reporting FMA events above.
*/
zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
if ((zio->io_error || zio->io_reexecute) &&
IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
!(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
zio_gang_tree_free(&zio->io_gang_tree);
/*
* Godfather I/Os should never suspend.
*/
if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
(zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
if (zio->io_reexecute) {
/*
* This is a logical I/O that wants to reexecute.
*
* Reexecute is top-down. When an i/o fails, if it's not
* the root, it simply notifies its parent and sticks around.
* The parent, seeing that it still has children in zio_done(),
* does the same. This percolates all the way up to the root.
* The root i/o will reexecute or suspend the entire tree.
*
* This approach ensures that zio_reexecute() honors
* all the original i/o dependency relationships, e.g.
* parents not executing until children are ready.
*/
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
zio->io_gang_leader = NULL;
mutex_enter(&zio->io_lock);
zio->io_state[ZIO_WAIT_DONE] = 1;
mutex_exit(&zio->io_lock);
/*
* "The Godfather" I/O monitors its children but is
* not a true parent to them. It will track them through
* the pipeline but severs its ties whenever they get into
* trouble (e.g. suspended). This allows "The Godfather"
* I/O to return status without blocking.
*/
zl = NULL;
for (pio = zio_walk_parents(zio, &zl); pio != NULL;
pio = pio_next) {
zio_link_t *remove_zl = zl;
pio_next = zio_walk_parents(zio, &zl);
if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
(zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
zio_remove_child(pio, zio, remove_zl);
/*
* This is a rare code path, so we don't
* bother with "next_to_execute".
*/
zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
NULL);
}
}
if ((pio = zio_unique_parent(zio)) != NULL) {
/*
* We're not a root i/o, so there's nothing to do
* but notify our parent. Don't propagate errors
* upward since we haven't permanently failed yet.
*/
ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
/*
* This is a rare code path, so we don't bother with
* "next_to_execute".
*/
zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
/*
* We'd fail again if we reexecuted now, so suspend
* until conditions improve (e.g. device comes online).
*/
zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
} else {
/*
* Reexecution is potentially a huge amount of work.
* Hand it off to the otherwise-unused claim taskq.
*/
ASSERT(taskq_empty_ent(&zio->io_tqent));
spa_taskq_dispatch_ent(zio->io_spa,
ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
(task_func_t *)zio_reexecute, zio, 0,
&zio->io_tqent);
}
return (NULL);
}
ASSERT(zio->io_child_count == 0);
ASSERT(zio->io_reexecute == 0);
ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
/*
* Report any checksum errors, since the I/O is complete.
*/
while (zio->io_cksum_report != NULL) {
zio_cksum_report_t *zcr = zio->io_cksum_report;
zio->io_cksum_report = zcr->zcr_next;
zcr->zcr_next = NULL;
zcr->zcr_finish(zcr, NULL);
zfs_ereport_free_checksum(zcr);
}
if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
!BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
!(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
}
/*
* It is the responsibility of the done callback to ensure that this
* particular zio is no longer discoverable for adoption, and as
* such, cannot acquire any new parents.
*/
if (zio->io_done)
zio->io_done(zio);
mutex_enter(&zio->io_lock);
zio->io_state[ZIO_WAIT_DONE] = 1;
mutex_exit(&zio->io_lock);
/*
* We are done executing this zio. We may want to execute a parent
* next. See the comment in zio_notify_parent().
*/
zio_t *next_to_execute = NULL;
zl = NULL;
for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
zio_link_t *remove_zl = zl;
pio_next = zio_walk_parents(zio, &zl);
zio_remove_child(pio, zio, remove_zl);
zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
}
if (zio->io_waiter != NULL) {
mutex_enter(&zio->io_lock);
zio->io_executor = NULL;
cv_broadcast(&zio->io_cv);
mutex_exit(&zio->io_lock);
} else {
zio_destroy(zio);
}
return (next_to_execute);
}
/*
* ==========================================================================
* I/O pipeline definition
* ==========================================================================
*/
static zio_pipe_stage_t *zio_pipeline[] = {
NULL,
zio_read_bp_init,
zio_write_bp_init,
zio_free_bp_init,
zio_issue_async,
zio_write_compress,
zio_encrypt,
zio_checksum_generate,
zio_nop_write,
zio_ddt_read_start,
zio_ddt_read_done,
zio_ddt_write,
zio_ddt_free,
zio_gang_assemble,
zio_gang_issue,
zio_dva_throttle,
zio_dva_allocate,
zio_dva_free,
zio_dva_claim,
zio_ready,
zio_vdev_io_start,
zio_vdev_io_done,
zio_vdev_io_assess,
zio_checksum_verify,
zio_done
};
/*
* Compare two zbookmark_phys_t's to see which we would reach first in a
* pre-order traversal of the object tree.
*
* This is simple in every case aside from the meta-dnode object. For all other
* objects, we traverse them in order (object 1 before object 2, and so on).
* However, all of these objects are traversed while traversing object 0, since
* the data it points to is the list of objects. Thus, we need to convert to a
* canonical representation so we can compare meta-dnode bookmarks to
* non-meta-dnode bookmarks.
*
* We do this by calculating "equivalents" for each field of the zbookmark.
* zbookmarks outside of the meta-dnode use their own object and level, and
* calculate the level 0 equivalent (the first L0 blkid that is contained in the
* blocks this bookmark refers to) by multiplying their blkid by their span
* (the number of L0 blocks contained within one block at their level).
* zbookmarks inside the meta-dnode calculate their object equivalent
* (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
* level + 1<<31 (any value larger than a level could ever be) for their level.
* This causes them to always compare before a bookmark in their object
* equivalent, compare appropriately to bookmarks in other objects, and to
* compare appropriately to other bookmarks in the meta-dnode.
*/
int
zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
{
/*
* These variables represent the "equivalent" values for the zbookmark,
* after converting zbookmarks inside the meta dnode to their
* normal-object equivalents.
*/
uint64_t zb1obj, zb2obj;
uint64_t zb1L0, zb2L0;
uint64_t zb1level, zb2level;
if (zb1->zb_object == zb2->zb_object &&
zb1->zb_level == zb2->zb_level &&
zb1->zb_blkid == zb2->zb_blkid)
return (0);
/*
* BP_SPANB calculates the span in blocks.
*/
zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
zb1L0 = 0;
zb1level = zb1->zb_level + COMPARE_META_LEVEL;
} else {
zb1obj = zb1->zb_object;
zb1level = zb1->zb_level;
}
if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
zb2L0 = 0;
zb2level = zb2->zb_level + COMPARE_META_LEVEL;
} else {
zb2obj = zb2->zb_object;
zb2level = zb2->zb_level;
}
/* Now that we have a canonical representation, do the comparison. */
if (zb1obj != zb2obj)
return (zb1obj < zb2obj ? -1 : 1);
else if (zb1L0 != zb2L0)
return (zb1L0 < zb2L0 ? -1 : 1);
else if (zb1level != zb2level)
return (zb1level > zb2level ? -1 : 1);
/*
* This can (theoretically) happen if the bookmarks have the same object
* and level, but different blkids, if the block sizes are not the same.
* There is presently no way to change the indirect block sizes
*/
return (0);
}
/*
* This function checks the following: given that last_block is the place that
* our traversal stopped last time, does that guarantee that we've visited
* every node under subtree_root? Therefore, we can't just use the raw output
* of zbookmark_compare. We have to pass in a modified version of
* subtree_root; by incrementing the block id, and then checking whether
* last_block is before or equal to that, we can tell whether or not having
* visited last_block implies that all of subtree_root's children have been
* visited.
*/
boolean_t
zbookmark_subtree_completed(const dnode_phys_t *dnp,
const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
{
zbookmark_phys_t mod_zb = *subtree_root;
mod_zb.zb_blkid++;
ASSERT(last_block->zb_level == 0);
/* The objset_phys_t isn't before anything. */
if (dnp == NULL)
return (B_FALSE);
/*
* We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
* data block size in sectors, because that variable is only used if
* the bookmark refers to a block in the meta-dnode. Since we don't
* know without examining it what object it refers to, and there's no
* harm in passing in this value in other cases, we always pass it in.
*
* We pass in 0 for the indirect block size shift because zb2 must be
* level 0. The indirect block size is only used to calculate the span
* of the bookmark, but since the bookmark must be level 0, the span is
* always 1, so the math works out.
*
* If you make changes to how the zbookmark_compare code works, be sure
* to make sure that this code still works afterwards.
*/
return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
last_block) <= 0);
}
#if defined(_KERNEL)
EXPORT_SYMBOL(zio_type_name);
EXPORT_SYMBOL(zio_buf_alloc);
EXPORT_SYMBOL(zio_data_buf_alloc);
EXPORT_SYMBOL(zio_buf_free);
EXPORT_SYMBOL(zio_data_buf_free);
module_param(zio_delay_max, int, 0644);
MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
module_param(zio_requeue_io_start_cut_in_line, int, 0644);
MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
module_param(zfs_sync_pass_deferred_free, int, 0644);
MODULE_PARM_DESC(zfs_sync_pass_deferred_free,
"Defer frees starting in this pass");
module_param(zfs_sync_pass_dont_compress, int, 0644);
MODULE_PARM_DESC(zfs_sync_pass_dont_compress,
"Don't compress starting in this pass");
module_param(zfs_sync_pass_rewrite, int, 0644);
MODULE_PARM_DESC(zfs_sync_pass_rewrite,
"Rewrite new bps starting in this pass");
module_param(zio_dva_throttle_enabled, int, 0644);
MODULE_PARM_DESC(zio_dva_throttle_enabled,
"Throttle block allocations in the ZIO pipeline");
#endif