702cac6c6b
Copyrights in sync with "cid-gigabit.2020.06.05.tar.gz released by ND" (from DPDK). README from the latest em-7.7.8 on intel.com Approved by: imp MFC after: 1 week
589 lines
17 KiB
C
589 lines
17 KiB
C
/******************************************************************************
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
Copyright (c) 2001-2020, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
|
|
#include "e1000_api.h"
|
|
|
|
|
|
static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
|
|
static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
|
|
static void e1000_release_vf(struct e1000_hw *hw);
|
|
static s32 e1000_acquire_vf(struct e1000_hw *hw);
|
|
static s32 e1000_setup_link_vf(struct e1000_hw *hw);
|
|
static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
|
|
static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
|
|
static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
|
|
static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex);
|
|
static s32 e1000_init_hw_vf(struct e1000_hw *hw);
|
|
static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
|
|
static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
|
|
static int e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
|
|
static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
|
|
|
|
/**
|
|
* e1000_init_phy_params_vf - Inits PHY params
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Doesn't do much - there's no PHY available to the VF.
|
|
**/
|
|
static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_init_phy_params_vf");
|
|
hw->phy.type = e1000_phy_vf;
|
|
hw->phy.ops.acquire = e1000_acquire_vf;
|
|
hw->phy.ops.release = e1000_release_vf;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_nvm_params_vf - Inits NVM params
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Doesn't do much - there's no NVM available to the VF.
|
|
**/
|
|
static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_init_nvm_params_vf");
|
|
hw->nvm.type = e1000_nvm_none;
|
|
hw->nvm.ops.acquire = e1000_acquire_vf;
|
|
hw->nvm.ops.release = e1000_release_vf;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_mac_params_vf - Inits MAC params
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
|
|
DEBUGFUNC("e1000_init_mac_params_vf");
|
|
|
|
/* Set media type */
|
|
/*
|
|
* Virtual functions don't care what they're media type is as they
|
|
* have no direct access to the PHY, or the media. That is handled
|
|
* by the physical function driver.
|
|
*/
|
|
hw->phy.media_type = e1000_media_type_unknown;
|
|
|
|
/* No ASF features for the VF driver */
|
|
mac->asf_firmware_present = FALSE;
|
|
/* ARC subsystem not supported */
|
|
mac->arc_subsystem_valid = FALSE;
|
|
/* Disable adaptive IFS mode so the generic funcs don't do anything */
|
|
mac->adaptive_ifs = FALSE;
|
|
/* VF's have no MTA Registers - PF feature only */
|
|
mac->mta_reg_count = 128;
|
|
/* VF's have no access to RAR entries */
|
|
mac->rar_entry_count = 1;
|
|
|
|
/* Function pointers */
|
|
/* link setup */
|
|
mac->ops.setup_link = e1000_setup_link_vf;
|
|
/* bus type/speed/width */
|
|
mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
|
|
/* reset */
|
|
mac->ops.reset_hw = e1000_reset_hw_vf;
|
|
/* hw initialization */
|
|
mac->ops.init_hw = e1000_init_hw_vf;
|
|
/* check for link */
|
|
mac->ops.check_for_link = e1000_check_for_link_vf;
|
|
/* link info */
|
|
mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
|
|
/* multicast address update */
|
|
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
|
|
/* set mac address */
|
|
mac->ops.rar_set = e1000_rar_set_vf;
|
|
/* read mac address */
|
|
mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_function_pointers_vf - Inits function pointers
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
void e1000_init_function_pointers_vf(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_init_function_pointers_vf");
|
|
|
|
hw->mac.ops.init_params = e1000_init_mac_params_vf;
|
|
hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
|
|
hw->phy.ops.init_params = e1000_init_phy_params_vf;
|
|
hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_vf - Acquire rights to access PHY or NVM.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* There is no PHY or NVM so we want all attempts to acquire these to fail.
|
|
* In addition, the MAC registers to access PHY/NVM don't exist so we don't
|
|
* even want any SW to attempt to use them.
|
|
**/
|
|
static s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
|
|
{
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
|
|
/**
|
|
* e1000_release_vf - Release PHY or NVM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* There is no PHY or NVM so we want all attempts to acquire these to fail.
|
|
* In addition, the MAC registers to access PHY/NVM don't exist so we don't
|
|
* even want any SW to attempt to use them.
|
|
**/
|
|
static void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_link_vf - Sets up link.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Virtual functions cannot change link.
|
|
**/
|
|
static s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
|
|
{
|
|
DEBUGFUNC("e1000_setup_link_vf");
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_bus_info_pcie_vf - Gets the bus info.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Virtual functions are not really on their own bus.
|
|
**/
|
|
static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_bus_info *bus = &hw->bus;
|
|
|
|
DEBUGFUNC("e1000_get_bus_info_pcie_vf");
|
|
|
|
/* Do not set type PCI-E because we don't want disable master to run */
|
|
bus->type = e1000_bus_type_reserved;
|
|
bus->speed = e1000_bus_speed_2500;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_link_up_info_vf - Gets link info.
|
|
* @hw: pointer to the HW structure
|
|
* @speed: pointer to 16 bit value to store link speed.
|
|
* @duplex: pointer to 16 bit value to store duplex.
|
|
*
|
|
* Since we cannot read the PHY and get accurate link info, we must rely upon
|
|
* the status register's data which is often stale and inaccurate.
|
|
**/
|
|
static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex)
|
|
{
|
|
s32 status;
|
|
|
|
DEBUGFUNC("e1000_get_link_up_info_vf");
|
|
|
|
status = E1000_READ_REG(hw, E1000_STATUS);
|
|
if (status & E1000_STATUS_SPEED_1000) {
|
|
*speed = SPEED_1000;
|
|
DEBUGOUT("1000 Mbs, ");
|
|
} else if (status & E1000_STATUS_SPEED_100) {
|
|
*speed = SPEED_100;
|
|
DEBUGOUT("100 Mbs, ");
|
|
} else {
|
|
*speed = SPEED_10;
|
|
DEBUGOUT("10 Mbs, ");
|
|
}
|
|
|
|
if (status & E1000_STATUS_FD) {
|
|
*duplex = FULL_DUPLEX;
|
|
DEBUGOUT("Full Duplex\n");
|
|
} else {
|
|
*duplex = HALF_DUPLEX;
|
|
DEBUGOUT("Half Duplex\n");
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_hw_vf - Resets the HW
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
|
|
* This is all the reset we can perform on a VF.
|
|
**/
|
|
static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mbx_info *mbx = &hw->mbx;
|
|
u32 timeout = E1000_VF_INIT_TIMEOUT;
|
|
s32 ret_val = -E1000_ERR_MAC_INIT;
|
|
u32 ctrl, msgbuf[3];
|
|
u8 *addr = (u8 *)(&msgbuf[1]);
|
|
|
|
DEBUGFUNC("e1000_reset_hw_vf");
|
|
|
|
DEBUGOUT("Issuing a function level reset to MAC\n");
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
|
|
|
|
/* we cannot reset while the RSTI / RSTD bits are asserted */
|
|
while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
|
|
timeout--;
|
|
usec_delay(5);
|
|
}
|
|
|
|
if (timeout) {
|
|
/* mailbox timeout can now become active */
|
|
mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
|
|
|
|
msgbuf[0] = E1000_VF_RESET;
|
|
mbx->ops.write_posted(hw, msgbuf, 1, 0);
|
|
|
|
msec_delay(10);
|
|
|
|
/* set our "perm_addr" based on info provided by PF */
|
|
ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
|
|
if (!ret_val) {
|
|
if (msgbuf[0] == (E1000_VF_RESET |
|
|
E1000_VT_MSGTYPE_ACK))
|
|
memcpy(hw->mac.perm_addr, addr, 6);
|
|
else
|
|
ret_val = -E1000_ERR_MAC_INIT;
|
|
}
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_hw_vf - Inits the HW
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Not much to do here except clear the PF Reset indication if there is one.
|
|
**/
|
|
static s32 e1000_init_hw_vf(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_init_hw_vf");
|
|
|
|
/* attempt to set and restore our mac address */
|
|
e1000_rar_set_vf(hw, hw->mac.addr, 0);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_rar_set_vf - set device MAC address
|
|
* @hw: pointer to the HW structure
|
|
* @addr: pointer to the receive address
|
|
* @index receive address array register
|
|
**/
|
|
static int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
|
|
u32 E1000_UNUSEDARG index)
|
|
{
|
|
struct e1000_mbx_info *mbx = &hw->mbx;
|
|
u32 msgbuf[3];
|
|
u8 *msg_addr = (u8 *)(&msgbuf[1]);
|
|
s32 ret_val;
|
|
|
|
memset(msgbuf, 0, 12);
|
|
msgbuf[0] = E1000_VF_SET_MAC_ADDR;
|
|
memcpy(msg_addr, addr, 6);
|
|
ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
|
|
|
|
if (!ret_val)
|
|
ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
|
|
|
|
msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
|
|
|
|
/* if nacked the address was rejected, use "perm_addr" */
|
|
if (!ret_val &&
|
|
(msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
|
|
e1000_read_mac_addr_vf(hw);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_hash_mc_addr_vf - Generate a multicast hash value
|
|
* @hw: pointer to the HW structure
|
|
* @mc_addr: pointer to a multicast address
|
|
*
|
|
* Generates a multicast address hash value which is used to determine
|
|
* the multicast filter table array address and new table value.
|
|
**/
|
|
static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
|
|
{
|
|
u32 hash_value, hash_mask;
|
|
u8 bit_shift = 0;
|
|
|
|
DEBUGFUNC("e1000_hash_mc_addr_generic");
|
|
|
|
/* Register count multiplied by bits per register */
|
|
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
|
|
|
|
/*
|
|
* The bit_shift is the number of left-shifts
|
|
* where 0xFF would still fall within the hash mask.
|
|
*/
|
|
while (hash_mask >> bit_shift != 0xFF)
|
|
bit_shift++;
|
|
|
|
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
|
|
(((u16) mc_addr[5]) << bit_shift)));
|
|
|
|
return hash_value;
|
|
}
|
|
|
|
static void e1000_write_msg_read_ack(struct e1000_hw *hw,
|
|
u32 *msg, u16 size)
|
|
{
|
|
struct e1000_mbx_info *mbx = &hw->mbx;
|
|
u32 retmsg[E1000_VFMAILBOX_SIZE];
|
|
s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
|
|
|
|
if (!retval)
|
|
mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
|
|
}
|
|
|
|
/**
|
|
* e1000_update_mc_addr_list_vf - Update Multicast addresses
|
|
* @hw: pointer to the HW structure
|
|
* @mc_addr_list: array of multicast addresses to program
|
|
* @mc_addr_count: number of multicast addresses to program
|
|
*
|
|
* Updates the Multicast Table Array.
|
|
* The caller must have a packed mc_addr_list of multicast addresses.
|
|
**/
|
|
void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
|
|
u8 *mc_addr_list, u32 mc_addr_count)
|
|
{
|
|
u32 msgbuf[E1000_VFMAILBOX_SIZE];
|
|
u16 *hash_list = (u16 *)&msgbuf[1];
|
|
u32 hash_value;
|
|
u32 i;
|
|
|
|
DEBUGFUNC("e1000_update_mc_addr_list_vf");
|
|
|
|
/* Each entry in the list uses 1 16 bit word. We have 30
|
|
* 16 bit words available in our HW msg buffer (minus 1 for the
|
|
* msg type). That's 30 hash values if we pack 'em right. If
|
|
* there are more than 30 MC addresses to add then punt the
|
|
* extras for now and then add code to handle more than 30 later.
|
|
* It would be unusual for a server to request that many multi-cast
|
|
* addresses except for in large enterprise network environments.
|
|
*/
|
|
|
|
DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
|
|
|
|
if (mc_addr_count > 30) {
|
|
msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
|
|
mc_addr_count = 30;
|
|
}
|
|
|
|
msgbuf[0] = E1000_VF_SET_MULTICAST;
|
|
msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
|
|
|
|
for (i = 0; i < mc_addr_count; i++) {
|
|
hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
|
|
DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
|
|
hash_list[i] = hash_value & 0x0FFF;
|
|
mc_addr_list += ETHER_ADDR_LEN;
|
|
}
|
|
|
|
e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
|
|
}
|
|
|
|
/**
|
|
* e1000_vfta_set_vf - Set/Unset vlan filter table address
|
|
* @hw: pointer to the HW structure
|
|
* @vid: determines the vfta register and bit to set/unset
|
|
* @set: if TRUE then set bit, else clear bit
|
|
**/
|
|
void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
|
|
{
|
|
u32 msgbuf[2];
|
|
|
|
msgbuf[0] = E1000_VF_SET_VLAN;
|
|
msgbuf[1] = vid;
|
|
/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
|
|
if (set)
|
|
msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
|
|
|
|
e1000_write_msg_read_ack(hw, msgbuf, 2);
|
|
}
|
|
|
|
/** e1000_rlpml_set_vf - Set the maximum receive packet length
|
|
* @hw: pointer to the HW structure
|
|
* @max_size: value to assign to max frame size
|
|
**/
|
|
void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
|
|
{
|
|
u32 msgbuf[2];
|
|
|
|
msgbuf[0] = E1000_VF_SET_LPE;
|
|
msgbuf[1] = max_size;
|
|
|
|
e1000_write_msg_read_ack(hw, msgbuf, 2);
|
|
}
|
|
|
|
/**
|
|
* e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
|
|
* @hw: pointer to the HW structure
|
|
* @uni: boolean indicating unicast promisc status
|
|
* @multi: boolean indicating multicast promisc status
|
|
**/
|
|
s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
|
|
{
|
|
struct e1000_mbx_info *mbx = &hw->mbx;
|
|
u32 msgbuf = E1000_VF_SET_PROMISC;
|
|
s32 ret_val;
|
|
|
|
switch (type) {
|
|
case e1000_promisc_multicast:
|
|
msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
|
|
break;
|
|
case e1000_promisc_enabled:
|
|
msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
|
|
/* FALLTHROUGH */
|
|
case e1000_promisc_unicast:
|
|
msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
|
|
/* FALLTHROUGH */
|
|
case e1000_promisc_disabled:
|
|
break;
|
|
default:
|
|
return -E1000_ERR_MAC_INIT;
|
|
}
|
|
|
|
ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
|
|
|
|
if (!ret_val)
|
|
ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
|
|
|
|
if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
|
|
ret_val = -E1000_ERR_MAC_INIT;
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_mac_addr_vf - Read device MAC address
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
hw->mac.addr[i] = hw->mac.perm_addr[i];
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_check_for_link_vf - Check for link for a virtual interface
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Checks to see if the underlying PF is still talking to the VF and
|
|
* if it is then it reports the link state to the hardware, otherwise
|
|
* it reports link down and returns an error.
|
|
**/
|
|
static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mbx_info *mbx = &hw->mbx;
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u32 in_msg = 0;
|
|
|
|
DEBUGFUNC("e1000_check_for_link_vf");
|
|
|
|
/*
|
|
* We only want to run this if there has been a rst asserted.
|
|
* in this case that could mean a link change, device reset,
|
|
* or a virtual function reset
|
|
*/
|
|
|
|
/* If we were hit with a reset or timeout drop the link */
|
|
if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
|
|
mac->get_link_status = TRUE;
|
|
|
|
if (!mac->get_link_status)
|
|
goto out;
|
|
|
|
/* if link status is down no point in checking to see if pf is up */
|
|
if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
|
|
goto out;
|
|
|
|
/* if the read failed it could just be a mailbox collision, best wait
|
|
* until we are called again and don't report an error */
|
|
if (mbx->ops.read(hw, &in_msg, 1, 0))
|
|
goto out;
|
|
|
|
/* if incoming message isn't clear to send we are waiting on response */
|
|
if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
|
|
/* message is not CTS and is NACK we have lost CTS status */
|
|
if (in_msg & E1000_VT_MSGTYPE_NACK)
|
|
ret_val = -E1000_ERR_MAC_INIT;
|
|
goto out;
|
|
}
|
|
|
|
/* at this point we know the PF is talking to us, check and see if
|
|
* we are still accepting timeout or if we had a timeout failure.
|
|
* if we failed then we will need to reinit */
|
|
if (!mbx->timeout) {
|
|
ret_val = -E1000_ERR_MAC_INIT;
|
|
goto out;
|
|
}
|
|
|
|
/* if we passed all the tests above then the link is up and we no
|
|
* longer need to check for link */
|
|
mac->get_link_status = FALSE;
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|