freebsd-nq/sys/dev/usb/usb_dev.c
Kip Macy 8451d0dd78 In order to maximize the re-usability of kernel code in user space this
patch modifies makesyscalls.sh to prefix all of the non-compatibility
calls (e.g. not linux_, freebsd32_) with sys_ and updates the kernel
entry points and all places in the code that use them. It also
fixes an additional name space collision between the kernel function
psignal and the libc function of the same name by renaming the kernel
psignal kern_psignal(). By introducing this change now we will ease future
MFCs that change syscalls.

Reviewed by:	rwatson
Approved by:	re (bz)
2011-09-16 13:58:51 +00:00

2296 lines
48 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2006-2008 Hans Petter Selasky. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*
* usb_dev.c - An abstraction layer for creating devices under /dev/...
*/
#include <sys/stdint.h>
#include <sys/stddef.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include <sys/vnode.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <dev/usb/usb.h>
#include <dev/usb/usb_ioctl.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#define USB_DEBUG_VAR usb_fifo_debug
#include <dev/usb/usb_core.h>
#include <dev/usb/usb_dev.h>
#include <dev/usb/usb_mbuf.h>
#include <dev/usb/usb_process.h>
#include <dev/usb/usb_device.h>
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_busdma.h>
#include <dev/usb/usb_generic.h>
#include <dev/usb/usb_dynamic.h>
#include <dev/usb/usb_util.h>
#include <dev/usb/usb_controller.h>
#include <dev/usb/usb_bus.h>
#include <sys/filio.h>
#include <sys/ttycom.h>
#include <sys/syscallsubr.h>
#include <machine/stdarg.h>
#if USB_HAVE_UGEN
#ifdef USB_DEBUG
static int usb_fifo_debug = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, dev, CTLFLAG_RW, 0, "USB device");
SYSCTL_INT(_hw_usb_dev, OID_AUTO, debug, CTLFLAG_RW,
&usb_fifo_debug, 0, "Debug Level");
TUNABLE_INT("hw.usb.dev.debug", &usb_fifo_debug);
#endif
#if ((__FreeBSD_version >= 700001) || (__FreeBSD_version == 0) || \
((__FreeBSD_version >= 600034) && (__FreeBSD_version < 700000)))
#define USB_UCRED struct ucred *ucred,
#else
#define USB_UCRED
#endif
/* prototypes */
static int usb_fifo_open(struct usb_cdev_privdata *,
struct usb_fifo *, int);
static void usb_fifo_close(struct usb_fifo *, int);
static void usb_dev_init(void *);
static void usb_dev_init_post(void *);
static void usb_dev_uninit(void *);
static int usb_fifo_uiomove(struct usb_fifo *, void *, int,
struct uio *);
static void usb_fifo_check_methods(struct usb_fifo_methods *);
static struct usb_fifo *usb_fifo_alloc(void);
static struct usb_endpoint *usb_dev_get_ep(struct usb_device *, uint8_t,
uint8_t);
static void usb_loc_fill(struct usb_fs_privdata *,
struct usb_cdev_privdata *);
static void usb_close(void *);
static usb_error_t usb_ref_device(struct usb_cdev_privdata *, struct usb_cdev_refdata *, int);
static usb_error_t usb_usb_ref_device(struct usb_cdev_privdata *, struct usb_cdev_refdata *);
static void usb_unref_device(struct usb_cdev_privdata *, struct usb_cdev_refdata *);
static d_open_t usb_open;
static d_ioctl_t usb_ioctl;
static d_read_t usb_read;
static d_write_t usb_write;
static d_poll_t usb_poll;
static d_ioctl_t usb_static_ioctl;
static usb_fifo_open_t usb_fifo_dummy_open;
static usb_fifo_close_t usb_fifo_dummy_close;
static usb_fifo_ioctl_t usb_fifo_dummy_ioctl;
static usb_fifo_cmd_t usb_fifo_dummy_cmd;
/* character device structure used for devices (/dev/ugenX.Y and /dev/uXXX) */
struct cdevsw usb_devsw = {
.d_version = D_VERSION,
.d_open = usb_open,
.d_ioctl = usb_ioctl,
.d_name = "usbdev",
.d_flags = D_TRACKCLOSE,
.d_read = usb_read,
.d_write = usb_write,
.d_poll = usb_poll
};
static struct cdev* usb_dev = NULL;
/* character device structure used for /dev/usb */
static struct cdevsw usb_static_devsw = {
.d_version = D_VERSION,
.d_ioctl = usb_static_ioctl,
.d_name = "usb"
};
static TAILQ_HEAD(, usb_symlink) usb_sym_head;
static struct sx usb_sym_lock;
struct mtx usb_ref_lock;
/*------------------------------------------------------------------------*
* usb_loc_fill
*
* This is used to fill out a usb_cdev_privdata structure based on the
* device's address as contained in usb_fs_privdata.
*------------------------------------------------------------------------*/
static void
usb_loc_fill(struct usb_fs_privdata* pd, struct usb_cdev_privdata *cpd)
{
cpd->bus_index = pd->bus_index;
cpd->dev_index = pd->dev_index;
cpd->ep_addr = pd->ep_addr;
cpd->fifo_index = pd->fifo_index;
}
/*------------------------------------------------------------------------*
* usb_ref_device
*
* This function is used to atomically refer an USB device by its
* device location. If this function returns success the USB device
* will not dissappear until the USB device is unreferenced.
*
* Return values:
* 0: Success, refcount incremented on the given USB device.
* Else: Failure.
*------------------------------------------------------------------------*/
static usb_error_t
usb_ref_device(struct usb_cdev_privdata *cpd,
struct usb_cdev_refdata *crd, int need_uref)
{
struct usb_fifo **ppf;
struct usb_fifo *f;
DPRINTFN(2, "cpd=%p need uref=%d\n", cpd, need_uref);
/* clear all refs */
memset(crd, 0, sizeof(*crd));
mtx_lock(&usb_ref_lock);
cpd->bus = devclass_get_softc(usb_devclass_ptr, cpd->bus_index);
if (cpd->bus == NULL) {
DPRINTFN(2, "no bus at %u\n", cpd->bus_index);
goto error;
}
cpd->udev = cpd->bus->devices[cpd->dev_index];
if (cpd->udev == NULL) {
DPRINTFN(2, "no device at %u\n", cpd->dev_index);
goto error;
}
if (cpd->udev->refcount == USB_DEV_REF_MAX) {
DPRINTFN(2, "no dev ref\n");
goto error;
}
if (need_uref) {
DPRINTFN(2, "ref udev - needed\n");
cpd->udev->refcount++;
mtx_unlock(&usb_ref_lock);
/*
* We need to grab the sx-lock before grabbing the
* FIFO refs to avoid deadlock at detach!
*/
usbd_enum_lock(cpd->udev);
mtx_lock(&usb_ref_lock);
/*
* Set "is_uref" after grabbing the default SX lock
*/
crd->is_uref = 1;
}
/* check if we are doing an open */
if (cpd->fflags == 0) {
/* use zero defaults */
} else {
/* check for write */
if (cpd->fflags & FWRITE) {
ppf = cpd->udev->fifo;
f = ppf[cpd->fifo_index + USB_FIFO_TX];
crd->txfifo = f;
crd->is_write = 1; /* ref */
if (f == NULL || f->refcount == USB_FIFO_REF_MAX)
goto error;
if (f->curr_cpd != cpd)
goto error;
/* check if USB-FS is active */
if (f->fs_ep_max != 0) {
crd->is_usbfs = 1;
}
}
/* check for read */
if (cpd->fflags & FREAD) {
ppf = cpd->udev->fifo;
f = ppf[cpd->fifo_index + USB_FIFO_RX];
crd->rxfifo = f;
crd->is_read = 1; /* ref */
if (f == NULL || f->refcount == USB_FIFO_REF_MAX)
goto error;
if (f->curr_cpd != cpd)
goto error;
/* check if USB-FS is active */
if (f->fs_ep_max != 0) {
crd->is_usbfs = 1;
}
}
}
/* when everything is OK we increment the refcounts */
if (crd->is_write) {
DPRINTFN(2, "ref write\n");
crd->txfifo->refcount++;
}
if (crd->is_read) {
DPRINTFN(2, "ref read\n");
crd->rxfifo->refcount++;
}
mtx_unlock(&usb_ref_lock);
return (0);
error:
if (crd->is_uref) {
usbd_enum_unlock(cpd->udev);
if (--(cpd->udev->refcount) == 0) {
cv_signal(&cpd->udev->ref_cv);
}
}
mtx_unlock(&usb_ref_lock);
DPRINTFN(2, "fail\n");
return (USB_ERR_INVAL);
}
/*------------------------------------------------------------------------*
* usb_usb_ref_device
*
* This function is used to upgrade an USB reference to include the
* USB device reference on a USB location.
*
* Return values:
* 0: Success, refcount incremented on the given USB device.
* Else: Failure.
*------------------------------------------------------------------------*/
static usb_error_t
usb_usb_ref_device(struct usb_cdev_privdata *cpd,
struct usb_cdev_refdata *crd)
{
/*
* Check if we already got an USB reference on this location:
*/
if (crd->is_uref)
return (0); /* success */
/*
* To avoid deadlock at detach we need to drop the FIFO ref
* and re-acquire a new ref!
*/
usb_unref_device(cpd, crd);
return (usb_ref_device(cpd, crd, 1 /* need uref */));
}
/*------------------------------------------------------------------------*
* usb_unref_device
*
* This function will release the reference count by one unit for the
* given USB device.
*------------------------------------------------------------------------*/
static void
usb_unref_device(struct usb_cdev_privdata *cpd,
struct usb_cdev_refdata *crd)
{
DPRINTFN(2, "cpd=%p is_uref=%d\n", cpd, crd->is_uref);
if (crd->is_uref)
usbd_enum_unlock(cpd->udev);
mtx_lock(&usb_ref_lock);
if (crd->is_read) {
if (--(crd->rxfifo->refcount) == 0) {
cv_signal(&crd->rxfifo->cv_drain);
}
crd->is_read = 0;
}
if (crd->is_write) {
if (--(crd->txfifo->refcount) == 0) {
cv_signal(&crd->txfifo->cv_drain);
}
crd->is_write = 0;
}
if (crd->is_uref) {
if (--(cpd->udev->refcount) == 0) {
cv_signal(&cpd->udev->ref_cv);
}
crd->is_uref = 0;
}
mtx_unlock(&usb_ref_lock);
}
static struct usb_fifo *
usb_fifo_alloc(void)
{
struct usb_fifo *f;
f = malloc(sizeof(*f), M_USBDEV, M_WAITOK | M_ZERO);
if (f) {
cv_init(&f->cv_io, "FIFO-IO");
cv_init(&f->cv_drain, "FIFO-DRAIN");
f->refcount = 1;
}
return (f);
}
/*------------------------------------------------------------------------*
* usb_fifo_create
*------------------------------------------------------------------------*/
static int
usb_fifo_create(struct usb_cdev_privdata *cpd,
struct usb_cdev_refdata *crd)
{
struct usb_device *udev = cpd->udev;
struct usb_fifo *f;
struct usb_endpoint *ep;
uint8_t n;
uint8_t is_tx;
uint8_t is_rx;
uint8_t no_null;
uint8_t is_busy;
int e = cpd->ep_addr;
is_tx = (cpd->fflags & FWRITE) ? 1 : 0;
is_rx = (cpd->fflags & FREAD) ? 1 : 0;
no_null = 1;
is_busy = 0;
/* Preallocated FIFO */
if (e < 0) {
DPRINTFN(5, "Preallocated FIFO\n");
if (is_tx) {
f = udev->fifo[cpd->fifo_index + USB_FIFO_TX];
if (f == NULL)
return (EINVAL);
crd->txfifo = f;
}
if (is_rx) {
f = udev->fifo[cpd->fifo_index + USB_FIFO_RX];
if (f == NULL)
return (EINVAL);
crd->rxfifo = f;
}
return (0);
}
KASSERT(e >= 0 && e <= 15, ("endpoint %d out of range", e));
/* search for a free FIFO slot */
DPRINTFN(5, "Endpoint device, searching for 0x%02x\n", e);
for (n = 0;; n += 2) {
if (n == USB_FIFO_MAX) {
if (no_null) {
no_null = 0;
n = 0;
} else {
/* end of FIFOs reached */
DPRINTFN(5, "out of FIFOs\n");
return (ENOMEM);
}
}
/* Check for TX FIFO */
if (is_tx) {
f = udev->fifo[n + USB_FIFO_TX];
if (f != NULL) {
if (f->dev_ep_index != e) {
/* wrong endpoint index */
continue;
}
if (f->curr_cpd != NULL) {
/* FIFO is opened */
is_busy = 1;
continue;
}
} else if (no_null) {
continue;
}
}
/* Check for RX FIFO */
if (is_rx) {
f = udev->fifo[n + USB_FIFO_RX];
if (f != NULL) {
if (f->dev_ep_index != e) {
/* wrong endpoint index */
continue;
}
if (f->curr_cpd != NULL) {
/* FIFO is opened */
is_busy = 1;
continue;
}
} else if (no_null) {
continue;
}
}
break;
}
if (no_null == 0) {
if (e >= (USB_EP_MAX / 2)) {
/* we don't create any endpoints in this range */
DPRINTFN(5, "ep out of range\n");
return (is_busy ? EBUSY : EINVAL);
}
}
if ((e != 0) && is_busy) {
/*
* Only the default control endpoint is allowed to be
* opened multiple times!
*/
DPRINTFN(5, "busy\n");
return (EBUSY);
}
/* Check TX FIFO */
if (is_tx &&
(udev->fifo[n + USB_FIFO_TX] == NULL)) {
ep = usb_dev_get_ep(udev, e, USB_FIFO_TX);
DPRINTFN(5, "dev_get_endpoint(%d, 0x%x)\n", e, USB_FIFO_TX);
if (ep == NULL) {
DPRINTFN(5, "dev_get_endpoint returned NULL\n");
return (EINVAL);
}
f = usb_fifo_alloc();
if (f == NULL) {
DPRINTFN(5, "could not alloc tx fifo\n");
return (ENOMEM);
}
/* update some fields */
f->fifo_index = n + USB_FIFO_TX;
f->dev_ep_index = e;
f->priv_mtx = &udev->device_mtx;
f->priv_sc0 = ep;
f->methods = &usb_ugen_methods;
f->iface_index = ep->iface_index;
f->udev = udev;
mtx_lock(&usb_ref_lock);
udev->fifo[n + USB_FIFO_TX] = f;
mtx_unlock(&usb_ref_lock);
}
/* Check RX FIFO */
if (is_rx &&
(udev->fifo[n + USB_FIFO_RX] == NULL)) {
ep = usb_dev_get_ep(udev, e, USB_FIFO_RX);
DPRINTFN(5, "dev_get_endpoint(%d, 0x%x)\n", e, USB_FIFO_RX);
if (ep == NULL) {
DPRINTFN(5, "dev_get_endpoint returned NULL\n");
return (EINVAL);
}
f = usb_fifo_alloc();
if (f == NULL) {
DPRINTFN(5, "could not alloc rx fifo\n");
return (ENOMEM);
}
/* update some fields */
f->fifo_index = n + USB_FIFO_RX;
f->dev_ep_index = e;
f->priv_mtx = &udev->device_mtx;
f->priv_sc0 = ep;
f->methods = &usb_ugen_methods;
f->iface_index = ep->iface_index;
f->udev = udev;
mtx_lock(&usb_ref_lock);
udev->fifo[n + USB_FIFO_RX] = f;
mtx_unlock(&usb_ref_lock);
}
if (is_tx) {
crd->txfifo = udev->fifo[n + USB_FIFO_TX];
}
if (is_rx) {
crd->rxfifo = udev->fifo[n + USB_FIFO_RX];
}
/* fill out fifo index */
DPRINTFN(5, "fifo index = %d\n", n);
cpd->fifo_index = n;
/* complete */
return (0);
}
void
usb_fifo_free(struct usb_fifo *f)
{
uint8_t n;
if (f == NULL) {
/* be NULL safe */
return;
}
/* destroy symlink devices, if any */
for (n = 0; n != 2; n++) {
if (f->symlink[n]) {
usb_free_symlink(f->symlink[n]);
f->symlink[n] = NULL;
}
}
mtx_lock(&usb_ref_lock);
/* delink ourselves to stop calls from userland */
if ((f->fifo_index < USB_FIFO_MAX) &&
(f->udev != NULL) &&
(f->udev->fifo[f->fifo_index] == f)) {
f->udev->fifo[f->fifo_index] = NULL;
} else {
DPRINTFN(0, "USB FIFO %p has not been linked\n", f);
}
/* decrease refcount */
f->refcount--;
/* prevent any write flush */
f->flag_iserror = 1;
/* need to wait until all callers have exited */
while (f->refcount != 0) {
mtx_unlock(&usb_ref_lock); /* avoid LOR */
mtx_lock(f->priv_mtx);
/* get I/O thread out of any sleep state */
if (f->flag_sleeping) {
f->flag_sleeping = 0;
cv_broadcast(&f->cv_io);
}
mtx_unlock(f->priv_mtx);
mtx_lock(&usb_ref_lock);
/* wait for sync */
cv_wait(&f->cv_drain, &usb_ref_lock);
}
mtx_unlock(&usb_ref_lock);
/* take care of closing the device here, if any */
usb_fifo_close(f, 0);
cv_destroy(&f->cv_io);
cv_destroy(&f->cv_drain);
free(f, M_USBDEV);
}
static struct usb_endpoint *
usb_dev_get_ep(struct usb_device *udev, uint8_t ep_index, uint8_t dir)
{
struct usb_endpoint *ep;
uint8_t ep_dir;
if (ep_index == 0) {
ep = &udev->ctrl_ep;
} else {
if (dir == USB_FIFO_RX) {
if (udev->flags.usb_mode == USB_MODE_HOST) {
ep_dir = UE_DIR_IN;
} else {
ep_dir = UE_DIR_OUT;
}
} else {
if (udev->flags.usb_mode == USB_MODE_HOST) {
ep_dir = UE_DIR_OUT;
} else {
ep_dir = UE_DIR_IN;
}
}
ep = usbd_get_ep_by_addr(udev, ep_index | ep_dir);
}
if (ep == NULL) {
/* if the endpoint does not exist then return */
return (NULL);
}
if (ep->edesc == NULL) {
/* invalid endpoint */
return (NULL);
}
return (ep); /* success */
}
/*------------------------------------------------------------------------*
* usb_fifo_open
*
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
static int
usb_fifo_open(struct usb_cdev_privdata *cpd,
struct usb_fifo *f, int fflags)
{
int err;
if (f == NULL) {
/* no FIFO there */
DPRINTFN(2, "no FIFO\n");
return (ENXIO);
}
/* remove FWRITE and FREAD flags */
fflags &= ~(FWRITE | FREAD);
/* set correct file flags */
if ((f->fifo_index & 1) == USB_FIFO_TX) {
fflags |= FWRITE;
} else {
fflags |= FREAD;
}
/* check if we are already opened */
/* we don't need any locks when checking this variable */
if (f->curr_cpd != NULL) {
err = EBUSY;
goto done;
}
/* reset short flag before open */
f->flag_short = 0;
/* call open method */
err = (f->methods->f_open) (f, fflags);
if (err) {
goto done;
}
mtx_lock(f->priv_mtx);
/* reset sleep flag */
f->flag_sleeping = 0;
/* reset error flag */
f->flag_iserror = 0;
/* reset complete flag */
f->flag_iscomplete = 0;
/* reset select flag */
f->flag_isselect = 0;
/* reset flushing flag */
f->flag_flushing = 0;
/* reset ASYNC proc flag */
f->async_p = NULL;
mtx_lock(&usb_ref_lock);
/* flag the fifo as opened to prevent others */
f->curr_cpd = cpd;
mtx_unlock(&usb_ref_lock);
/* reset queue */
usb_fifo_reset(f);
mtx_unlock(f->priv_mtx);
done:
return (err);
}
/*------------------------------------------------------------------------*
* usb_fifo_reset
*------------------------------------------------------------------------*/
void
usb_fifo_reset(struct usb_fifo *f)
{
struct usb_mbuf *m;
if (f == NULL) {
return;
}
while (1) {
USB_IF_DEQUEUE(&f->used_q, m);
if (m) {
USB_IF_ENQUEUE(&f->free_q, m);
} else {
break;
}
}
/* reset have fragment flag */
f->flag_have_fragment = 0;
}
/*------------------------------------------------------------------------*
* usb_fifo_close
*------------------------------------------------------------------------*/
static void
usb_fifo_close(struct usb_fifo *f, int fflags)
{
int err;
/* check if we are not opened */
if (f->curr_cpd == NULL) {
/* nothing to do - already closed */
return;
}
mtx_lock(f->priv_mtx);
/* clear current cdev private data pointer */
f->curr_cpd = NULL;
/* check if we are selected */
if (f->flag_isselect) {
selwakeup(&f->selinfo);
f->flag_isselect = 0;
}
/* check if a thread wants SIGIO */
if (f->async_p != NULL) {
PROC_LOCK(f->async_p);
kern_psignal(f->async_p, SIGIO);
PROC_UNLOCK(f->async_p);
f->async_p = NULL;
}
/* remove FWRITE and FREAD flags */
fflags &= ~(FWRITE | FREAD);
/* flush written data, if any */
if ((f->fifo_index & 1) == USB_FIFO_TX) {
if (!f->flag_iserror) {
/* set flushing flag */
f->flag_flushing = 1;
/* get the last packet in */
if (f->flag_have_fragment) {
struct usb_mbuf *m;
f->flag_have_fragment = 0;
USB_IF_DEQUEUE(&f->free_q, m);
if (m) {
USB_IF_ENQUEUE(&f->used_q, m);
}
}
/* start write transfer, if not already started */
(f->methods->f_start_write) (f);
/* check if flushed already */
while (f->flag_flushing &&
(!f->flag_iserror)) {
/* wait until all data has been written */
f->flag_sleeping = 1;
err = cv_wait_sig(&f->cv_io, f->priv_mtx);
if (err) {
DPRINTF("signal received\n");
break;
}
}
}
fflags |= FWRITE;
/* stop write transfer, if not already stopped */
(f->methods->f_stop_write) (f);
} else {
fflags |= FREAD;
/* stop write transfer, if not already stopped */
(f->methods->f_stop_read) (f);
}
/* check if we are sleeping */
if (f->flag_sleeping) {
DPRINTFN(2, "Sleeping at close!\n");
}
mtx_unlock(f->priv_mtx);
/* call close method */
(f->methods->f_close) (f, fflags);
DPRINTF("closed\n");
}
/*------------------------------------------------------------------------*
* usb_open - cdev callback
*------------------------------------------------------------------------*/
static int
usb_open(struct cdev *dev, int fflags, int devtype, struct thread *td)
{
struct usb_fs_privdata* pd = (struct usb_fs_privdata*)dev->si_drv1;
struct usb_cdev_refdata refs;
struct usb_cdev_privdata *cpd;
int err, ep;
DPRINTFN(2, "%s fflags=0x%08x\n", dev->si_name, fflags);
KASSERT(fflags & (FREAD|FWRITE), ("invalid open flags"));
if (((fflags & FREAD) && !(pd->mode & FREAD)) ||
((fflags & FWRITE) && !(pd->mode & FWRITE))) {
DPRINTFN(2, "access mode not supported\n");
return (EPERM);
}
cpd = malloc(sizeof(*cpd), M_USBDEV, M_WAITOK | M_ZERO);
ep = cpd->ep_addr = pd->ep_addr;
usb_loc_fill(pd, cpd);
err = usb_ref_device(cpd, &refs, 1);
if (err) {
DPRINTFN(2, "cannot ref device\n");
free(cpd, M_USBDEV);
return (ENXIO);
}
cpd->fflags = fflags; /* access mode for open lifetime */
/* create FIFOs, if any */
err = usb_fifo_create(cpd, &refs);
/* check for error */
if (err) {
DPRINTFN(2, "cannot create fifo\n");
usb_unref_device(cpd, &refs);
free(cpd, M_USBDEV);
return (err);
}
if (fflags & FREAD) {
err = usb_fifo_open(cpd, refs.rxfifo, fflags);
if (err) {
DPRINTFN(2, "read open failed\n");
usb_unref_device(cpd, &refs);
free(cpd, M_USBDEV);
return (err);
}
}
if (fflags & FWRITE) {
err = usb_fifo_open(cpd, refs.txfifo, fflags);
if (err) {
DPRINTFN(2, "write open failed\n");
if (fflags & FREAD) {
usb_fifo_close(refs.rxfifo, fflags);
}
usb_unref_device(cpd, &refs);
free(cpd, M_USBDEV);
return (err);
}
}
usb_unref_device(cpd, &refs);
devfs_set_cdevpriv(cpd, usb_close);
return (0);
}
/*------------------------------------------------------------------------*
* usb_close - cdev callback
*------------------------------------------------------------------------*/
static void
usb_close(void *arg)
{
struct usb_cdev_refdata refs;
struct usb_cdev_privdata *cpd = arg;
int err;
DPRINTFN(2, "cpd=%p\n", cpd);
err = usb_ref_device(cpd, &refs, 0);
if (err)
goto done;
/*
* If this function is not called directly from the root HUB
* thread, there is usually a need to lock the enumeration
* lock. Check this.
*/
if (!usbd_enum_is_locked(cpd->udev)) {
DPRINTFN(2, "Locking enumeration\n");
/* reference device */
err = usb_usb_ref_device(cpd, &refs);
if (err)
goto done;
}
if (cpd->fflags & FREAD) {
usb_fifo_close(refs.rxfifo, cpd->fflags);
}
if (cpd->fflags & FWRITE) {
usb_fifo_close(refs.txfifo, cpd->fflags);
}
usb_unref_device(cpd, &refs);
done:
free(cpd, M_USBDEV);
}
static void
usb_dev_init(void *arg)
{
mtx_init(&usb_ref_lock, "USB ref mutex", NULL, MTX_DEF);
sx_init(&usb_sym_lock, "USB sym mutex");
TAILQ_INIT(&usb_sym_head);
/* check the UGEN methods */
usb_fifo_check_methods(&usb_ugen_methods);
}
SYSINIT(usb_dev_init, SI_SUB_KLD, SI_ORDER_FIRST, usb_dev_init, NULL);
static void
usb_dev_init_post(void *arg)
{
/*
* Create /dev/usb - this is needed for usbconfig(8), which
* needs a well-known device name to access.
*/
usb_dev = make_dev(&usb_static_devsw, 0, UID_ROOT, GID_OPERATOR,
0644, USB_DEVICE_NAME);
if (usb_dev == NULL) {
DPRINTFN(0, "Could not create usb bus device\n");
}
}
SYSINIT(usb_dev_init_post, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, usb_dev_init_post, NULL);
static void
usb_dev_uninit(void *arg)
{
if (usb_dev != NULL) {
destroy_dev(usb_dev);
usb_dev = NULL;
}
mtx_destroy(&usb_ref_lock);
sx_destroy(&usb_sym_lock);
}
SYSUNINIT(usb_dev_uninit, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, usb_dev_uninit, NULL);
static int
usb_ioctl_f_sub(struct usb_fifo *f, u_long cmd, void *addr,
struct thread *td)
{
int error = 0;
switch (cmd) {
case FIODTYPE:
*(int *)addr = 0; /* character device */
break;
case FIONBIO:
/* handled by upper FS layer */
break;
case FIOASYNC:
if (*(int *)addr) {
if (f->async_p != NULL) {
error = EBUSY;
break;
}
f->async_p = USB_TD_GET_PROC(td);
} else {
f->async_p = NULL;
}
break;
/* XXX this is not the most general solution */
case TIOCSPGRP:
if (f->async_p == NULL) {
error = EINVAL;
break;
}
if (*(int *)addr != USB_PROC_GET_GID(f->async_p)) {
error = EPERM;
break;
}
break;
default:
return (ENOIOCTL);
}
DPRINTFN(3, "cmd 0x%lx = %d\n", cmd, error);
return (error);
}
/*------------------------------------------------------------------------*
* usb_ioctl - cdev callback
*------------------------------------------------------------------------*/
static int
usb_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int fflag, struct thread* td)
{
struct usb_cdev_refdata refs;
struct usb_cdev_privdata* cpd;
struct usb_fifo *f;
int fflags;
int err;
DPRINTFN(2, "cmd=0x%lx\n", cmd);
err = devfs_get_cdevpriv((void **)&cpd);
if (err != 0)
return (err);
/*
* Performance optimisation: We try to check for IOCTL's that
* don't need the USB reference first. Then we grab the USB
* reference if we need it!
*/
err = usb_ref_device(cpd, &refs, 0 /* no uref */ );
if (err)
return (ENXIO);
fflags = cpd->fflags;
f = NULL; /* set default value */
err = ENOIOCTL; /* set default value */
if (fflags & FWRITE) {
f = refs.txfifo;
err = usb_ioctl_f_sub(f, cmd, addr, td);
}
if (fflags & FREAD) {
f = refs.rxfifo;
err = usb_ioctl_f_sub(f, cmd, addr, td);
}
KASSERT(f != NULL, ("fifo not found"));
if (err != ENOIOCTL)
goto done;
err = (f->methods->f_ioctl) (f, cmd, addr, fflags);
DPRINTFN(2, "f_ioctl cmd 0x%lx = %d\n", cmd, err);
if (err != ENOIOCTL)
goto done;
if (usb_usb_ref_device(cpd, &refs)) {
err = ENXIO;
goto done;
}
err = (f->methods->f_ioctl_post) (f, cmd, addr, fflags);
DPRINTFN(2, "f_ioctl_post cmd 0x%lx = %d\n", cmd, err);
if (err == ENOIOCTL)
err = ENOTTY;
if (err)
goto done;
/* Wait for re-enumeration, if any */
while (f->udev->re_enumerate_wait != 0) {
usb_unref_device(cpd, &refs);
usb_pause_mtx(NULL, hz / 128);
if (usb_ref_device(cpd, &refs, 1 /* need uref */)) {
err = ENXIO;
goto done;
}
}
done:
usb_unref_device(cpd, &refs);
return (err);
}
/* ARGSUSED */
static int
usb_poll(struct cdev* dev, int events, struct thread* td)
{
struct usb_cdev_refdata refs;
struct usb_cdev_privdata* cpd;
struct usb_fifo *f;
struct usb_mbuf *m;
int fflags, revents;
if (devfs_get_cdevpriv((void **)&cpd) != 0 ||
usb_ref_device(cpd, &refs, 0) != 0)
return (events &
(POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
fflags = cpd->fflags;
/* Figure out who needs service */
revents = 0;
if ((events & (POLLOUT | POLLWRNORM)) &&
(fflags & FWRITE)) {
f = refs.txfifo;
mtx_lock(f->priv_mtx);
if (!refs.is_usbfs) {
if (f->flag_iserror) {
/* we got an error */
m = (void *)1;
} else {
if (f->queue_data == NULL) {
/*
* start write transfer, if not
* already started
*/
(f->methods->f_start_write) (f);
}
/* check if any packets are available */
USB_IF_POLL(&f->free_q, m);
}
} else {
if (f->flag_iscomplete) {
m = (void *)1;
} else {
m = NULL;
}
}
if (m) {
revents |= events & (POLLOUT | POLLWRNORM);
} else {
f->flag_isselect = 1;
selrecord(td, &f->selinfo);
}
mtx_unlock(f->priv_mtx);
}
if ((events & (POLLIN | POLLRDNORM)) &&
(fflags & FREAD)) {
f = refs.rxfifo;
mtx_lock(f->priv_mtx);
if (!refs.is_usbfs) {
if (f->flag_iserror) {
/* we have and error */
m = (void *)1;
} else {
if (f->queue_data == NULL) {
/*
* start read transfer, if not
* already started
*/
(f->methods->f_start_read) (f);
}
/* check if any packets are available */
USB_IF_POLL(&f->used_q, m);
}
} else {
if (f->flag_iscomplete) {
m = (void *)1;
} else {
m = NULL;
}
}
if (m) {
revents |= events & (POLLIN | POLLRDNORM);
} else {
f->flag_isselect = 1;
selrecord(td, &f->selinfo);
if (!refs.is_usbfs) {
/* start reading data */
(f->methods->f_start_read) (f);
}
}
mtx_unlock(f->priv_mtx);
}
usb_unref_device(cpd, &refs);
return (revents);
}
static int
usb_read(struct cdev *dev, struct uio *uio, int ioflag)
{
struct usb_cdev_refdata refs;
struct usb_cdev_privdata* cpd;
struct usb_fifo *f;
struct usb_mbuf *m;
int fflags;
int resid;
int io_len;
int err;
uint8_t tr_data = 0;
err = devfs_get_cdevpriv((void **)&cpd);
if (err != 0)
return (err);
err = usb_ref_device(cpd, &refs, 0 /* no uref */ );
if (err) {
return (ENXIO);
}
fflags = cpd->fflags;
f = refs.rxfifo;
if (f == NULL) {
/* should not happen */
usb_unref_device(cpd, &refs);
return (EPERM);
}
resid = uio->uio_resid;
mtx_lock(f->priv_mtx);
/* check for permanent read error */
if (f->flag_iserror) {
err = EIO;
goto done;
}
/* check if USB-FS interface is active */
if (refs.is_usbfs) {
/*
* The queue is used for events that should be
* retrieved using the "USB_FS_COMPLETE" ioctl.
*/
err = EINVAL;
goto done;
}
while (uio->uio_resid > 0) {
USB_IF_DEQUEUE(&f->used_q, m);
if (m == NULL) {
/* start read transfer, if not already started */
(f->methods->f_start_read) (f);
if (ioflag & IO_NDELAY) {
if (tr_data) {
/* return length before error */
break;
}
err = EWOULDBLOCK;
break;
}
DPRINTF("sleeping\n");
err = usb_fifo_wait(f);
if (err) {
break;
}
continue;
}
if (f->methods->f_filter_read) {
/*
* Sometimes it is convenient to process data at the
* expense of a userland process instead of a kernel
* process.
*/
(f->methods->f_filter_read) (f, m);
}
tr_data = 1;
io_len = MIN(m->cur_data_len, uio->uio_resid);
DPRINTFN(2, "transfer %d bytes from %p\n",
io_len, m->cur_data_ptr);
err = usb_fifo_uiomove(f,
m->cur_data_ptr, io_len, uio);
m->cur_data_len -= io_len;
m->cur_data_ptr += io_len;
if (m->cur_data_len == 0) {
uint8_t last_packet;
last_packet = m->last_packet;
USB_IF_ENQUEUE(&f->free_q, m);
if (last_packet) {
/* keep framing */
break;
}
} else {
USB_IF_PREPEND(&f->used_q, m);
}
if (err) {
break;
}
}
done:
mtx_unlock(f->priv_mtx);
usb_unref_device(cpd, &refs);
return (err);
}
static int
usb_write(struct cdev *dev, struct uio *uio, int ioflag)
{
struct usb_cdev_refdata refs;
struct usb_cdev_privdata* cpd;
struct usb_fifo *f;
struct usb_mbuf *m;
uint8_t *pdata;
int fflags;
int resid;
int io_len;
int err;
uint8_t tr_data = 0;
DPRINTFN(2, "\n");
err = devfs_get_cdevpriv((void **)&cpd);
if (err != 0)
return (err);
err = usb_ref_device(cpd, &refs, 0 /* no uref */ );
if (err) {
return (ENXIO);
}
fflags = cpd->fflags;
f = refs.txfifo;
if (f == NULL) {
/* should not happen */
usb_unref_device(cpd, &refs);
return (EPERM);
}
resid = uio->uio_resid;
mtx_lock(f->priv_mtx);
/* check for permanent write error */
if (f->flag_iserror) {
err = EIO;
goto done;
}
/* check if USB-FS interface is active */
if (refs.is_usbfs) {
/*
* The queue is used for events that should be
* retrieved using the "USB_FS_COMPLETE" ioctl.
*/
err = EINVAL;
goto done;
}
if (f->queue_data == NULL) {
/* start write transfer, if not already started */
(f->methods->f_start_write) (f);
}
/* we allow writing zero length data */
do {
USB_IF_DEQUEUE(&f->free_q, m);
if (m == NULL) {
if (ioflag & IO_NDELAY) {
if (tr_data) {
/* return length before error */
break;
}
err = EWOULDBLOCK;
break;
}
DPRINTF("sleeping\n");
err = usb_fifo_wait(f);
if (err) {
break;
}
continue;
}
tr_data = 1;
if (f->flag_have_fragment == 0) {
USB_MBUF_RESET(m);
io_len = m->cur_data_len;
pdata = m->cur_data_ptr;
if (io_len > uio->uio_resid)
io_len = uio->uio_resid;
m->cur_data_len = io_len;
} else {
io_len = m->max_data_len - m->cur_data_len;
pdata = m->cur_data_ptr + m->cur_data_len;
if (io_len > uio->uio_resid)
io_len = uio->uio_resid;
m->cur_data_len += io_len;
}
DPRINTFN(2, "transfer %d bytes to %p\n",
io_len, pdata);
err = usb_fifo_uiomove(f, pdata, io_len, uio);
if (err) {
f->flag_have_fragment = 0;
USB_IF_ENQUEUE(&f->free_q, m);
break;
}
/* check if the buffer is ready to be transmitted */
if ((f->flag_write_defrag == 0) ||
(m->cur_data_len == m->max_data_len)) {
f->flag_have_fragment = 0;
/*
* Check for write filter:
*
* Sometimes it is convenient to process data
* at the expense of a userland process
* instead of a kernel process.
*/
if (f->methods->f_filter_write) {
(f->methods->f_filter_write) (f, m);
}
/* Put USB mbuf in the used queue */
USB_IF_ENQUEUE(&f->used_q, m);
/* Start writing data, if not already started */
(f->methods->f_start_write) (f);
} else {
/* Wait for more data or close */
f->flag_have_fragment = 1;
USB_IF_PREPEND(&f->free_q, m);
}
} while (uio->uio_resid > 0);
done:
mtx_unlock(f->priv_mtx);
usb_unref_device(cpd, &refs);
return (err);
}
int
usb_static_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
union {
struct usb_read_dir *urd;
void* data;
} u;
int err;
u.data = data;
switch (cmd) {
case USB_READ_DIR:
err = usb_read_symlink(u.urd->urd_data,
u.urd->urd_startentry, u.urd->urd_maxlen);
break;
case USB_DEV_QUIRK_GET:
case USB_QUIRK_NAME_GET:
case USB_DEV_QUIRK_ADD:
case USB_DEV_QUIRK_REMOVE:
err = usb_quirk_ioctl_p(cmd, data, fflag, td);
break;
case USB_GET_TEMPLATE:
*(int *)data = usb_template;
err = 0;
break;
case USB_SET_TEMPLATE:
err = priv_check(curthread, PRIV_DRIVER);
if (err)
break;
usb_template = *(int *)data;
break;
default:
err = ENOTTY;
break;
}
return (err);
}
static int
usb_fifo_uiomove(struct usb_fifo *f, void *cp,
int n, struct uio *uio)
{
int error;
mtx_unlock(f->priv_mtx);
/*
* "uiomove()" can sleep so one needs to make a wrapper,
* exiting the mutex and checking things:
*/
error = uiomove(cp, n, uio);
mtx_lock(f->priv_mtx);
return (error);
}
int
usb_fifo_wait(struct usb_fifo *f)
{
int err;
mtx_assert(f->priv_mtx, MA_OWNED);
if (f->flag_iserror) {
/* we are gone */
return (EIO);
}
f->flag_sleeping = 1;
err = cv_wait_sig(&f->cv_io, f->priv_mtx);
if (f->flag_iserror) {
/* we are gone */
err = EIO;
}
return (err);
}
void
usb_fifo_signal(struct usb_fifo *f)
{
if (f->flag_sleeping) {
f->flag_sleeping = 0;
cv_broadcast(&f->cv_io);
}
}
void
usb_fifo_wakeup(struct usb_fifo *f)
{
usb_fifo_signal(f);
if (f->flag_isselect) {
selwakeup(&f->selinfo);
f->flag_isselect = 0;
}
if (f->async_p != NULL) {
PROC_LOCK(f->async_p);
kern_psignal(f->async_p, SIGIO);
PROC_UNLOCK(f->async_p);
}
}
static int
usb_fifo_dummy_open(struct usb_fifo *fifo, int fflags)
{
return (0);
}
static void
usb_fifo_dummy_close(struct usb_fifo *fifo, int fflags)
{
return;
}
static int
usb_fifo_dummy_ioctl(struct usb_fifo *fifo, u_long cmd, void *addr, int fflags)
{
return (ENOIOCTL);
}
static void
usb_fifo_dummy_cmd(struct usb_fifo *fifo)
{
fifo->flag_flushing = 0; /* not flushing */
}
static void
usb_fifo_check_methods(struct usb_fifo_methods *pm)
{
/* check that all callback functions are OK */
if (pm->f_open == NULL)
pm->f_open = &usb_fifo_dummy_open;
if (pm->f_close == NULL)
pm->f_close = &usb_fifo_dummy_close;
if (pm->f_ioctl == NULL)
pm->f_ioctl = &usb_fifo_dummy_ioctl;
if (pm->f_ioctl_post == NULL)
pm->f_ioctl_post = &usb_fifo_dummy_ioctl;
if (pm->f_start_read == NULL)
pm->f_start_read = &usb_fifo_dummy_cmd;
if (pm->f_stop_read == NULL)
pm->f_stop_read = &usb_fifo_dummy_cmd;
if (pm->f_start_write == NULL)
pm->f_start_write = &usb_fifo_dummy_cmd;
if (pm->f_stop_write == NULL)
pm->f_stop_write = &usb_fifo_dummy_cmd;
}
/*------------------------------------------------------------------------*
* usb_fifo_attach
*
* The following function will create a duplex FIFO.
*
* Return values:
* 0: Success.
* Else: Failure.
*------------------------------------------------------------------------*/
int
usb_fifo_attach(struct usb_device *udev, void *priv_sc,
struct mtx *priv_mtx, struct usb_fifo_methods *pm,
struct usb_fifo_sc *f_sc, uint16_t unit, uint16_t subunit,
uint8_t iface_index, uid_t uid, gid_t gid, int mode)
{
struct usb_fifo *f_tx;
struct usb_fifo *f_rx;
char devname[32];
uint8_t n;
f_sc->fp[USB_FIFO_TX] = NULL;
f_sc->fp[USB_FIFO_RX] = NULL;
if (pm == NULL)
return (EINVAL);
/* check the methods */
usb_fifo_check_methods(pm);
if (priv_mtx == NULL)
priv_mtx = &Giant;
/* search for a free FIFO slot */
for (n = 0;; n += 2) {
if (n == USB_FIFO_MAX) {
/* end of FIFOs reached */
return (ENOMEM);
}
/* Check for TX FIFO */
if (udev->fifo[n + USB_FIFO_TX] != NULL) {
continue;
}
/* Check for RX FIFO */
if (udev->fifo[n + USB_FIFO_RX] != NULL) {
continue;
}
break;
}
f_tx = usb_fifo_alloc();
f_rx = usb_fifo_alloc();
if ((f_tx == NULL) || (f_rx == NULL)) {
usb_fifo_free(f_tx);
usb_fifo_free(f_rx);
return (ENOMEM);
}
/* initialise FIFO structures */
f_tx->fifo_index = n + USB_FIFO_TX;
f_tx->dev_ep_index = -1;
f_tx->priv_mtx = priv_mtx;
f_tx->priv_sc0 = priv_sc;
f_tx->methods = pm;
f_tx->iface_index = iface_index;
f_tx->udev = udev;
f_rx->fifo_index = n + USB_FIFO_RX;
f_rx->dev_ep_index = -1;
f_rx->priv_mtx = priv_mtx;
f_rx->priv_sc0 = priv_sc;
f_rx->methods = pm;
f_rx->iface_index = iface_index;
f_rx->udev = udev;
f_sc->fp[USB_FIFO_TX] = f_tx;
f_sc->fp[USB_FIFO_RX] = f_rx;
mtx_lock(&usb_ref_lock);
udev->fifo[f_tx->fifo_index] = f_tx;
udev->fifo[f_rx->fifo_index] = f_rx;
mtx_unlock(&usb_ref_lock);
for (n = 0; n != 4; n++) {
if (pm->basename[n] == NULL) {
continue;
}
if (subunit == 0xFFFF) {
if (snprintf(devname, sizeof(devname),
"%s%u%s", pm->basename[n],
unit, pm->postfix[n] ?
pm->postfix[n] : "")) {
/* ignore */
}
} else {
if (snprintf(devname, sizeof(devname),
"%s%u.%u%s", pm->basename[n],
unit, subunit, pm->postfix[n] ?
pm->postfix[n] : "")) {
/* ignore */
}
}
/*
* Distribute the symbolic links into two FIFO structures:
*/
if (n & 1) {
f_rx->symlink[n / 2] =
usb_alloc_symlink(devname);
} else {
f_tx->symlink[n / 2] =
usb_alloc_symlink(devname);
}
/* Create the device */
f_sc->dev = usb_make_dev(udev, devname, -1,
f_tx->fifo_index & f_rx->fifo_index,
FREAD|FWRITE, uid, gid, mode);
}
DPRINTFN(2, "attached %p/%p\n", f_tx, f_rx);
return (0);
}
/*------------------------------------------------------------------------*
* usb_fifo_alloc_buffer
*
* Return values:
* 0: Success
* Else failure
*------------------------------------------------------------------------*/
int
usb_fifo_alloc_buffer(struct usb_fifo *f, usb_size_t bufsize,
uint16_t nbuf)
{
usb_fifo_free_buffer(f);
/* allocate an endpoint */
f->free_q.ifq_maxlen = nbuf;
f->used_q.ifq_maxlen = nbuf;
f->queue_data = usb_alloc_mbufs(
M_USBDEV, &f->free_q, bufsize, nbuf);
if ((f->queue_data == NULL) && bufsize && nbuf) {
return (ENOMEM);
}
return (0); /* success */
}
/*------------------------------------------------------------------------*
* usb_fifo_free_buffer
*
* This function will free the buffers associated with a FIFO. This
* function can be called multiple times in a row.
*------------------------------------------------------------------------*/
void
usb_fifo_free_buffer(struct usb_fifo *f)
{
if (f->queue_data) {
/* free old buffer */
free(f->queue_data, M_USBDEV);
f->queue_data = NULL;
}
/* reset queues */
bzero(&f->free_q, sizeof(f->free_q));
bzero(&f->used_q, sizeof(f->used_q));
}
void
usb_fifo_detach(struct usb_fifo_sc *f_sc)
{
if (f_sc == NULL) {
return;
}
usb_fifo_free(f_sc->fp[USB_FIFO_TX]);
usb_fifo_free(f_sc->fp[USB_FIFO_RX]);
f_sc->fp[USB_FIFO_TX] = NULL;
f_sc->fp[USB_FIFO_RX] = NULL;
usb_destroy_dev(f_sc->dev);
f_sc->dev = NULL;
DPRINTFN(2, "detached %p\n", f_sc);
}
usb_size_t
usb_fifo_put_bytes_max(struct usb_fifo *f)
{
struct usb_mbuf *m;
usb_size_t len;
USB_IF_POLL(&f->free_q, m);
if (m) {
len = m->max_data_len;
} else {
len = 0;
}
return (len);
}
/*------------------------------------------------------------------------*
* usb_fifo_put_data
*
* what:
* 0 - normal operation
* 1 - set last packet flag to enforce framing
*------------------------------------------------------------------------*/
void
usb_fifo_put_data(struct usb_fifo *f, struct usb_page_cache *pc,
usb_frlength_t offset, usb_frlength_t len, uint8_t what)
{
struct usb_mbuf *m;
usb_frlength_t io_len;
while (len || (what == 1)) {
USB_IF_DEQUEUE(&f->free_q, m);
if (m) {
USB_MBUF_RESET(m);
io_len = MIN(len, m->cur_data_len);
usbd_copy_out(pc, offset, m->cur_data_ptr, io_len);
m->cur_data_len = io_len;
offset += io_len;
len -= io_len;
if ((len == 0) && (what == 1)) {
m->last_packet = 1;
}
USB_IF_ENQUEUE(&f->used_q, m);
usb_fifo_wakeup(f);
if ((len == 0) || (what == 1)) {
break;
}
} else {
break;
}
}
}
void
usb_fifo_put_data_linear(struct usb_fifo *f, void *ptr,
usb_size_t len, uint8_t what)
{
struct usb_mbuf *m;
usb_size_t io_len;
while (len || (what == 1)) {
USB_IF_DEQUEUE(&f->free_q, m);
if (m) {
USB_MBUF_RESET(m);
io_len = MIN(len, m->cur_data_len);
bcopy(ptr, m->cur_data_ptr, io_len);
m->cur_data_len = io_len;
ptr = USB_ADD_BYTES(ptr, io_len);
len -= io_len;
if ((len == 0) && (what == 1)) {
m->last_packet = 1;
}
USB_IF_ENQUEUE(&f->used_q, m);
usb_fifo_wakeup(f);
if ((len == 0) || (what == 1)) {
break;
}
} else {
break;
}
}
}
uint8_t
usb_fifo_put_data_buffer(struct usb_fifo *f, void *ptr, usb_size_t len)
{
struct usb_mbuf *m;
USB_IF_DEQUEUE(&f->free_q, m);
if (m) {
m->cur_data_len = len;
m->cur_data_ptr = ptr;
USB_IF_ENQUEUE(&f->used_q, m);
usb_fifo_wakeup(f);
return (1);
}
return (0);
}
void
usb_fifo_put_data_error(struct usb_fifo *f)
{
f->flag_iserror = 1;
usb_fifo_wakeup(f);
}
/*------------------------------------------------------------------------*
* usb_fifo_get_data
*
* what:
* 0 - normal operation
* 1 - only get one "usb_mbuf"
*
* returns:
* 0 - no more data
* 1 - data in buffer
*------------------------------------------------------------------------*/
uint8_t
usb_fifo_get_data(struct usb_fifo *f, struct usb_page_cache *pc,
usb_frlength_t offset, usb_frlength_t len, usb_frlength_t *actlen,
uint8_t what)
{
struct usb_mbuf *m;
usb_frlength_t io_len;
uint8_t tr_data = 0;
actlen[0] = 0;
while (1) {
USB_IF_DEQUEUE(&f->used_q, m);
if (m) {
tr_data = 1;
io_len = MIN(len, m->cur_data_len);
usbd_copy_in(pc, offset, m->cur_data_ptr, io_len);
len -= io_len;
offset += io_len;
actlen[0] += io_len;
m->cur_data_ptr += io_len;
m->cur_data_len -= io_len;
if ((m->cur_data_len == 0) || (what == 1)) {
USB_IF_ENQUEUE(&f->free_q, m);
usb_fifo_wakeup(f);
if (what == 1) {
break;
}
} else {
USB_IF_PREPEND(&f->used_q, m);
}
} else {
if (tr_data) {
/* wait for data to be written out */
break;
}
if (f->flag_flushing) {
/* check if we should send a short packet */
if (f->flag_short != 0) {
f->flag_short = 0;
tr_data = 1;
break;
}
/* flushing complete */
f->flag_flushing = 0;
usb_fifo_wakeup(f);
}
break;
}
if (len == 0) {
break;
}
}
return (tr_data);
}
uint8_t
usb_fifo_get_data_linear(struct usb_fifo *f, void *ptr,
usb_size_t len, usb_size_t *actlen, uint8_t what)
{
struct usb_mbuf *m;
usb_size_t io_len;
uint8_t tr_data = 0;
actlen[0] = 0;
while (1) {
USB_IF_DEQUEUE(&f->used_q, m);
if (m) {
tr_data = 1;
io_len = MIN(len, m->cur_data_len);
bcopy(m->cur_data_ptr, ptr, io_len);
len -= io_len;
ptr = USB_ADD_BYTES(ptr, io_len);
actlen[0] += io_len;
m->cur_data_ptr += io_len;
m->cur_data_len -= io_len;
if ((m->cur_data_len == 0) || (what == 1)) {
USB_IF_ENQUEUE(&f->free_q, m);
usb_fifo_wakeup(f);
if (what == 1) {
break;
}
} else {
USB_IF_PREPEND(&f->used_q, m);
}
} else {
if (tr_data) {
/* wait for data to be written out */
break;
}
if (f->flag_flushing) {
/* check if we should send a short packet */
if (f->flag_short != 0) {
f->flag_short = 0;
tr_data = 1;
break;
}
/* flushing complete */
f->flag_flushing = 0;
usb_fifo_wakeup(f);
}
break;
}
if (len == 0) {
break;
}
}
return (tr_data);
}
uint8_t
usb_fifo_get_data_buffer(struct usb_fifo *f, void **pptr, usb_size_t *plen)
{
struct usb_mbuf *m;
USB_IF_POLL(&f->used_q, m);
if (m) {
*plen = m->cur_data_len;
*pptr = m->cur_data_ptr;
return (1);
}
return (0);
}
void
usb_fifo_get_data_error(struct usb_fifo *f)
{
f->flag_iserror = 1;
usb_fifo_wakeup(f);
}
/*------------------------------------------------------------------------*
* usb_alloc_symlink
*
* Return values:
* NULL: Failure
* Else: Pointer to symlink entry
*------------------------------------------------------------------------*/
struct usb_symlink *
usb_alloc_symlink(const char *target)
{
struct usb_symlink *ps;
ps = malloc(sizeof(*ps), M_USBDEV, M_WAITOK);
if (ps == NULL) {
return (ps);
}
/* XXX no longer needed */
strlcpy(ps->src_path, target, sizeof(ps->src_path));
ps->src_len = strlen(ps->src_path);
strlcpy(ps->dst_path, target, sizeof(ps->dst_path));
ps->dst_len = strlen(ps->dst_path);
sx_xlock(&usb_sym_lock);
TAILQ_INSERT_TAIL(&usb_sym_head, ps, sym_entry);
sx_unlock(&usb_sym_lock);
return (ps);
}
/*------------------------------------------------------------------------*
* usb_free_symlink
*------------------------------------------------------------------------*/
void
usb_free_symlink(struct usb_symlink *ps)
{
if (ps == NULL) {
return;
}
sx_xlock(&usb_sym_lock);
TAILQ_REMOVE(&usb_sym_head, ps, sym_entry);
sx_unlock(&usb_sym_lock);
free(ps, M_USBDEV);
}
/*------------------------------------------------------------------------*
* usb_read_symlink
*
* Return value:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
int
usb_read_symlink(uint8_t *user_ptr, uint32_t startentry, uint32_t user_len)
{
struct usb_symlink *ps;
uint32_t temp;
uint32_t delta = 0;
uint8_t len;
int error = 0;
sx_xlock(&usb_sym_lock);
TAILQ_FOREACH(ps, &usb_sym_head, sym_entry) {
/*
* Compute total length of source and destination symlink
* strings pluss one length byte and two NUL bytes:
*/
temp = ps->src_len + ps->dst_len + 3;
if (temp > 255) {
/*
* Skip entry because this length cannot fit
* into one byte:
*/
continue;
}
if (startentry != 0) {
/* decrement read offset */
startentry--;
continue;
}
if (temp > user_len) {
/* out of buffer space */
break;
}
len = temp;
/* copy out total length */
error = copyout(&len,
USB_ADD_BYTES(user_ptr, delta), 1);
if (error) {
break;
}
delta += 1;
/* copy out source string */
error = copyout(ps->src_path,
USB_ADD_BYTES(user_ptr, delta), ps->src_len);
if (error) {
break;
}
len = 0;
delta += ps->src_len;
error = copyout(&len,
USB_ADD_BYTES(user_ptr, delta), 1);
if (error) {
break;
}
delta += 1;
/* copy out destination string */
error = copyout(ps->dst_path,
USB_ADD_BYTES(user_ptr, delta), ps->dst_len);
if (error) {
break;
}
len = 0;
delta += ps->dst_len;
error = copyout(&len,
USB_ADD_BYTES(user_ptr, delta), 1);
if (error) {
break;
}
delta += 1;
user_len -= temp;
}
/* a zero length entry indicates the end */
if ((user_len != 0) && (error == 0)) {
len = 0;
error = copyout(&len,
USB_ADD_BYTES(user_ptr, delta), 1);
}
sx_unlock(&usb_sym_lock);
return (error);
}
void
usb_fifo_set_close_zlp(struct usb_fifo *f, uint8_t onoff)
{
if (f == NULL)
return;
/* send a Zero Length Packet, ZLP, before close */
f->flag_short = onoff;
}
void
usb_fifo_set_write_defrag(struct usb_fifo *f, uint8_t onoff)
{
if (f == NULL)
return;
/* defrag written data */
f->flag_write_defrag = onoff;
/* reset defrag state */
f->flag_have_fragment = 0;
}
void *
usb_fifo_softc(struct usb_fifo *f)
{
return (f->priv_sc0);
}
#endif /* USB_HAVE_UGEN */