freebsd-nq/sys/dev/netmap/netmap_generic.c
Mark Johnston 4c55b4e8da Unbreak the gcc build of netmap.
This fixes several LINT targets.

Reviewed by:	Vincenzo Maffione
2017-02-14 21:36:18 +00:00

1256 lines
33 KiB
C

/*
* Copyright (C) 2013-2016 Vincenzo Maffione
* Copyright (C) 2013-2016 Luigi Rizzo
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This module implements netmap support on top of standard,
* unmodified device drivers.
*
* A NIOCREGIF request is handled here if the device does not
* have native support. TX and RX rings are emulated as follows:
*
* NIOCREGIF
* We preallocate a block of TX mbufs (roughly as many as
* tx descriptors; the number is not critical) to speed up
* operation during transmissions. The refcount on most of
* these buffers is artificially bumped up so we can recycle
* them more easily. Also, the destructor is intercepted
* so we use it as an interrupt notification to wake up
* processes blocked on a poll().
*
* For each receive ring we allocate one "struct mbq"
* (an mbuf tailq plus a spinlock). We intercept packets
* (through if_input)
* on the receive path and put them in the mbq from which
* netmap receive routines can grab them.
*
* TX:
* in the generic_txsync() routine, netmap buffers are copied
* (or linked, in a future) to the preallocated mbufs
* and pushed to the transmit queue. Some of these mbufs
* (those with NS_REPORT, or otherwise every half ring)
* have the refcount=1, others have refcount=2.
* When the destructor is invoked, we take that as
* a notification that all mbufs up to that one in
* the specific ring have been completed, and generate
* the equivalent of a transmit interrupt.
*
* RX:
*
*/
#ifdef __FreeBSD__
#include <sys/cdefs.h> /* prerequisite */
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/lock.h> /* PROT_EXEC */
#include <sys/rwlock.h>
#include <sys/socket.h> /* sockaddrs */
#include <sys/selinfo.h>
#include <net/if.h>
#include <net/if_var.h>
#include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */
// XXX temporary - D() defined here
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#include <dev/netmap/netmap_mem2.h>
#define rtnl_lock() ND("rtnl_lock called")
#define rtnl_unlock() ND("rtnl_unlock called")
#define MBUF_RXQ(m) ((m)->m_pkthdr.flowid)
#define smp_mb()
/*
* FreeBSD mbuf allocator/deallocator in emulation mode:
*/
#if __FreeBSD_version < 1100000
/*
* For older versions of FreeBSD:
*
* We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE
* so that the destructor, if invoked, will not free the packet.
* In principle we should set the destructor only on demand,
* but since there might be a race we better do it on allocation.
* As a consequence, we also need to set the destructor or we
* would leak buffers.
*/
/* mbuf destructor, also need to change the type to EXT_EXTREF,
* add an M_NOFREE flag, and then clear the flag and
* chain into uma_zfree(zone_pack, mf)
* (or reinstall the buffer ?)
*/
static inline void
set_mbuf_destructor(struct mbuf *m, void *fn)
{
m->m_ext.ext_free = fn;
m->m_ext.ext_type = EXT_EXTREF;
}
static int
void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2)
{
/* restore original mbuf */
m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1;
m->m_ext.ext_arg1 = NULL;
m->m_ext.ext_type = EXT_PACKET;
m->m_ext.ext_free = NULL;
if (MBUF_REFCNT(m) == 0)
SET_MBUF_REFCNT(m, 1);
uma_zfree(zone_pack, m);
return 0;
}
static inline struct mbuf *
nm_os_get_mbuf(struct ifnet *ifp, int len)
{
struct mbuf *m;
(void)ifp;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m) {
/* m_getcl() (mb_ctor_mbuf) has an assert that checks that
* M_NOFREE flag is not specified as third argument,
* so we have to set M_NOFREE after m_getcl(). */
m->m_flags |= M_NOFREE;
m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save
m->m_ext.ext_free = (void *)void_mbuf_dtor;
m->m_ext.ext_type = EXT_EXTREF;
ND(5, "create m %p refcnt %d", m, MBUF_REFCNT(m));
}
return m;
}
#else /* __FreeBSD_version >= 1100000 */
/*
* Newer versions of FreeBSD, using a straightforward scheme.
*
* We allocate mbufs with m_gethdr(), since the mbuf header is needed
* by the driver. We also attach a customly-provided external storage,
* which in this case is a netmap buffer. When calling m_extadd(), however
* we pass a NULL address, since the real address (and length) will be
* filled in by nm_os_generic_xmit_frame() right before calling
* if_transmit().
*
* The dtor function does nothing, however we need it since mb_free_ext()
* has a KASSERT(), checking that the mbuf dtor function is not NULL.
*/
static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { }
static inline void
set_mbuf_destructor(struct mbuf *m, void *fn)
{
m->m_ext.ext_free = (fn != NULL) ? fn : (void *)void_mbuf_dtor;
}
static inline struct mbuf *
nm_os_get_mbuf(struct ifnet *ifp, int len)
{
struct mbuf *m;
(void)ifp;
(void)len;
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL) {
return m;
}
m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor,
NULL, NULL, 0, EXT_NET_DRV);
return m;
}
#endif /* __FreeBSD_version >= 1100000 */
#elif defined _WIN32
#include "win_glue.h"
#define rtnl_lock() ND("rtnl_lock called")
#define rtnl_unlock() ND("rtnl_unlock called")
#define MBUF_TXQ(m) 0//((m)->m_pkthdr.flowid)
#define MBUF_RXQ(m) 0//((m)->m_pkthdr.flowid)
#define smp_mb() //XXX: to be correctly defined
#else /* linux */
#include "bsd_glue.h"
#include <linux/rtnetlink.h> /* rtnl_[un]lock() */
#include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */
#include <linux/hrtimer.h>
static inline struct mbuf *
nm_os_get_mbuf(struct ifnet *ifp, int len)
{
return alloc_skb(ifp->needed_headroom + len +
ifp->needed_tailroom, GFP_ATOMIC);
}
#endif /* linux */
/* Common headers. */
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#include <dev/netmap/netmap_mem2.h>
#define for_each_kring_n(_i, _k, _karr, _n) \
for (_k=_karr, _i = 0; _i < _n; (_k)++, (_i)++)
#define for_each_tx_kring(_i, _k, _na) \
for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings)
#define for_each_tx_kring_h(_i, _k, _na) \
for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1)
#define for_each_rx_kring(_i, _k, _na) \
for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings)
#define for_each_rx_kring_h(_i, _k, _na) \
for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1)
/* ======================== PERFORMANCE STATISTICS =========================== */
#ifdef RATE_GENERIC
#define IFRATE(x) x
struct rate_stats {
unsigned long txpkt;
unsigned long txsync;
unsigned long txirq;
unsigned long txrepl;
unsigned long txdrop;
unsigned long rxpkt;
unsigned long rxirq;
unsigned long rxsync;
};
struct rate_context {
unsigned refcount;
struct timer_list timer;
struct rate_stats new;
struct rate_stats old;
};
#define RATE_PRINTK(_NAME_) \
printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
#define RATE_PERIOD 2
static void rate_callback(unsigned long arg)
{
struct rate_context * ctx = (struct rate_context *)arg;
struct rate_stats cur = ctx->new;
int r;
RATE_PRINTK(txpkt);
RATE_PRINTK(txsync);
RATE_PRINTK(txirq);
RATE_PRINTK(txrepl);
RATE_PRINTK(txdrop);
RATE_PRINTK(rxpkt);
RATE_PRINTK(rxsync);
RATE_PRINTK(rxirq);
printk("\n");
ctx->old = cur;
r = mod_timer(&ctx->timer, jiffies +
msecs_to_jiffies(RATE_PERIOD * 1000));
if (unlikely(r))
D("[v1000] Error: mod_timer()");
}
static struct rate_context rate_ctx;
void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi)
{
if (txp) rate_ctx.new.txpkt++;
if (txs) rate_ctx.new.txsync++;
if (txi) rate_ctx.new.txirq++;
if (rxp) rate_ctx.new.rxpkt++;
if (rxs) rate_ctx.new.rxsync++;
if (rxi) rate_ctx.new.rxirq++;
}
#else /* !RATE */
#define IFRATE(x)
#endif /* !RATE */
/* =============== GENERIC NETMAP ADAPTER SUPPORT ================= */
/*
* Wrapper used by the generic adapter layer to notify
* the poller threads. Differently from netmap_rx_irq(), we check
* only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq.
*/
void
netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
{
if (unlikely(!nm_netmap_on(na)))
return;
netmap_common_irq(na, q, work_done);
#ifdef RATE_GENERIC
if (work_done)
rate_ctx.new.rxirq++;
else
rate_ctx.new.txirq++;
#endif /* RATE_GENERIC */
}
static int
generic_netmap_unregister(struct netmap_adapter *na)
{
struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
struct netmap_kring *kring = NULL;
int i, r;
if (na->active_fds == 0) {
D("Generic adapter %p goes off", na);
rtnl_lock();
na->na_flags &= ~NAF_NETMAP_ON;
/* Release packet steering control. */
nm_os_catch_tx(gna, 0);
/* Stop intercepting packets on the RX path. */
nm_os_catch_rx(gna, 0);
rtnl_unlock();
}
for_each_rx_kring_h(r, kring, na) {
if (nm_kring_pending_off(kring)) {
D("RX ring %d of generic adapter %p goes off", r, na);
kring->nr_mode = NKR_NETMAP_OFF;
}
}
for_each_tx_kring_h(r, kring, na) {
if (nm_kring_pending_off(kring)) {
kring->nr_mode = NKR_NETMAP_OFF;
D("TX ring %d of generic adapter %p goes off", r, na);
}
}
for_each_rx_kring(r, kring, na) {
/* Free the mbufs still pending in the RX queues,
* that did not end up into the corresponding netmap
* RX rings. */
mbq_safe_purge(&kring->rx_queue);
nm_os_mitigation_cleanup(&gna->mit[r]);
}
/* Decrement reference counter for the mbufs in the
* TX pools. These mbufs can be still pending in drivers,
* (e.g. this happens with virtio-net driver, which
* does lazy reclaiming of transmitted mbufs). */
for_each_tx_kring(r, kring, na) {
/* We must remove the destructor on the TX event,
* because the destructor invokes netmap code, and
* the netmap module may disappear before the
* TX event is consumed. */
mtx_lock_spin(&kring->tx_event_lock);
if (kring->tx_event) {
set_mbuf_destructor(kring->tx_event, NULL);
}
kring->tx_event = NULL;
mtx_unlock_spin(&kring->tx_event_lock);
}
if (na->active_fds == 0) {
free(gna->mit, M_DEVBUF);
for_each_rx_kring(r, kring, na) {
mbq_safe_fini(&kring->rx_queue);
}
for_each_tx_kring(r, kring, na) {
mtx_destroy(&kring->tx_event_lock);
if (kring->tx_pool == NULL) {
continue;
}
for (i=0; i<na->num_tx_desc; i++) {
if (kring->tx_pool[i]) {
m_freem(kring->tx_pool[i]);
}
}
free(kring->tx_pool, M_DEVBUF);
kring->tx_pool = NULL;
}
#ifdef RATE_GENERIC
if (--rate_ctx.refcount == 0) {
D("del_timer()");
del_timer(&rate_ctx.timer);
}
#endif
}
return 0;
}
/* Enable/disable netmap mode for a generic network interface. */
static int
generic_netmap_register(struct netmap_adapter *na, int enable)
{
struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
struct netmap_kring *kring = NULL;
int error;
int i, r;
if (!na) {
return EINVAL;
}
if (!enable) {
/* This is actually an unregif. */
return generic_netmap_unregister(na);
}
if (na->active_fds == 0) {
D("Generic adapter %p goes on", na);
/* Do all memory allocations when (na->active_fds == 0), to
* simplify error management. */
/* Allocate memory for mitigation support on all the rx queues. */
gna->mit = malloc(na->num_rx_rings * sizeof(struct nm_generic_mit),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (!gna->mit) {
D("mitigation allocation failed");
error = ENOMEM;
goto out;
}
for_each_rx_kring(r, kring, na) {
/* Init mitigation support. */
nm_os_mitigation_init(&gna->mit[r], r, na);
/* Initialize the rx queue, as generic_rx_handler() can
* be called as soon as nm_os_catch_rx() returns.
*/
mbq_safe_init(&kring->rx_queue);
}
/*
* Prepare mbuf pools (parallel to the tx rings), for packet
* transmission. Don't preallocate the mbufs here, it's simpler
* to leave this task to txsync.
*/
for_each_tx_kring(r, kring, na) {
kring->tx_pool = NULL;
}
for_each_tx_kring(r, kring, na) {
kring->tx_pool =
malloc(na->num_tx_desc * sizeof(struct mbuf *),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (!kring->tx_pool) {
D("tx_pool allocation failed");
error = ENOMEM;
goto free_tx_pools;
}
mtx_init(&kring->tx_event_lock, "tx_event_lock",
NULL, MTX_SPIN);
}
}
for_each_rx_kring_h(r, kring, na) {
if (nm_kring_pending_on(kring)) {
D("RX ring %d of generic adapter %p goes on", r, na);
kring->nr_mode = NKR_NETMAP_ON;
}
}
for_each_tx_kring_h(r, kring, na) {
if (nm_kring_pending_on(kring)) {
D("TX ring %d of generic adapter %p goes on", r, na);
kring->nr_mode = NKR_NETMAP_ON;
}
}
for_each_tx_kring(r, kring, na) {
/* Initialize tx_pool and tx_event. */
for (i=0; i<na->num_tx_desc; i++) {
kring->tx_pool[i] = NULL;
}
kring->tx_event = NULL;
}
if (na->active_fds == 0) {
rtnl_lock();
/* Prepare to intercept incoming traffic. */
error = nm_os_catch_rx(gna, 1);
if (error) {
D("nm_os_catch_rx(1) failed (%d)", error);
goto register_handler;
}
/* Make netmap control the packet steering. */
error = nm_os_catch_tx(gna, 1);
if (error) {
D("nm_os_catch_tx(1) failed (%d)", error);
goto catch_rx;
}
rtnl_unlock();
na->na_flags |= NAF_NETMAP_ON;
#ifdef RATE_GENERIC
if (rate_ctx.refcount == 0) {
D("setup_timer()");
memset(&rate_ctx, 0, sizeof(rate_ctx));
setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
D("Error: mod_timer()");
}
}
rate_ctx.refcount++;
#endif /* RATE */
}
return 0;
/* Here (na->active_fds == 0) holds. */
catch_rx:
nm_os_catch_rx(gna, 0);
register_handler:
rtnl_unlock();
free_tx_pools:
for_each_tx_kring(r, kring, na) {
mtx_destroy(&kring->tx_event_lock);
if (kring->tx_pool == NULL) {
continue;
}
free(kring->tx_pool, M_DEVBUF);
kring->tx_pool = NULL;
}
for_each_rx_kring(r, kring, na) {
mbq_safe_fini(&kring->rx_queue);
}
free(gna->mit, M_DEVBUF);
out:
return error;
}
/*
* Callback invoked when the device driver frees an mbuf used
* by netmap to transmit a packet. This usually happens when
* the NIC notifies the driver that transmission is completed.
*/
static void
generic_mbuf_destructor(struct mbuf *m)
{
struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m));
struct netmap_kring *kring;
unsigned int r = MBUF_TXQ(m);
unsigned int r_orig = r;
if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) {
D("Error: no netmap adapter on device %p",
GEN_TX_MBUF_IFP(m));
return;
}
/*
* First, clear the event mbuf.
* In principle, the event 'm' should match the one stored
* on ring 'r'. However we check it explicitely to stay
* safe against lower layers (qdisc, driver, etc.) changing
* MBUF_TXQ(m) under our feet. If the match is not found
* on 'r', we try to see if it belongs to some other ring.
*/
for (;;) {
bool match = false;
kring = &na->tx_rings[r];
mtx_lock_spin(&kring->tx_event_lock);
if (kring->tx_event == m) {
kring->tx_event = NULL;
match = true;
}
mtx_unlock_spin(&kring->tx_event_lock);
if (match) {
if (r != r_orig) {
RD(1, "event %p migrated: ring %u --> %u",
m, r_orig, r);
}
break;
}
if (++r == na->num_tx_rings) r = 0;
if (r == r_orig) {
RD(1, "Cannot match event %p", m);
return;
}
}
/* Second, wake up clients. They will reclaim the event through
* txsync. */
netmap_generic_irq(na, r, NULL);
#ifdef __FreeBSD__
void_mbuf_dtor(m, NULL, NULL);
#endif
}
/* Record completed transmissions and update hwtail.
*
* The oldest tx buffer not yet completed is at nr_hwtail + 1,
* nr_hwcur is the first unsent buffer.
*/
static u_int
generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc)
{
u_int const lim = kring->nkr_num_slots - 1;
u_int nm_i = nm_next(kring->nr_hwtail, lim);
u_int hwcur = kring->nr_hwcur;
u_int n = 0;
struct mbuf **tx_pool = kring->tx_pool;
ND("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail);
while (nm_i != hwcur) { /* buffers not completed */
struct mbuf *m = tx_pool[nm_i];
if (txqdisc) {
if (m == NULL) {
/* Nothing to do, this is going
* to be replenished. */
RD(3, "Is this happening?");
} else if (MBUF_QUEUED(m)) {
break; /* Not dequeued yet. */
} else if (MBUF_REFCNT(m) != 1) {
/* This mbuf has been dequeued but is still busy
* (refcount is 2).
* Leave it to the driver and replenish. */
m_freem(m);
tx_pool[nm_i] = NULL;
}
} else {
if (unlikely(m == NULL)) {
int event_consumed;
/* This slot was used to place an event. */
mtx_lock_spin(&kring->tx_event_lock);
event_consumed = (kring->tx_event == NULL);
mtx_unlock_spin(&kring->tx_event_lock);
if (!event_consumed) {
/* The event has not been consumed yet,
* still busy in the driver. */
break;
}
/* The event has been consumed, we can go
* ahead. */
} else if (MBUF_REFCNT(m) != 1) {
/* This mbuf is still busy: its refcnt is 2. */
break;
}
}
n++;
nm_i = nm_next(nm_i, lim);
}
kring->nr_hwtail = nm_prev(nm_i, lim);
ND("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
return n;
}
/* Compute a slot index in the middle between inf and sup. */
static inline u_int
ring_middle(u_int inf, u_int sup, u_int lim)
{
u_int n = lim + 1;
u_int e;
if (sup >= inf) {
e = (sup + inf) / 2;
} else { /* wrap around */
e = (sup + n + inf) / 2;
if (e >= n) {
e -= n;
}
}
if (unlikely(e >= n)) {
D("This cannot happen");
e = 0;
}
return e;
}
static void
generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
{
u_int lim = kring->nkr_num_slots - 1;
struct mbuf *m;
u_int e;
u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */
if (ntc == hwcur) {
return; /* all buffers are free */
}
/*
* We have pending packets in the driver between hwtail+1
* and hwcur, and we have to chose one of these slot to
* generate a notification.
* There is a race but this is only called within txsync which
* does a double check.
*/
#if 0
/* Choose a slot in the middle, so that we don't risk ending
* up in a situation where the client continuously wake up,
* fills one or a few TX slots and go to sleep again. */
e = ring_middle(ntc, hwcur, lim);
#else
/* Choose the first pending slot, to be safe against driver
* reordering mbuf transmissions. */
e = ntc;
#endif
m = kring->tx_pool[e];
if (m == NULL) {
/* An event is already in place. */
return;
}
mtx_lock_spin(&kring->tx_event_lock);
if (kring->tx_event) {
/* An event is already in place. */
mtx_unlock_spin(&kring->tx_event_lock);
return;
}
set_mbuf_destructor(m, generic_mbuf_destructor);
kring->tx_event = m;
mtx_unlock_spin(&kring->tx_event_lock);
kring->tx_pool[e] = NULL;
ND(5, "Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 );
/* Decrement the refcount. This will free it if we lose the race
* with the driver. */
m_freem(m);
smp_mb();
}
/*
* generic_netmap_txsync() transforms netmap buffers into mbufs
* and passes them to the standard device driver
* (ndo_start_xmit() or ifp->if_transmit() ).
* On linux this is not done directly, but using dev_queue_xmit(),
* since it implements the TX flow control (and takes some locks).
*/
static int
generic_netmap_txsync(struct netmap_kring *kring, int flags)
{
struct netmap_adapter *na = kring->na;
struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
struct ifnet *ifp = na->ifp;
struct netmap_ring *ring = kring->ring;
u_int nm_i; /* index into the netmap ring */ // j
u_int const lim = kring->nkr_num_slots - 1;
u_int const head = kring->rhead;
u_int ring_nr = kring->ring_id;
IFRATE(rate_ctx.new.txsync++);
rmb();
/*
* First part: process new packets to send.
*/
nm_i = kring->nr_hwcur;
if (nm_i != head) { /* we have new packets to send */
struct nm_os_gen_arg a;
u_int event = -1;
if (gna->txqdisc && nm_kr_txempty(kring)) {
/* In txqdisc mode, we ask for a delayed notification,
* but only when cur == hwtail, which means that the
* client is going to block. */
event = ring_middle(nm_i, head, lim);
ND(3, "Place txqdisc event (hwcur=%u,event=%u,"
"head=%u,hwtail=%u)", nm_i, event, head,
kring->nr_hwtail);
}
a.ifp = ifp;
a.ring_nr = ring_nr;
a.head = a.tail = NULL;
while (nm_i != head) {
struct netmap_slot *slot = &ring->slot[nm_i];
u_int len = slot->len;
void *addr = NMB(na, slot);
/* device-specific */
struct mbuf *m;
int tx_ret;
NM_CHECK_ADDR_LEN(na, addr, len);
/* Tale a mbuf from the tx pool (replenishing the pool
* entry if necessary) and copy in the user packet. */
m = kring->tx_pool[nm_i];
if (unlikely(m == NULL)) {
kring->tx_pool[nm_i] = m =
nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na));
if (m == NULL) {
RD(2, "Failed to replenish mbuf");
/* Here we could schedule a timer which
* retries to replenish after a while,
* and notifies the client when it
* manages to replenish some slots. In
* any case we break early to avoid
* crashes. */
break;
}
IFRATE(rate_ctx.new.txrepl++);
}
a.m = m;
a.addr = addr;
a.len = len;
a.qevent = (nm_i == event);
/* When not in txqdisc mode, we should ask
* notifications when NS_REPORT is set, or roughly
* every half ring. To optimize this, we set a
* notification event when the client runs out of
* TX ring space, or when transmission fails. In
* the latter case we also break early.
*/
tx_ret = nm_os_generic_xmit_frame(&a);
if (unlikely(tx_ret)) {
if (!gna->txqdisc) {
/*
* No room for this mbuf in the device driver.
* Request a notification FOR A PREVIOUS MBUF,
* then call generic_netmap_tx_clean(kring) to do the
* double check and see if we can free more buffers.
* If there is space continue, else break;
* NOTE: the double check is necessary if the problem
* occurs in the txsync call after selrecord().
* Also, we need some way to tell the caller that not
* all buffers were queued onto the device (this was
* not a problem with native netmap driver where space
* is preallocated). The bridge has a similar problem
* and we solve it there by dropping the excess packets.
*/
generic_set_tx_event(kring, nm_i);
if (generic_netmap_tx_clean(kring, gna->txqdisc)) {
/* space now available */
continue;
} else {
break;
}
}
/* In txqdisc mode, the netmap-aware qdisc
* queue has the same length as the number of
* netmap slots (N). Since tail is advanced
* only when packets are dequeued, qdisc
* queue overrun cannot happen, so
* nm_os_generic_xmit_frame() did not fail
* because of that.
* However, packets can be dropped because
* carrier is off, or because our qdisc is
* being deactivated, or possibly for other
* reasons. In these cases, we just let the
* packet to be dropped. */
IFRATE(rate_ctx.new.txdrop++);
}
slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
nm_i = nm_next(nm_i, lim);
IFRATE(rate_ctx.new.txpkt++);
}
if (a.head != NULL) {
a.addr = NULL;
nm_os_generic_xmit_frame(&a);
}
/* Update hwcur to the next slot to transmit. Here nm_i
* is not necessarily head, we could break early. */
kring->nr_hwcur = nm_i;
}
/*
* Second, reclaim completed buffers
*/
if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) {
/* No more available slots? Set a notification event
* on a netmap slot that will be cleaned in the future.
* No doublecheck is performed, since txsync() will be
* called twice by netmap_poll().
*/
generic_set_tx_event(kring, nm_i);
}
generic_netmap_tx_clean(kring, gna->txqdisc);
return 0;
}
/*
* This handler is registered (through nm_os_catch_rx())
* within the attached network interface
* in the RX subsystem, so that every mbuf passed up by
* the driver can be stolen to the network stack.
* Stolen packets are put in a queue where the
* generic_netmap_rxsync() callback can extract them.
* Returns 1 if the packet was stolen, 0 otherwise.
*/
int
generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
struct netmap_kring *kring;
u_int work_done;
u_int r = MBUF_RXQ(m); /* receive ring number */
if (r >= na->num_rx_rings) {
r = r % na->num_rx_rings;
}
kring = &na->rx_rings[r];
if (kring->nr_mode == NKR_NETMAP_OFF) {
/* We must not intercept this mbuf. */
return 0;
}
/* limit the size of the queue */
if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) {
/* This may happen when GRO/LRO features are enabled for
* the NIC driver when the generic adapter does not
* support RX scatter-gather. */
RD(2, "Warning: driver pushed up big packet "
"(size=%d)", (int)MBUF_LEN(m));
m_freem(m);
} else if (unlikely(mbq_len(&kring->rx_queue) > 1024)) {
m_freem(m);
} else {
mbq_safe_enqueue(&kring->rx_queue, m);
}
if (netmap_generic_mit < 32768) {
/* no rx mitigation, pass notification up */
netmap_generic_irq(na, r, &work_done);
} else {
/* same as send combining, filter notification if there is a
* pending timer, otherwise pass it up and start a timer.
*/
if (likely(nm_os_mitigation_active(&gna->mit[r]))) {
/* Record that there is some pending work. */
gna->mit[r].mit_pending = 1;
} else {
netmap_generic_irq(na, r, &work_done);
nm_os_mitigation_start(&gna->mit[r]);
}
}
/* We have intercepted the mbuf. */
return 1;
}
/*
* generic_netmap_rxsync() extracts mbufs from the queue filled by
* generic_netmap_rx_handler() and puts their content in the netmap
* receive ring.
* Access must be protected because the rx handler is asynchronous,
*/
static int
generic_netmap_rxsync(struct netmap_kring *kring, int flags)
{
struct netmap_ring *ring = kring->ring;
struct netmap_adapter *na = kring->na;
u_int nm_i; /* index into the netmap ring */ //j,
u_int n;
u_int const lim = kring->nkr_num_slots - 1;
u_int const head = kring->rhead;
int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
/* Adapter-specific variables. */
uint16_t slot_flags = kring->nkr_slot_flags;
u_int nm_buf_len = NETMAP_BUF_SIZE(na);
struct mbq tmpq;
struct mbuf *m;
int avail; /* in bytes */
int mlen;
int copy;
if (head > lim)
return netmap_ring_reinit(kring);
IFRATE(rate_ctx.new.rxsync++);
/*
* First part: skip past packets that userspace has released.
* This can possibly make room for the second part.
*/
nm_i = kring->nr_hwcur;
if (nm_i != head) {
/* Userspace has released some packets. */
for (n = 0; nm_i != head; n++) {
struct netmap_slot *slot = &ring->slot[nm_i];
slot->flags &= ~NS_BUF_CHANGED;
nm_i = nm_next(nm_i, lim);
}
kring->nr_hwcur = head;
}
/*
* Second part: import newly received packets.
*/
if (!netmap_no_pendintr && !force_update) {
return 0;
}
nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */
/* Compute the available space (in bytes) in this netmap ring.
* The first slot that is not considered in is the one before
* nr_hwcur. */
avail = nm_prev(kring->nr_hwcur, lim) - nm_i;
if (avail < 0)
avail += lim + 1;
avail *= nm_buf_len;
/* First pass: While holding the lock on the RX mbuf queue,
* extract as many mbufs as they fit the available space,
* and put them in a temporary queue.
* To avoid performing a per-mbuf division (mlen / nm_buf_len) to
* to update avail, we do the update in a while loop that we
* also use to set the RX slots, but without performing the copy. */
mbq_init(&tmpq);
mbq_lock(&kring->rx_queue);
for (n = 0;; n++) {
m = mbq_peek(&kring->rx_queue);
if (!m) {
/* No more packets from the driver. */
break;
}
mlen = MBUF_LEN(m);
if (mlen > avail) {
/* No more space in the ring. */
break;
}
mbq_dequeue(&kring->rx_queue);
while (mlen) {
copy = nm_buf_len;
if (mlen < copy) {
copy = mlen;
}
mlen -= copy;
avail -= nm_buf_len;
ring->slot[nm_i].len = copy;
ring->slot[nm_i].flags = slot_flags | (mlen ? NS_MOREFRAG : 0);
nm_i = nm_next(nm_i, lim);
}
mbq_enqueue(&tmpq, m);
}
mbq_unlock(&kring->rx_queue);
/* Second pass: Drain the temporary queue, going over the used RX slots,
* and perform the copy out of the RX queue lock. */
nm_i = kring->nr_hwtail;
for (;;) {
void *nmaddr;
int ofs = 0;
int morefrag;
m = mbq_dequeue(&tmpq);
if (!m) {
break;
}
do {
nmaddr = NMB(na, &ring->slot[nm_i]);
/* We only check the address here on generic rx rings. */
if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */
m_freem(m);
mbq_purge(&tmpq);
mbq_fini(&tmpq);
return netmap_ring_reinit(kring);
}
copy = ring->slot[nm_i].len;
m_copydata(m, ofs, copy, nmaddr);
ofs += copy;
morefrag = ring->slot[nm_i].flags & NS_MOREFRAG;
nm_i = nm_next(nm_i, lim);
} while (morefrag);
m_freem(m);
}
mbq_fini(&tmpq);
if (n) {
kring->nr_hwtail = nm_i;
IFRATE(rate_ctx.new.rxpkt += n);
}
kring->nr_kflags &= ~NKR_PENDINTR;
return 0;
}
static void
generic_netmap_dtor(struct netmap_adapter *na)
{
struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
struct ifnet *ifp = netmap_generic_getifp(gna);
struct netmap_adapter *prev_na = gna->prev;
if (prev_na != NULL) {
D("Released generic NA %p", gna);
netmap_adapter_put(prev_na);
if (nm_iszombie(na)) {
/*
* The driver has been removed without releasing
* the reference so we need to do it here.
*/
netmap_adapter_put(prev_na);
}
}
NM_ATTACH_NA(ifp, prev_na);
/*
* netmap_detach_common(), that it's called after this function,
* overrides WNA(ifp) if na->ifp is not NULL.
*/
na->ifp = NULL;
D("Restored native NA %p", prev_na);
}
/*
* generic_netmap_attach() makes it possible to use netmap on
* a device without native netmap support.
* This is less performant than native support but potentially
* faster than raw sockets or similar schemes.
*
* In this "emulated" mode, netmap rings do not necessarily
* have the same size as those in the NIC. We use a default
* value and possibly override it if the OS has ways to fetch the
* actual configuration.
*/
int
generic_netmap_attach(struct ifnet *ifp)
{
struct netmap_adapter *na;
struct netmap_generic_adapter *gna;
int retval;
u_int num_tx_desc, num_rx_desc;
num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */
ND("Netmap ring size: TX = %d, RX = %d", num_tx_desc, num_rx_desc);
if (num_tx_desc == 0 || num_rx_desc == 0) {
D("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc);
return EINVAL;
}
gna = malloc(sizeof(*gna), M_DEVBUF, M_NOWAIT | M_ZERO);
if (gna == NULL) {
D("no memory on attach, give up");
return ENOMEM;
}
na = (struct netmap_adapter *)gna;
strncpy(na->name, ifp->if_xname, sizeof(na->name));
na->ifp = ifp;
na->num_tx_desc = num_tx_desc;
na->num_rx_desc = num_rx_desc;
na->nm_register = &generic_netmap_register;
na->nm_txsync = &generic_netmap_txsync;
na->nm_rxsync = &generic_netmap_rxsync;
na->nm_dtor = &generic_netmap_dtor;
/* when using generic, NAF_NETMAP_ON is set so we force
* NAF_SKIP_INTR to use the regular interrupt handler
*/
na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
ND("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
ifp->num_tx_queues, ifp->real_num_tx_queues,
ifp->tx_queue_len);
ND("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
ifp->num_rx_queues, ifp->real_num_rx_queues);
nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
retval = netmap_attach_common(na);
if (retval) {
free(gna, M_DEVBUF);
return retval;
}
gna->prev = NA(ifp); /* save old na */
if (gna->prev != NULL) {
netmap_adapter_get(gna->prev);
}
NM_ATTACH_NA(ifp, na);
nm_os_generic_set_features(gna);
D("Created generic NA %p (prev %p)", gna, gna->prev);
return retval;
}