freebsd-nq/sys/arm/arm/cpufunc_asm_xscale_c3.S
Ian Lepore 37211e7bcd Update all arm code that manipulates the PSR registers to use modern syntax.
It turns out the version of gas we're using interprets the old '_all' mask
as 'fc' instead of 'fsxc'.  That is, "all" doesn't really mean "all".

This was the cause of the "wrong-endian register restore" bug that's
been causing problems with some cortex-a9 chips.  The 'endian' bit in the
spsr register would never get changed (it falls into the 'x' mask group)
and the first return-from-exception would fail if the chip had powered on
with garbage in the spsr register that included the big-endian bit.  It's
unknown why this affected only certain cortex-a9 chips.
2014-02-02 00:48:15 +00:00

416 lines
11 KiB
ArmAsm

/* $NetBSD: cpufunc_asm_xscale.S,v 1.16 2002/08/17 16:36:32 thorpej Exp $ */
/*-
* Copyright (c) 2007 Olivier Houchard
* Copyright (c) 2001, 2002 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Allen Briggs and Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
/*-
* Copyright (c) 2001 Matt Thomas.
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997 Causality Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Causality Limited.
* 4. The name of Causality Limited may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY CAUSALITY LIMITED ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL CAUSALITY LIMITED BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* XScale core 3 assembly functions for CPU / MMU / TLB specific operations
*/
#include <machine/asm.h>
__FBSDID("$FreeBSD$");
/*
* Size of the XScale core D-cache.
*/
#define DCACHE_SIZE 0x00008000
.Lblock_userspace_access:
.word _C_LABEL(block_userspace_access)
/*
* CPWAIT -- Canonical method to wait for CP15 update.
* From: Intel 80200 manual, section 2.3.3.
*
* NOTE: Clobbers the specified temp reg.
*/
#define CPWAIT_BRANCH \
sub pc, pc, #4
#define CPWAIT(tmp) \
mrc p15, 0, tmp, c2, c0, 0 /* arbitrary read of CP15 */ ;\
mov tmp, tmp /* wait for it to complete */ ;\
CPWAIT_BRANCH /* branch to next insn */
#define CPWAIT_AND_RETURN_SHIFTER lsr #32
#define CPWAIT_AND_RETURN(tmp) \
mrc p15, 0, tmp, c2, c0, 0 /* arbitrary read of CP15 */ ;\
/* Wait for it to complete and branch to the return address */ \
sub pc, lr, tmp, CPWAIT_AND_RETURN_SHIFTER
#define ARM_USE_L2_CACHE
#define L2_CACHE_SIZE 0x80000
#define L2_CACHE_WAYS 8
#define L2_CACHE_LINE_SIZE 32
#define L2_CACHE_SETS (L2_CACHE_SIZE / \
(L2_CACHE_WAYS * L2_CACHE_LINE_SIZE))
#define L1_DCACHE_SIZE 32 * 1024
#define L1_DCACHE_WAYS 4
#define L1_DCACHE_LINE_SIZE 32
#define L1_DCACHE_SETS (L1_DCACHE_SIZE / \
(L1_DCACHE_WAYS * L1_DCACHE_LINE_SIZE))
#ifdef CACHE_CLEAN_BLOCK_INTR
#define XSCALE_CACHE_CLEAN_BLOCK \
stmfd sp!, {r4} ; \
mrs r4, cpsr ; \
orr r0, r4, #(I32_bit | F32_bit) ; \
msr cpsr_fsxc, r0
#define XSCALE_CACHE_CLEAN_UNBLOCK \
msr cpsr_fsxc, r4 ; \
ldmfd sp!, {r4}
#else
#define XSCALE_CACHE_CLEAN_BLOCK \
stmfd sp!, {r4} ; \
ldr r4, .Lblock_userspace_access ; \
ldr ip, [r4] ; \
orr r0, ip, #1 ; \
str r0, [r4]
#define XSCALE_CACHE_CLEAN_UNBLOCK \
str ip, [r3] ; \
ldmfd sp!, {r4}
#endif /* CACHE_CLEAN_BLOCK_INTR */
ENTRY_NP(xscalec3_cache_syncI)
ENTRY_NP(xscalec3_cache_purgeID)
mcr p15, 0, r0, c7, c5, 0 /* flush I cache (D cleaned below) */
ENTRY_NP(xscalec3_cache_cleanID)
ENTRY_NP(xscalec3_cache_purgeD)
ENTRY(xscalec3_cache_cleanD)
XSCALE_CACHE_CLEAN_BLOCK
mov r0, #0
1:
mov r1, r0, asl #30
mov r2, #0
2:
orr r3, r1, r2, asl #5
mcr p15, 0, r3, c7, c14, 2 /* clean and invalidate */
add r2, r2, #1
cmp r2, #L1_DCACHE_SETS
bne 2b
add r0, r0, #1
cmp r0, #4
bne 1b
CPWAIT(r0)
XSCALE_CACHE_CLEAN_UNBLOCK
mcr p15, 0, r0, c7, c10, 4 /* drain write buffer */
RET
END(xscalec3_cache_syncI)
END(xscalec3_cache_purgeID)
END(xscalec3_cache_cleanID)
END(xscalec3_cache_purgeD)
END(xscalec3_cache_cleanD)
ENTRY(xscalec3_cache_purgeID_rng)
cmp r1, #0x4000
bcs _C_LABEL(xscalec3_cache_cleanID)
and r2, r0, #0x1f
add r1, r1, r2
bic r0, r0, #0x1f
1: mcr p15, 0, r0, c7, c14, 1 /* clean/invalidate L1 D cache entry */
nop
mcr p15, 0, r0, c7, c5, 1 /* flush I cache single entry */
add r0, r0, #32
subs r1, r1, #32
bhi 1b
CPWAIT(r0)
mcr p15, 0, r0, c7, c10, 4 /* drain write buffer */
CPWAIT_AND_RETURN(r0)
END(xscalec3_cache_purgeID_rng)
ENTRY(xscalec3_cache_syncI_rng)
cmp r1, #0x4000
bcs _C_LABEL(xscalec3_cache_syncI)
and r2, r0, #0x1f
add r1, r1, r2
bic r0, r0, #0x1f
1: mcr p15, 0, r0, c7, c10, 1 /* clean D cache entry */
mcr p15, 0, r0, c7, c5, 1 /* flush I cache single entry */
add r0, r0, #32
subs r1, r1, #32
bhi 1b
CPWAIT(r0)
mcr p15, 0, r0, c7, c10, 4 /* drain write buffer */
CPWAIT_AND_RETURN(r0)
END(xscalec3_cache_syncI_rng)
ENTRY(xscalec3_cache_purgeD_rng)
cmp r1, #0x4000
bcs _C_LABEL(xscalec3_cache_cleanID)
and r2, r0, #0x1f
add r1, r1, r2
bic r0, r0, #0x1f
1: mcr p15, 0, r0, c7, c14, 1 /* Clean and invalidate D cache entry */
add r0, r0, #32
subs r1, r1, #32
bhi 1b
CPWAIT(r0)
mcr p15, 0, r0, c7, c10, 4 /* drain write buffer */
CPWAIT_AND_RETURN(r0)
END(xscalec3_cache_purgeD_rng)
ENTRY(xscalec3_cache_cleanID_rng)
ENTRY(xscalec3_cache_cleanD_rng)
cmp r1, #0x4000
bcs _C_LABEL(xscalec3_cache_cleanID)
and r2, r0, #0x1f
add r1, r1, r2
bic r0, r0, #0x1f
1: mcr p15, 0, r0, c7, c10, 1 /* clean L1 D cache entry */
nop
add r0, r0, #32
subs r1, r1, #32
bhi 1b
CPWAIT(r0)
mcr p15, 0, r0, c7, c10, 4 /* drain write buffer */
CPWAIT_AND_RETURN(r0)
END(xscalec3_cache_cleanID_rng)
END(xscalec3_cache_cleanD_rng)
ENTRY(xscalec3_l2cache_purge)
/* Clean-up the L2 cache */
mcr p15, 0, r0, c7, c10, 5 /* Data memory barrier */
mov r0, #0
1:
mov r1, r0, asl #29
mov r2, #0
2:
orr r3, r1, r2, asl #5
mcr p15, 1, r3, c7, c15, 2
add r2, r2, #1
cmp r2, #L2_CACHE_SETS
bne 2b
add r0, r0, #1
cmp r0, #8
bne 1b
mcr p15, 0, r0, c7, c10, 4 @ data write barrier
CPWAIT(r0)
mcr p15, 0, r0, c7, c10, 5 /* Data memory barrier */
RET
END(xscalec3_l2cache_purge)
ENTRY(xscalec3_l2cache_clean_rng)
mcr p15, 0, r0, c7, c10, 5 /* Data memory barrier */
and r2, r0, #0x1f
add r1, r1, r2
bic r0, r0, #0x1f
1: mcr p15, 1, r0, c7, c11, 1 /* Clean L2 D cache entry */
add r0, r0, #32
subs r1, r1, #32
bhi 1b
CPWAIT(r0)
mcr p15, 0, r0, c7, c10, 4 @ data write barrier
mcr p15, 0, r0, c7, c10, 5
CPWAIT_AND_RETURN(r0)
END(xscalec3_l2cache_clean_rng)
ENTRY(xscalec3_l2cache_purge_rng)
mcr p15, 0, r0, c7, c10, 5 /* Data memory barrier */
and r2, r0, #0x1f
add r1, r1, r2
bic r0, r0, #0x1f
1: mcr p15, 1, r0, c7, c11, 1 /* Clean L2 D cache entry */
mcr p15, 1, r0, c7, c7, 1 /* Invalidate L2 D cache entry */
add r0, r0, #32
subs r1, r1, #32
bhi 1b
mcr p15, 0, r0, c7, c10, 4 @ data write barrier
mcr p15, 0, r0, c7, c10, 5
CPWAIT_AND_RETURN(r0)
END(xscalec3_l2cache_purge_rng)
ENTRY(xscalec3_l2cache_flush_rng)
mcr p15, 0, r0, c7, c10, 5 /* Data memory barrier */
and r2, r0, #0x1f
add r1, r1, r2
bic r0, r0, #0x1f
1: mcr p15, 1, r0, c7, c7, 1 /* Invalidate L2 cache line */
add r0, r0, #32
subs r1, r1, #32
bhi 1b
mcr p15, 0, r0, c7, c10, 4 @ data write barrier
mcr p15, 0, r0, c7, c10, 5
CPWAIT_AND_RETURN(r0)
END(xscalec3_l2cache_flush_rng)
/*
* Functions to set the MMU Translation Table Base register
*
* We need to clean and flush the cache as it uses virtual
* addresses that are about to change.
*/
ENTRY(xscalec3_setttb)
#ifdef CACHE_CLEAN_BLOCK_INTR
mrs r3, cpsr
orr r1, r3, #(I32_bit | F32_bit)
msr cpsr_fsxc, r1
#else
ldr r3, .Lblock_userspace_access
ldr r2, [r3]
orr r1, r2, #1
str r1, [r3]
#endif
stmfd sp!, {r0-r3, lr}
bl _C_LABEL(xscalec3_cache_cleanID)
mcr p15, 0, r0, c7, c5, 0 /* invalidate I$ and BTB */
mcr p15, 0, r0, c7, c10, 4 /* drain write and fill buffer */
CPWAIT(r0)
ldmfd sp!, {r0-r3, lr}
#ifdef ARM_USE_L2_CACHE
orr r0, r0, #0x18 /* cache the page table in L2 */
#endif
/* Write the TTB */
mcr p15, 0, r0, c2, c0, 0
/* If we have updated the TTB we must flush the TLB */
mcr p15, 0, r0, c8, c7, 0 /* invalidate I+D TLB */
CPWAIT(r0)
#ifdef CACHE_CLEAN_BLOCK_INTR
msr cpsr_fsxc, r3
#else
str r2, [r3]
#endif
RET
END(xscalec3_setttb)
/*
* Context switch.
*
* These is the CPU-specific parts of the context switcher cpu_switch()
* These functions actually perform the TTB reload.
*
* NOTE: Special calling convention
* r1, r4-r13 must be preserved
*/
ENTRY(xscalec3_context_switch)
/*
* CF_CACHE_PURGE_ID will *ALWAYS* be called prior to this.
* Thus the data cache will contain only kernel data and the
* instruction cache will contain only kernel code, and all
* kernel mappings are shared by all processes.
*/
#ifdef ARM_USE_L2_CACHE
orr r0, r0, #0x18 /* Cache the page table in L2 */
#endif
/* Write the TTB */
mcr p15, 0, r0, c2, c0, 0
/* If we have updated the TTB we must flush the TLB */
mcr p15, 0, r0, c8, c7, 0 /* flush the I+D tlb */
CPWAIT_AND_RETURN(r0)
END(xscalec3_context_switch)