freebsd-nq/sys/dev/bhnd/tools/nvram_map_gen.awk
Landon J. Fuller 1728aef23d bhnd(4): Implement NVRAM support required for PMU bring-up.
- Added a generic bhnd_nvram_parser API, with support for the TLV format
  used on WGT634U devices, the standard BCM NVRAM format used on most
  modern devices, and the "board text file" format used on some hardware
  to supply external NVRAM data at runtime (e.g. via an EFI variable).

- Extended the bhnd_bus_if and bhnd_nvram_if interfaces to support both
  string-based and primitive data type variable access, required for
  common behavior across both SPROM and NVRAM data sources.
- Extended the existing SPROM implementation to support the new
  string-based NVRAM APIs.

- Added an abstract bhnd_nvram driver, implementing the bhnd_nvram_if
  atop the bhnd_nvram_parser API.
- Added a CFE-based bhnd_nvram driver to provide read-only access to
  NVRAM data on MIPS SoCs, pending implementation of a flash-aware
  bhnd_nvram driver.

Approved by:	adrian (mentor)
Differential Revision:	https://reviews.freebsd.org/D7489
2016-08-16 21:32:05 +00:00

1163 lines
26 KiB
Awk
Executable File

#!/usr/bin/awk -f
#-
# Copyright (c) 2015-2016 Landon Fuller <landon@landonf.org>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer,
# without modification.
# 2. Redistributions in binary form must reproduce at minimum a disclaimer
# similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
# redistribution must be conditioned upon including a substantially
# similar Disclaimer requirement for further binary redistribution.
#
# NO WARRANTY
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
# AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
# THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGES.
#
# $FreeBSD$
BEGIN {
RS="\n"
depth = 0
symbols[depth,"_file"] = FILENAME
num_output_vars = 0
OUTPUT_FILE = null
# Seed rand()
srand()
# Output type
OUT_T = null
OUT_T_HEADER = "HEADER"
OUT_T_DATA = "DATA"
# Enable debug output
DEBUG = 0
# Maximum revision
REV_MAX = 255
# Parse arguments
if (ARGC < 2)
usage()
for (i = 1; i < ARGC; i++) {
if (ARGV[i] == "--debug") {
DEBUG = 1
} else if (ARGV[i] == "-d" && OUT_T == null) {
OUT_T = OUT_T_DATA
} else if (ARGV[i] == "-h" && OUT_T == null) {
OUT_T = OUT_T_HEADER
} else if (ARGV[i] == "-o") {
i++
if (i >= ARGC)
usage()
OUTPUT_FILE = ARGV[i]
} else if (ARGV[i] == "--") {
i++
break
} else if (ARGV[i] !~ /^-/) {
FILENAME = ARGV[i]
} else {
print "unknown option " ARGV[i]
usage()
}
}
ARGC=2
if (OUT_T == null) {
print("error: one of -d or -h required")
usage()
}
if (FILENAME == null) {
print("error: no input file specified")
usage()
}
if (OUTPUT_FILE == "-") {
OUTPUT_FILE = "/dev/stdout"
} else if (OUTPUT_FILE == null) {
_bi = split(FILENAME, _paths, "/")
OUTPUT_FILE = _paths[_bi]
if (OUTPUT_FILE !~ /^bhnd_/)
OUTPUT_FILE = "bhnd_" OUTPUT_FILE
if (OUT_T == OUT_T_HEADER)
OUTPUT_FILE = OUTPUT_FILE ".h"
else
OUTPUT_FILE = OUTPUT_FILE "_data.h"
}
# Format Constants
FMT["hex"] = "BHND_NVRAM_SFMT_HEX"
FMT["decimal"] = "BHND_NVRAM_SFMT_DEC"
FMT["ccode"] = "BHND_NVRAM_SFMT_CCODE"
FMT["macaddr"] = "BHND_NVRAM_SFMT_MACADDR"
FMT["led_dc"] = "BHND_NVRAM_SFMT_LEDDC"
# Data Type Constants
DTYPE["u8"] = "BHND_NVRAM_TYPE_UINT8"
DTYPE["u16"] = "BHND_NVRAM_TYPE_UINT16"
DTYPE["u32"] = "BHND_NVRAM_TYPE_UINT32"
DTYPE["i8"] = "BHND_NVRAM_TYPE_INT8"
DTYPE["i16"] = "BHND_NVRAM_TYPE_INT16"
DTYPE["i32"] = "BHND_NVRAM_TYPE_INT32"
DTYPE["char"] = "BHND_NVRAM_TYPE_CHAR"
# Default masking for standard types
TMASK["u8"] = "0x000000FF"
TMASK["u16"] = "0x0000FFFF"
TMASK["u32"] = "0xFFFFFFFF"
TMASK["i8"] = TMASK["u8"]
TMASK["i16"] = TMASK["u16"]
TMASK["i32"] = TMASK["u32"]
TMASK["char"] = TMASK["u8"]
# Byte sizes for standard types
TSIZE["u8"] = "1"
TSIZE["u16"] = "2"
TSIZE["u32"] = "4"
TSIZE["i8"] = TSIZE["u8"]
TSIZE["i16"] = TSIZE["u8"]
TSIZE["i32"] = TSIZE["u8"]
TSIZE["char"] = "1"
# Common Regexs
INT_REGEX = "^(0|[1-9][0-9]*),?$"
HEX_REGEX = "^0x[A-Fa-f0-9]+,?$"
ARRAY_REGEX = "\\[(0|[1-9][0-9]*)\\]"
TYPES_REGEX = "^(((u|i)(8|16|32))|char)("ARRAY_REGEX")?,?$"
IDENT_REGEX = "^[A-Za-z_][A-Za-z0-9_]*,?$"
SROM_OFF_REGEX = "("TYPES_REGEX"|"HEX_REGEX")"
# Parser states types
ST_STRUCT_BLOCK = "struct" # struct block
ST_VAR_BLOCK = "var" # variable block
ST_SROM_DEFN = "srom" # srom offset defn
ST_NONE = "NONE" # default state
# Property types
PROP_T_SFMT = "sfmt"
PROP_T_ALL1 = "all1"
# Internal variables used for parser state
# tracking
STATE_TYPE = "_state_type"
STATE_IDENT = "_state_block_name"
STATE_LINENO = "_state_first_line"
STATE_ISBLOCK = "_state_is_block"
# Common array keys
DEF_LINE = "def_line"
NUM_REVS = "num_revs"
REV = "rev"
# Revision array keys
REV_START = "rev_start"
REV_END = "rev_end"
REV_DESC = "rev_decl"
REV_NUM_OFFS = "num_offs"
# Offset array keys
OFF = "off"
OFF_NUM_SEGS = "off_num_segs"
OFF_SEG = "off_seg"
# Segment array keys
SEG_ADDR = "seg_addr"
SEG_COUNT = "seg_count"
SEG_TYPE = "seg_type"
SEG_MASK = "seg_mask"
SEG_SHIFT = "seg_shift"
# Variable array keys
VAR_NAME = "v_name"
VAR_TYPE = "v_type"
VAR_BASE_TYPE = "v_base_type"
VAR_FMT = "v_fmt"
VAR_STRUCT = "v_parent_struct"
VAR_PRIVATE = "v_private"
VAR_ARRAY = "v_array"
VAR_IGNALL1 = "v_ignall1"
}
# return the flag definition for variable `v`
function gen_var_flags (v)
{
_num_flags = 0;
if (vars[v,VAR_ARRAY])
_flags[_num_flags++] = "BHND_NVRAM_VF_ARRAY"
if (vars[v,VAR_PRIVATE])
_flags[_num_flags++] = "BHND_NVRAM_VF_MFGINT"
if (vars[v,VAR_IGNALL1])
_flags[_num_flags++] = "BHND_NVRAM_VF_IGNALL1"
if (_num_flags == 0)
_flags[_num_flags++] = "0"
return (join(_flags, "|", _num_flags))
}
# emit the bhnd_sprom_offsets for a given variable revision key
function emit_var_sprom_offsets (v, revk)
{
emit(sprintf("{{%u, %u}, (struct bhnd_sprom_offset[]) {\n",
vars[revk,REV_START],
vars[revk,REV_END]))
output_depth++
num_offs = vars[revk,REV_NUM_OFFS]
num_offs_written = 0
elem_count = 0
for (offset = 0; offset < num_offs; offset++) {
offk = subkey(revk, OFF, offset"")
num_segs = vars[offk,OFF_NUM_SEGS]
for (seg = 0; seg < num_segs; seg++) {
segk = subkey(offk, OFF_SEG, seg"")
for (seg_n = 0; seg_n < vars[segk,SEG_COUNT]; seg_n++) {
seg_addr = vars[segk,SEG_ADDR]
seg_addr += TSIZE[vars[segk,SEG_TYPE]] * seg_n
emit(sprintf("{%s, %s, %s, %s, %s},\n",
seg_addr,
(seg > 0) ? "true" : "false",
DTYPE[vars[segk,SEG_TYPE]],
vars[segk,SEG_SHIFT],
vars[segk,SEG_MASK]))
num_offs_written++
}
}
}
output_depth--
emit("}, " num_offs_written "},\n")
}
# emit a bhnd_nvram_vardef for variable name `v`
function emit_nvram_vardef (v)
{
emit(sprintf("{\"%s\", %s, %s, %s, (struct bhnd_sprom_vardefn[]) {\n",
v suffix,
DTYPE[vars[v,VAR_BASE_TYPE]],
FMT[vars[v,VAR_FMT]],
gen_var_flags(v)))
output_depth++
for (rev = 0; rev < vars[v,NUM_REVS]; rev++) {
revk = subkey(v, REV, rev"")
emit_var_sprom_offsets(v, revk)
}
output_depth--
emit("}, " vars[v,NUM_REVS] "},\n")
}
# emit a header name #define for variable `v`
function emit_var_namedef (v)
{
emit("#define\tBHND_NVAR_" toupper(v) "\t\"" v "\"\n")
}
# generate a set of var offset definitions for struct variable `st_vid`
function gen_struct_var_offsets (vid, revk, st_vid, st_revk, base_addr)
{
# Copy all offsets to the new variable
for (offset = 0; offset < vars[v,REV_NUM_OFFS]; offset++) {
st_offk = subkey(st_revk, OFF, offset"")
offk = subkey(revk, OFF, offset"")
# Copy all segments to the new variable, applying base
# address adjustment
num_segs = vars[st_offk,OFF_NUM_SEGS]
vars[offk,OFF_NUM_SEGS] = num_segs
for (seg = 0; seg < num_segs; seg++) {
st_segk = subkey(st_offk, OFF_SEG, seg"")
segk = subkey(offk, OFF_SEG, seg"")
vars[segk,SEG_ADDR] = vars[st_segk,SEG_ADDR] + \
base_addr""
vars[segk,SEG_COUNT] = vars[st_segk,SEG_COUNT]
vars[segk,SEG_TYPE] = vars[st_segk,SEG_TYPE]
vars[segk,SEG_MASK] = vars[st_segk,SEG_MASK]
vars[segk,SEG_SHIFT] = vars[st_segk,SEG_SHIFT]
}
}
}
# generate a complete set of variable definitions for struct variable `st_vid`.
function gen_struct_vars (st_vid)
{
st = vars[st_vid,VAR_STRUCT]
st_max_off = 0
# determine the total number of variables to generate
for (st_rev = 0; st_rev < structs[st,NUM_REVS]; st_rev++) {
srevk = subkey(st, REV, st_rev"")
for (off = 0; off < structs[srevk,REV_NUM_OFFS]; off++) {
if (off > st_max_off)
st_max_off = off
}
}
# generate variable records for each defined struct offset
for (off = 0; off < st_max_off; off++) {
# Construct basic variable definition
v = st_vid off""
vars[v,VAR_TYPE] = vars[st_vid,VAR_TYPE]
vars[v,VAR_BASE_TYPE] = vars[st_vid,VAR_BASE_TYPE]
vars[v,VAR_FMT] = vars[st_vid,VAR_FMT]
vars[v,VAR_PRIVATE] = vars[st_vid,VAR_PRIVATE]
vars[v,VAR_ARRAY] = vars[st_vid,VAR_ARRAY]
vars[v,VAR_IGNALL1] = vars[st_vid,VAR_IGNALL1]
vars[v,NUM_REVS] = 0
# Add to output variable list
output_vars[num_output_vars++] = v
# Construct revision / offset entries
for (srev = 0; srev < structs[st,NUM_REVS]; srev++) {
# Struct revision key
st_revk = subkey(st, REV, srev"")
# Skip offsets not defined for this revision
if (off > structs[st_revk,REV_NUM_OFFS])
continue
# Strut offset key and associated base address */
offk = subkey(st_revk, OFF, off"")
base_addr = structs[offk,SEG_ADDR]
for (vrev = 0; vrev < vars[st_vid,NUM_REVS]; vrev++) {
st_var_revk = subkey(st_vid, REV, vrev"")
v_start = vars[st_var_revk,REV_START]
v_end = vars[st_var_revk,REV_END]
s_start = structs[st_revk,REV_START]
s_end = structs[st_revk,REV_END]
# We don't support computing the union
# of partially overlapping ranges
if ((v_start < s_start && v_end >= s_start) ||
(v_start <= s_end && v_end > s_end))
{
errorx("partially overlapping " \
"revision ranges are not supported")
}
# skip variables revs that are not within
# the struct offset's compatibility range
if (v_start < s_start || v_start > s_end ||
v_end < s_start || v_end > s_end)
continue
# Generate the new revision record
rev = vars[v,NUM_REVS] ""
revk = subkey(v, REV, rev)
vars[v,NUM_REVS]++
vars[revk,DEF_LINE] = vars[st_revk,DEF_LINE]
vars[revk,REV_START] = v_start
vars[revk,REV_END] = v_end
vars[revk,REV_NUM_OFFS] = \
vars[st_var_revk,REV_NUM_OFFS]
gen_struct_var_offsets(v, revk, st_vid, st_revk,
base_addr)
}
}
}
}
END {
# Skip completion handling if exiting from an error
if (_EARLY_EXIT)
exit 1
# Check for complete block closure
if (depth > 0) {
block_start = g(STATE_LINENO)
errorx("missing '}' for block opened on line " block_start "")
}
# Generate concrete variable definitions for all struct variables
for (v in var_names) {
if (vars[v,VAR_STRUCT] != null) {
gen_struct_vars(v)
} else {
output_vars[num_output_vars++] = v
}
}
# Apply lexicographical sorting. To support more effecient table
# searching, we guarantee a stable sort order (using C collation).
sort(output_vars)
# Truncate output file and write common header
printf("") > OUTPUT_FILE
emit("/*\n")
emit(" * THIS FILE IS AUTOMATICALLY GENERATED. DO NOT EDIT.\n")
emit(" *\n")
emit(" * generated from nvram map: " FILENAME "\n")
emit(" */\n")
emit("\n")
# Emit all variable definitions
if (OUT_T == OUT_T_DATA) {
emit("#include <dev/bhnd/nvram/bhnd_nvram_common.h>\n")
emit("static const struct bhnd_nvram_vardefn "\
"bhnd_nvram_vardefs[] = {\n")
output_depth++
for (i = 0; i < num_output_vars; i++)
emit_nvram_vardef(output_vars[i])
output_depth--
emit("};\n")
} else if (OUT_T == OUT_T_HEADER) {
for (i = 0; i < num_output_vars; i++)
emit_var_namedef(output_vars[i])
}
printf("%u variable records written to %s\n", num_output_vars,
OUTPUT_FILE) >> "/dev/stderr"
}
#
# Print usage
#
function usage ()
{
print "usage: bhnd_nvram_map.awk <input map> [-hd] [-o output file]"
_EARLY_EXIT = 1
exit 1
}
#
# Join all array elements with the given separator
#
function join (array, sep, count)
{
if (count == 0)
return ("")
_result = array[0]
for (_ji = 1; _ji < count; _ji++)
_result = _result sep array[_ji]
return (_result)
}
#
# Sort a contiguous integer-indexed array, using standard awk comparison
# operators over its values.
#
function sort (array) {
# determine array size
_sort_alen = 0
for (_ssort_key in array)
_sort_alen++
if (_sort_alen <= 1)
return
# perform sort
_qsort(array, 0, _sort_alen-1)
}
function _qsort (array, first, last)
{
if (first >= last)
return
# select pivot element
_qpivot = int(first + int((last-first+1) * rand()))
_qleft = first
_qright = last
_qpivot_val = array[_qpivot]
# partition
while (_qleft <= _qright) {
while (array[_qleft] < _qpivot_val)
_qleft++
while (array[_qright] > _qpivot_val)
_qright--
# swap
if (_qleft <= _qright) {
_qleft_val = array[_qleft]
_qright_val = array[_qright]
array[_qleft] = _qright_val
array[_qright] = _qleft_val
_qleft++
_qright--
}
}
# sort the partitions
_qsort(array, first, _qright)
_qsort(array, _qleft, last)
}
#
# Print msg to output file, without indentation
#
function emit_ni (msg)
{
printf("%s", msg) >> OUTPUT_FILE
}
#
# Print msg to output file, indented for the current `output_depth`
#
function emit (msg)
{
for (_ind = 0; _ind < output_depth; _ind++)
emit_ni("\t")
emit_ni(msg)
}
#
# Print a warning to stderr
#
function warn (msg)
{
print "warning:", msg, "at", FILENAME, "line", NR > "/dev/stderr"
}
#
# Print a compiler error to stderr
#
function error (msg)
{
errorx(msg " at " FILENAME " line " NR ":\n\t" $0)
}
#
# Print an error message without including the source line information
#
function errorx (msg)
{
print "error:", msg > "/dev/stderr"
_EARLY_EXIT=1
exit 1
}
#
# Print a debug output message
#
function debug (msg)
{
if (!DEBUG)
return
for (_di = 0; _di < depth; _di++)
printf("\t") > "/dev/stderr"
print msg > "/dev/stderr"
}
#
# Return an array key composed of the given (parent, selector, child)
# tuple.
# The child argument is optional and may be omitted.
#
function subkey (parent, selector, child)
{
if (child != null)
return (parent SUBSEP selector SUBSEP child)
else
return (parent SUBSEP selector)
}
#
# Advance to the next non-comment input record
#
function next_line ()
{
do {
_result = getline
} while (_result > 0 && $0 ~ /^[ \t]*#.*/) # skip comment lines
return (_result)
}
#
# Advance to the next input record and verify that it matches @p regex
#
function getline_matching (regex)
{
_result = next_line()
if (_result <= 0)
return (_result)
if ($0 ~ regex)
return (1)
return (-1)
}
#
# Shift the current fields left by `n`.
#
# If all fields are consumed and the optional do_getline argument is true,
# read the next line.
#
function shiftf (n, do_getline)
{
if (n > NF) error("shift past end of line")
for (_si = 1; _si <= NF-n; _si++) {
$(_si) = $(_si+n)
}
NF = NF - n
if (NF == 0 && do_getline)
next_line()
}
#
# Parse a revision descriptor from the current line.
#
function parse_revdesc (result)
{
_rstart = 0
_rend = 0
if ($2 ~ "[0-9]*-[0-9*]") {
split($2, _revrange, "[ \t]*-[ \t]*")
_rstart = _revrange[1]
_rend = _revrange[2]
} else if ($2 ~ "(>|>=|<|<=)" && $3 ~ "[1-9][0-9]*") {
if ($2 == ">") {
_rstart = int($3)+1
_rend = REV_MAX
} else if ($2 == ">=") {
_rstart = int($3)
_rend = REV_MAX
} else if ($2 == "<" && int($3) > 0) {
_rstart = 0
_rend = int($3)-1
} else if ($2 == "<=") {
_rstart = 0
_rend = int($3)-1
} else {
error("invalid revision descriptor")
}
} else if ($2 ~ "[1-9][0-9]*") {
_rstart = int($2)
_rend = int($2)
} else {
error("invalid revision descriptor")
}
result[REV_START] = _rstart
result[REV_END] = _rend
}
#
# Push a new parser state.
#
# The name may be null, in which case the STATE_IDENT variable will not be
# defined in this scope
#
function push_state (type, name, block) {
depth++
push(STATE_LINENO, NR)
if (name != null)
push(STATE_IDENT, name)
push(STATE_TYPE, type)
push(STATE_ISBLOCK, block)
}
#
# Pop the top of the parser state stack.
#
function pop_state () {
# drop all symbols defined at this depth
for (s in symbols) {
if (s ~ "^"depth"[^0-9]")
delete symbols[s]
}
depth--
}
#
# Find opening brace and push a new parser state for a brace-delimited block.
#
# The name may be null, in which case the STATE_IDENT variable will not be
# defined in this scope
#
function open_block (type, name)
{
if ($0 ~ "{" || getline_matching("^[ \t]*{") > 0) {
push_state(type, name, 1)
sub("^[^{]+{", "", $0)
return
}
error("found '"$1 "' instead of expected '{' for '" name "'")
}
#
# Find closing brace and pop parser states until the first
# brace-delimited block is discarded.
#
function close_block ()
{
if ($0 !~ "}")
error("internal error - no closing brace")
# pop states until we exit the first enclosing block
do {
_closed_block = g(STATE_ISBLOCK)
pop_state()
} while (!_closed_block)
# strip everything prior to the block closure
sub("^[^}]*}", "", $0)
}
# Internal symbol table lookup function. Returns the symbol depth if
# name is found at or above scope; if scope is null, it defauls to 0
function _find_sym (name, scope)
{
if (scope == null)
scope = 0;
for (i = scope; i < depth; i++) {
if ((depth-i,name) in symbols)
return (depth-i)
}
return (-1)
}
#
# Look up a variable in the symbol table with `name` and return its value.
#
# If `scope` is not null, the variable search will start at the provided
# scope level -- 0 is the current scope, 1 is the parent's scope, etc.
#
function g (name, scope)
{
_g_depth = _find_sym(name, scope)
if (_g_depth < 0)
error("'" name "' is undefined")
return (symbols[_g_depth,name])
}
function is_defined (name, scope)
{
return (_find_sym(name, scope) >= 0)
}
# Define a new variable in the symbol table's current scope,
# with the given value
function push (name, value)
{
symbols[depth,name] = value
}
# Set an existing variable's value in the symbol table; if not yet defined,
# will trigger an error
function set (name, value, scope)
{
for (i = 0; i < depth; i++) {
if ((depth-i,name) in symbols) {
symbols[depth-i,name] = value
return
}
}
# No existing value, cannot define
error("'" name "' is undefined")
}
# Evaluates to true if immediately within a block scope of the given type
function in_state (type)
{
if (!is_defined(STATE_TYPE))
return (type == ST_NONE)
return (type == g(STATE_TYPE))
}
# Evaluates to true if within an immediate or non-immediate block scope of the
# given type
function in_nested_state (type)
{
for (i = 0; i < depth; i++) {
if ((depth-i,STATE_TYPE) in symbols) {
if (symbols[depth-i,STATE_TYPE] == type)
return (1)
}
}
return (0)
}
# Evaluates to true if definitions of the given type are permitted within
# the current scope
function allow_def (type)
{
if (type == ST_VAR_BLOCK) {
return (in_state(ST_NONE) || in_state(ST_STRUCT_BLOCK))
} else if (type == ST_STRUCT_BLOCK) {
return (in_state(ST_NONE))
} else if (type == ST_SROM_DEFN) {
return (in_state(ST_VAR_BLOCK) || in_state(ST_STRUCT_BLOCK))
}
error("unknown type '" type "'")
}
# struct definition
$1 == ST_STRUCT_BLOCK && allow_def($1) {
name = $2
# Remove array[] specifier
if (sub(/\[\]$/, "", name) == 0)
error("expected '" name "[]', not '" name "'")
if (name !~ IDENT_REGEX || name ~ TYPES_REGEX)
error("invalid identifier '" name "'")
# Add top-level struct entry
if ((name,DEF_LINE) in structs)
error("struct identifier '" name "' previously defined on " \
"line " structs[name,DEF_LINE])
structs[name,DEF_LINE] = NR
structs[name,NUM_REVS] = 0
# Open the block
debug("struct " name " {")
open_block(ST_STRUCT_BLOCK, name)
}
# struct srom descriptor
$1 == ST_SROM_DEFN && allow_def(ST_SROM_DEFN) && in_state(ST_STRUCT_BLOCK) {
sid = g(STATE_IDENT)
# parse revision descriptor
rev_desc[REV_START] = 0
parse_revdesc(rev_desc)
# assign revision id
rev = structs[sid,NUM_REVS] ""
revk = subkey(sid, REV, rev)
structs[sid,NUM_REVS]++
# init basic revision state
structs[revk,REV_START] = rev_desc[REV_START]
structs[revk,REV_END] = rev_desc[REV_END]
if (match($0, "\\[[^]]*\\]") <= 0)
error("expected base address array")
addrs_str = substr($0, RSTART+1, RLENGTH-2)
num_offs = split(addrs_str, addrs, ",[ \t]*")
structs[revk, REV_NUM_OFFS] = num_offs
for (i = 1; i <= num_offs; i++) {
offk = subkey(revk, OFF, (i-1) "")
if (addrs[i] !~ HEX_REGEX)
error("invalid base address '" addrs[i] "'")
structs[offk,SEG_ADDR] = addrs[i]
}
debug("struct_srom " structs[revk,REV_START] "... [" addrs_str "]")
next
}
# close any previous srom revision descriptor
$1 == ST_SROM_DEFN && in_state(ST_SROM_DEFN) {
pop_state()
}
# open a new srom revision descriptor
$1 == ST_SROM_DEFN && allow_def(ST_SROM_DEFN) {
# parse revision descriptor
parse_revdesc(rev_desc)
# assign revision id
vid = g(STATE_IDENT)
rev = vars[vid,NUM_REVS] ""
revk = subkey(vid, REV, rev)
vars[vid,NUM_REVS]++
# vend scoped rev/revk variables for use in the
# revision offset block
push("rev_id", rev)
push("rev_key", revk)
# init basic revision state
vars[revk,DEF_LINE] = NR
vars[revk,REV_START] = rev_desc[REV_START]
vars[revk,REV_END] = rev_desc[REV_END]
vars[revk,REV_NUM_OFFS] = 0
debug("srom " rev_desc[REV_START] "-" rev_desc[REV_END] " {")
push_state(ST_SROM_DEFN, null, 0)
# seek to the first offset definition
do {
shiftf(1)
} while ($1 !~ SROM_OFF_REGEX && NF > 0)
}
#
# Extract and return the array length from the given type string.
# Returns -1 if the type is not an array.
#
function type_array_len (type)
{
# extract byte count[] and width
if (match(type, ARRAY_REGEX"$") > 0) {
return (substr(type, RSTART+1, RLENGTH-2))
} else {
return (-1)
}
}
#
# Parse an offset declaration from the current line.
#
function parse_offset_segment (revk, offk)
{
vid = g(STATE_IDENT)
# use explicit type if specified, otherwise use the variable's
# common type
if ($1 !~ HEX_REGEX) {
type = $1
if (type !~ TYPES_REGEX)
error("unknown field type '" type "'")
shiftf(1)
} else {
type = vars[vid,VAR_TYPE]
}
# read offset value
offset = $1
if (offset !~ HEX_REGEX)
error("invalid offset value '" offset "'")
# extract byte count[], base type, and width
if (match(type, ARRAY_REGEX"$") > 0) {
count = int(substr(type, RSTART+1, RLENGTH-2))
type = substr(type, 1, RSTART-1)
} else {
count = 1
}
width = TSIZE[type]
# seek to attributes or end of the offset expr
sub("^[^,(|){}]+", "", $0)
# parse attributes
mask=TMASK[type]
shift=0
if ($1 ~ "^\\(") {
# extract attribute list
if (match($0, "\\([^|\(\)]*\\)") <= 0)
error("expected attribute list")
attr_str = substr($0, RSTART+1, RLENGTH-2)
# drop from input line
$0 = substr($0, RSTART+RLENGTH, length($0) - RSTART+RLENGTH)
# parse attributes
num_attr = split(attr_str, attrs, ",[ \t]*")
for (i = 1; i <= num_attr; i++) {
attr = attrs[i]
if (sub("^&[ \t]*", "", attr) > 0) {
mask = attr
} else if (sub("^<<[ \t]*", "", attr) > 0) {
shift = "-"attr
} else if (sub("^>>[ \t]*", "", attr) > 0) {
shift = attr
} else {
error("unknown attribute '" attr "'")
}
}
}
# assign segment id
seg = vars[offk,OFF_NUM_SEGS] ""
segk = subkey(offk, OFF_SEG, seg)
vars[offk,OFF_NUM_SEGS]++
vars[segk,SEG_ADDR] = offset + (width * _oi)
vars[segk,SEG_COUNT] = count
vars[segk,SEG_TYPE] = type
vars[segk,SEG_MASK] = mask
vars[segk,SEG_SHIFT] = shift
debug("{"vars[segk,SEG_ADDR]", "type", "mask", "shift"}" \
_comma)
}
# revision offset definition
$1 ~ SROM_OFF_REGEX && in_state(ST_SROM_DEFN) {
vid = g(STATE_IDENT)
# fetch rev id/key defined by our parent block
rev = g("rev_id")
revk = g("rev_key")
# parse all offsets
do {
# assign offset id
off = vars[revk,REV_NUM_OFFS] ""
offk = subkey(revk, OFF, off)
vars[revk,REV_NUM_OFFS]++
# initialize segment count
vars[offk,DEF_LINE] = NR
vars[offk,OFF_NUM_SEGS] = 0
debug("[")
# parse all segments
do {
parse_offset_segment(revk, offk)
_more_seg = ($1 == "|")
if (_more_seg)
shiftf(1, 1)
} while (_more_seg)
debug("],")
_more_vals = ($1 == ",")
if (_more_vals)
shiftf(1, 1)
} while (_more_vals)
}
# variable definition
(($1 == "private" && $2 ~ TYPES_REGEX) || $1 ~ TYPES_REGEX) &&
allow_def(ST_VAR_BLOCK) \
{
# check for 'private' flag
if ($1 == "private") {
private = 1
shiftf(1)
} else {
private = 0
}
type = $1
name = $2
array = 0
debug(type " " name " {")
# Check for and remove any array[] specifier
base_type = type
if (sub(ARRAY_REGEX"$", "", base_type) > 0)
array = 1
# verify type
if (!base_type in DTYPE)
error("unknown type '" $1 "'")
# Add top-level variable entry
if (name in var_names)
error("variable identifier '" name "' previously defined on " \
"line " vars[name,DEF_LINE])
var_names[name] = 0
vars[name,VAR_NAME] = name
vars[name,DEF_LINE] = NR
vars[name,VAR_TYPE] = type
vars[name,VAR_BASE_TYPE] = base_type
vars[name,NUM_REVS] = 0
vars[name,VAR_PRIVATE] = private
vars[name,VAR_ARRAY] = array
vars[name,VAR_FMT] = "hex" # default if not specified
open_block(ST_VAR_BLOCK, name)
debug("type=" DTYPE[base_type])
if (in_nested_state(ST_STRUCT_BLOCK)) {
# Fetch the enclosing struct's name
sid = g(STATE_IDENT, 1)
# Mark as a struct-based variable
vars[name,VAR_STRUCT] = sid
}
}
# variable parameters
$1 ~ IDENT_REGEX && $2 ~ IDENT_REGEX && in_state(ST_VAR_BLOCK) {
vid = g(STATE_IDENT)
if ($1 == PROP_T_SFMT) {
if (!$2 in FMT)
error("invalid fmt '" $2 "'")
vars[vid,VAR_FMT] = $2
debug($1 "=" FMT[$2])
} else if ($1 == PROP_T_ALL1 && $2 == "ignore") {
vars[vid,VAR_IGNALL1] = 1
} else {
error("unknown parameter " $1)
}
next
}
# Skip comments and blank lines
/^[ \t]*#/ || /^$/ {
next
}
# Close blocks
/}/ && !in_state(ST_NONE) {
while (!in_state(ST_NONE) && $0 ~ "}") {
close_block();
debug("}")
}
next
}
# Report unbalanced '}'
/}/ && in_state(ST_NONE) {
error("extra '}'")
}
# Invalid variable type
$1 && allow_def(ST_VAR_BLOCK) {
error("unknown type '" $1 "'")
}
# Generic parse failure
{
error("unrecognized statement")
}