freebsd-nq/sys/i386/scsi/aic7xxx.c
Justin T. Gibbs eb62827d8a Specify the controller bus in the scsi_link structure to allow hardwired
buses on multi-bus controllers.  Currently only affects the 274xT controllers.

Reviewed by: Peter Dufault(dufault@hda.com), Rod Grimes(rgrimes@FreeBSD.org)
1995-07-17 23:35:16 +00:00

2568 lines
70 KiB
C

/*
* Generic driver for the aic7xxx based adaptec SCSI controllers
* Copyright (c) 1994, 1995 Justin T. Gibbs.
* All rights reserved.
*
* Product specific probe and attach routines can be found in:
* i386/isa/aic7770.c 27/284X and aic7770 motherboard controllers
* /pci/aic7870.c 294x and aic7870 motherboard controllers
*
* Portions of this driver are based on the FreeBSD 1742 Driver:
*
* Written by Julian Elischer (julian@tfs.com)
* for TRW Financial Systems for use under the MACH(2.5) operating system.
*
* TRW Financial Systems, in accordance with their agreement with Carnegie
* Mellon University, makes this software available to CMU to distribute
* or use in any manner that they see fit as long as this message is kept with
* the software. For this reason TFS also grants any other persons or
* organisations permission to use or modify this software.
*
* TFS supplies this software to be publicly redistributed
* on the understanding that TFS is not responsible for the correct
* functioning of this software in any circumstances.
*
* commenced: Sun Sep 27 18:14:01 PDT 1992
*
* $Id: aic7xxx.c,v 1.31 1995/07/08 22:09:11 ats Exp $
*/
/*
* TODO:
* Add target reset capabilities
* Implement Target Mode
*
* This driver is very stable, and seems to offer performance
* comprable to the 1742 FreeBSD driver. I have not experienced
* any timeouts since the timeout code was written, so in that
* sense, it is untested.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <scsi/scsi_all.h>
#include <scsi/scsiconf.h>
#include <machine/clock.h>
#include <i386/scsi/aic7xxx.h>
#include <i386/scsi/93cx6.h>
#define PAGESIZ 4096
#define MAX_TAGS 4;
#include <sys/kernel.h>
#define KVTOPHYS(x) vtophys(x)
#define MIN(a,b) ((a < b) ? a : b)
struct ahc_data *ahcdata[NAHC];
int ahc_init __P((int unit));
void ahc_loadseq __P((u_long iobase));
int32 ahc_scsi_cmd();
timeout_t ahc_timeout;
void ahc_done();
struct scb *ahc_get_scb __P((int unit, int flags));
void ahc_free_scb();
void ahc_abort_scb __P((int unit, struct ahc_data *ahc, struct scb *scb));
void ahcminphys();
struct scb *ahc_scb_phys_kv();
int ahc_poll __P((int unit, int wait));
u_int32 ahc_adapter_info();
int ahc_unit = 0;
/* Different debugging levels */
#define AHC_SHOWMISC 0x0001
#define AHC_SHOWCMDS 0x0002
#define AHC_SHOWSCBS 0x0004
/* #define AHC_DEBUG */
int ahc_debug = AHC_SHOWMISC;
/**** bit definitions for SCSIDEF ****/
#define HSCSIID 0x07 /* our SCSI ID */
#define HWSCSIID 0x0f /* our SCSI ID if Wide Bus */
struct scsi_adapter ahc_switch =
{
ahc_scsi_cmd,
ahcminphys,
0,
0,
ahc_adapter_info,
"ahc",
{ 0, 0 }
};
/* the below structure is so we have a default dev struct for our link struct */
struct scsi_device ahc_dev =
{
NULL, /* Use default error handler */
NULL, /* have a queue, served by this */
NULL, /* have no async handler */
NULL, /* Use default 'done' routine */
"ahc",
0,
{ 0, 0 }
};
/*
* All of these should be in a separate header file shared by the sequencer
* code and the kernel level driver. The only catch is that we would need to
* add an additional 0xc00 offset when using them in the kernel driver. The
* aic7770 assembler must be modified to allow include files as well. All
* page numbers refer to the Adaptec AIC-7770 Data Book availible from
* Adaptec's Technical Documents Department 1-800-934-2766
*/
/* -------------------- AIC-7770 offset definitions ----------------------- */
/*
* SCSI Sequence Control (p. 3-11).
* Each bit, when set starts a specific SCSI sequence on the bus
*/
#define SCSISEQ 0xc00ul
#define TEMODEO 0x80
#define ENSELO 0x40
#define ENSELI 0x20
#define ENRSELI 0x10
#define ENAUTOATNO 0x08
#define ENAUTOATNI 0x04
#define ENAUTOATNP 0x02
#define SCSIRSTO 0x01
/*
* SCSI Transfer Control 1 Register (pp. 3-14,15).
* Controls the SCSI module data path.
*/
#define SXFRCTL1 0xc02ul
#define BITBUCKET 0x80
#define SWRAPEN 0x40
#define ENSPCHK 0x20
#define STIMESEL 0x18
#define ENSTIMER 0x04
#define ACTNEGEN 0x02
#define STPWEN 0x01 /* Powered Termination */
/*
* SCSI Interrrupt Mode 1 (pp. 3-28,29).
* Set bits in this register enable the corresponding
* interrupt source.
*/
#define SIMODE1 0xc11ul
#define ENSELTIMO 0x80
#define ENATNTARG 0x40
#define ENSCSIRST 0x20
#define ENPHASEMIS 0x10
#define ENBUSFREE 0x08
#define ENSCSIPERR 0x04
#define ENPHASECHG 0x02
#define ENREQINIT 0x01
/*
* SCSI Control Signal Read Register (p. 3-15).
* Reads the actual state of the SCSI bus pins
*/
#define SCSISIGI 0xc03ul
#define CDI 0x80
#define IOI 0x40
#define MSGI 0x20
#define ATNI 0x10
#define SELI 0x08
#define BSYI 0x04
#define REQI 0x02
#define ACKI 0x01
/*
* SCSI Contol Signal Write Register (p. 3-16).
* Writing to this register modifies the control signals on the bus. Only
* those signals that are allowed in the current mode (Initiator/Target) are
* asserted.
*/
#define SCSISIGO 0xc03ul
#define CDO 0x80
#define IOO 0x40
#define MSGO 0x20
#define ATNO 0x10
#define SELO 0x08
#define BSYO 0x04
#define REQO 0x02
#define ACKO 0x01
/*
* SCSI Rate Control (p. 3-17).
* Contents of this register determine the Synchronous SCSI data transfer
* rate and the maximum synchronous Req/Ack offset. An offset of 0 in the
* SOFS (3:0) bits disables synchronous data transfers. Any offset value
* greater than 0 enables synchronous transfers.
*/
#define SCSIRATE 0xc04ul
#define WIDEXFER 0x80 /* Wide transfer control */
#define SXFR 0x70 /* Sync transfer rate */
#define SOFS 0x0f /* Sync offset */
/*
* SCSI ID (p. 3-18).
* Contains the ID of the board and the current target on the
* selected channel
*/
#define SCSIID 0xc05ul
#define TID 0xf0 /* Target ID mask */
#define OID 0x0f /* Our ID mask */
/*
* SCSI Transfer Count (pp. 3-19,20)
* These registers count down the number of bytes transfered
* across the SCSI bus. The counter is decremented only once
* the data has been safely transfered. SDONE in SSTAT0 is
* set when STCNT goes to 0
*/
#define STCNT 0xc08ul
/*
* SCSI Status 0 (p. 3-21)
* Contains one set of SCSI Interrupt codes
* These are most likely of interest to the sequencer
*/
#define SSTAT0 0xc0bul
#define TARGET 0x80 /* Board is a target */
#define SELDO 0x40 /* Selection Done */
#define SELDI 0x20 /* Board has been selected */
#define SELINGO 0x10 /* Selection In Progress */
#define SWRAP 0x08 /* 24bit counter wrap */
#define SDONE 0x04 /* STCNT = 0x000000 */
#define SPIORDY 0x02 /* SCSI PIO Ready */
#define DMADONE 0x01 /* DMA transfer completed */
/*
* Clear SCSI Interrupt 1 (p. 3-23)
* Writing a 1 to a bit clears the associated SCSI Interrupt in SSTAT1.
*/
#define CLRSINT1 0xc0cul
#define CLRSELTIMEO 0x80
#define CLRATNO 0x40
#define CLRSCSIRSTI 0x20
/* UNUSED 0x10 */
#define CLRBUSFREE 0x08
#define CLRSCSIPERR 0x04
#define CLRPHASECHG 0x02
#define CLRREQINIT 0x01
/*
* SCSI Status 1 (p. 3-24)
* These interrupt bits are of interest to the kernel driver
*/
#define SSTAT1 0xc0cul
#define SELTO 0x80
#define ATNTARG 0x40
#define SCSIRSTI 0x20
#define PHASEMIS 0x10
#define BUSFREE 0x08
#define SCSIPERR 0x04
#define PHASECHG 0x02
#define REQINIT 0x01
/*
* SCSI/Host Address (p. 3-30)
* These registers hold the host address for the byte about to be
* transfered on the SCSI bus. They are counted up in the same
* manner as STCNT is counted down. SHADDR should always be used
* to determine the address of the last byte transfered since HADDR
* can be squewed by write ahead.
*/
#define SHADDR 0xc14ul
/*
* Selection/Reselection ID (p. 3-31)
* Upper four bits are the device id. The ONEBIT is set when the re/selecting
* device did not set its own ID.
*/
#define SELID 0xc19ul
#define SELID_MASK 0xf0
#define ONEBIT 0x08
/* UNUSED 0x07 */
/*
* SCSI Block Control (p. 3-32)
* Controls Bus type and channel selection. In a twin channel configuration
* addresses 0x00-0x1e are gated to the appropriate channel based on this
* register. SELWIDE allows for the coexistence of 8bit and 16bit devices
* on a wide bus.
*/
#define SBLKCTL 0xc1ful
/* UNUSED 0xc0 */
#define AUTOFLUSHDIS 0x20
/* UNUSED 0x10 */
#define SELBUSB 0x08
/* UNUSED 0x04 */
#define SELWIDE 0x02
/* UNUSED 0x01 */
/*
* Sequencer Control (p. 3-33)
* Error detection mode and speed configuration
*/
#define SEQCTL 0xc60ul
#define PERRORDIS 0x80
#define PAUSEDIS 0x40
#define FAILDIS 0x20
#define FASTMODE 0x10
#define BRKADRINTEN 0x08
#define STEP 0x04
#define SEQRESET 0x02
#define LOADRAM 0x01
/*
* Sequencer RAM Data (p. 3-34)
* Single byte window into the Scratch Ram area starting at the address
* specified by SEQADDR0 and SEQADDR1. To write a full word, simply write
* four bytes in sucessesion. The SEQADDRs will increment after the most
* significant byte is written
*/
#define SEQRAM 0xc61ul
/*
* Sequencer Address Registers (p. 3-35)
* Only the first bit of SEQADDR1 holds addressing information
*/
#define SEQADDR0 0xc62ul
#define SEQADDR1 0xc63ul
#define SEQADDR1_MASK 0x01
/*
* Accumulator
* We cheat by passing arguments in the Accumulator up to the kernel driver
*/
#define ACCUM 0xc64ul
#define SINDEX 0xc65ul
/*
* Board Control (p. 3-43)
*/
#define BCTL 0xc84ul
/* RSVD 0xf0 */
#define ACE 0x08 /* Support for external processors */
/* RSVD 0x06 */
#define ENABLE 0x01
/*
* Bus On/Off Time (p. 3-44)
*/
#define BUSTIME 0xc85ul
#define BOFF 0xf0
#define BON 0x0f
/*
* Bus Speed (p. 3-45)
*/
#define BUSSPD 0xc86ul
#define DFTHRSH 0xc0
#define STBOFF 0x38
#define STBON 0x07
/*
* Host Control (p. 3-47) R/W
* Overal host control of the device.
*/
#define HCNTRL 0xc87ul
/* UNUSED 0x80 */
#define POWRDN 0x40
/* UNUSED 0x20 */
#define SWINT 0x10
#define IRQMS 0x08
#define PAUSE 0x04
#define INTEN 0x02
#define CHIPRST 0x01
/*
* Host Address (p. 3-48)
* This register contains the address of the byte about
* to be transfered across the host bus.
*/
#define HADDR 0xc88ul
/*
* SCB Pointer (p. 3-49)
* Gate one of the four SCBs into the SCBARRAY window.
*/
#define SCBPTR 0xc90ul
/*
* Interrupt Status (p. 3-50)
* Status for system interrupts
*/
#define INTSTAT 0xc91ul
#define SEQINT_MASK 0xf0 /* SEQINT Status Codes */
#define BAD_PHASE 0x00
#define SEND_REJECT 0x10
#define NO_IDENT 0x20
#define NO_MATCH 0x30
#define MSG_SDTR 0x40
#define MSG_WDTR 0x50
#define MSG_REJECT 0x60
#define BAD_STATUS 0x70
#define RESIDUAL 0x80
#define ABORT_TAG 0x90
#define AWAITING_MSG 0xa0
#define BRKADRINT 0x08
#define SCSIINT 0x04
#define CMDCMPLT 0x02
#define SEQINT 0x01
#define INT_PEND (BRKADRINT | SEQINT | SCSIINT | CMDCMPLT)
/*
* Hard Error (p. 3-53)
* Reporting of catastrophic errors. You usually cannot recover from
* these without a full board reset.
*/
#define ERROR 0xc92ul
/* UNUSED 0xf0 */
#define PARERR 0x08
#define ILLOPCODE 0x04
#define ILLSADDR 0x02
#define ILLHADDR 0x01
/*
* Clear Interrupt Status (p. 3-52)
*/
#define CLRINT 0xc92ul
#define CLRBRKADRINT 0x08
#define CLRSCSIINT 0x04
#define CLRCMDINT 0x02
#define CLRSEQINT 0x01
/*
* SCB Auto Increment (p. 3-59)
* Byte offset into the SCB Array and an optional bit to allow auto
* incrementing of the address during download and upload operations
*/
#define SCBCNT 0xc9aul
#define SCBAUTO 0x80
#define SCBCNT_MASK 0x1f
/*
* Queue In FIFO (p. 3-60)
* Input queue for queued SCBs (commands that the seqencer has yet to start)
*/
#define QINFIFO 0xc9bul
/*
* Queue In Count (p. 3-60)
* Number of queued SCBs
*/
#define QINCNT 0xc9cul
/*
* Queue Out FIFO (p. 3-61)
* Queue of SCBs that have completed and await the host
*/
#define QOUTFIFO 0xc9dul
/*
* Queue Out Count (p. 3-61)
* Number of queued SCBs in the Out FIFO
*/
#define QOUTCNT 0xc9eul
#define SCBARRAY 0xca0ul
/* ---------------- END AIC-7770 Register Definitions ----------------- */
/* --------------------- AIC-7870-only definitions -------------------- */
#define DSPCISTATUS 0xc86ul
/*
* Serial EEPROM Control (p. 4-92 in 7870 Databook)
* Controls the reading and writing of an external serial 1-bit
* EEPROM Device. In order to access the serial EEPROM, you must
* first set the SEEMS bit that generates a request to the memory
* port for access to the serial EEPROM device. When the memory
* port is not busy servicing another request, it reconfigures
* to allow access to the serial EEPROM. When this happens, SEERDY
* gets set high to verify that the memory port access has been
* granted.
*
* After successful arbitration for the memory port, the SEECS bit of
* the SEECTL register is connected to the chip select. The SEECK,
* SEEDO, and SEEDI are connected to the clock, data out, and data in
* lines respectively. The SEERDY bit of SEECTL is useful in that it
* gives us an 800 nsec timer. After a write to the SEECTL register,
* the SEERDY goes high 800 nsec later. The one exception to this is
* when we first request access to the memory port. The SEERDY goes
* high to signify that access has been granted and, for this case, has
* no implied timing.
*
* See 93cx6.c for detailed information on the protocol necessary to
* read the serial EEPROM.
*/
#define SEECTL 0xc1eul
#define EXTARBACK 0x80
#define EXTARBREQ 0x40
#define SEEMS 0x20
#define SEERDY 0x10
#define SEECS 0x08
#define SEECK 0x04
#define SEEDO 0x02
#define SEEDI 0x01
/* ---------------------- Scratch RAM Offsets ------------------------- */
/* These offsets are either to values that are initialized by the board's
* BIOS or are specified by the Linux sequencer code. If I can figure out
* how to read the EISA configuration info at probe time, the cards could
* be run without BIOS support installed
*/
/*
* 1 byte per target starting at this address for configuration values
*/
#define HA_TARG_SCRATCH 0xc20ul
/*
* The sequencer will stick the frist byte of any rejected message here so
* we can see what is getting thrown away.
*/
#define HA_REJBYTE 0xc31ul
/*
* Bit vector of targets that have disconnection disabled.
*/
#define HA_DISC_DSB 0xc32ul
/*
* Length of pending message
*/
#define HA_MSG_LEN 0xc34ul
/*
* message body
*/
#define HA_MSG_START 0xc35ul /* outgoing message body */
/*
* These are offsets into the card's scratch ram. Some of the values are
* specified in the AHA2742 technical reference manual and are initialized
* by the BIOS at boot time.
*/
#define HA_ARG_1 0xc4aul
#define HA_RETURN_1 0xc4aul
#define SEND_SENSE 0x80
#define SEND_WDTR 0x80
#define SEND_SDTR 0x80
#define SEND_REJ 0x40
#define SG_COUNT 0xc4dul
#define SG_NEXT 0xc4eul
#define HA_SIGSTATE 0xc4bul
#define HA_SCBCOUNT 0xc52ul
#define HA_FLAGS 0xc53ul
#define SINGLE_BUS 0x00
#define TWIN_BUS 0x01
#define WIDE_BUS 0x02
#define ACTIVE_MSG 0x20
#define IDENTIFY_SEEN 0x40
#define RESELECTING 0x80
#define HA_ACTIVE0 0xc54ul
#define HA_ACTIVE1 0xc55ul
#define SAVED_TCL 0xc56ul
#define WAITING_SCBH 0xc57ul
#define WAITING_SCBT 0xc58ul
#define HA_SCSICONF 0xc5aul
#define INTDEF 0xc5cul
#define HA_HOSTCONF 0xc5dul
#define HA_274_BIOSCTRL 0xc5ful
#define BIOSMODE 0x30
#define BIOSDISABLED 0x30
#define MSG_ABORT 0x06
#define MSG_BUS_DEVICE_RESET 0x0c
#define BUS_8_BIT 0x00
#define BUS_16_BIT 0x01
#define BUS_32_BIT 0x02
/*
* Define the format of the SEEPROM registers (16 bits).
*
*/
struct seeprom_config {
/*
* SCSI ID Configuration Flags
*/
#define CFXFER 0x0007 /* synchronous transfer rate */
#define CFSYNCH 0x0008 /* enable synchronous transfer */
#define CFDISC 0x0010 /* enable disconnection */
#define CFWIDEB 0x0020 /* wide bus device */
/* UNUSED 0x00C0 */
#define CFSTART 0x0100 /* send start unit SCSI command */
#define CFINCBIOS 0x0200 /* include in BIOS scan */
#define CFRNFOUND 0x0400 /* report even if not found */
/* UNUSED 0xf800 */
unsigned short device_flags[16]; /* words 0-15 */
/*
* BIOS Control Bits
*/
#define CFSUPREM 0x0001 /* support all removeable drives */
#define CFSUPREMB 0x0002 /* support removeable drives for boot only */
#define CFBIOSEN 0x0004 /* BIOS enabled */
/* UNUSED 0x0008 */
#define CFSM2DRV 0x0010 /* support more than two drives */
/* UNUSED 0x0060 */
#define CFEXTEND 0x0080 /* extended translation enabled */
/* UNUSED 0xff00 */
unsigned short bios_control; /* word 16 */
/*
* Host Adapter Control Bits
*/
/* UNUSED 0x0003 */
#define CFSTERM 0x0004 /* SCSI low byte termination (non-wide cards) */
#define CFWSTERM 0x0008 /* SCSI high byte termination (wide card) */
#define CFSPARITY 0x0010 /* SCSI parity */
/* UNUSED 0x0020 */
#define CFRESETB 0x0040 /* reset SCSI bus at IC initialization */
/* UNUSED 0xff80 */
unsigned short adapter_control; /* word 17 */
/*
* Bus Release, Host Adapter ID
*/
#define CFSCSIID 0x000f /* host adapter SCSI ID */
/* UNUSED 0x00f0 */
#define CFBRTIME 0xff00 /* bus release time */
unsigned short brtime_id; /* word 18 */
/*
* Maximum targets
*/
#define CFMAXTARG 0x00ff /* maximum targets */
/* UNUSED 0xff00 */
unsigned short max_targets; /* word 19 */
unsigned short res_1[11]; /* words 20-30 */
unsigned short checksum; /* word 31 */
};
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
* XXX Should add a timeout in here??
*/
#define PAUSE_SEQUENCER(ahc) \
outb(HCNTRL + ahc->baseport, ahc->pause); \
\
while ((inb(HCNTRL + ahc->baseport) & PAUSE) == 0) \
;
#define UNPAUSE_SEQUENCER(ahc) \
outb( HCNTRL + ahc->baseport, ahc->unpause )
/*
* Restart the sequencer program from address zero
*/
#define RESTART_SEQUENCER(ahc) \
do { \
outb( SEQCTL + ahc->baseport, SEQRESET|FASTMODE ); \
} while (inb(SEQADDR0 + ahc->baseport) != 0 && \
inb(SEQADDR1 + ahc->baseport != 0)); \
\
UNPAUSE_SEQUENCER(ahc);
#ifdef AHC_DEBUG
void
ahc_print_scb(scb)
struct scb *scb;
{
printf("scb:0x%x control:0x%x tcl:0x%x cmdlen:%d cmdpointer:0x%x\n"
,scb
,scb->control
,scb->target_channel_lun
,scb->cmdlen
,scb->cmdpointer );
printf(" datlen:%d data:0x%x res:0x%x segs:0x%x segp:0x%x\n"
,scb->datalen[2] << 16 | scb->datalen[1] << 8 | scb->datalen[0]
,scb->data
,scb->RESERVED[1] << 8 | scb->RESERVED[0]
,scb->SG_segment_count
,scb->SG_list_pointer);
printf(" sg_addr:%x sg_len:%d\n"
,scb->ahc_dma[0].addr
,scb->ahc_dma[0].len);
printf(" size:%d\n"
,(int)&(scb->next) - (int)scb);
}
void
ahc_print_active_scb(ahc)
struct ahc_data *ahc;
{
int cur_scb_offset;
u_long iobase = ahc->baseport;
PAUSE_SEQUENCER(ahc);
cur_scb_offset = inb(SCBPTR + iobase);
UNPAUSE_SEQUENCER(ahc);
ahc_print_scb(ahc->scbarray[cur_scb_offset]);
}
#endif
#define PARERR 0x08
#define ILLOPCODE 0x04
#define ILLSADDR 0x02
#define ILLHADDR 0x01
static struct {
u_char errno;
char *errmesg;
} hard_error[] = {
{ ILLHADDR, "Illegal Host Access" },
{ ILLSADDR, "Illegal Sequencer Address referrenced" },
{ ILLOPCODE, "Illegal Opcode in sequencer program" },
{ PARERR, "Sequencer Ram Parity Error" }
};
/*
* Valid SCSIRATE values. (p. 3-17)
* Provides a mapping of tranfer periods in ns to the proper value to
* stick in the scsiscfr reg to use that transfer rate.
*/
static struct {
short sxfr;
short period; /* in ns */
char *rate;
} ahc_syncrates[] = {
{ 0x00, 100, "10.0" },
{ 0x10, 125, "8.0" },
{ 0x20, 150, "6.67" },
{ 0x30, 175, "5.7" },
{ 0x40, 200, "5.0" },
{ 0x50, 225, "4.4" },
{ 0x60, 250, "4.0" },
{ 0x70, 275, "3.6" }
};
static int ahc_num_syncrates =
sizeof(ahc_syncrates) / sizeof(ahc_syncrates[0]);
/*
* Check if the device can be found at the port given
* and if so, determine configuration and set it up for further work.
*/
int
ahcprobe(unit, iobase, type)
int unit;
u_long iobase;
ahc_type type;
{
/*
* find unit and check we have that many defined
*/
struct ahc_data *ahc;
if (unit >= NAHC) {
printf("ahc: unit number (%d) too high\n", unit);
return 0;
}
/*
* Allocate a storage area for us
*/
if (ahcdata[unit]) {
printf("ahc%d: memory already allocated\n", unit);
return 0;
}
ahc = malloc(sizeof(struct ahc_data), M_TEMP, M_NOWAIT);
if (!ahc) {
printf("ahc%d: cannot malloc!\n", unit);
return 0;
}
bzero(ahc, sizeof(struct ahc_data));
ahcdata[unit] = ahc;
ahc->baseport = iobase;
ahc->type = type;
/*
* Try to initialize a unit at this location
* reset the AIC-7770, read its registers,
* and fill in the dev structure accordingly
*/
if (ahc_init(unit) != 0) {
ahcdata[unit] = NULL;
free(ahc, M_TEMP);
return (0);
}
return (1);
}
/*
* Look up the valid period to SCSIRATE conversion in our table.
*/
static
void ahc_scsirate(scsirate, period, offset, unit, target )
u_char *scsirate;
u_char period, offset;
int unit, target;
{
int i;
for (i = 0; i < ahc_num_syncrates; i++) {
if ((ahc_syncrates[i].period - period) >= 0) {
*scsirate = (ahc_syncrates[i].sxfr) | (offset & 0x0f);
printf("ahc%d: target %d synchronous at %sMB/s, "
"offset = 0x%x\n", unit, target,
ahc_syncrates[i].rate, offset );
#ifdef AHC_DEBUG
#endif /* AHC_DEBUG */
return;
}
}
/* Default to asyncronous transfers. Also reject this SDTR request. */
*scsirate = 0;
printf("ahc%d: target %d using asyncronous transfers\n",
unit, target );
#ifdef AHC_DEBUG
#endif /* AHC_DEBUG */
}
/*
* Attach all the sub-devices we can find
*/
int
ahc_attach(unit)
int unit;
{
struct ahc_data *ahc = ahcdata[unit];
/*
* fill in the prototype scsi_link.
*/
ahc->sc_link.adapter_unit = unit;
ahc->sc_link.adapter_targ = ahc->our_id;
ahc->sc_link.adapter = &ahc_switch;
ahc->sc_link.opennings = 2;
ahc->sc_link.device = &ahc_dev;
ahc->sc_link.flags = DEBUGLEVEL;
ahc->sc_link.fordriver = 0;
/*
* ask the adapter what subunits are present
*/
printf("ahc%d: Probing channel A\n", unit);
scsi_attachdevs(&(ahc->sc_link));
if(ahc->type & AHC_TWIN) {
/* Configure the second scsi bus */
ahc->sc_link_b = ahc->sc_link;
ahc->sc_link_b.adapter_targ = ahc->our_id_b;
ahc->sc_link_b.adapter_bus = 1;
ahc->sc_link_b.fordriver = (void *)SELBUSB;
printf("ahc%d: Probing Channel B\n", unit);
scsi_attachdevs(&(ahc->sc_link_b));
}
return 1;
}
void
ahc_send_scb( ahc, scb )
struct ahc_data *ahc;
struct scb *scb;
{
u_long iobase = ahc->baseport;
PAUSE_SEQUENCER(ahc);
outb(QINFIFO + iobase, scb->position);
UNPAUSE_SEQUENCER(ahc);
}
static
void ahc_getscb(iobase, scb)
u_long iobase;
struct scb *scb;
{
outb(SCBCNT + iobase, 0x80); /* SCBAUTO */
insb(SCBARRAY + iobase, scb, SCB_UP_SIZE);
outb(SCBCNT + iobase, 0);
}
/*
* Catch an interrupt from the adaptor
*/
int
ahcintr(unit)
int unit;
{
int intstat;
u_char status;
struct ahc_data *ahc = ahcdata[unit];
u_long iobase = ahc->baseport;
struct scb *scb = NULL;
struct scsi_xfer *xs = NULL;
intstat = inb(INTSTAT + iobase);
/*
* Is this interrupt for me? or for
* someone who is sharing my interrupt
*/
if (!(intstat & INT_PEND))
return 0;
if (intstat & BRKADRINT) {
/* We upset the sequencer :-( */
/* Lookup the error message */
int i, error = inb(ERROR + iobase);
int num_errors = sizeof(hard_error)/sizeof(hard_error[0]);
for(i = 0; error != 1 && i < num_errors; i++)
error >>= 1;
panic("ahc%d: brkadrint, %s at seqaddr = 0x%x\n",
unit, hard_error[i].errmesg,
(inb(SEQADDR1 + iobase) << 8) |
inb(SEQADDR0 + iobase));
}
if (intstat & SEQINT) {
u_short targ_mask;
u_char target = (inb(SCSIID + iobase) >> 4) & 0x0f;
u_char scratch_offset = target;
char channel =
inb(SBLKCTL + iobase) & SELBUSB ? 'B': 'A';
if (channel == 'B')
scratch_offset += 8;
targ_mask = (0x01 << scratch_offset);
switch (intstat & SEQINT_MASK) {
case BAD_PHASE:
panic("ahc%d:%c:%d: unknown scsi bus phase. "
"Attempting to continue\n",
unit, channel, target);
break;
case SEND_REJECT:
{
u_char rejbyte = inb(HA_REJBYTE + iobase);
printf("ahc%d:%c:%d: Warning - message "
"rejected by target: 0x%x\n",
unit, channel, target, rejbyte);
if(( rejbyte & 0xf0) == 0x20) {
/* Tagged Message */
printf("ahc%d:%c:%d: Tagged message "
"rejected. Disabling tagged "
"commands for this target.\n",
unit, channel, target);
ahc->tagenable &= ~targ_mask;
}
break;
}
case NO_IDENT:
panic("ahc%d:%c:%d: Target did not send an IDENTIFY "
"message. SAVED_TCL == 0x%x\n",
unit, channel, target,
inb(SAVED_TCL + iobase));
break;
case NO_MATCH:
{
u_char active;
int active_port = HA_ACTIVE0 + iobase;
printf("ahc%d:%c:%d: no active SCB for "
"reconnecting target - "
"issuing ABORT\n", unit, channel,
target);
printf("SAVED_TCL == 0x%x\n",
inb(SAVED_TCL + iobase));
if(targ_mask & 0xff00) {
/*
* targets on the Second channel or
* above id 7 store info in byte two
* of HA_ACTIVE
*/
active_port++;
}
active = inb(active_port);
active &= ~(0x01 << (target & 0x07));
outb(SCBARRAY + iobase, SCB_NEEDDMA);
outb(active_port, active);
outb(CLRSINT1 + iobase, CLRSELTIMEO);
RESTART_SEQUENCER(ahc);
break;
}
case MSG_SDTR:
{
u_char period, offset, rate;
u_char targ_scratch;
u_char maxoffset;
/*
* Help the sequencer to translate the
* negotiated transfer rate. Transfer is
* 1/4 the period in ns as is returned by
* the sync negotiation message. So, we must
* multiply by four
*/
period = inb(HA_ARG_1 + iobase) << 2;
offset = inb(ACCUM + iobase);
targ_scratch = inb(HA_TARG_SCRATCH + iobase
+ scratch_offset);
if(targ_scratch & WIDEXFER)
maxoffset = 0x08;
else
maxoffset = 0x0f;
ahc_scsirate(&rate, period,
MIN(offset,maxoffset), unit, target);
/* Preserve the WideXfer flag */
targ_scratch = rate | (targ_scratch & WIDEXFER);
outb(HA_TARG_SCRATCH + iobase + scratch_offset,
targ_scratch);
outb(SCSIRATE + iobase, targ_scratch);
if( (targ_scratch & 0x0f) == 0 )
{
/*
* The requested rate was so low
* that asyncronous transfers are
* faster (not to mention the
* controller won't support them),
* so we issue a message reject to
* ensure we go to asyncronous
* transfers.
*/
outb(HA_RETURN_1 + iobase, SEND_REJ);
}
/* See if we initiated Sync Negotiation */
else if(ahc->sdtrpending & targ_mask)
{
/*
* Don't send an SDTR back to
* the target
*/
outb(HA_RETURN_1 + iobase, 0);
}
else{
/*
* Send our own SDTR in reply
*/
#ifdef AHC_DEBUG
if(ahc_debug & AHC_SHOWMISC)
printf("Sending SDTR!!\n");
#endif
outb(HA_RETURN_1 + iobase, SEND_SDTR);
}
/*
* Negate the flags
*/
ahc->needsdtr &= ~targ_mask;
ahc->sdtrpending &= ~targ_mask;
break;
}
case MSG_WDTR:
{
u_char scratch, bus_width;
bus_width = inb(ACCUM + iobase);
scratch = inb(HA_TARG_SCRATCH + iobase
+ scratch_offset);
if(ahc->wdtrpending & targ_mask)
{
/*
* Don't send a WDTR back to the
* target, since we asked first.
*/
outb(HA_RETURN_1 + iobase, 0);
switch(bus_width)
{
case BUS_8_BIT:
scratch &= 0x7f;
break;
case BUS_16_BIT:
printf("ahc%d: target "
"%d using 16Bit "
"transfers\n",
unit, target);
scratch |= 0x80;
break;
}
}
else {
/*
* Send our own WDTR in reply
*/
printf("Will Send WDTR!!\n");
switch(bus_width)
{
case BUS_8_BIT:
scratch &= 0x7f;
break;
case BUS_32_BIT:
/* Negotiate 16_BITS */
bus_width = BUS_16_BIT;
case BUS_16_BIT:
printf("ahc%d: target "
"%d using 16Bit "
"transfers\n",
unit, target);
scratch |= 0x80;
break;
}
outb(HA_RETURN_1 + iobase,
bus_width | SEND_WDTR);
}
ahc->needwdtr &= ~targ_mask;
ahc->wdtrpending &= ~targ_mask;
outb(HA_TARG_SCRATCH + iobase + scratch_offset,
scratch);
outb(SCSIRATE + iobase, scratch);
break;
}
case MSG_REJECT:
{
/*
* What we care about here is if we had an
* outstanding SDTR or WDTR message for this
* target. If we did, this is a signal that
* the target is refusing negotiation.
*/
u_char targ_scratch;
targ_scratch = inb(HA_TARG_SCRATCH + iobase
+ scratch_offset);
if(ahc->wdtrpending & targ_mask){
/* note 8bit xfers and clear flag */
targ_scratch &= 0x7f;
ahc->needwdtr &= ~targ_mask;
ahc->wdtrpending &= ~targ_mask;
printf("ahc%d:%c:%d: refusing "
"WIDE negotiation. Using "
"8bit transfers\n",
unit, channel, target);
}
else if(ahc->sdtrpending & targ_mask){
/* note asynch xfers and clear flag */
targ_scratch &= 0xf0;
ahc->needsdtr &= ~targ_mask;
ahc->sdtrpending &= ~targ_mask;
printf("ahc%d:%c:%d: refusing "
"syncronous negotiation. Using "
"asyncronous transfers\n",
unit, channel, target);
}
else {
/*
* Otherwise, we ignore it.
*/
#ifdef AHC_DEBUG
if(ahc_debug & AHC_SHOWMISC)
printf("ahc%d:%c:%d: Message
reject -- ignored\n",
unit, channel, target);
#endif
break;
}
outb(HA_TARG_SCRATCH + iobase + scratch_offset,
targ_scratch);
outb(SCSIRATE + iobase, targ_scratch);
break;
}
case BAD_STATUS:
{
int scb_index;
/* The sequencer will notify us when a command
* has an error that would be of interest to
* the kernel. This allows us to leave the sequencer
* running in the common case of command completes
* without error.
*/
scb_index = inb(SCBPTR + iobase);
scb = ahc->scbarray[scb_index];
/*
* Set the default return value to 0 (don't
* send sense). The sense code with change
* this if needed and this reduces code
* duplication.
*/
outb(HA_RETURN_1 + iobase, 0);
if (!scb || !(scb->flags & SCB_ACTIVE)) {
printf("ahc%d:%c:%d: ahcintr - referenced scb "
"not valid during seqint 0x%x scb(%d)\n",
unit, channel, target, intstat, scb_index);
goto clear;
}
xs = scb->xs;
ahc_getscb(iobase, scb);
#ifdef AHC_DEBUG
if(xs->sc_link->target == DEBUGTARG)
ahc_print_scb(scb);
#endif
xs->status = scb->target_status;
switch(scb->target_status){
case SCSI_OK:
printf("ahc%d: Interrupted for staus of"
" 0???\n", unit);
break;
case SCSI_CHECK:
#ifdef AHC_DEBUG
sc_print_addr(xs->sc_link);
printf("requests Check Status\n");
#endif
if((xs->error == XS_NOERROR) &&
!(scb->flags & SCB_SENSE)) {
u_char control = scb->control;
u_char head;
u_char tail;
u_short active;
struct ahc_dma_seg *sg = scb->ahc_dma;
struct scsi_sense *sc = &(scb->sense_cmd);
u_char tcl = scb->target_channel_lun;
#ifdef AHC_DEBUG
sc_print_addr(xs->sc_link);
printf("Sending Sense\n");
#endif
bzero(scb, SCB_DOWN_SIZE);
#ifdef NOT_YET
scb->control |= control & SCB_DISCENB;
#endif
scb->flags |= SCB_SENSE;
sc->op_code = REQUEST_SENSE;
sc->byte2 = xs->sc_link->lun << 5;
sc->length = sizeof(struct scsi_sense_data);
sc->control = 0;
sg->addr = KVTOPHYS(&xs->sense);
sg->len = sizeof(struct scsi_sense_data);
scb->target_channel_lun = tcl;
scb->SG_segment_count = 1;
scb->SG_list_pointer = KVTOPHYS(sg);
scb->cmdpointer = KVTOPHYS(sc);
scb->cmdlen = sizeof(*sc);
scb->data = sg->addr;
scb->datalen[0] =
sg->len & 0xff;
scb->datalen[1] =
(sg->len >> 8) & 0xff;
scb->datalen[2] =
(sg->len >> 16) & 0xff;
outb(SCBCNT + iobase, 0x80);
outsb(SCBARRAY+iobase,scb,SCB_DOWN_SIZE);
outb(SCBCNT + iobase, 0);
outb(SCBARRAY+iobase+30,SCB_LIST_NULL);
/*
* Ensure that the target is "BUSY"
* so we don't get overlapping
* commands if we happen to be doing
* tagged I/O.
*/
active = inb(HA_ACTIVE0 + iobase)
| (inb(HA_ACTIVE1 + iobase) << 8);
active |= targ_mask;
outb(HA_ACTIVE0 + iobase,active & 0xff);
outb(HA_ACTIVE1 + iobase,
(active >> 8) & 0xff);
/*
* Add this SCB to the "waiting for
* selection" list.
*/
head = inb(WAITING_SCBH + iobase);
tail = inb(WAITING_SCBT + iobase);
if(head == SCB_LIST_NULL) {
/* List was empty */
head = scb->position;
tail = SCB_LIST_NULL;
}
else if(tail == SCB_LIST_NULL) {
/* List had one element */
tail = scb->position;
outb(SCBPTR+iobase,head);
outb(SCBARRAY+iobase+30,
tail);
}
else {
outb(SCBPTR+iobase,tail);
tail = scb->position;
outb(SCBARRAY+iobase+30,
tail);
}
outb(WAITING_SCBH + iobase, head);
outb(WAITING_SCBT + iobase, tail);
outb(HA_RETURN_1 + iobase, SEND_SENSE);
break;
}
/*
* Clear the SCB_SENSE Flag and have
* the sequencer do a normal command
* complete with either a "DRIVER_STUFFUP"
* error or whatever other error condition
* we already had.
*/
scb->flags &= ~SCB_SENSE;
if(xs->error == XS_NOERROR)
xs->error = XS_DRIVER_STUFFUP;
break;
case SCSI_BUSY:
xs->error = XS_BUSY;
sc_print_addr(xs->sc_link);
printf("Target Busy\n");
break;
case SCSI_QUEUE_FULL:
/*
* The upper level SCSI code will eventually
* handle this properly.
*/
sc_print_addr(xs->sc_link);
printf("Queue Full\n");
xs->error = XS_BUSY;
break;
default:
sc_print_addr(xs->sc_link);
printf("unexpected targ_status: %x\n",
scb->target_status);
xs->error = XS_DRIVER_STUFFUP;
break;
}
break;
}
case RESIDUAL:
{
int scb_index;
scb_index = inb(SCBPTR + iobase);
scb = ahc->scbarray[scb_index];
xs = scb->xs;
/*
* Don't clobber valid resid info with
* a resid coming from a check sense
* operation.
*/
if(!(scb->flags & SCB_SENSE)) {
scb->xs->resid = (inb(iobase+SCBARRAY+17) << 16) |
(inb(iobase+SCBARRAY+16) << 8) |
inb(iobase+SCBARRAY+15);
xs->flags |= SCSI_RESID_VALID;
#ifdef AHC_DEBUG
sc_print_addr(xs->sc_link);
printf("Handled Residual of %d bytes\n"
"SG_COUNT == %d\n",
scb->xs->resid,
inb(SCBARRAY+18 + iobase));
#endif
}
break;
}
case ABORT_TAG:
{
int scb_index;
scb_index = inb(SCBPTR + iobase);
scb = ahc->scbarray[scb_index];
xs = scb->xs;
/*
* We didn't recieve a valid tag back from
* the target on a reconnect.
*/
sc_print_addr(xs->sc_link);
printf("invalid tag recieved -- sending ABORT_TAG\n");
scb->xs->error = XS_DRIVER_STUFFUP;
untimeout(ahc_timeout, (caddr_t)scb);
ahc_done(unit, scb);
break;
}
case AWAITING_MSG:
{
int scb_index;
scb_index = inb(SCBPTR + iobase);
scb = ahc->scbarray[scb_index];
/*
* This SCB had a zero length command, informing
* the sequencer that we wanted to send a special
* message to this target. We only do this for
* BUS_DEVICE_RESET messages currently.
*/
if(scb->flags & SCB_DEVICE_RESET)
{
outb(HA_MSG_START + iobase,
MSG_BUS_DEVICE_RESET);
outb(HA_MSG_LEN + iobase, 1);
}
else
panic("ahcintr: AWAITING_MSG for an SCB that"
"does not have a waiting message");
break;
}
default:
printf("ahc: seqint, "
"intstat == 0x%x, scsisigi = 0x%x\n",
intstat, inb(SCSISIGI + iobase));
break;
}
clear:
/*
* Clear the upper byte that holds SEQINT status
* codes and clear the SEQINT bit.
*/
outb(CLRINT + iobase, CLRSEQINT);
/*
* The sequencer is paused immediately on
* a SEQINT, so we should restart it when
* we leave this section.
*/
UNPAUSE_SEQUENCER(ahc);
}
if (intstat & SCSIINT) {
int scb_index = inb(SCBPTR + iobase);
status = inb(SSTAT1 + iobase);
scb = ahc->scbarray[scb_index];
if (!scb || !(scb->flags & SCB_ACTIVE)) {
printf("ahc%d: ahcintr - referenced scb not "
"valid during scsiint 0x%x scb(%d)\n",
unit, status, scb_index);
outb(CLRSINT1 + iobase, status);
UNPAUSE_SEQUENCER(ahc);
outb(CLRINT + iobase, CLRSCSIINT);
scb = NULL;
goto cmdcomplete;
}
xs = scb->xs;
if (status & SELTO) {
u_char active;
u_char waiting;
u_char flags;
u_long active_port = HA_ACTIVE0 + iobase;
outb(SCSISEQ + iobase, ENRSELI);
xs->error = XS_TIMEOUT;
/*
* Clear any pending messages for the timed out
* target, and mark the target as free
*/
flags = inb( HA_FLAGS + iobase );
outb(HA_FLAGS + iobase,
flags & ~ACTIVE_MSG);
if (scb->target_channel_lun & 0x88)
active_port++;
active = inb(active_port) &
~(0x01 << (xs->sc_link->target & 0x07));
outb(active_port, active);
outb(SCBARRAY + iobase, SCB_NEEDDMA);
outb(CLRSINT1 + iobase, CLRSELTIMEO);
outb(CLRINT + iobase, CLRSCSIINT);
/* Shift the waiting for selection queue forward */
waiting = inb(WAITING_SCBH + iobase);
outb(SCBPTR + iobase, waiting);
waiting = inb(SCBARRAY + iobase + 30);
outb(WAITING_SCBH + iobase, waiting);
RESTART_SEQUENCER(ahc);
}
else if (status & SCSIPERR) {
sc_print_addr(xs->sc_link);
printf("parity error\n");
xs->error = XS_DRIVER_STUFFUP;
outb(CLRSINT1 + iobase, CLRSCSIPERR);
UNPAUSE_SEQUENCER(ahc);
outb(CLRINT + iobase, CLRSCSIINT);
scb = NULL;
}
else if (!(status & BUSFREE)) {
sc_print_addr(xs->sc_link);
printf("Unknown SCSIINT. Status = 0x%x\n", status);
outb(CLRSINT1 + iobase, status);
UNPAUSE_SEQUENCER(ahc);
outb(CLRINT + iobase, CLRSCSIINT);
scb = NULL;
}
if(scb != NULL) {
/* We want to process the command */
untimeout(ahc_timeout, (caddr_t)scb);
ahc_done(unit, scb);
}
}
cmdcomplete:
if (intstat & CMDCMPLT) {
int scb_index;
do {
scb_index = inb(QOUTFIFO + iobase);
scb = ahc->scbarray[scb_index];
if (!scb || !(scb->flags & SCB_ACTIVE)) {
printf("ahc%d: WARNING "
"no command for scb %d (cmdcmplt)\n"
"QOUTCNT == %d\n",
unit, scb_index, inb(QOUTCNT + iobase));
outb(CLRINT + iobase, CLRCMDINT);
continue;
}
outb(CLRINT + iobase, CLRCMDINT);
untimeout(ahc_timeout, (caddr_t)scb);
ahc_done(unit, scb);
} while (inb(QOUTCNT + iobase));
}
return 1;
}
int
enable_seeprom(u_long offset,
u_short CS, /* chip select */
u_short CK, /* clock */
u_short DO, /* data out */
u_short DI, /* data in */
u_short RDY, /* ready */
u_short MS /* mode select */)
{
int wait;
/*
* Request access of the memory port. When access is
* granted, SEERDY will go high. We use a 1 second
* timeout which should be near 1 second more than
* is needed. Reason: after the chip reset, there
* should be no contention.
*/
outb(offset, MS);
wait = 1000; /* 1 second timeout in msec */
while (--wait && ((inb(offset) & RDY) == 0)) {
DELAY (1000); /* delay 1 msec */
}
if ((inb(offset) & RDY) == 0) {
outb (offset, 0);
return (0);
}
return(1);
}
void
release_seeprom(u_long offset,
u_short CS, /* chip select */
u_short CK, /* clock */
u_short DO, /* data out */
u_short DI, /* data in */
u_short RDY, /* ready */
u_short MS /* mode select */)
{
/* Release access to the memory port and the serial EEPROM. */
outb(offset, 0);
}
/*
* We have a scb which has been processed by the
* adaptor, now we look to see how the operation
* went.
*/
void
ahc_done(unit, scb)
int unit;
struct scb *scb;
{
struct scsi_xfer *xs = scb->xs;
SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahc_done\n"));
/*
* Put the results of the operation
* into the xfer and call whoever started it
*/
if(scb->flags & SCB_SENSE)
xs->error = XS_SENSE;
if ((xs->flags & SCSI_ERR_OK) && !(xs->error == XS_SENSE)) {
/* All went correctly OR errors expected */
xs->error = XS_NOERROR;
}
xs->flags |= ITSDONE;
#ifdef AHC_TAGENABLE
if(xs->cmd->opcode == 0x12 && xs->error == XS_NOERROR)
{
struct ahc_data *ahc = ahcdata[unit];
struct scsi_inquiry_data *inq_data;
u_short mask = 0x01 << (xs->sc_link->target |
(scb->target_channel_lun & 0x08));
/*
* Sneak a look at the results of the SCSI Inquiry
* command and see if we can do Tagged queing. This
* should really be done by the higher level drivers.
*/
inq_data = (struct scsi_inquiry_data *)xs->data;
if(((inq_data->device & SID_TYPE) == 0)
&& (inq_data->flags & SID_CmdQue)
&& !(ahc->tagenable & mask))
{
/*
* Disk type device and can tag
*/
printf("ahc%d: target %d Tagged Queuing Device\n",
unit, xs->sc_link->target);
ahc->tagenable |= mask;
#ifdef QUEUE_FULL_SUPPORTED
xs->sc_link->opennings += 2; */
#endif
}
}
#endif
ahc_free_scb(unit, scb, xs->flags);
scsi_done(xs);
}
/*
* Start the board, ready for normal operation
*/
int
ahc_init(unit)
int unit;
{
struct ahc_data *ahc = ahcdata[unit];
u_long iobase = ahc->baseport;
u_char scsi_conf, sblkctl, i, host_id;
int intdef, max_targ = 16, wait, have_seeprom = 0;
int bios_disabled = 0;
struct seeprom_config sc;
/*
* Assume we have a board at this stage
* Find out the configured interupt and the card type.
*/
#ifdef AHC_DEBUG
printf("ahc%d: scb %d bytes; SCB_SIZE %d bytes, ahc_dma %d bytes\n",
unit, sizeof(struct scb), SCB_DOWN_SIZE,
sizeof(struct ahc_dma_seg));
#endif /* AHC_DEBUG */
printf("ahc%d: reading board settings\n", unit);
/* Save the IRQ type before we do a chip reset */
ahc->unpause = (inb(HCNTRL + iobase) & IRQMS) | INTEN;
ahc->pause = ahc->unpause | PAUSE;
outb(HCNTRL + iobase, CHIPRST | ahc->pause);
/*
* Ensure that the reset has finished
*/
wait = 1000;
while (wait--) {
DELAY(1000);
if(!(inb(HCNTRL + iobase) & CHIPRST))
break;
}
if(wait == 0) {
printf("ahc%d: WARNING - Failed chip reset! "
"Trying to initialize anyway.\n", unit);
/* Forcibly clear CHIPRST */
outb(HCNTRL + iobase, ahc->pause);
}
switch( ahc->type ) {
case AHC_AIC7770:
case AHC_274:
case AHC_284:
{
u_char hostconf;
if(ahc->type == AHC_274) {
printf("ahc%d: 274x ", unit);
if((inb(HA_274_BIOSCTRL + iobase) & BIOSMODE)
== BIOSDISABLED)
bios_disabled = 1;
}
else if(ahc->type == AHC_284)
printf("ahc%d: 284x ", unit);
else
printf("ahc%d: Motherboard ", unit);
ahc->maxscbs = 0x4;
/* Should we only do this for the 27/284x? */
/* Setup the FIFO threshold and the bus off time */
hostconf = inb(HA_HOSTCONF + iobase);
outb(BUSSPD + iobase, hostconf & DFTHRSH);
outb(BUSTIME + iobase, (hostconf << 2) & BOFF);
break;
}
case AHC_AIC7850:
case AHC_AIC7870:
case AHC_394:
case AHC_294:
host_id = 0x07; /* default to SCSI ID 7 for 7850 */
if (ahc->type != AHC_AIC7850) {
unsigned short *scarray = (u_short *)&sc;
unsigned short checksum = 0;
printf("ahc%d: Reading SEEPROM...", unit);
have_seeprom = enable_seeprom (iobase + SEECTL,
SEECS, SEECK, SEEDO, SEEDI, SEERDY, SEEMS);
if (have_seeprom) {
have_seeprom = read_seeprom (iobase + SEECTL,
(u_short *)&sc, sizeof(sc)/2, SEECS,
SEECK, SEEDO, SEEDI, SEERDY, SEEMS);
release_seeprom (iobase + SEECTL, SEECS, SEECK,
SEEDO, SEEDI, SEERDY, SEEMS);
if (have_seeprom) {
/* Check checksum */
for (i = 0;i < (sizeof(sc)/2 - 1);i = i + 1)
checksum = checksum + scarray[i];
if (checksum != sc.checksum) {
printf ("checksum error");
have_seeprom = 0;
}
else {
printf("done.\n");
host_id = (sc.brtime_id & CFSCSIID);
}
}
}
if (!have_seeprom) {
printf("\nahc%d: SEEPROM read failed, "
"using leftover BIOS values\n", unit);
host_id = 0x7;
}
}
ahc->maxscbs = 0x10;
if(ahc->type == AHC_AIC7850){
printf("ahc%d: aic7850 ", unit);
ahc->maxscbs = 0x03;
}
else if(ahc->type == AHC_AIC7870)
printf("ahc%d: aic7870 ", unit);
else if(ahc->type == AHC_394){
printf("ahc%d: 3940 ", unit);
/* XXX Test this! ahc->maxscbs = 0xff; */
}
else
printf("ahc%d: 2940 ", unit);
outb(DSPCISTATUS + iobase, 0xc0 /* DFTHRSH == 100% */);
/*
* XXX Use SCSI ID from SEEPROM if we have it; otherwise
* its hardcoded to 7 until we can read it from NVRAM.
*/
outb(HA_SCSICONF + iobase, host_id | 0xc0 /* DFTHRSH = 100% */);
/* In case we are a wide card */
outb(HA_SCSICONF + 1 + iobase, host_id);
break;
default:
};
/* Determine channel configuration and who we are on the scsi bus. */
switch ( (sblkctl = inb(SBLKCTL + iobase) & 0x0a) ) {
case 0:
ahc->our_id = (inb(HA_SCSICONF + iobase) & HSCSIID);
printf("Single Channel, SCSI Id=%d, ", ahc->our_id);
outb(HA_FLAGS + iobase, SINGLE_BUS);
break;
case 2:
ahc->our_id = (inb(HA_SCSICONF + 1 + iobase) & HWSCSIID);
printf("Wide Channel, SCSI Id=%d, ", ahc->our_id);
ahc->type |= AHC_WIDE;
outb(HA_FLAGS + iobase, WIDE_BUS);
break;
case 8:
ahc->our_id = (inb(HA_SCSICONF + iobase) & HSCSIID);
ahc->our_id_b = (inb(HA_SCSICONF + 1 + iobase) & HSCSIID);
printf("Twin Channel, A SCSI Id=%d, B SCSI Id=%d, ",
ahc->our_id, ahc->our_id_b);
ahc->type |= AHC_TWIN;
outb(HA_FLAGS + iobase, TWIN_BUS);
break;
default:
printf(" Unsupported adapter type. Ignoring\n");
return(-1);
}
/*
* Take the bus led out of diagnostic mode
*/
outb(SBLKCTL + iobase, sblkctl);
/*
* Number of SCBs that will be used. Rev E aic7770s supposedly
* can do 255 concurrent commands. Right now, we just ID the
* card until we can find out how this is done.
*/
if(!(ahc->type & AHC_AIC78X0))
{
/*
* See if we have a Rev E or higher
* aic7770. Anything below a Rev E will
* have a R/O autoflush disable configuration
* bit.
*/
u_char sblkctl_orig;
sblkctl_orig = inb(SBLKCTL + iobase);
sblkctl = sblkctl_orig ^ AUTOFLUSHDIS;
outb(SBLKCTL + iobase, sblkctl);
sblkctl = inb(SBLKCTL + iobase);
if(sblkctl != sblkctl_orig)
{
printf("aic7770 >= Rev E, ");
/*
* Ensure autoflush is enabled
*/
sblkctl &= ~AUTOFLUSHDIS;
outb(SBLKCTL + iobase, sblkctl);
}
else
printf("aic7770 <= Rev C, ");
}
else if(ahc->type & AHC_AIC7850)
printf("aic7850, ");
else
printf("aic7870, ");
printf("%d SCBs\n", ahc->maxscbs);
if(!(ahc->type & AHC_AIC78X0)) {
if(ahc->pause & IRQMS)
printf("ahc%d: Using Level Sensitive Interrupts\n",
unit);
else
printf("ahc%d: Using Edge Triggered Interrupts\n",
unit);
}
if(!(ahc->type & AHC_AIC78X0)){
/*
* The 294x cards are PCI, so we get their interrupt from the PCI
* BIOS.
*/
intdef = inb(INTDEF + iobase);
switch (intdef & 0xf) {
case 9:
ahc->vect = 9;
break;
case 10:
ahc->vect = 10;
break;
case 11:
ahc->vect = 11;
break;
case 12:
ahc->vect = 12;
break;
case 14:
ahc->vect = 14;
break;
case 15:
ahc->vect = 15;
break;
default:
printf("illegal irq setting\n");
return (EIO);
}
}
/* Set the SCSI Id, SXFRCTL1, and SIMODE1, for both channels */
if( ahc->type & AHC_TWIN)
{
/*
* The device is gated to channel B after a chip reset,
* so set those values first
*/
outb(SCSIID + iobase, ahc->our_id_b);
scsi_conf = inb(HA_SCSICONF + 1 + iobase) & (ENSPCHK|STIMESEL);
outb(SXFRCTL1 + iobase, scsi_conf|ENSTIMER|ACTNEGEN|STPWEN);
outb(SIMODE1 + iobase, ENSELTIMO|ENSCSIPERR);
/* Select Channel A */
outb(SBLKCTL + iobase, 0);
}
outb(SCSIID + iobase, ahc->our_id);
scsi_conf = inb(HA_SCSICONF + iobase) & (ENSPCHK|STIMESEL);
outb(SXFRCTL1 + iobase, scsi_conf|ENSTIMER|ACTNEGEN|STPWEN);
outb(SIMODE1 + iobase, ENSELTIMO|ENSCSIPERR);
/*
* Look at the information that board initialization or
* the board bios has left us. In the lower four bits of each
* target's scratch space any value other than 0 indicates
* that we should initiate syncronous transfers. If it's zero,
* the user or the BIOS has decided to disable syncronous
* negotiation to that target so we don't activate the needsdr
* flag.
*/
ahc->needsdtr_orig = 0;
ahc->needwdtr_orig = 0;
/* Grab the disconnection disable table and invert it for our needs */
if(have_seeprom)
ahc->discenable = 0;
else if(bios_disabled){
printf("ahc%d: Host Adapter Bios disabled. Using default SCSI "
"device parameters\n", unit);
ahc->discenable = 0xff;
}
else
ahc->discenable = ~(inw(HA_DISC_DSB + iobase));
if(!(ahc->type & AHC_WIDE))
max_targ = 8;
for(i = 0; i < max_targ; i++){
u_char target_settings;
if (have_seeprom) {
target_settings = (sc.device_flags[i] & CFXFER) << 4;
if (sc.device_flags[i] & CFSYNCH)
ahc->needsdtr_orig |= (0x01 << i);
if (sc.device_flags[i] & CFWIDEB)
ahc->needwdtr_orig |= (0x01 << i);
if (sc.device_flags[i] & CFDISC)
ahc->discenable |= (0x01 << i);
}
else if (bios_disabled) {
target_settings = 0; /* 10MHz */
ahc->needsdtr_orig |= (0x01 << i);
ahc->needwdtr_orig |= (0x01 << i);
}
else {
/* Take the settings leftover in scratch RAM. */
target_settings = inb(HA_TARG_SCRATCH + i + iobase);
if(target_settings & 0x0f){
ahc->needsdtr_orig |= (0x01 << i);
/*Default to a asyncronous transfers(0 offset)*/
target_settings &= 0xf0;
}
if(target_settings & 0x80){
ahc->needwdtr_orig |= (0x01 << i);
/*
* We'll set the Wide flag when we
* are successful with Wide negotiation,
* so turn it off for now so we aren't
* confused.
*/
target_settings &= 0x7f;
}
}
outb(HA_TARG_SCRATCH+i+iobase,target_settings);
}
/*
* If we are not a WIDE device, forget WDTR. This
* makes the driver work on some cards that don't
* leave these fields cleared when the BIOS is not
* installed.
*/
if(!(ahc->type & AHC_WIDE))
ahc->needwdtr_orig = 0;
ahc->needsdtr = ahc->needsdtr_orig;
ahc->needwdtr = ahc->needwdtr_orig;
ahc->sdtrpending = 0;
ahc->wdtrpending = 0;
ahc->tagenable = 0;
/*
* Clear the control byte for every SCB so that the sequencer
* doesn't get confused and think that one of them is valid
*/
for(i = 0; i < ahc->maxscbs; i++) {
outb(SCBPTR + iobase, i);
outb(SCBARRAY + iobase, 0);
}
#ifdef AHC_DEBUG
printf("NEEDSDTR == 0x%x\nNEEDWDTR == 0x%x\nDISCENABLE == 0x%x\n",
ahc->needsdtr, ahc->needwdtr, ahc->discenable);
#endif
/*
* Set the number of availible SCBs
*/
outb(HA_SCBCOUNT + iobase, ahc->maxscbs);
/* We don't have any busy targets right now */
outb( HA_ACTIVE0 + iobase, 0 );
outb( HA_ACTIVE1 + iobase, 0 );
/* We don't have any waiting selections */
outb( WAITING_SCBH + iobase, SCB_LIST_NULL );
outb( WAITING_SCBT + iobase, SCB_LIST_NULL );
/*
* Load the Sequencer program and Enable the adapter.
* Place the aic7xxx in fastmode which makes a big
* difference when doing many small block transfers.
*/
printf("ahc%d: Downloading Sequencer Program...", unit);
ahc_loadseq(iobase);
printf("Done\n");
outb(SEQCTL + iobase, FASTMODE);
if (!(ahc->type & AHC_AIC78X0))
outb(BCTL + iobase, ENABLE);
/* Reset the bus */
outb(SCSISEQ + iobase, SCSIRSTO);
DELAY(10000);
outb(SCSISEQ + iobase, 0);
UNPAUSE_SEQUENCER(ahc);
/*
* Note that we are going and return (to probe)
*/
ahc->flags = AHC_INIT;
return (0);
}
void
ahcminphys(bp)
struct buf *bp;
{
/*
* Even though the card can transfer up to 16megs per command
* we are limited by the number of segments in the dma segment
* list that we can hold. The worst case is that all pages are
* discontinuous physically, hense the "page per segment" limit
* enforced here.
*/
if (bp->b_bcount > ((AHC_NSEG - 1) * PAGESIZ)) {
bp->b_bcount = ((AHC_NSEG - 1) * PAGESIZ);
}
}
/*
* start a scsi operation given the command and
* the data address, target, and lun all of which
* are stored in the scsi_xfer struct
*/
int32
ahc_scsi_cmd(xs)
struct scsi_xfer *xs;
{
struct scb *scb = NULL;
struct ahc_dma_seg *sg;
int seg; /* scatter gather seg being worked on */
int thiskv;
physaddr thisphys, nextphys;
int unit = xs->sc_link->adapter_unit;
u_short mask = (0x01 << (xs->sc_link->target
| ((u_long)xs->sc_link->fordriver & 0x08)));
int bytes_this_seg, bytes_this_page, datalen, flags;
struct ahc_data *ahc = ahcdata[unit];
int s;
SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahc_scsi_cmd\n"));
/*
* get an scb to use. If the transfer
* is from a buf (possibly from interrupt time)
* then we can't allow it to sleep
*/
flags = xs->flags;
if (flags & ITSDONE) {
printf("ahc%d: Already done?", unit);
xs->flags &= ~ITSDONE;
}
if (!(flags & INUSE)) {
printf("ahc%d: Not in use?", unit);
xs->flags |= INUSE;
}
if (!(scb = ahc_get_scb(unit, flags))) {
xs->error = XS_DRIVER_STUFFUP;
return (TRY_AGAIN_LATER);
}
SC_DEBUG(xs->sc_link, SDEV_DB3, ("start scb(%p)\n", scb));
scb->xs = xs;
if (flags & SCSI_RESET)
scb->flags |= SCB_DEVICE_RESET|SCB_IMMED;
/*
* Put all the arguments for the xfer in the scb
*/
if(ahc->tagenable & mask)
scb->control |= SCB_TE;
#ifdef NOT_YET
if(ahc->discenable & mask)
scb->control |= SCB_DISCENB;
#endif
if((ahc->needwdtr & mask) && !(ahc->wdtrpending & mask))
{
scb->control |= SCB_NEEDWDTR;
ahc->wdtrpending |= mask;
}
else if((ahc->needsdtr & mask) && !(ahc->sdtrpending & mask))
{
scb->control |= SCB_NEEDSDTR;
ahc->sdtrpending |= mask;
}
scb->target_channel_lun = ((xs->sc_link->target << 4) & 0xF0) |
((u_long)xs->sc_link->fordriver & 0x08) |
(xs->sc_link->lun & 0x07);
scb->cmdlen = xs->cmdlen;
scb->cmdpointer = KVTOPHYS(xs->cmd);
xs->resid = 0;
xs->status = 0;
if (xs->datalen) { /* should use S/G only if not zero length */
scb->SG_list_pointer = KVTOPHYS(scb->ahc_dma);
sg = scb->ahc_dma;
seg = 0;
{
/*
* Set up the scatter gather block
*/
SC_DEBUG(xs->sc_link, SDEV_DB4,
("%ld @%p:- ", xs->datalen, xs->data));
datalen = xs->datalen;
thiskv = (int) xs->data;
thisphys = KVTOPHYS(thiskv);
while ((datalen) && (seg < AHC_NSEG)) {
bytes_this_seg = 0;
/* put in the base address */
sg->addr = thisphys;
SC_DEBUGN(xs->sc_link, SDEV_DB4, ("0x%lx",
thisphys));
/* do it at least once */
nextphys = thisphys;
while ((datalen) && (thisphys == nextphys)) {
/*
* This page is contiguous (physically)
* with the the last, just extend the
* length
*/
/* how far to the end of the page */
nextphys = (thisphys & (~(PAGESIZ - 1)))
+ PAGESIZ;
bytes_this_page = nextphys - thisphys;
/**** or the data ****/
bytes_this_page = min(bytes_this_page
,datalen);
bytes_this_seg += bytes_this_page;
datalen -= bytes_this_page;
/* get more ready for the next page */
thiskv = (thiskv & (~(PAGESIZ - 1)))
+ PAGESIZ;
if (datalen)
thisphys = KVTOPHYS(thiskv);
}
/*
* next page isn't contiguous, finish the seg
*/
SC_DEBUGN(xs->sc_link, SDEV_DB4,
("(0x%x)", bytes_this_seg));
sg->len = bytes_this_seg;
sg++;
seg++;
}
} /*end of iov/kv decision */
scb->SG_segment_count = seg;
/* Copy the first SG into the data pointer area */
scb->data = scb->ahc_dma->addr;
scb->datalen[0] = scb->ahc_dma->len & 0xff;
scb->datalen[1] = (scb->ahc_dma->len >> 8) & 0xff;
scb->datalen[2] = (scb->ahc_dma->len >> 16) & 0xff;
SC_DEBUGN(xs->sc_link, SDEV_DB4, ("\n"));
if (datalen) {
/* there's still data, must have run out of segs! */
printf("ahc_scsi_cmd%d: more than %d DMA segs\n",
unit, AHC_NSEG);
xs->error = XS_DRIVER_STUFFUP;
ahc_free_scb(unit, scb, flags);
return (HAD_ERROR);
}
}
else {
/*
* No data xfer, use non S/G values
*/
scb->SG_segment_count = 0;
scb->SG_list_pointer = 0;
scb->data = 0;
scb->datalen[0] = 0;
scb->datalen[1] = 0;
scb->datalen[2] = 0;
}
/*
* Usually return SUCCESSFULLY QUEUED
*/
#ifdef AHC_DEBUG
if(xs->sc_link->target == DEBUGTARG)
ahc_print_scb(scb);
#endif
if (!(flags & SCSI_NOMASK)) {
s = splbio();
ahc_send_scb(ahc, scb);
timeout(ahc_timeout, (caddr_t)scb, (xs->timeout * hz) / 1000);
splx(s);
SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_sent\n"));
return (SUCCESSFULLY_QUEUED);
}
/*
* If we can't use interrupts, poll on completion
*/
ahc_send_scb(ahc, scb);
SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_wait\n"));
do {
if (ahc_poll(unit, xs->timeout)) {
if (!(xs->flags & SCSI_SILENT))
printf("cmd fail\n");
printf("cmd fail\n");
ahc_abort_scb(unit,ahc,scb);
return (HAD_ERROR);
}
} while (!(xs->flags & ITSDONE)); /* a non command complete intr */
if (xs->error) {
return (HAD_ERROR);
}
return (COMPLETE);
}
/*
* Return some information to the caller about
* the adapter and it's capabilities.
*/
u_int32
ahc_adapter_info(unit)
int unit;
{
return (2); /* 2 outstanding requests at a time per device */
}
/*
* A scb (and hence an scb entry on the board is put onto the
* free list.
*/
void
ahc_free_scb(unit, scb, flags)
int unit, flags;
struct scb *scb;
{
unsigned int opri;
struct ahc_data *ahc = ahcdata[unit];
opri = splbio();
scb->flags = SCB_FREE;
scb->next = ahc->free_scb;
ahc->free_scb = scb;
#ifdef AHC_DEBUG
ahc->activescbs--;
#endif
/*
* If there were none, wake abybody waiting for
* one to come free, starting with queued entries
*/
if (!scb->next) {
wakeup((caddr_t)&ahc->free_scb);
}
splx(opri);
}
/*
* Get a free scb
* If there are none, see if we can allocate a
* new one. Otherwise either return an error or sleep
*/
struct scb *
ahc_get_scb(unit, flags)
int unit, flags;
{
struct ahc_data *ahc = ahcdata[unit];
unsigned opri;
struct scb *scbp;
opri = splbio();
/*
* If we can and have to, sleep waiting for one to come free
* but only if we can't allocate a new one.
*/
while (!(scbp = ahc->free_scb)) {
if (ahc->numscbs < ahc->maxscbs) {
scbp = (struct scb *) malloc(sizeof(struct scb),
M_TEMP, M_NOWAIT);
if (scbp) {
physaddr scbaddr = KVTOPHYS(scbp);
u_long iobase = ahc->baseport;
u_char curscb;
bzero(scbp, sizeof(struct scb));
scbp->position = ahc->numscbs;
ahc->numscbs++;
scbp->flags = SCB_ACTIVE;
/*
* Place in the scbarray
* Never is removed. Position
* in ahc->scbarray is the scbarray
* position on the board we will
* load it into.
*/
ahc->scbarray[scbp->position] = scbp;
/*
* Initialize the host memory location
* of this SCB down on the board and
* flag that it should be DMA's before
* reference. Also set its psuedo
* next pointer (for use in the psuedo
* list of SCBs waiting for selection)
* to SCB_LIST_NULL.
*/
scbp->control = SCB_NEEDDMA;
scbp->host_scb = scbaddr;
scbp->next_waiting = SCB_LIST_NULL;
PAUSE_SEQUENCER(ahc);
curscb = inb(SCBPTR + iobase);
outb(SCBPTR + iobase, scbp->position);
outb(SCBCNT + iobase, 0x80);
outsb(SCBARRAY+iobase,scbp,31);
outb(SCBCNT + iobase, 0);
outb(SCBPTR + iobase, curscb);
UNPAUSE_SEQUENCER(ahc);
scbp->control = 0;
} else {
printf("ahc%d: Can't malloc SCB\n", unit);
}
break;
} else {
if (!(flags & SCSI_NOSLEEP)) {
tsleep((caddr_t)&ahc->free_scb, PRIBIO,
"ahcscb", 0);
continue;
}
break;
}
}
if (scbp) {
/* Get SCB from from free list */
ahc->free_scb = scbp->next;
scbp->control = 0;
scbp->flags = SCB_ACTIVE;
#ifdef AHC_DEBUG
ahc->activescbs++;
if( ahc->activescbs == ahc->maxscbs )
printf("ahc%d: Max SCBs active\n", unit);
#endif
}
gottit:
splx(opri);
return (scbp);
}
void ahc_loadseq(iobase)
u_long iobase;
{
static unsigned char seqprog[] = {
# include "aic7xxx_seq.h"
};
outb(SEQCTL + iobase, PERRORDIS|SEQRESET|LOADRAM);
outsb(SEQRAM + iobase, seqprog, sizeof(seqprog));
outb(SEQCTL + iobase, FASTMODE|SEQRESET);
do {
outb(SEQCTL + iobase, SEQRESET|FASTMODE);
} while (inb(SEQADDR0 + iobase) != 0 &&
inb(SEQADDR1 + iobase != 0));
}
/*
* Function to poll for command completion when in poll mode
*/
int
ahc_poll(int unit, int wait)
{ /* in msec */
struct ahc_data *ahc = ahcdata[unit];
u_long iobase = ahc->baseport;
u_long stport = INTSTAT + iobase;
while (--wait) {
DELAY(1000);
if (inb(stport) & INT_PEND)
break;
} if (wait == 0) {
printf("ahc%d: board not responding\n", unit);
return (EIO);
}
ahcintr(unit);
return (0);
}
void
ahc_abort_scb( unit, ahc, scb )
int unit;
struct ahc_data *ahc;
struct scb *scb;
{
u_long iobase = ahc->baseport;
int found = 0;
int active_scb;
u_char flags;
u_char scb_control;
PAUSE_SEQUENCER(ahc);
/*
* Case 1: In the QINFIFO
*/
{
int saved_queue[AHC_SCB_MAX];
int i;
int queued = inb(QINCNT + iobase);
for( i = 0; i < (queued - found); i++){
saved_queue[i] = inb(QINFIFO + iobase);
if( saved_queue[i] == scb->position ){
i--;
found = 1;
}
}
/* Re-insert entries back into the queue */
for( queued = 0; queued < i; queued++ )
outb(QINFIFO + iobase, saved_queue[queued]);
if( found ){
goto done;
}
}
active_scb = inb(SCBPTR + iobase);
/*
* Case 2: Not the active command
*/
if( active_scb != scb->position ){
/*
* Select the SCB we want to abort
* and turn off the disconnected bit.
* the driver will then abort the command
* and notify us of the abort.
*/
outb(SCBPTR + iobase, scb->position);
scb_control = inb(SCBARRAY + iobase);
scb_control &= ~SCB_DIS;
outb(SCBARRAY + iobase, scb_control);
outb(SCBPTR + iobase, active_scb);
goto done;
}
scb_control = inb(SCBARRAY + iobase);
if( scb_control & SCB_DIS ) {
scb_control &= ~SCB_DIS;
outb(SCBARRAY + iobase, scb_control);
goto done;
}
/*
* Case 3: Currently active command
*/
if ( (flags = inb(HA_FLAGS + iobase)) & ACTIVE_MSG) {
/*
* If there's a message in progress,
* reset the bus and have all devices renegotiate.
*/
if(scb->target_channel_lun & 0x08){
ahc->needsdtr |= (ahc->needsdtr_orig & 0xff00);
ahc->sdtrpending &= 0x00ff;
outb(HA_ACTIVE1 + iobase, 0);
}
else if (ahc->type & AHC_WIDE){
ahc->needsdtr = ahc->needsdtr_orig;
ahc->needwdtr = ahc->needwdtr_orig;
ahc->sdtrpending = 0;
ahc->wdtrpending = 0;
outb(HA_ACTIVE0 + iobase, 0);
outb(HA_ACTIVE1 + iobase, 0);
}
else{
ahc->needsdtr |= (ahc->needsdtr_orig & 0x00ff);
ahc->sdtrpending &= 0xff00;
outb(HA_ACTIVE0 + iobase, 0);
}
/* Reset the bus */
outb(SCSISEQ + iobase, SCSIRSTO);
DELAY(1000);
outb(SCSISEQ + iobase, 0);
goto done;
}
/*
* Otherwise, set up an abort message and have the sequencer
* clean up
*/
outb(HA_FLAGS + iobase, flags | ACTIVE_MSG);
outb(HA_MSG_LEN + iobase, 1);
outb(HA_MSG_START + iobase, MSG_ABORT);
outb(SCSISIGO + iobase, inb(HA_SIGSTATE + iobase) | 0x10);
done:
scb->flags |= SCB_ABORTED;
UNPAUSE_SEQUENCER(ahc);
ahc_done(unit, scb);
return;
}
void
ahc_timeout(void *arg1)
{
struct scb *scb = (struct scb *)arg1;
int unit;
struct ahc_data *ahc;
int s = splbio();
unit = scb->xs->sc_link->adapter_unit;
ahc = ahcdata[unit];
printf("ahc%d: target %d, lun %d (%s%d) timed out\n", unit
,scb->xs->sc_link->target
,scb->xs->sc_link->lun
,scb->xs->sc_link->device->name
,scb->xs->sc_link->dev_unit);
#ifdef SCSIDEBUG
show_scsi_cmd(scb->xs);
#endif
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWSCBS)
ahc_print_active_scb(ahc);
#endif /*AHC_DEBUG */
/*
* If it's immediate, don't try to abort it
*/
if (scb->flags & SCB_IMMED) {
scb->xs->retries = 0; /* I MEAN IT ! */
ahc_done(unit, scb);
splx(s);
return;
}
/* abort the operation that has timed out */
printf("\n");
ahc_abort_scb( unit, ahc, scb );
splx(s);
}