freebsd-nq/contrib/bzip2/decompress.c
David E. O'Brien fb2971ccd2 Upgrade to Bzip2 version 1.0.6.
Reviewed by: SO (cperciva)
2010-11-09 18:32:57 +00:00

647 lines
20 KiB
C

/*-------------------------------------------------------------*/
/*--- Decompression machinery ---*/
/*--- decompress.c ---*/
/*-------------------------------------------------------------*/
/* ------------------------------------------------------------------
This file is part of bzip2/libbzip2, a program and library for
lossless, block-sorting data compression.
bzip2/libbzip2 version 1.0.6 of 6 September 2010
Copyright (C) 1996-2010 Julian Seward <jseward@bzip.org>
Please read the WARNING, DISCLAIMER and PATENTS sections in the
README file.
This program is released under the terms of the license contained
in the file LICENSE.
------------------------------------------------------------------ */
#include "bzlib_private.h"
/*---------------------------------------------------*/
static
void makeMaps_d ( DState* s )
{
Int32 i;
s->nInUse = 0;
for (i = 0; i < 256; i++)
if (s->inUse[i]) {
s->seqToUnseq[s->nInUse] = i;
s->nInUse++;
}
}
/*---------------------------------------------------*/
#define RETURN(rrr) \
{ retVal = rrr; goto save_state_and_return; };
#define GET_BITS(lll,vvv,nnn) \
case lll: s->state = lll; \
while (True) { \
if (s->bsLive >= nnn) { \
UInt32 v; \
v = (s->bsBuff >> \
(s->bsLive-nnn)) & ((1 << nnn)-1); \
s->bsLive -= nnn; \
vvv = v; \
break; \
} \
if (s->strm->avail_in == 0) RETURN(BZ_OK); \
s->bsBuff \
= (s->bsBuff << 8) | \
((UInt32) \
(*((UChar*)(s->strm->next_in)))); \
s->bsLive += 8; \
s->strm->next_in++; \
s->strm->avail_in--; \
s->strm->total_in_lo32++; \
if (s->strm->total_in_lo32 == 0) \
s->strm->total_in_hi32++; \
}
#define GET_UCHAR(lll,uuu) \
GET_BITS(lll,uuu,8)
#define GET_BIT(lll,uuu) \
GET_BITS(lll,uuu,1)
/*---------------------------------------------------*/
#define GET_MTF_VAL(label1,label2,lval) \
{ \
if (groupPos == 0) { \
groupNo++; \
if (groupNo >= nSelectors) \
RETURN(BZ_DATA_ERROR); \
groupPos = BZ_G_SIZE; \
gSel = s->selector[groupNo]; \
gMinlen = s->minLens[gSel]; \
gLimit = &(s->limit[gSel][0]); \
gPerm = &(s->perm[gSel][0]); \
gBase = &(s->base[gSel][0]); \
} \
groupPos--; \
zn = gMinlen; \
GET_BITS(label1, zvec, zn); \
while (1) { \
if (zn > 20 /* the longest code */) \
RETURN(BZ_DATA_ERROR); \
if (zvec <= gLimit[zn]) break; \
zn++; \
GET_BIT(label2, zj); \
zvec = (zvec << 1) | zj; \
}; \
if (zvec - gBase[zn] < 0 \
|| zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) \
RETURN(BZ_DATA_ERROR); \
lval = gPerm[zvec - gBase[zn]]; \
}
/*---------------------------------------------------*/
Int32 BZ2_decompress ( DState* s )
{
UChar uc;
Int32 retVal;
Int32 minLen, maxLen;
bz_stream* strm = s->strm;
/* stuff that needs to be saved/restored */
Int32 i;
Int32 j;
Int32 t;
Int32 alphaSize;
Int32 nGroups;
Int32 nSelectors;
Int32 EOB;
Int32 groupNo;
Int32 groupPos;
Int32 nextSym;
Int32 nblockMAX;
Int32 nblock;
Int32 es;
Int32 N;
Int32 curr;
Int32 zt;
Int32 zn;
Int32 zvec;
Int32 zj;
Int32 gSel;
Int32 gMinlen;
Int32* gLimit;
Int32* gBase;
Int32* gPerm;
if (s->state == BZ_X_MAGIC_1) {
/*initialise the save area*/
s->save_i = 0;
s->save_j = 0;
s->save_t = 0;
s->save_alphaSize = 0;
s->save_nGroups = 0;
s->save_nSelectors = 0;
s->save_EOB = 0;
s->save_groupNo = 0;
s->save_groupPos = 0;
s->save_nextSym = 0;
s->save_nblockMAX = 0;
s->save_nblock = 0;
s->save_es = 0;
s->save_N = 0;
s->save_curr = 0;
s->save_zt = 0;
s->save_zn = 0;
s->save_zvec = 0;
s->save_zj = 0;
s->save_gSel = 0;
s->save_gMinlen = 0;
s->save_gLimit = NULL;
s->save_gBase = NULL;
s->save_gPerm = NULL;
}
/*restore from the save area*/
i = s->save_i;
j = s->save_j;
t = s->save_t;
alphaSize = s->save_alphaSize;
nGroups = s->save_nGroups;
nSelectors = s->save_nSelectors;
EOB = s->save_EOB;
groupNo = s->save_groupNo;
groupPos = s->save_groupPos;
nextSym = s->save_nextSym;
nblockMAX = s->save_nblockMAX;
nblock = s->save_nblock;
es = s->save_es;
N = s->save_N;
curr = s->save_curr;
zt = s->save_zt;
zn = s->save_zn;
zvec = s->save_zvec;
zj = s->save_zj;
gSel = s->save_gSel;
gMinlen = s->save_gMinlen;
gLimit = s->save_gLimit;
gBase = s->save_gBase;
gPerm = s->save_gPerm;
retVal = BZ_OK;
switch (s->state) {
GET_UCHAR(BZ_X_MAGIC_1, uc);
if (uc != BZ_HDR_B) RETURN(BZ_DATA_ERROR_MAGIC);
GET_UCHAR(BZ_X_MAGIC_2, uc);
if (uc != BZ_HDR_Z) RETURN(BZ_DATA_ERROR_MAGIC);
GET_UCHAR(BZ_X_MAGIC_3, uc)
if (uc != BZ_HDR_h) RETURN(BZ_DATA_ERROR_MAGIC);
GET_BITS(BZ_X_MAGIC_4, s->blockSize100k, 8)
if (s->blockSize100k < (BZ_HDR_0 + 1) ||
s->blockSize100k > (BZ_HDR_0 + 9)) RETURN(BZ_DATA_ERROR_MAGIC);
s->blockSize100k -= BZ_HDR_0;
if (s->smallDecompress) {
s->ll16 = BZALLOC( s->blockSize100k * 100000 * sizeof(UInt16) );
s->ll4 = BZALLOC(
((1 + s->blockSize100k * 100000) >> 1) * sizeof(UChar)
);
if (s->ll16 == NULL || s->ll4 == NULL) RETURN(BZ_MEM_ERROR);
} else {
s->tt = BZALLOC( s->blockSize100k * 100000 * sizeof(Int32) );
if (s->tt == NULL) RETURN(BZ_MEM_ERROR);
}
GET_UCHAR(BZ_X_BLKHDR_1, uc);
if (uc == 0x17) goto endhdr_2;
if (uc != 0x31) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_2, uc);
if (uc != 0x41) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_3, uc);
if (uc != 0x59) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_4, uc);
if (uc != 0x26) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_5, uc);
if (uc != 0x53) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_6, uc);
if (uc != 0x59) RETURN(BZ_DATA_ERROR);
s->currBlockNo++;
if (s->verbosity >= 2)
VPrintf1 ( "\n [%d: huff+mtf ", s->currBlockNo );
s->storedBlockCRC = 0;
GET_UCHAR(BZ_X_BCRC_1, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_BCRC_2, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_BCRC_3, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_BCRC_4, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_BITS(BZ_X_RANDBIT, s->blockRandomised, 1);
s->origPtr = 0;
GET_UCHAR(BZ_X_ORIGPTR_1, uc);
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
GET_UCHAR(BZ_X_ORIGPTR_2, uc);
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
GET_UCHAR(BZ_X_ORIGPTR_3, uc);
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
if (s->origPtr < 0)
RETURN(BZ_DATA_ERROR);
if (s->origPtr > 10 + 100000*s->blockSize100k)
RETURN(BZ_DATA_ERROR);
/*--- Receive the mapping table ---*/
for (i = 0; i < 16; i++) {
GET_BIT(BZ_X_MAPPING_1, uc);
if (uc == 1)
s->inUse16[i] = True; else
s->inUse16[i] = False;
}
for (i = 0; i < 256; i++) s->inUse[i] = False;
for (i = 0; i < 16; i++)
if (s->inUse16[i])
for (j = 0; j < 16; j++) {
GET_BIT(BZ_X_MAPPING_2, uc);
if (uc == 1) s->inUse[i * 16 + j] = True;
}
makeMaps_d ( s );
if (s->nInUse == 0) RETURN(BZ_DATA_ERROR);
alphaSize = s->nInUse+2;
/*--- Now the selectors ---*/
GET_BITS(BZ_X_SELECTOR_1, nGroups, 3);
if (nGroups < 2 || nGroups > 6) RETURN(BZ_DATA_ERROR);
GET_BITS(BZ_X_SELECTOR_2, nSelectors, 15);
if (nSelectors < 1) RETURN(BZ_DATA_ERROR);
for (i = 0; i < nSelectors; i++) {
j = 0;
while (True) {
GET_BIT(BZ_X_SELECTOR_3, uc);
if (uc == 0) break;
j++;
if (j >= nGroups) RETURN(BZ_DATA_ERROR);
}
s->selectorMtf[i] = j;
}
/*--- Undo the MTF values for the selectors. ---*/
{
UChar pos[BZ_N_GROUPS], tmp, v;
for (v = 0; v < nGroups; v++) pos[v] = v;
for (i = 0; i < nSelectors; i++) {
v = s->selectorMtf[i];
tmp = pos[v];
while (v > 0) { pos[v] = pos[v-1]; v--; }
pos[0] = tmp;
s->selector[i] = tmp;
}
}
/*--- Now the coding tables ---*/
for (t = 0; t < nGroups; t++) {
GET_BITS(BZ_X_CODING_1, curr, 5);
for (i = 0; i < alphaSize; i++) {
while (True) {
if (curr < 1 || curr > 20) RETURN(BZ_DATA_ERROR);
GET_BIT(BZ_X_CODING_2, uc);
if (uc == 0) break;
GET_BIT(BZ_X_CODING_3, uc);
if (uc == 0) curr++; else curr--;
}
s->len[t][i] = curr;
}
}
/*--- Create the Huffman decoding tables ---*/
for (t = 0; t < nGroups; t++) {
minLen = 32;
maxLen = 0;
for (i = 0; i < alphaSize; i++) {
if (s->len[t][i] > maxLen) maxLen = s->len[t][i];
if (s->len[t][i] < minLen) minLen = s->len[t][i];
}
BZ2_hbCreateDecodeTables (
&(s->limit[t][0]),
&(s->base[t][0]),
&(s->perm[t][0]),
&(s->len[t][0]),
minLen, maxLen, alphaSize
);
s->minLens[t] = minLen;
}
/*--- Now the MTF values ---*/
EOB = s->nInUse+1;
nblockMAX = 100000 * s->blockSize100k;
groupNo = -1;
groupPos = 0;
for (i = 0; i <= 255; i++) s->unzftab[i] = 0;
/*-- MTF init --*/
{
Int32 ii, jj, kk;
kk = MTFA_SIZE-1;
for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) {
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
s->mtfa[kk] = (UChar)(ii * MTFL_SIZE + jj);
kk--;
}
s->mtfbase[ii] = kk + 1;
}
}
/*-- end MTF init --*/
nblock = 0;
GET_MTF_VAL(BZ_X_MTF_1, BZ_X_MTF_2, nextSym);
while (True) {
if (nextSym == EOB) break;
if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) {
es = -1;
N = 1;
do {
/* Check that N doesn't get too big, so that es doesn't
go negative. The maximum value that can be
RUNA/RUNB encoded is equal to the block size (post
the initial RLE), viz, 900k, so bounding N at 2
million should guard against overflow without
rejecting any legitimate inputs. */
if (N >= 2*1024*1024) RETURN(BZ_DATA_ERROR);
if (nextSym == BZ_RUNA) es = es + (0+1) * N; else
if (nextSym == BZ_RUNB) es = es + (1+1) * N;
N = N * 2;
GET_MTF_VAL(BZ_X_MTF_3, BZ_X_MTF_4, nextSym);
}
while (nextSym == BZ_RUNA || nextSym == BZ_RUNB);
es++;
uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ];
s->unzftab[uc] += es;
if (s->smallDecompress)
while (es > 0) {
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
s->ll16[nblock] = (UInt16)uc;
nblock++;
es--;
}
else
while (es > 0) {
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
s->tt[nblock] = (UInt32)uc;
nblock++;
es--;
};
continue;
} else {
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
/*-- uc = MTF ( nextSym-1 ) --*/
{
Int32 ii, jj, kk, pp, lno, off;
UInt32 nn;
nn = (UInt32)(nextSym - 1);
if (nn < MTFL_SIZE) {
/* avoid general-case expense */
pp = s->mtfbase[0];
uc = s->mtfa[pp+nn];
while (nn > 3) {
Int32 z = pp+nn;
s->mtfa[(z) ] = s->mtfa[(z)-1];
s->mtfa[(z)-1] = s->mtfa[(z)-2];
s->mtfa[(z)-2] = s->mtfa[(z)-3];
s->mtfa[(z)-3] = s->mtfa[(z)-4];
nn -= 4;
}
while (nn > 0) {
s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--;
};
s->mtfa[pp] = uc;
} else {
/* general case */
lno = nn / MTFL_SIZE;
off = nn % MTFL_SIZE;
pp = s->mtfbase[lno] + off;
uc = s->mtfa[pp];
while (pp > s->mtfbase[lno]) {
s->mtfa[pp] = s->mtfa[pp-1]; pp--;
};
s->mtfbase[lno]++;
while (lno > 0) {
s->mtfbase[lno]--;
s->mtfa[s->mtfbase[lno]]
= s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1];
lno--;
}
s->mtfbase[0]--;
s->mtfa[s->mtfbase[0]] = uc;
if (s->mtfbase[0] == 0) {
kk = MTFA_SIZE-1;
for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) {
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj];
kk--;
}
s->mtfbase[ii] = kk + 1;
}
}
}
}
/*-- end uc = MTF ( nextSym-1 ) --*/
s->unzftab[s->seqToUnseq[uc]]++;
if (s->smallDecompress)
s->ll16[nblock] = (UInt16)(s->seqToUnseq[uc]); else
s->tt[nblock] = (UInt32)(s->seqToUnseq[uc]);
nblock++;
GET_MTF_VAL(BZ_X_MTF_5, BZ_X_MTF_6, nextSym);
continue;
}
}
/* Now we know what nblock is, we can do a better sanity
check on s->origPtr.
*/
if (s->origPtr < 0 || s->origPtr >= nblock)
RETURN(BZ_DATA_ERROR);
/*-- Set up cftab to facilitate generation of T^(-1) --*/
/* Check: unzftab entries in range. */
for (i = 0; i <= 255; i++) {
if (s->unzftab[i] < 0 || s->unzftab[i] > nblock)
RETURN(BZ_DATA_ERROR);
}
/* Actually generate cftab. */
s->cftab[0] = 0;
for (i = 1; i <= 256; i++) s->cftab[i] = s->unzftab[i-1];
for (i = 1; i <= 256; i++) s->cftab[i] += s->cftab[i-1];
/* Check: cftab entries in range. */
for (i = 0; i <= 256; i++) {
if (s->cftab[i] < 0 || s->cftab[i] > nblock) {
/* s->cftab[i] can legitimately be == nblock */
RETURN(BZ_DATA_ERROR);
}
}
/* Check: cftab entries non-descending. */
for (i = 1; i <= 256; i++) {
if (s->cftab[i-1] > s->cftab[i]) {
RETURN(BZ_DATA_ERROR);
}
}
s->state_out_len = 0;
s->state_out_ch = 0;
BZ_INITIALISE_CRC ( s->calculatedBlockCRC );
s->state = BZ_X_OUTPUT;
if (s->verbosity >= 2) VPrintf0 ( "rt+rld" );
if (s->smallDecompress) {
/*-- Make a copy of cftab, used in generation of T --*/
for (i = 0; i <= 256; i++) s->cftabCopy[i] = s->cftab[i];
/*-- compute the T vector --*/
for (i = 0; i < nblock; i++) {
uc = (UChar)(s->ll16[i]);
SET_LL(i, s->cftabCopy[uc]);
s->cftabCopy[uc]++;
}
/*-- Compute T^(-1) by pointer reversal on T --*/
i = s->origPtr;
j = GET_LL(i);
do {
Int32 tmp = GET_LL(j);
SET_LL(j, i);
i = j;
j = tmp;
}
while (i != s->origPtr);
s->tPos = s->origPtr;
s->nblock_used = 0;
if (s->blockRandomised) {
BZ_RAND_INIT_MASK;
BZ_GET_SMALL(s->k0); s->nblock_used++;
BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK;
} else {
BZ_GET_SMALL(s->k0); s->nblock_used++;
}
} else {
/*-- compute the T^(-1) vector --*/
for (i = 0; i < nblock; i++) {
uc = (UChar)(s->tt[i] & 0xff);
s->tt[s->cftab[uc]] |= (i << 8);
s->cftab[uc]++;
}
s->tPos = s->tt[s->origPtr] >> 8;
s->nblock_used = 0;
if (s->blockRandomised) {
BZ_RAND_INIT_MASK;
BZ_GET_FAST(s->k0); s->nblock_used++;
BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK;
} else {
BZ_GET_FAST(s->k0); s->nblock_used++;
}
}
RETURN(BZ_OK);
endhdr_2:
GET_UCHAR(BZ_X_ENDHDR_2, uc);
if (uc != 0x72) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_3, uc);
if (uc != 0x45) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_4, uc);
if (uc != 0x38) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_5, uc);
if (uc != 0x50) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_6, uc);
if (uc != 0x90) RETURN(BZ_DATA_ERROR);
s->storedCombinedCRC = 0;
GET_UCHAR(BZ_X_CCRC_1, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_CCRC_2, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_CCRC_3, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_CCRC_4, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
s->state = BZ_X_IDLE;
RETURN(BZ_STREAM_END);
default: AssertH ( False, 4001 );
}
AssertH ( False, 4002 );
save_state_and_return:
s->save_i = i;
s->save_j = j;
s->save_t = t;
s->save_alphaSize = alphaSize;
s->save_nGroups = nGroups;
s->save_nSelectors = nSelectors;
s->save_EOB = EOB;
s->save_groupNo = groupNo;
s->save_groupPos = groupPos;
s->save_nextSym = nextSym;
s->save_nblockMAX = nblockMAX;
s->save_nblock = nblock;
s->save_es = es;
s->save_N = N;
s->save_curr = curr;
s->save_zt = zt;
s->save_zn = zn;
s->save_zvec = zvec;
s->save_zj = zj;
s->save_gSel = gSel;
s->save_gMinlen = gMinlen;
s->save_gLimit = gLimit;
s->save_gBase = gBase;
s->save_gPerm = gPerm;
return retVal;
}
/*-------------------------------------------------------------*/
/*--- end decompress.c ---*/
/*-------------------------------------------------------------*/