freebsd-nq/sys/fs/nfsclient/nfs_clvnops.c
Robert Watson eddfbb763d Build on Jeff Roberson's linker-set based dynamic per-CPU allocator
(DPCPU), as suggested by Peter Wemm, and implement a new per-virtual
network stack memory allocator.  Modify vnet to use the allocator
instead of monolithic global container structures (vinet, ...).  This
change solves many binary compatibility problems associated with
VIMAGE, and restores ELF symbols for virtualized global variables.

Each virtualized global variable exists as a "reference copy", and also
once per virtual network stack.  Virtualized global variables are
tagged at compile-time, placing the in a special linker set, which is
loaded into a contiguous region of kernel memory.  Virtualized global
variables in the base kernel are linked as normal, but those in modules
are copied and relocated to a reserved portion of the kernel's vnet
region with the help of a the kernel linker.

Virtualized global variables exist in per-vnet memory set up when the
network stack instance is created, and are initialized statically from
the reference copy.  Run-time access occurs via an accessor macro, which
converts from the current vnet and requested symbol to a per-vnet
address.  When "options VIMAGE" is not compiled into the kernel, normal
global ELF symbols will be used instead and indirection is avoided.

This change restores static initialization for network stack global
variables, restores support for non-global symbols and types, eliminates
the need for many subsystem constructors, eliminates large per-subsystem
structures that caused many binary compatibility issues both for
monitoring applications (netstat) and kernel modules, removes the
per-function INIT_VNET_*() macros throughout the stack, eliminates the
need for vnet_symmap ksym(2) munging, and eliminates duplicate
definitions of virtualized globals under VIMAGE_GLOBALS.

Bump __FreeBSD_version and update UPDATING.

Portions submitted by:  bz
Reviewed by:            bz, zec
Discussed with:         gnn, jamie, jeff, jhb, julian, sam
Suggested by:           peter
Approved by:            re (kensmith)
2009-07-14 22:48:30 +00:00

3155 lines
83 KiB
C

/*-
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from nfs_vnops.c 8.16 (Berkeley) 5/27/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* vnode op calls for Sun NFS version 2, 3 and 4
*/
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/resourcevar.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/jail.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/namei.h>
#include <sys/socket.h>
#include <sys/vnode.h>
#include <sys/dirent.h>
#include <sys/fcntl.h>
#include <sys/lockf.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/signalvar.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <fs/nfs/nfsport.h>
#include <fs/nfsclient/nfsnode.h>
#include <fs/nfsclient/nfsmount.h>
#include <fs/nfsclient/nfs.h>
#include <fs/nfsclient/nfs_lock.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
/* Defs */
#define TRUE 1
#define FALSE 0
extern struct nfsstats newnfsstats;
MALLOC_DECLARE(M_NEWNFSREQ);
vop_advlock_t *ncl_advlock_p = ncl_dolock;
/*
* Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
* calls are not in getblk() and brelse() so that they would not be necessary
* here.
*/
#ifndef B_VMIO
#define vfs_busy_pages(bp, f)
#endif
static vop_read_t nfsfifo_read;
static vop_write_t nfsfifo_write;
static vop_close_t nfsfifo_close;
static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
struct thread *);
static vop_lookup_t nfs_lookup;
static vop_create_t nfs_create;
static vop_mknod_t nfs_mknod;
static vop_open_t nfs_open;
static vop_close_t nfs_close;
static vop_access_t nfs_access;
static vop_getattr_t nfs_getattr;
static vop_setattr_t nfs_setattr;
static vop_read_t nfs_read;
static vop_fsync_t nfs_fsync;
static vop_remove_t nfs_remove;
static vop_link_t nfs_link;
static vop_rename_t nfs_rename;
static vop_mkdir_t nfs_mkdir;
static vop_rmdir_t nfs_rmdir;
static vop_symlink_t nfs_symlink;
static vop_readdir_t nfs_readdir;
static vop_strategy_t nfs_strategy;
static vop_lock1_t nfs_lock1;
static int nfs_lookitup(struct vnode *, char *, int,
struct ucred *, struct thread *, struct nfsnode **);
static int nfs_sillyrename(struct vnode *, struct vnode *,
struct componentname *);
static vop_access_t nfsspec_access;
static vop_readlink_t nfs_readlink;
static vop_print_t nfs_print;
static vop_advlock_t nfs_advlock;
static vop_advlockasync_t nfs_advlockasync;
#ifdef NFS4_ACL_EXTATTR_NAME
static vop_getacl_t nfs_getacl;
static vop_setacl_t nfs_setacl;
#endif
/*
* Global vfs data structures for nfs
*/
struct vop_vector newnfs_vnodeops = {
.vop_default = &default_vnodeops,
.vop_access = nfs_access,
.vop_advlock = nfs_advlock,
.vop_advlockasync = nfs_advlockasync,
.vop_close = nfs_close,
.vop_create = nfs_create,
.vop_fsync = nfs_fsync,
.vop_getattr = nfs_getattr,
.vop_getpages = ncl_getpages,
.vop_putpages = ncl_putpages,
.vop_inactive = ncl_inactive,
.vop_link = nfs_link,
.vop_lock1 = nfs_lock1,
.vop_lookup = nfs_lookup,
.vop_mkdir = nfs_mkdir,
.vop_mknod = nfs_mknod,
.vop_open = nfs_open,
.vop_print = nfs_print,
.vop_read = nfs_read,
.vop_readdir = nfs_readdir,
.vop_readlink = nfs_readlink,
.vop_reclaim = ncl_reclaim,
.vop_remove = nfs_remove,
.vop_rename = nfs_rename,
.vop_rmdir = nfs_rmdir,
.vop_setattr = nfs_setattr,
.vop_strategy = nfs_strategy,
.vop_symlink = nfs_symlink,
.vop_write = ncl_write,
#ifdef NFS4_ACL_EXTATTR_NAME
.vop_getacl = nfs_getacl,
.vop_setacl = nfs_setacl,
#endif
};
struct vop_vector newnfs_fifoops = {
.vop_default = &fifo_specops,
.vop_access = nfsspec_access,
.vop_close = nfsfifo_close,
.vop_fsync = nfs_fsync,
.vop_getattr = nfs_getattr,
.vop_inactive = ncl_inactive,
.vop_print = nfs_print,
.vop_read = nfsfifo_read,
.vop_reclaim = ncl_reclaim,
.vop_setattr = nfs_setattr,
.vop_write = nfsfifo_write,
};
static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
struct componentname *cnp, struct vattr *vap);
static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
int namelen, struct ucred *cred, struct thread *td);
static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
struct componentname *scnp, struct sillyrename *sp);
/*
* Global variables
*/
#define DIRHDSIZ (sizeof (struct dirent) - (MAXNAMLEN + 1))
SYSCTL_DECL(_vfs_newnfs);
static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
&nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
static int nfs_prime_access_cache = 0;
SYSCTL_INT(_vfs_newnfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
&nfs_prime_access_cache, 0,
"Prime NFS ACCESS cache when fetching attributes");
static int newnfs_commit_on_close = 0;
SYSCTL_INT(_vfs_newnfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
&newnfs_commit_on_close, 0, "write+commit on close, else only write");
static int nfs_clean_pages_on_close = 1;
SYSCTL_INT(_vfs_newnfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
&nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
int newnfs_directio_enable = 0;
SYSCTL_INT(_vfs_newnfs, OID_AUTO, directio_enable, CTLFLAG_RW,
&newnfs_directio_enable, 0, "Enable NFS directio");
static int newnfs_neglookup_enable = 1;
SYSCTL_INT(_vfs_newnfs, OID_AUTO, neglookup_enable, CTLFLAG_RW,
&newnfs_neglookup_enable, 0, "Enable NFS negative lookup caching");
/*
* This sysctl allows other processes to mmap a file that has been opened
* O_DIRECT by a process. In general, having processes mmap the file while
* Direct IO is in progress can lead to Data Inconsistencies. But, we allow
* this by default to prevent DoS attacks - to prevent a malicious user from
* opening up files O_DIRECT preventing other users from mmap'ing these
* files. "Protected" environments where stricter consistency guarantees are
* required can disable this knob. The process that opened the file O_DIRECT
* cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
* meaningful.
*/
int newnfs_directio_allow_mmap = 1;
SYSCTL_INT(_vfs_newnfs, OID_AUTO, directio_allow_mmap, CTLFLAG_RW,
&newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
#if 0
SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
&newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
SYSCTL_INT(_vfs_newnfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
&newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
#endif
#define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \
| NFSACCESS_EXTEND | NFSACCESS_EXECUTE \
| NFSACCESS_DELETE | NFSACCESS_LOOKUP)
/*
* SMP Locking Note :
* The list of locks after the description of the lock is the ordering
* of other locks acquired with the lock held.
* np->n_mtx : Protects the fields in the nfsnode.
VM Object Lock
VI_MTX (acquired indirectly)
* nmp->nm_mtx : Protects the fields in the nfsmount.
rep->r_mtx
* ncl_iod_mutex : Global lock, protects shared nfsiod state.
* nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
nmp->nm_mtx
rep->r_mtx
* rep->r_mtx : Protects the fields in an nfsreq.
*/
static int
nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
struct ucred *cred, u_int32_t *retmode)
{
int error = 0, attrflag, i, lrupos;
u_int32_t rmode;
struct nfsnode *np = VTONFS(vp);
struct nfsvattr nfsva;
error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
&rmode, NULL);
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (!error) {
lrupos = 0;
mtx_lock(&np->n_mtx);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
if (np->n_accesscache[i].uid == cred->cr_uid) {
np->n_accesscache[i].mode = rmode;
np->n_accesscache[i].stamp = time_second;
break;
}
if (i > 0 && np->n_accesscache[i].stamp <
np->n_accesscache[lrupos].stamp)
lrupos = i;
}
if (i == NFS_ACCESSCACHESIZE) {
np->n_accesscache[lrupos].uid = cred->cr_uid;
np->n_accesscache[lrupos].mode = rmode;
np->n_accesscache[lrupos].stamp = time_second;
}
mtx_unlock(&np->n_mtx);
if (retmode != NULL)
*retmode = rmode;
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
return (error);
}
/*
* nfs access vnode op.
* For nfs version 2, just return ok. File accesses may fail later.
* For nfs version 3, use the access rpc to check accessibility. If file modes
* are changed on the server, accesses might still fail later.
*/
static int
nfs_access(struct vop_access_args *ap)
{
struct vnode *vp = ap->a_vp;
int error = 0, i, gotahit;
u_int32_t mode, wmode, rmode;
int v34 = NFS_ISV34(vp);
struct nfsnode *np = VTONFS(vp);
/*
* Disallow write attempts on filesystems mounted read-only;
* unless the file is a socket, fifo, or a block or character
* device resident on the filesystem.
*/
if ((ap->a_accmode & (VWRITE | VAPPEND
#ifdef NFS4_ACL_EXTATTR_NAME
| VWRITE_NAMED_ATTRS | VDELETE_CHILD | VWRITE_ATTRIBUTES |
VDELETE | VWRITE_ACL | VWRITE_OWNER
#endif
)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
switch (vp->v_type) {
case VREG:
case VDIR:
case VLNK:
return (EROFS);
default:
break;
}
}
/*
* For nfs v3 or v4, check to see if we have done this recently, and if
* so return our cached result instead of making an ACCESS call.
* If not, do an access rpc, otherwise you are stuck emulating
* ufs_access() locally using the vattr. This may not be correct,
* since the server may apply other access criteria such as
* client uid-->server uid mapping that we do not know about.
*/
if (v34) {
if (ap->a_accmode & VREAD)
mode = NFSACCESS_READ;
else
mode = 0;
if (vp->v_type != VDIR) {
if (ap->a_accmode & VWRITE)
mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
if (ap->a_accmode & VAPPEND)
mode |= NFSACCESS_EXTEND;
if (ap->a_accmode & VEXEC)
mode |= NFSACCESS_EXECUTE;
#ifdef NFS4_ACL_EXTATTR_NAME
if (ap->a_accmode & VDELETE)
mode |= NFSACCESS_DELETE;
#endif
} else {
if (ap->a_accmode & VWRITE)
mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
if (ap->a_accmode & VAPPEND)
mode |= NFSACCESS_EXTEND;
if (ap->a_accmode & VEXEC)
mode |= NFSACCESS_LOOKUP;
#ifdef NFS4_ACL_EXTATTR_NAME
if (ap->a_accmode & VDELETE)
mode |= NFSACCESS_DELETE;
if (ap->a_accmode & VDELETE_CHILD)
mode |= NFSACCESS_MODIFY;
#endif
}
/* XXX safety belt, only make blanket request if caching */
if (nfsaccess_cache_timeout > 0) {
wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
NFSACCESS_DELETE | NFSACCESS_LOOKUP;
} else {
wmode = mode;
}
/*
* Does our cached result allow us to give a definite yes to
* this request?
*/
gotahit = 0;
mtx_lock(&np->n_mtx);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
if (time_second < (np->n_accesscache[i].stamp
+ nfsaccess_cache_timeout) &&
(np->n_accesscache[i].mode & mode) == mode) {
NFSINCRGLOBAL(newnfsstats.accesscache_hits);
gotahit = 1;
}
break;
}
}
mtx_unlock(&np->n_mtx);
if (gotahit == 0) {
/*
* Either a no, or a don't know. Go to the wire.
*/
NFSINCRGLOBAL(newnfsstats.accesscache_misses);
error = nfs34_access_otw(vp, wmode, ap->a_td,
ap->a_cred, &rmode);
if (!error &&
(rmode & mode) != mode)
error = EACCES;
}
return (error);
} else {
if ((error = nfsspec_access(ap)) != 0) {
return (error);
}
/*
* Attempt to prevent a mapped root from accessing a file
* which it shouldn't. We try to read a byte from the file
* if the user is root and the file is not zero length.
* After calling nfsspec_access, we should have the correct
* file size cached.
*/
mtx_lock(&np->n_mtx);
if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
&& VTONFS(vp)->n_size > 0) {
struct iovec aiov;
struct uio auio;
char buf[1];
mtx_unlock(&np->n_mtx);
aiov.iov_base = buf;
aiov.iov_len = 1;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = 0;
auio.uio_resid = 1;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_READ;
auio.uio_td = ap->a_td;
if (vp->v_type == VREG)
error = ncl_readrpc(vp, &auio, ap->a_cred);
else if (vp->v_type == VDIR) {
char* bp;
bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
aiov.iov_base = bp;
aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
error = ncl_readdirrpc(vp, &auio, ap->a_cred,
ap->a_td);
free(bp, M_TEMP);
} else if (vp->v_type == VLNK)
error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
else
error = EACCES;
} else
mtx_unlock(&np->n_mtx);
return (error);
}
}
/*
* nfs open vnode op
* Check to see if the type is ok
* and that deletion is not in progress.
* For paged in text files, you will need to flush the page cache
* if consistency is lost.
*/
/* ARGSUSED */
static int
nfs_open(struct vop_open_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct vattr vattr;
int error;
int fmode = ap->a_mode;
if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
return (EOPNOTSUPP);
/*
* For NFSv4, we need to do the Open Op before cache validation,
* so that we conform to RFC3530 Sec. 9.3.1.
*/
if (NFS_ISV4(vp)) {
error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
if (error) {
error = nfscl_maperr(ap->a_td, error, (uid_t)0,
(gid_t)0);
return (error);
}
}
/*
* Now, if this Open will be doing reading, re-validate/flush the
* cache, so that Close/Open coherency is maintained.
*/
if ((fmode & FREAD) && (!NFS_ISV4(vp) || nfscl_mustflush(vp))) {
mtx_lock(&np->n_mtx);
if (np->n_flag & NMODIFIED) {
mtx_unlock(&np->n_mtx);
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error == EINTR || error == EIO) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
np->n_attrstamp = 0;
if (vp->v_type == VDIR)
np->n_direofoffset = 0;
error = VOP_GETATTR(vp, &vattr, ap->a_cred);
if (error) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
mtx_lock(&np->n_mtx);
np->n_mtime = vattr.va_mtime;
if (NFS_ISV4(vp))
np->n_change = vattr.va_filerev;
mtx_unlock(&np->n_mtx);
} else {
struct thread *td = curthread;
if (np->n_ac_ts_syscalls != td->td_syscalls ||
np->n_ac_ts_tid != td->td_tid ||
td->td_proc == NULL ||
np->n_ac_ts_pid != td->td_proc->p_pid) {
np->n_attrstamp = 0;
}
mtx_unlock(&np->n_mtx);
error = VOP_GETATTR(vp, &vattr, ap->a_cred);
if (error) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
mtx_lock(&np->n_mtx);
if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
if (vp->v_type == VDIR)
np->n_direofoffset = 0;
mtx_unlock(&np->n_mtx);
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error == EINTR || error == EIO) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0,
ap->a_td);
return (error);
}
mtx_lock(&np->n_mtx);
np->n_mtime = vattr.va_mtime;
if (NFS_ISV4(vp))
np->n_change = vattr.va_filerev;
}
mtx_unlock(&np->n_mtx);
}
}
/*
* If the object has >= 1 O_DIRECT active opens, we disable caching.
*/
if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
if (np->n_directio_opens == 0) {
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error) {
if (NFS_ISV4(vp))
(void) nfsrpc_close(vp, 0, ap->a_td);
return (error);
}
mtx_lock(&np->n_mtx);
np->n_flag |= NNONCACHE;
} else {
mtx_lock(&np->n_mtx);
}
np->n_directio_opens++;
mtx_unlock(&np->n_mtx);
}
vnode_create_vobject(vp, vattr.va_size, ap->a_td);
return (0);
}
/*
* nfs close vnode op
* What an NFS client should do upon close after writing is a debatable issue.
* Most NFS clients push delayed writes to the server upon close, basically for
* two reasons:
* 1 - So that any write errors may be reported back to the client process
* doing the close system call. By far the two most likely errors are
* NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
* 2 - To put a worst case upper bound on cache inconsistency between
* multiple clients for the file.
* There is also a consistency problem for Version 2 of the protocol w.r.t.
* not being able to tell if other clients are writing a file concurrently,
* since there is no way of knowing if the changed modify time in the reply
* is only due to the write for this client.
* (NFS Version 3 provides weak cache consistency data in the reply that
* should be sufficient to detect and handle this case.)
*
* The current code does the following:
* for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
* for NFS Version 3 - flush dirty buffers to the server but don't invalidate
* or commit them (this satisfies 1 and 2 except for the
* case where the server crashes after this close but
* before the commit RPC, which is felt to be "good
* enough". Changing the last argument to ncl_flush() to
* a 1 would force a commit operation, if it is felt a
* commit is necessary now.
* for NFS Version 4 - flush the dirty buffers and commit them, if
* nfscl_mustflush() says this is necessary.
* It is necessary if there is no write delegation held,
* in order to satisfy open/close coherency.
* If the file isn't cached on local stable storage,
* it may be necessary in order to detect "out of space"
* errors from the server, if the write delegation
* issued by the server doesn't allow the file to grow.
*/
/* ARGSUSED */
static int
nfs_close(struct vop_close_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct nfsvattr nfsva;
struct ucred *cred;
int error = 0, ret, localcred = 0;
int fmode = ap->a_fflag;
if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF))
return (0);
/*
* During shutdown, a_cred isn't valid, so just use root.
*/
if (ap->a_cred == NOCRED) {
cred = newnfs_getcred();
localcred = 1;
} else {
cred = ap->a_cred;
}
if (vp->v_type == VREG) {
/*
* Examine and clean dirty pages, regardless of NMODIFIED.
* This closes a major hole in close-to-open consistency.
* We want to push out all dirty pages (and buffers) on
* close, regardless of whether they were dirtied by
* mmap'ed writes or via write().
*/
if (nfs_clean_pages_on_close && vp->v_object) {
VM_OBJECT_LOCK(vp->v_object);
vm_object_page_clean(vp->v_object, 0, 0, 0);
VM_OBJECT_UNLOCK(vp->v_object);
}
mtx_lock(&np->n_mtx);
if (np->n_flag & NMODIFIED) {
mtx_unlock(&np->n_mtx);
if (NFS_ISV3(vp)) {
/*
* Under NFSv3 we have dirty buffers to dispose of. We
* must flush them to the NFS server. We have the option
* of waiting all the way through the commit rpc or just
* waiting for the initial write. The default is to only
* wait through the initial write so the data is in the
* server's cache, which is roughly similar to the state
* a standard disk subsystem leaves the file in on close().
*
* We cannot clear the NMODIFIED bit in np->n_flag due to
* potential races with other processes, and certainly
* cannot clear it if we don't commit.
* These races occur when there is no longer the old
* traditional vnode locking implemented for Vnode Ops.
*/
int cm = newnfs_commit_on_close ? 1 : 0;
error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm);
/* np->n_flag &= ~NMODIFIED; */
} else if (NFS_ISV4(vp) && nfscl_mustflush(vp)) {
int cm = newnfs_commit_on_close ? 1 : 0;
error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm);
/* as above w.r.t. races when clearing NMODIFIED */
/* np->n_flag &= ~NMODIFIED; */
} else
error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
mtx_lock(&np->n_mtx);
}
/*
* Invalidate the attribute cache in all cases.
* An open is going to fetch fresh attrs any way, other procs
* on this node that have file open will be forced to do an
* otw attr fetch, but this is safe.
* --> A user found that their RPC count dropped by 20% when
* this was commented out and I can't see any requirement
* for it, so I've disabled it when negative lookups are
* enabled. (What does this have to do with negative lookup
* caching? Well nothing, except it was reported by the
* same user that needed negative lookup caching and I wanted
* there to be a way to disable it via sysctl to see if it
* is the cause of some caching/coherency issue that might
* crop up.)
*/
if (newnfs_neglookup_enable == 0)
np->n_attrstamp = 0;
if (np->n_flag & NWRITEERR) {
np->n_flag &= ~NWRITEERR;
error = np->n_error;
}
mtx_unlock(&np->n_mtx);
}
if (NFS_ISV4(vp)) {
/*
* Get attributes so "change" is up to date.
*/
if (!error) {
ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
NULL);
if (!ret) {
np->n_change = nfsva.na_filerev;
(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
NULL, 0, 0);
}
}
/*
* and do the close.
*/
ret = nfsrpc_close(vp, 0, ap->a_td);
if (!error && ret)
error = ret;
if (error)
error = nfscl_maperr(ap->a_td, error, (uid_t)0,
(gid_t)0);
}
if (newnfs_directio_enable)
KASSERT((np->n_directio_asyncwr == 0),
("nfs_close: dirty unflushed (%d) directio buffers\n",
np->n_directio_asyncwr));
if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
mtx_lock(&np->n_mtx);
KASSERT((np->n_directio_opens > 0),
("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
np->n_directio_opens--;
if (np->n_directio_opens == 0)
np->n_flag &= ~NNONCACHE;
mtx_unlock(&np->n_mtx);
}
if (localcred)
NFSFREECRED(cred);
return (error);
}
/*
* nfs getattr call from vfs.
*/
static int
nfs_getattr(struct vop_getattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct thread *td = curthread; /* XXX */
struct nfsnode *np = VTONFS(vp);
int error = 0;
struct nfsvattr nfsva;
struct vattr *vap = ap->a_vap;
struct vattr vattr;
/*
* Update local times for special files.
*/
mtx_lock(&np->n_mtx);
if (np->n_flag & (NACC | NUPD))
np->n_flag |= NCHG;
mtx_unlock(&np->n_mtx);
/*
* First look in the cache.
*/
if (ncl_getattrcache(vp, &vattr) == 0) {
vap->va_type = vattr.va_type;
vap->va_mode = vattr.va_mode;
vap->va_nlink = vattr.va_nlink;
vap->va_uid = vattr.va_uid;
vap->va_gid = vattr.va_gid;
vap->va_fsid = vattr.va_fsid;
vap->va_fileid = vattr.va_fileid;
vap->va_size = vattr.va_size;
vap->va_blocksize = vattr.va_blocksize;
vap->va_atime = vattr.va_atime;
vap->va_mtime = vattr.va_mtime;
vap->va_ctime = vattr.va_ctime;
vap->va_gen = vattr.va_gen;
vap->va_flags = vattr.va_flags;
vap->va_rdev = vattr.va_rdev;
vap->va_bytes = vattr.va_bytes;
vap->va_filerev = vattr.va_filerev;
/*
* Get the local modify time for the case of a write
* delegation.
*/
nfscl_deleggetmodtime(vp, &vap->va_mtime);
return (0);
}
if (NFS_ISV34(vp) && nfs_prime_access_cache &&
nfsaccess_cache_timeout > 0) {
NFSINCRGLOBAL(newnfsstats.accesscache_misses);
nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
if (ncl_getattrcache(vp, ap->a_vap) == 0) {
nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
return (0);
}
}
error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
if (!error)
error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
if (!error) {
/*
* Get the local modify time for the case of a write
* delegation.
*/
nfscl_deleggetmodtime(vp, &vap->va_mtime);
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
return (error);
}
/*
* nfs setattr call.
*/
static int
nfs_setattr(struct vop_setattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct thread *td = curthread; /* XXX */
struct vattr *vap = ap->a_vap;
int error = 0;
u_quad_t tsize;
#ifndef nolint
tsize = (u_quad_t)0;
#endif
/*
* Setting of flags and marking of atimes are not supported.
*/
if (vap->va_flags != VNOVAL)
return (EOPNOTSUPP);
/*
* Disallow write attempts if the filesystem is mounted read-only.
*/
if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
(vp->v_mount->mnt_flag & MNT_RDONLY))
return (EROFS);
if (vap->va_size != VNOVAL) {
switch (vp->v_type) {
case VDIR:
return (EISDIR);
case VCHR:
case VBLK:
case VSOCK:
case VFIFO:
if (vap->va_mtime.tv_sec == VNOVAL &&
vap->va_atime.tv_sec == VNOVAL &&
vap->va_mode == (mode_t)VNOVAL &&
vap->va_uid == (uid_t)VNOVAL &&
vap->va_gid == (gid_t)VNOVAL)
return (0);
vap->va_size = VNOVAL;
break;
default:
/*
* Disallow write attempts if the filesystem is
* mounted read-only.
*/
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
/*
* We run vnode_pager_setsize() early (why?),
* we must set np->n_size now to avoid vinvalbuf
* V_SAVE races that might setsize a lower
* value.
*/
mtx_lock(&np->n_mtx);
tsize = np->n_size;
mtx_unlock(&np->n_mtx);
error = ncl_meta_setsize(vp, ap->a_cred, td,
vap->va_size);
mtx_lock(&np->n_mtx);
if (np->n_flag & NMODIFIED) {
tsize = np->n_size;
mtx_unlock(&np->n_mtx);
if (vap->va_size == 0)
error = ncl_vinvalbuf(vp, 0, td, 1);
else
error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
if (error) {
vnode_pager_setsize(vp, tsize);
return (error);
}
/*
* Call nfscl_delegmodtime() to set the modify time
* locally, as required.
*/
nfscl_delegmodtime(vp);
} else
mtx_unlock(&np->n_mtx);
/*
* np->n_size has already been set to vap->va_size
* in ncl_meta_setsize(). We must set it again since
* nfs_loadattrcache() could be called through
* ncl_meta_setsize() and could modify np->n_size.
*/
mtx_lock(&np->n_mtx);
np->n_vattr.na_size = np->n_size = vap->va_size;
mtx_unlock(&np->n_mtx);
};
} else {
mtx_lock(&np->n_mtx);
if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
(np->n_flag & NMODIFIED) && vp->v_type == VREG) {
mtx_unlock(&np->n_mtx);
if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
(error == EINTR || error == EIO))
return (error);
} else
mtx_unlock(&np->n_mtx);
}
error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
if (error && vap->va_size != VNOVAL) {
mtx_lock(&np->n_mtx);
np->n_size = np->n_vattr.na_size = tsize;
vnode_pager_setsize(vp, tsize);
mtx_unlock(&np->n_mtx);
}
return (error);
}
/*
* Do an nfs setattr rpc.
*/
static int
nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
struct thread *td)
{
struct nfsnode *np = VTONFS(vp);
int error, ret, attrflag, i;
struct nfsvattr nfsva;
if (NFS_ISV34(vp)) {
mtx_lock(&np->n_mtx);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
np->n_accesscache[i].stamp = 0;
np->n_flag |= NDELEGMOD;
mtx_unlock(&np->n_mtx);
}
error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
NULL);
if (attrflag) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (ret && !error)
error = ret;
}
if (error && NFS_ISV4(vp))
error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
return (error);
}
/*
* nfs lookup call, one step at a time...
* First look in cache
* If not found, unlock the directory nfsnode and do the rpc
*/
static int
nfs_lookup(struct vop_lookup_args *ap)
{
struct componentname *cnp = ap->a_cnp;
struct vnode *dvp = ap->a_dvp;
struct vnode **vpp = ap->a_vpp;
struct mount *mp = dvp->v_mount;
int flags = cnp->cn_flags;
struct vnode *newvp;
struct nfsmount *nmp;
struct nfsnode *np;
int error = 0, attrflag, dattrflag, ltype;
struct thread *td = cnp->cn_thread;
struct nfsfh *nfhp;
struct nfsvattr dnfsva, nfsva;
*vpp = NULLVP;
if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
(cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
return (EROFS);
if (dvp->v_type != VDIR)
return (ENOTDIR);
nmp = VFSTONFS(mp);
np = VTONFS(dvp);
/* For NFSv4, wait until any remove is done. */
mtx_lock(&np->n_mtx);
while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
np->n_flag |= NREMOVEWANT;
(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
}
mtx_unlock(&np->n_mtx);
if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
return (error);
if ((error = cache_lookup(dvp, vpp, cnp)) &&
(error != ENOENT || newnfs_neglookup_enable != 0)) {
struct vattr vattr;
if (error == ENOENT) {
if (!VOP_GETATTR(dvp, &vattr, cnp->cn_cred) &&
vattr.va_mtime.tv_sec == np->n_dmtime) {
NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
return (ENOENT);
}
cache_purge_negative(dvp);
np->n_dmtime = 0;
} else {
newvp = *vpp;
if (nfscl_nodeleg(newvp, 0) == 0 ||
(!VOP_GETATTR(newvp, &vattr, cnp->cn_cred) &&
vattr.va_ctime.tv_sec==VTONFS(newvp)->n_ctime)) {
NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
if (cnp->cn_nameiop != LOOKUP &&
(flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
return (0);
}
cache_purge(newvp);
if (dvp != newvp)
vput(newvp);
else
vrele(newvp);
*vpp = NULLVP;
}
}
error = 0;
newvp = NULLVP;
NFSINCRGLOBAL(newnfsstats.lookupcache_misses);
error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
NULL);
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (error) {
if (newnfs_neglookup_enable != 0 &&
error == ENOENT && (cnp->cn_flags & MAKEENTRY) &&
cnp->cn_nameiop != CREATE) {
if (np->n_dmtime == 0)
np->n_dmtime = np->n_vattr.na_mtime.tv_sec;
cache_enter(dvp, NULL, cnp);
}
if (newvp != NULLVP) {
vput(newvp);
*vpp = NULLVP;
}
if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
(flags & ISLASTCN) && error == ENOENT) {
if (mp->mnt_flag & MNT_RDONLY)
error = EROFS;
else
error = EJUSTRETURN;
}
if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
if (NFS_ISV4(dvp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* Handle RENAME case...
*/
if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
FREE((caddr_t)nfhp, M_NFSFH);
return (EISDIR);
}
error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
if (error)
return (error);
newvp = NFSTOV(np);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
*vpp = newvp;
cnp->cn_flags |= SAVENAME;
return (0);
}
if (flags & ISDOTDOT) {
ltype = VOP_ISLOCKED(dvp);
error = vfs_busy(mp, MBF_NOWAIT);
if (error != 0) {
vfs_ref(mp);
VOP_UNLOCK(dvp, 0);
error = vfs_busy(mp, 0);
vn_lock(dvp, ltype | LK_RETRY);
vfs_rel(mp);
if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
vfs_unbusy(mp);
error = ENOENT;
}
if (error != 0)
return (error);
}
VOP_UNLOCK(dvp, 0);
error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
if (error == 0)
newvp = NFSTOV(np);
vfs_unbusy(mp);
vn_lock(dvp, ltype | LK_RETRY);
if (dvp->v_iflag & VI_DOOMED) {
if (error == 0) {
if (newvp == dvp)
vrele(newvp);
else
vput(newvp);
}
error = ENOENT;
}
if (error != 0)
return (error);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
FREE((caddr_t)nfhp, M_NFSFH);
VREF(dvp);
newvp = dvp;
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
} else {
error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL);
if (error)
return (error);
newvp = NFSTOV(np);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
}
if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
if ((cnp->cn_flags & MAKEENTRY) &&
(cnp->cn_nameiop != DELETE || !(flags & ISLASTCN))) {
np->n_ctime = np->n_vattr.na_vattr.va_ctime.tv_sec;
cache_enter(dvp, newvp, cnp);
}
*vpp = newvp;
return (0);
}
/*
* nfs read call.
* Just call ncl_bioread() to do the work.
*/
static int
nfs_read(struct vop_read_args *ap)
{
struct vnode *vp = ap->a_vp;
switch (vp->v_type) {
case VREG:
return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
case VDIR:
return (EISDIR);
default:
return (EOPNOTSUPP);
}
}
/*
* nfs readlink call
*/
static int
nfs_readlink(struct vop_readlink_args *ap)
{
struct vnode *vp = ap->a_vp;
if (vp->v_type != VLNK)
return (EINVAL);
return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
}
/*
* Do a readlink rpc.
* Called by ncl_doio() from below the buffer cache.
*/
int
ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
{
int error, ret, attrflag;
struct nfsvattr nfsva;
error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
&attrflag, NULL);
if (attrflag) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (ret && !error)
error = ret;
}
if (error && NFS_ISV4(vp))
error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs read rpc call
* Ditto above
*/
int
ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
{
int error, ret, attrflag;
struct nfsvattr nfsva;
error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, &attrflag,
NULL);
if (attrflag) {
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (ret && !error)
error = ret;
}
if (error && NFS_ISV4(vp))
error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs write call
*/
int
ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
int *iomode, int *must_commit)
{
struct nfsvattr nfsva;
int error = 0, attrflag, ret;
u_char verf[NFSX_VERF];
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
*must_commit = 0;
error = nfsrpc_write(vp, uiop, iomode, verf, cred,
uiop->uio_td, &nfsva, &attrflag, NULL);
NFSLOCKMNT(nmp);
if (!error && NFSHASWRITEVERF(nmp) &&
NFSBCMP(verf, nmp->nm_verf, NFSX_VERF)) {
*must_commit = 1;
NFSBCOPY(verf, nmp->nm_verf, NFSX_VERF);
}
NFSUNLOCKMNT(nmp);
if (attrflag) {
if (VTONFS(vp)->n_flag & ND_NFSV4)
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1);
else
ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1);
if (ret && !error)
error = ret;
}
if (vp->v_mount->mnt_kern_flag & MNTK_ASYNC)
*iomode = NFSWRITE_FILESYNC;
if (error && NFS_ISV4(vp))
error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs mknod rpc
* For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
* mode set to specify the file type and the size field for rdev.
*/
static int
nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
struct vattr *vap)
{
struct nfsvattr nfsva, dnfsva;
struct vnode *newvp = NULL;
struct nfsnode *np = NULL, *dnp;
struct nfsfh *nfhp;
struct vattr vattr;
int error = 0, attrflag, dattrflag;
u_int32_t rdev;
if (vap->va_type == VCHR || vap->va_type == VBLK)
rdev = vap->va_rdev;
else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
rdev = 0xffffffff;
else
return (EOPNOTSUPP);
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
return (error);
error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
&nfsva, &nfhp, &attrflag, &dattrflag, NULL);
if (!error) {
if (!nfhp)
(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
&dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
NULL);
if (nfhp)
error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
cnp->cn_thread, &np, NULL);
}
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (!error) {
newvp = NFSTOV(np);
if (attrflag)
error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
}
if (!error) {
if ((cnp->cn_flags & MAKEENTRY))
cache_enter(dvp, newvp, cnp);
*vpp = newvp;
} else if (NFS_ISV4(dvp)) {
error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
vap->va_gid);
}
dnp = VTONFS(dvp);
mtx_lock(&dnp->n_mtx);
dnp->n_flag |= NMODIFIED;
if (!dattrflag)
dnp->n_attrstamp = 0;
mtx_unlock(&dnp->n_mtx);
return (error);
}
/*
* nfs mknod vop
* just call nfs_mknodrpc() to do the work.
*/
/* ARGSUSED */
static int
nfs_mknod(struct vop_mknod_args *ap)
{
return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
}
static u_long create_verf;
/*
* nfs file create call
*/
static int
nfs_create(struct vop_create_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np = NULL, *dnp;
struct vnode *newvp = NULL;
struct nfsmount *nmp;
struct nfsvattr dnfsva, nfsva;
struct nfsfh *nfhp;
nfsquad_t cverf;
int error = 0, attrflag, dattrflag, fmode = 0;
struct vattr vattr;
/*
* Oops, not for me..
*/
if (vap->va_type == VSOCK)
return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
return (error);
if (vap->va_vaflags & VA_EXCLUSIVE)
fmode |= O_EXCL;
dnp = VTONFS(dvp);
nmp = VFSTONFS(vnode_mount(dvp));
again:
/* For NFSv4, wait until any remove is done. */
mtx_lock(&dnp->n_mtx);
while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
dnp->n_flag |= NREMOVEWANT;
(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
}
mtx_unlock(&dnp->n_mtx);
CURVNET_SET(P_TO_VNET(&proc0));
#ifdef INET
IN_IFADDR_RLOCK();
if (!TAILQ_EMPTY(&V_in_ifaddrhead))
cverf.lval[0] = IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr.s_addr;
else
#endif
cverf.lval[0] = create_verf;
#ifdef INET
IN_IFADDR_RUNLOCK();
#endif
cverf.lval[1] = ++create_verf;
CURVNET_RESTORE();
error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
&nfhp, &attrflag, &dattrflag, NULL);
if (!error) {
if (nfhp == NULL)
(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
&dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
NULL);
if (nfhp != NULL)
error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
cnp->cn_thread, &np, NULL);
}
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (!error) {
newvp = NFSTOV(np);
if (attrflag)
error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
}
if (error) {
if (newvp != NULL) {
vrele(newvp);
newvp = NULL;
}
if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
error == NFSERR_NOTSUPP) {
fmode &= ~O_EXCL;
goto again;
}
} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
if (nfscl_checksattr(vap, &nfsva)) {
error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
cnp->cn_thread, &nfsva, &attrflag, NULL);
if (error && (vap->va_uid != (uid_t)VNOVAL ||
vap->va_gid != (gid_t)VNOVAL)) {
/* try again without setting uid/gid */
vap->va_uid = (uid_t)VNOVAL;
vap->va_gid = (uid_t)VNOVAL;
error = nfsrpc_setattr(newvp, vap, NULL,
cnp->cn_cred, cnp->cn_thread, &nfsva,
&attrflag, NULL);
}
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
NULL, 0, 1);
}
}
if (!error) {
if (cnp->cn_flags & MAKEENTRY)
cache_enter(dvp, newvp, cnp);
*ap->a_vpp = newvp;
} else if (NFS_ISV4(dvp)) {
error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
vap->va_gid);
}
mtx_lock(&dnp->n_mtx);
dnp->n_flag |= NMODIFIED;
if (!dattrflag)
dnp->n_attrstamp = 0;
mtx_unlock(&dnp->n_mtx);
return (error);
}
/*
* nfs file remove call
* To try and make nfs semantics closer to ufs semantics, a file that has
* other processes using the vnode is renamed instead of removed and then
* removed later on the last close.
* - If v_usecount > 1
* If a rename is not already in the works
* call nfs_sillyrename() to set it up
* else
* do the remove rpc
*/
static int
nfs_remove(struct vop_remove_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *dvp = ap->a_dvp;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np = VTONFS(vp);
int error = 0;
struct vattr vattr;
#ifndef DIAGNOSTIC
if ((cnp->cn_flags & HASBUF) == 0)
panic("nfs_remove: no name");
if (vrefcnt(vp) < 1)
panic("nfs_remove: bad v_usecount");
#endif
if (vp->v_type == VDIR)
error = EPERM;
else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
vattr.va_nlink > 1)) {
/*
* Purge the name cache so that the chance of a lookup for
* the name succeeding while the remove is in progress is
* minimized. Without node locking it can still happen, such
* that an I/O op returns ESTALE, but since you get this if
* another host removes the file..
*/
cache_purge(vp);
/*
* throw away biocache buffers, mainly to avoid
* unnecessary delayed writes later.
*/
error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
/* Do the rpc */
if (error != EINTR && error != EIO)
error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
/*
* Kludge City: If the first reply to the remove rpc is lost..
* the reply to the retransmitted request will be ENOENT
* since the file was in fact removed
* Therefore, we cheat and return success.
*/
if (error == ENOENT)
error = 0;
} else if (!np->n_sillyrename)
error = nfs_sillyrename(dvp, vp, cnp);
np->n_attrstamp = 0;
return (error);
}
/*
* nfs file remove rpc called from nfs_inactive
*/
int
ncl_removeit(struct sillyrename *sp, struct vnode *vp)
{
/*
* Make sure that the directory vnode is still valid.
* XXX we should lock sp->s_dvp here.
*/
if (sp->s_dvp->v_type == VBAD)
return (0);
return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
sp->s_cred, NULL));
}
/*
* Nfs remove rpc, called from nfs_remove() and ncl_removeit().
*/
static int
nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
int namelen, struct ucred *cred, struct thread *td)
{
struct nfsvattr dnfsva;
struct nfsnode *dnp = VTONFS(dvp);
int error = 0, dattrflag;
mtx_lock(&dnp->n_mtx);
dnp->n_flag |= NREMOVEINPROG;
mtx_unlock(&dnp->n_mtx);
error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
&dattrflag, NULL);
mtx_lock(&dnp->n_mtx);
if ((dnp->n_flag & NREMOVEWANT)) {
dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
mtx_unlock(&dnp->n_mtx);
wakeup((caddr_t)dnp);
} else {
dnp->n_flag &= ~NREMOVEINPROG;
mtx_unlock(&dnp->n_mtx);
}
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
mtx_lock(&dnp->n_mtx);
dnp->n_flag |= NMODIFIED;
if (!dattrflag)
dnp->n_attrstamp = 0;
mtx_unlock(&dnp->n_mtx);
if (error && NFS_ISV4(dvp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs file rename call
*/
static int
nfs_rename(struct vop_rename_args *ap)
{
struct vnode *fvp = ap->a_fvp;
struct vnode *tvp = ap->a_tvp;
struct vnode *fdvp = ap->a_fdvp;
struct vnode *tdvp = ap->a_tdvp;
struct componentname *tcnp = ap->a_tcnp;
struct componentname *fcnp = ap->a_fcnp;
struct nfsnode *fnp = VTONFS(ap->a_fvp);
struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
struct nfsv4node *newv4 = NULL;
int error;
#ifndef DIAGNOSTIC
if ((tcnp->cn_flags & HASBUF) == 0 ||
(fcnp->cn_flags & HASBUF) == 0)
panic("nfs_rename: no name");
#endif
/* Check for cross-device rename */
if ((fvp->v_mount != tdvp->v_mount) ||
(tvp && (fvp->v_mount != tvp->v_mount))) {
error = EXDEV;
goto out;
}
if (fvp == tvp) {
ncl_printf("nfs_rename: fvp == tvp (can't happen)\n");
error = 0;
goto out;
}
if ((error = vn_lock(fvp, LK_EXCLUSIVE)))
goto out;
/*
* We have to flush B_DELWRI data prior to renaming
* the file. If we don't, the delayed-write buffers
* can be flushed out later after the file has gone stale
* under NFSV3. NFSV2 does not have this problem because
* ( as far as I can tell ) it flushes dirty buffers more
* often.
*
* Skip the rename operation if the fsync fails, this can happen
* due to the server's volume being full, when we pushed out data
* that was written back to our cache earlier. Not checking for
* this condition can result in potential (silent) data loss.
*/
error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
VOP_UNLOCK(fvp, 0);
if (!error && tvp)
error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
if (error)
goto out;
/*
* If the tvp exists and is in use, sillyrename it before doing the
* rename of the new file over it.
* XXX Can't sillyrename a directory.
*/
if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
vput(tvp);
tvp = NULL;
}
error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
tcnp->cn_thread);
if (!error) {
/*
* For NFSv4, check to see if it is the same name and
* replace the name, if it is different.
*/
MALLOC(newv4, struct nfsv4node *,
sizeof (struct nfsv4node) +
tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
M_NFSV4NODE, M_WAITOK);
mtx_lock(&tdnp->n_mtx);
mtx_lock(&fnp->n_mtx);
if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
(fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
tcnp->cn_namelen) ||
tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
tdnp->n_fhp->nfh_len))) {
#ifdef notdef
{ char nnn[100]; int nnnl;
nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
bcopy(tcnp->cn_nameptr, nnn, nnnl);
nnn[nnnl] = '\0';
printf("ren replace=%s\n",nnn);
}
#endif
FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
fnp->n_v4 = newv4;
newv4 = NULL;
fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
fnp->n_v4->n4_namelen = tcnp->cn_namelen;
NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
tdnp->n_fhp->nfh_len);
NFSBCOPY(tcnp->cn_nameptr,
NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
}
mtx_unlock(&tdnp->n_mtx);
mtx_unlock(&fnp->n_mtx);
if (newv4 != NULL)
FREE((caddr_t)newv4, M_NFSV4NODE);
}
if (fvp->v_type == VDIR) {
if (tvp != NULL && tvp->v_type == VDIR)
cache_purge(tdvp);
cache_purge(fdvp);
}
out:
if (tdvp == tvp)
vrele(tdvp);
else
vput(tdvp);
if (tvp)
vput(tvp);
vrele(fdvp);
vrele(fvp);
/*
* Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
*/
if (error == ENOENT)
error = 0;
return (error);
}
/*
* nfs file rename rpc called from nfs_remove() above
*/
static int
nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
struct sillyrename *sp)
{
return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
scnp->cn_thread));
}
/*
* Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
*/
static int
nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
int tnamelen, struct ucred *cred, struct thread *td)
{
struct nfsvattr fnfsva, tnfsva;
struct nfsnode *fdnp = VTONFS(fdvp);
struct nfsnode *tdnp = VTONFS(tdvp);
int error = 0, fattrflag, tattrflag;
error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
&tattrflag, NULL, NULL);
mtx_lock(&fdnp->n_mtx);
fdnp->n_flag |= NMODIFIED;
mtx_unlock(&fdnp->n_mtx);
mtx_lock(&tdnp->n_mtx);
tdnp->n_flag |= NMODIFIED;
mtx_unlock(&tdnp->n_mtx);
if (fattrflag)
(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
else
fdnp->n_attrstamp = 0;
if (tattrflag)
(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
else
tdnp->n_attrstamp = 0;
if (error && NFS_ISV4(fdvp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* nfs hard link create call
*/
static int
nfs_link(struct vop_link_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *tdvp = ap->a_tdvp;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *tdnp;
struct nfsvattr nfsva, dnfsva;
int error = 0, attrflag, dattrflag;
if (vp->v_mount != tdvp->v_mount) {
return (EXDEV);
}
/*
* Push all writes to the server, so that the attribute cache
* doesn't get "out of sync" with the server.
* XXX There should be a better way!
*/
VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
&dattrflag, NULL);
tdnp = VTONFS(tdvp);
mtx_lock(&tdnp->n_mtx);
tdnp->n_flag |= NMODIFIED;
mtx_unlock(&tdnp->n_mtx);
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
else
VTONFS(vp)->n_attrstamp = 0;
if (dattrflag)
(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
else
tdnp->n_attrstamp = 0;
/*
* If negative lookup caching is enabled, I might as well
* add an entry for this node. Not necessary for correctness,
* but if negative caching is enabled, then the system
* must care about lookup caching hit rate, so...
*/
if (newnfs_neglookup_enable != 0 &&
(cnp->cn_flags & MAKEENTRY))
cache_enter(tdvp, vp, cnp);
if (error && NFS_ISV4(vp))
error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
(gid_t)0);
return (error);
}
/*
* nfs symbolic link create call
*/
static int
nfs_symlink(struct vop_symlink_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsvattr nfsva, dnfsva;
struct nfsfh *nfhp;
struct nfsnode *np = NULL, *dnp;
struct vnode *newvp = NULL;
int error = 0, attrflag, dattrflag, ret;
vap->va_type = VLNK;
error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
&nfsva, &nfhp, &attrflag, &dattrflag, NULL);
if (nfhp) {
ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
&np, NULL);
if (!ret)
newvp = NFSTOV(np);
else if (!error)
error = ret;
}
if (newvp != NULL) {
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
} else if (!error) {
/*
* If we do not have an error and we could not extract the
* newvp from the response due to the request being NFSv2, we
* have to do a lookup in order to obtain a newvp to return.
*/
error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &np);
if (!error)
newvp = NFSTOV(np);
}
if (error) {
if (newvp)
vput(newvp);
if (NFS_ISV4(dvp))
error = nfscl_maperr(cnp->cn_thread, error,
vap->va_uid, vap->va_gid);
} else {
/*
* If negative lookup caching is enabled, I might as well
* add an entry for this node. Not necessary for correctness,
* but if negative caching is enabled, then the system
* must care about lookup caching hit rate, so...
*/
if (newnfs_neglookup_enable != 0 &&
(cnp->cn_flags & MAKEENTRY))
cache_enter(dvp, newvp, cnp);
*ap->a_vpp = newvp;
}
dnp = VTONFS(dvp);
mtx_lock(&dnp->n_mtx);
dnp->n_flag |= NMODIFIED;
mtx_unlock(&dnp->n_mtx);
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
else
dnp->n_attrstamp = 0;
return (error);
}
/*
* nfs make dir call
*/
static int
nfs_mkdir(struct vop_mkdir_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np = NULL, *dnp;
struct vnode *newvp = NULL;
struct vattr vattr;
struct nfsfh *nfhp;
struct nfsvattr nfsva, dnfsva;
int error = 0, attrflag, dattrflag, ret;
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
return (error);
vap->va_type = VDIR;
error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
&attrflag, &dattrflag, NULL);
dnp = VTONFS(dvp);
mtx_lock(&dnp->n_mtx);
dnp->n_flag |= NMODIFIED;
mtx_unlock(&dnp->n_mtx);
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
else
dnp->n_attrstamp = 0;
if (nfhp) {
ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
&np, NULL);
if (!ret) {
newvp = NFSTOV(np);
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
NULL, 0, 1);
} else if (!error)
error = ret;
}
if (!error && newvp == NULL) {
error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &np);
if (!error) {
newvp = NFSTOV(np);
if (newvp->v_type != VDIR)
error = EEXIST;
}
}
if (error) {
if (newvp)
vput(newvp);
if (NFS_ISV4(dvp))
error = nfscl_maperr(cnp->cn_thread, error,
vap->va_uid, vap->va_gid);
} else {
/*
* If negative lookup caching is enabled, I might as well
* add an entry for this node. Not necessary for correctness,
* but if negative caching is enabled, then the system
* must care about lookup caching hit rate, so...
*/
if (newnfs_neglookup_enable != 0 &&
(cnp->cn_flags & MAKEENTRY))
cache_enter(dvp, newvp, cnp);
*ap->a_vpp = newvp;
}
return (error);
}
/*
* nfs remove directory call
*/
static int
nfs_rmdir(struct vop_rmdir_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *dvp = ap->a_dvp;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *dnp;
struct nfsvattr dnfsva;
int error, dattrflag;
if (dvp == vp)
return (EINVAL);
error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
dnp = VTONFS(dvp);
mtx_lock(&dnp->n_mtx);
dnp->n_flag |= NMODIFIED;
mtx_unlock(&dnp->n_mtx);
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
else
dnp->n_attrstamp = 0;
cache_purge(dvp);
cache_purge(vp);
if (error && NFS_ISV4(dvp))
error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
(gid_t)0);
/*
* Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
*/
if (error == ENOENT)
error = 0;
return (error);
}
/*
* nfs readdir call
*/
static int
nfs_readdir(struct vop_readdir_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct uio *uio = ap->a_uio;
int tresid, error = 0;
struct vattr vattr;
if (vp->v_type != VDIR)
return(EPERM);
/*
* First, check for hit on the EOF offset cache
*/
if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
(np->n_flag & NMODIFIED) == 0) {
if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
mtx_lock(&np->n_mtx);
if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
!NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
mtx_unlock(&np->n_mtx);
NFSINCRGLOBAL(newnfsstats.direofcache_hits);
return (0);
} else
mtx_unlock(&np->n_mtx);
}
}
/*
* Call ncl_bioread() to do the real work.
*/
tresid = uio->uio_resid;
error = ncl_bioread(vp, uio, 0, ap->a_cred);
if (!error && uio->uio_resid == tresid)
NFSINCRGLOBAL(newnfsstats.direofcache_misses);
return (error);
}
/*
* Readdir rpc call.
* Called from below the buffer cache by ncl_doio().
*/
int
ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
struct thread *td)
{
struct nfsvattr nfsva;
nfsuint64 *cookiep, cookie;
struct nfsnode *dnp = VTONFS(vp);
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int error = 0, eof, attrflag;
#ifndef DIAGNOSTIC
if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
(uiop->uio_resid & (DIRBLKSIZ - 1)))
panic("nfs readdirrpc bad uio");
#endif
/*
* If there is no cookie, assume directory was stale.
*/
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
if (cookiep) {
cookie = *cookiep;
ncl_dircookie_unlock(dnp);
} else {
ncl_dircookie_unlock(dnp);
return (NFSERR_BAD_COOKIE);
}
if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
(void)ncl_fsinfo(nmp, vp, cred, td);
error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
&attrflag, &eof, NULL);
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (!error) {
/*
* We are now either at the end of the directory or have filled
* the block.
*/
if (eof)
dnp->n_direofoffset = uiop->uio_offset;
else {
if (uiop->uio_resid > 0)
ncl_printf("EEK! readdirrpc resid > 0\n");
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
*cookiep = cookie;
ncl_dircookie_unlock(dnp);
}
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
return (error);
}
/*
* NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
*/
int
ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
struct thread *td)
{
struct nfsvattr nfsva;
nfsuint64 *cookiep, cookie;
struct nfsnode *dnp = VTONFS(vp);
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int error = 0, attrflag, eof;
#ifndef DIAGNOSTIC
if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
(uiop->uio_resid & (DIRBLKSIZ - 1)))
panic("nfs readdirplusrpc bad uio");
#endif
/*
* If there is no cookie, assume directory was stale.
*/
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
if (cookiep) {
cookie = *cookiep;
ncl_dircookie_unlock(dnp);
} else {
ncl_dircookie_unlock(dnp);
return (NFSERR_BAD_COOKIE);
}
if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
(void)ncl_fsinfo(nmp, vp, cred, td);
error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
&attrflag, &eof, NULL);
if (attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
if (!error) {
/*
* We are now either at end of the directory or have filled the
* the block.
*/
if (eof)
dnp->n_direofoffset = uiop->uio_offset;
else {
if (uiop->uio_resid > 0)
ncl_printf("EEK! readdirplusrpc resid > 0\n");
ncl_dircookie_lock(dnp);
cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
*cookiep = cookie;
ncl_dircookie_unlock(dnp);
}
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
return (error);
}
/*
* Silly rename. To make the NFS filesystem that is stateless look a little
* more like the "ufs" a remove of an active vnode is translated to a rename
* to a funny looking filename that is removed by nfs_inactive on the
* nfsnode. There is the potential for another process on a different client
* to create the same funny name between the nfs_lookitup() fails and the
* nfs_rename() completes, but...
*/
static int
nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
{
struct sillyrename *sp;
struct nfsnode *np;
int error;
short pid;
unsigned int lticks;
cache_purge(dvp);
np = VTONFS(vp);
#ifndef DIAGNOSTIC
if (vp->v_type == VDIR)
panic("nfs: sillyrename dir");
#endif
MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
M_NEWNFSREQ, M_WAITOK);
sp->s_cred = crhold(cnp->cn_cred);
sp->s_dvp = dvp;
VREF(dvp);
/*
* Fudge together a funny name.
* Changing the format of the funny name to accomodate more
* sillynames per directory.
* The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
* CPU ticks since boot.
*/
pid = cnp->cn_thread->td_proc->p_pid;
lticks = (unsigned int)ticks;
for ( ; ; ) {
sp->s_namlen = sprintf(sp->s_name,
".nfs.%08x.%04x4.4", lticks,
pid);
if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
cnp->cn_thread, NULL))
break;
lticks++;
}
error = nfs_renameit(dvp, vp, cnp, sp);
if (error)
goto bad;
error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
cnp->cn_thread, &np);
np->n_sillyrename = sp;
return (0);
bad:
vrele(sp->s_dvp);
crfree(sp->s_cred);
free((caddr_t)sp, M_NEWNFSREQ);
return (error);
}
/*
* Look up a file name and optionally either update the file handle or
* allocate an nfsnode, depending on the value of npp.
* npp == NULL --> just do the lookup
* *npp == NULL --> allocate a new nfsnode and make sure attributes are
* handled too
* *npp != NULL --> update the file handle in the vnode
*/
static int
nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
struct thread *td, struct nfsnode **npp)
{
struct vnode *newvp = NULL, *vp;
struct nfsnode *np, *dnp = VTONFS(dvp);
struct nfsfh *nfhp, *onfhp;
struct nfsvattr nfsva, dnfsva;
struct componentname cn;
int error = 0, attrflag, dattrflag;
u_int hash;
error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
&nfhp, &attrflag, &dattrflag, NULL);
if (dattrflag)
(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
if (npp && !error) {
if (*npp != NULL) {
np = *npp;
vp = NFSTOV(np);
/*
* For NFSv4, check to see if it is the same name and
* replace the name, if it is different.
*/
if (np->n_v4 != NULL && nfsva.na_type == VREG &&
(np->n_v4->n4_namelen != len ||
NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
dnp->n_fhp->nfh_len))) {
#ifdef notdef
{ char nnn[100]; int nnnl;
nnnl = (len < 100) ? len : 99;
bcopy(name, nnn, nnnl);
nnn[nnnl] = '\0';
printf("replace=%s\n",nnn);
}
#endif
FREE((caddr_t)np->n_v4, M_NFSV4NODE);
MALLOC(np->n_v4, struct nfsv4node *,
sizeof (struct nfsv4node) +
dnp->n_fhp->nfh_len + len - 1,
M_NFSV4NODE, M_WAITOK);
np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
np->n_v4->n4_namelen = len;
NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
dnp->n_fhp->nfh_len);
NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
}
hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
FNV1_32_INIT);
onfhp = np->n_fhp;
/*
* Rehash node for new file handle.
*/
vfs_hash_rehash(vp, hash);
np->n_fhp = nfhp;
if (onfhp != NULL)
FREE((caddr_t)onfhp, M_NFSFH);
newvp = NFSTOV(np);
} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
FREE((caddr_t)nfhp, M_NFSFH);
VREF(dvp);
newvp = dvp;
} else {
cn.cn_nameptr = name;
cn.cn_namelen = len;
error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
&np, NULL);
if (error)
return (error);
newvp = NFSTOV(np);
}
if (!attrflag && *npp == NULL) {
vrele(newvp);
return (ENOENT);
}
if (attrflag)
(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
0, 1);
}
if (npp && *npp == NULL) {
if (error) {
if (newvp) {
if (newvp == dvp)
vrele(newvp);
else
vput(newvp);
}
} else
*npp = np;
}
if (error && NFS_ISV4(dvp))
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
return (error);
}
/*
* Nfs Version 3 and 4 commit rpc
*/
int
ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
struct thread *td)
{
struct nfsvattr nfsva;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int error, attrflag;
u_char verf[NFSX_VERF];
mtx_lock(&nmp->nm_mtx);
if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
mtx_unlock(&nmp->nm_mtx);
return (0);
}
mtx_unlock(&nmp->nm_mtx);
error = nfsrpc_commit(vp, offset, cnt, cred, td, verf, &nfsva,
&attrflag, NULL);
if (!error) {
if (NFSBCMP((caddr_t)nmp->nm_verf, verf, NFSX_VERF)) {
NFSBCOPY(verf, (caddr_t)nmp->nm_verf, NFSX_VERF);
error = NFSERR_STALEWRITEVERF;
}
if (!error && attrflag)
(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
0, 1);
} else if (NFS_ISV4(vp)) {
error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
}
return (error);
}
/*
* Strategy routine.
* For async requests when nfsiod(s) are running, queue the request by
* calling ncl_asyncio(), otherwise just all ncl_doio() to do the
* request.
*/
static int
nfs_strategy(struct vop_strategy_args *ap)
{
struct buf *bp = ap->a_bp;
struct ucred *cr;
KASSERT(!(bp->b_flags & B_DONE),
("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
BUF_ASSERT_HELD(bp);
if (bp->b_iocmd == BIO_READ)
cr = bp->b_rcred;
else
cr = bp->b_wcred;
/*
* If the op is asynchronous and an i/o daemon is waiting
* queue the request, wake it up and wait for completion
* otherwise just do it ourselves.
*/
if ((bp->b_flags & B_ASYNC) == 0 ||
ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
(void)ncl_doio(ap->a_vp, bp, cr, curthread);
return (0);
}
/*
* fsync vnode op. Just call ncl_flush() with commit == 1.
*/
/* ARGSUSED */
static int
nfs_fsync(struct vop_fsync_args *ap)
{
return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1));
}
/*
* Flush all the blocks associated with a vnode.
* Walk through the buffer pool and push any dirty pages
* associated with the vnode.
*/
int
ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td,
int commit)
{
struct nfsnode *np = VTONFS(vp);
struct buf *bp;
int i;
struct buf *nbp;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
int passone = 1, trycnt = 0;
u_quad_t off, endoff, toff;
struct ucred* wcred = NULL;
struct buf **bvec = NULL;
struct bufobj *bo;
#ifndef NFS_COMMITBVECSIZ
#define NFS_COMMITBVECSIZ 20
#endif
struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
int bvecsize = 0, bveccount;
if (nmp->nm_flag & NFSMNT_INT)
slpflag = PCATCH;
if (!commit)
passone = 0;
bo = &vp->v_bufobj;
/*
* A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
* server, but has not been committed to stable storage on the server
* yet. On the first pass, the byte range is worked out and the commit
* rpc is done. On the second pass, ncl_writebp() is called to do the
* job.
*/
again:
off = (u_quad_t)-1;
endoff = 0;
bvecpos = 0;
if (NFS_ISV34(vp) && commit) {
if (bvec != NULL && bvec != bvec_on_stack)
free(bvec, M_TEMP);
/*
* Count up how many buffers waiting for a commit.
*/
bveccount = 0;
BO_LOCK(bo);
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (!BUF_ISLOCKED(bp) &&
(bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
== (B_DELWRI | B_NEEDCOMMIT))
bveccount++;
}
/*
* Allocate space to remember the list of bufs to commit. It is
* important to use M_NOWAIT here to avoid a race with nfs_write.
* If we can't get memory (for whatever reason), we will end up
* committing the buffers one-by-one in the loop below.
*/
if (bveccount > NFS_COMMITBVECSIZ) {
/*
* Release the vnode interlock to avoid a lock
* order reversal.
*/
BO_UNLOCK(bo);
bvec = (struct buf **)
malloc(bveccount * sizeof(struct buf *),
M_TEMP, M_NOWAIT);
BO_LOCK(bo);
if (bvec == NULL) {
bvec = bvec_on_stack;
bvecsize = NFS_COMMITBVECSIZ;
} else
bvecsize = bveccount;
} else {
bvec = bvec_on_stack;
bvecsize = NFS_COMMITBVECSIZ;
}
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (bvecpos >= bvecsize)
break;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
nbp = TAILQ_NEXT(bp, b_bobufs);
continue;
}
if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
(B_DELWRI | B_NEEDCOMMIT)) {
BUF_UNLOCK(bp);
nbp = TAILQ_NEXT(bp, b_bobufs);
continue;
}
BO_UNLOCK(bo);
bremfree(bp);
/*
* Work out if all buffers are using the same cred
* so we can deal with them all with one commit.
*
* NOTE: we are not clearing B_DONE here, so we have
* to do it later on in this routine if we intend to
* initiate I/O on the bp.
*
* Note: to avoid loopback deadlocks, we do not
* assign b_runningbufspace.
*/
if (wcred == NULL)
wcred = bp->b_wcred;
else if (wcred != bp->b_wcred)
wcred = NOCRED;
vfs_busy_pages(bp, 1);
BO_LOCK(bo);
/*
* bp is protected by being locked, but nbp is not
* and vfs_busy_pages() may sleep. We have to
* recalculate nbp.
*/
nbp = TAILQ_NEXT(bp, b_bobufs);
/*
* A list of these buffers is kept so that the
* second loop knows which buffers have actually
* been committed. This is necessary, since there
* may be a race between the commit rpc and new
* uncommitted writes on the file.
*/
bvec[bvecpos++] = bp;
toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
bp->b_dirtyoff;
if (toff < off)
off = toff;
toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
if (toff > endoff)
endoff = toff;
}
BO_UNLOCK(bo);
}
if (bvecpos > 0) {
/*
* Commit data on the server, as required.
* If all bufs are using the same wcred, then use that with
* one call for all of them, otherwise commit each one
* separately.
*/
if (wcred != NOCRED)
retv = ncl_commit(vp, off, (int)(endoff - off),
wcred, td);
else {
retv = 0;
for (i = 0; i < bvecpos; i++) {
off_t off, size;
bp = bvec[i];
off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
bp->b_dirtyoff;
size = (u_quad_t)(bp->b_dirtyend
- bp->b_dirtyoff);
retv = ncl_commit(vp, off, (int)size,
bp->b_wcred, td);
if (retv) break;
}
}
if (retv == NFSERR_STALEWRITEVERF)
ncl_clearcommit(vp->v_mount);
/*
* Now, either mark the blocks I/O done or mark the
* blocks dirty, depending on whether the commit
* succeeded.
*/
for (i = 0; i < bvecpos; i++) {
bp = bvec[i];
bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
if (retv) {
/*
* Error, leave B_DELWRI intact
*/
vfs_unbusy_pages(bp);
brelse(bp);
} else {
/*
* Success, remove B_DELWRI ( bundirty() ).
*
* b_dirtyoff/b_dirtyend seem to be NFS
* specific. We should probably move that
* into bundirty(). XXX
*/
bufobj_wref(bo);
bp->b_flags |= B_ASYNC;
bundirty(bp);
bp->b_flags &= ~B_DONE;
bp->b_ioflags &= ~BIO_ERROR;
bp->b_dirtyoff = bp->b_dirtyend = 0;
bufdone(bp);
}
}
}
/*
* Start/do any write(s) that are required.
*/
loop:
BO_LOCK(bo);
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
if (waitfor != MNT_WAIT || passone)
continue;
error = BUF_TIMELOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
BO_MTX(bo), "nfsfsync", slpflag, slptimeo);
if (error == 0) {
BUF_UNLOCK(bp);
goto loop;
}
if (error == ENOLCK) {
error = 0;
goto loop;
}
if (newnfs_sigintr(nmp, td)) {
error = EINTR;
goto done;
}
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = 2 * hz;
}
goto loop;
}
if ((bp->b_flags & B_DELWRI) == 0)
panic("nfs_fsync: not dirty");
if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
BUF_UNLOCK(bp);
continue;
}
BO_UNLOCK(bo);
bremfree(bp);
if (passone || !commit)
bp->b_flags |= B_ASYNC;
else
bp->b_flags |= B_ASYNC;
bwrite(bp);
if (newnfs_sigintr(nmp, td)) {
error = EINTR;
goto done;
}
goto loop;
}
if (passone) {
passone = 0;
BO_UNLOCK(bo);
goto again;
}
if (waitfor == MNT_WAIT) {
while (bo->bo_numoutput) {
error = bufobj_wwait(bo, slpflag, slptimeo);
if (error) {
BO_UNLOCK(bo);
error = newnfs_sigintr(nmp, td);
if (error)
goto done;
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = 2 * hz;
}
BO_LOCK(bo);
}
}
if (bo->bo_dirty.bv_cnt != 0 && commit) {
BO_UNLOCK(bo);
goto loop;
}
/*
* Wait for all the async IO requests to drain
*/
BO_UNLOCK(bo);
mtx_lock(&np->n_mtx);
while (np->n_directio_asyncwr > 0) {
np->n_flag |= NFSYNCWAIT;
error = ncl_msleep(td, (caddr_t)&np->n_directio_asyncwr,
&np->n_mtx, slpflag | (PRIBIO + 1),
"nfsfsync", 0);
if (error) {
if (newnfs_sigintr(nmp, td)) {
mtx_unlock(&np->n_mtx);
error = EINTR;
goto done;
}
}
}
mtx_unlock(&np->n_mtx);
} else
BO_UNLOCK(bo);
mtx_lock(&np->n_mtx);
if (np->n_flag & NWRITEERR) {
error = np->n_error;
np->n_flag &= ~NWRITEERR;
}
if (commit && bo->bo_dirty.bv_cnt == 0 &&
bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
np->n_flag &= ~NMODIFIED;
mtx_unlock(&np->n_mtx);
done:
if (bvec != NULL && bvec != bvec_on_stack)
free(bvec, M_TEMP);
if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
(bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
np->n_directio_asyncwr != 0) && trycnt++ < 5) {
/* try, try again... */
passone = 1;
wcred = NULL;
bvec = NULL;
bvecsize = 0;
printf("try%d\n", trycnt);
goto again;
}
return (error);
}
/*
* NFS advisory byte-level locks.
*/
static int
nfs_advlock(struct vop_advlock_args *ap)
{
struct vnode *vp = ap->a_vp;
struct ucred *cred;
struct nfsnode *np = VTONFS(ap->a_vp);
struct proc *p = (struct proc *)ap->a_id;
struct thread *td = curthread; /* XXX */
struct vattr va;
int ret, error = EOPNOTSUPP;
u_quad_t size;
if (NFS_ISV4(vp) && (ap->a_flags & F_POSIX)) {
cred = p->p_ucred;
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (vp->v_iflag & VI_DOOMED) {
VOP_UNLOCK(vp, 0);
return (EBADF);
}
/*
* If this is unlocking a write locked region, flush and
* commit them before unlocking. This is required by
* RFC3530 Sec. 9.3.2.
*/
if (ap->a_op == F_UNLCK &&
nfscl_checkwritelocked(vp, ap->a_fl, cred, td))
(void) ncl_flush(vp, MNT_WAIT, cred, td, 1);
/*
* Loop around doing the lock op, while a blocking lock
* must wait for the lock op to succeed.
*/
do {
ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
ap->a_fl, 0, cred, td);
if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
ap->a_op == F_SETLK) {
VOP_UNLOCK(vp, 0);
error = nfs_catnap(PZERO | PCATCH, "ncladvl");
if (error)
return (EINTR);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (vp->v_iflag & VI_DOOMED) {
VOP_UNLOCK(vp, 0);
return (EBADF);
}
}
} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
ap->a_op == F_SETLK);
if (ret == NFSERR_DENIED) {
VOP_UNLOCK(vp, 0);
return (EAGAIN);
} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
VOP_UNLOCK(vp, 0);
return (ret);
} else if (ret != 0) {
VOP_UNLOCK(vp, 0);
return (EACCES);
}
/*
* Now, if we just got a lock, invalidate data in the buffer
* cache, as required, so that the coherency conforms with
* RFC3530 Sec. 9.3.2.
*/
if (ap->a_op == F_SETLK) {
if ((np->n_flag & NMODIFIED) == 0) {
np->n_attrstamp = 0;
ret = VOP_GETATTR(vp, &va, cred);
}
if ((np->n_flag & NMODIFIED) || ret ||
np->n_change != va.va_filerev) {
(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
np->n_attrstamp = 0;
ret = VOP_GETATTR(vp, &va, cred);
if (!ret) {
np->n_mtime = va.va_mtime;
np->n_change = va.va_filerev;
}
}
}
VOP_UNLOCK(vp, 0);
return (0);
} else if (!NFS_ISV4(vp)) {
error = vn_lock(vp, LK_SHARED);
if (error)
return (error);
if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
size = VTONFS(vp)->n_size;
VOP_UNLOCK(vp, 0);
error = lf_advlock(ap, &(vp->v_lockf), size);
} else {
if (ncl_advlock_p)
error = ncl_advlock_p(ap);
else
error = ENOLCK;
}
}
return (error);
}
/*
* NFS advisory byte-level locks.
*/
static int
nfs_advlockasync(struct vop_advlockasync_args *ap)
{
struct vnode *vp = ap->a_vp;
u_quad_t size;
int error;
if (NFS_ISV4(vp))
return (EOPNOTSUPP);
error = vn_lock(vp, LK_SHARED);
if (error)
return (error);
if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
size = VTONFS(vp)->n_size;
VOP_UNLOCK(vp, 0);
error = lf_advlockasync(ap, &(vp->v_lockf), size);
} else {
VOP_UNLOCK(vp, 0);
error = EOPNOTSUPP;
}
return (error);
}
/*
* Print out the contents of an nfsnode.
*/
static int
nfs_print(struct vop_print_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
ncl_printf("\tfileid %ld fsid 0x%x",
np->n_vattr.na_fileid, np->n_vattr.na_fsid);
if (vp->v_type == VFIFO)
fifo_printinfo(vp);
printf("\n");
return (0);
}
/*
* This is the "real" nfs::bwrite(struct buf*).
* We set B_CACHE if this is a VMIO buffer.
*/
int
ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
{
int s;
int oldflags = bp->b_flags;
#if 0
int retv = 1;
off_t off;
#endif
BUF_ASSERT_HELD(bp);
if (bp->b_flags & B_INVAL) {
brelse(bp);
return(0);
}
bp->b_flags |= B_CACHE;
/*
* Undirty the bp. We will redirty it later if the I/O fails.
*/
s = splbio();
bundirty(bp);
bp->b_flags &= ~B_DONE;
bp->b_ioflags &= ~BIO_ERROR;
bp->b_iocmd = BIO_WRITE;
bufobj_wref(bp->b_bufobj);
curthread->td_ru.ru_oublock++;
splx(s);
/*
* Note: to avoid loopback deadlocks, we do not
* assign b_runningbufspace.
*/
vfs_busy_pages(bp, 1);
BUF_KERNPROC(bp);
bp->b_iooffset = dbtob(bp->b_blkno);
bstrategy(bp);
if( (oldflags & B_ASYNC) == 0) {
int rtval = bufwait(bp);
if (oldflags & B_DELWRI) {
s = splbio();
reassignbuf(bp);
splx(s);
}
brelse(bp);
return (rtval);
}
return (0);
}
/*
* nfs special file access vnode op.
* Essentially just get vattr and then imitate iaccess() since the device is
* local to the client.
*/
static int
nfsspec_access(struct vop_access_args *ap)
{
struct vattr *vap;
struct ucred *cred = ap->a_cred;
struct vnode *vp = ap->a_vp;
accmode_t accmode = ap->a_accmode;
struct vattr vattr;
int error;
/*
* Disallow write attempts on filesystems mounted read-only;
* unless the file is a socket, fifo, or a block or character
* device resident on the filesystem.
*/
if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
switch (vp->v_type) {
case VREG:
case VDIR:
case VLNK:
return (EROFS);
default:
break;
}
}
vap = &vattr;
error = VOP_GETATTR(vp, vap, cred);
if (error)
goto out;
error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
accmode, cred, NULL);
out:
return error;
}
/*
* Read wrapper for fifos.
*/
static int
nfsfifo_read(struct vop_read_args *ap)
{
struct nfsnode *np = VTONFS(ap->a_vp);
int error;
/*
* Set access flag.
*/
mtx_lock(&np->n_mtx);
np->n_flag |= NACC;
getnanotime(&np->n_atim);
mtx_unlock(&np->n_mtx);
error = fifo_specops.vop_read(ap);
return error;
}
/*
* Write wrapper for fifos.
*/
static int
nfsfifo_write(struct vop_write_args *ap)
{
struct nfsnode *np = VTONFS(ap->a_vp);
/*
* Set update flag.
*/
mtx_lock(&np->n_mtx);
np->n_flag |= NUPD;
getnanotime(&np->n_mtim);
mtx_unlock(&np->n_mtx);
return(fifo_specops.vop_write(ap));
}
/*
* Close wrapper for fifos.
*
* Update the times on the nfsnode then do fifo close.
*/
static int
nfsfifo_close(struct vop_close_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct vattr vattr;
struct timespec ts;
mtx_lock(&np->n_mtx);
if (np->n_flag & (NACC | NUPD)) {
getnanotime(&ts);
if (np->n_flag & NACC)
np->n_atim = ts;
if (np->n_flag & NUPD)
np->n_mtim = ts;
np->n_flag |= NCHG;
if (vrefcnt(vp) == 1 &&
(vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
VATTR_NULL(&vattr);
if (np->n_flag & NACC)
vattr.va_atime = np->n_atim;
if (np->n_flag & NUPD)
vattr.va_mtime = np->n_mtim;
mtx_unlock(&np->n_mtx);
(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
goto out;
}
}
mtx_unlock(&np->n_mtx);
out:
return (fifo_specops.vop_close(ap));
}
/*
* Just call ncl_writebp() with the force argument set to 1.
*
* NOTE: B_DONE may or may not be set in a_bp on call.
*/
static int
nfs_bwrite(struct buf *bp)
{
return (ncl_writebp(bp, 1, curthread));
}
struct buf_ops buf_ops_newnfs = {
.bop_name = "buf_ops_nfs",
.bop_write = nfs_bwrite,
.bop_strategy = bufstrategy,
.bop_sync = bufsync,
.bop_bdflush = bufbdflush,
};
/*
* Cloned from vop_stdlock(), and then the ugly hack added.
*/
static int
nfs_lock1(struct vop_lock1_args *ap)
{
struct vnode *vp = ap->a_vp;
int error = 0;
/*
* Since vfs_hash_get() calls vget() and it will no longer work
* for FreeBSD8 with flags == 0, I can only think of this horrible
* hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER
* and then handle it here. All I want for this case is a v_usecount
* on the vnode to use for recovery, while another thread might
* hold a lock on the vnode. I have the other threads blocked, so
* there isn't any race problem.
*/
if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) {
if ((ap->a_flags & LK_INTERLOCK) == 0)
panic("ncllock1");
if ((vp->v_iflag & VI_DOOMED))
error = ENOENT;
VI_UNLOCK(vp);
return (error);
}
return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp),
LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file,
ap->a_line));
}
#ifdef NFS4_ACL_EXTATTR_NAME
static int
nfs_getacl(struct vop_getacl_args *ap)
{
int error;
if (ap->a_type != ACL_TYPE_NFS4)
return (EOPNOTSUPP);
error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
NULL);
if (error > NFSERR_STALE) {
(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
error = EPERM;
}
return (error);
}
static int
nfs_setacl(struct vop_setacl_args *ap)
{
int error;
if (ap->a_type != ACL_TYPE_NFS4)
return (EOPNOTSUPP);
error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
NULL);
if (error > NFSERR_STALE) {
(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
error = EPERM;
}
return (error);
}
#endif /* NFS4_ACL_EXTATTR_NAME */