Mark Johnston 098c902b52 aesni: Ensure that key schedules are aligned
Rather than depending on malloc() returning 16-byte aligned chunks,
allocate some extra pad bytes and ensure that key schedules are
appropriately aligned.

Reviewed by:	kib
MFC after:	2 weeks
Sponsored by:	Rubicon Communications, LLC (Netgate)
Differential Revision:	https://reviews.freebsd.org/D28157
2021-01-18 17:07:56 -05:00

924 lines
22 KiB
C

/*-
* Copyright (c) 2005-2008 Pawel Jakub Dawidek <pjd@FreeBSD.org>
* Copyright (c) 2010 Konstantin Belousov <kib@FreeBSD.org>
* Copyright (c) 2014 The FreeBSD Foundation
* Copyright (c) 2017 Conrad Meyer <cem@FreeBSD.org>
* All rights reserved.
*
* Portions of this software were developed by John-Mark Gurney
* under sponsorship of the FreeBSD Foundation and
* Rubicon Communications, LLC (Netgate).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/libkern.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <sys/systm.h>
#include <sys/uio.h>
#include <crypto/aesni/aesni.h>
#include <crypto/aesni/sha_sse.h>
#include <crypto/sha1.h>
#include <crypto/sha2/sha224.h>
#include <crypto/sha2/sha256.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/gmac.h>
#include <cryptodev_if.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#include <machine/fpu.h>
static struct mtx_padalign *ctx_mtx;
static struct fpu_kern_ctx **ctx_fpu;
struct aesni_softc {
int32_t cid;
bool has_aes;
bool has_sha;
};
#define ACQUIRE_CTX(i, ctx) \
do { \
(i) = PCPU_GET(cpuid); \
mtx_lock(&ctx_mtx[(i)]); \
(ctx) = ctx_fpu[(i)]; \
} while (0)
#define RELEASE_CTX(i, ctx) \
do { \
mtx_unlock(&ctx_mtx[(i)]); \
(i) = -1; \
(ctx) = NULL; \
} while (0)
static int aesni_cipher_setup(struct aesni_session *ses,
const struct crypto_session_params *csp);
static int aesni_cipher_process(struct aesni_session *ses, struct cryptop *crp);
static int aesni_cipher_crypt(struct aesni_session *ses, struct cryptop *crp,
const struct crypto_session_params *csp);
static int aesni_cipher_mac(struct aesni_session *ses, struct cryptop *crp,
const struct crypto_session_params *csp);
MALLOC_DEFINE(M_AESNI, "aesni_data", "AESNI Data");
static void
aesni_identify(driver_t *drv, device_t parent)
{
/* NB: order 10 is so we get attached after h/w devices */
if (device_find_child(parent, "aesni", -1) == NULL &&
BUS_ADD_CHILD(parent, 10, "aesni", -1) == 0)
panic("aesni: could not attach");
}
static void
detect_cpu_features(bool *has_aes, bool *has_sha)
{
*has_aes = ((cpu_feature2 & CPUID2_AESNI) != 0 &&
(cpu_feature2 & CPUID2_SSE41) != 0);
*has_sha = ((cpu_stdext_feature & CPUID_STDEXT_SHA) != 0 &&
(cpu_feature2 & CPUID2_SSSE3) != 0);
}
static int
aesni_probe(device_t dev)
{
bool has_aes, has_sha;
detect_cpu_features(&has_aes, &has_sha);
if (!has_aes && !has_sha) {
device_printf(dev, "No AES or SHA support.\n");
return (EINVAL);
} else if (has_aes && has_sha)
device_set_desc(dev,
"AES-CBC,AES-CCM,AES-GCM,AES-ICM,AES-XTS,SHA1,SHA256");
else if (has_aes)
device_set_desc(dev,
"AES-CBC,AES-CCM,AES-GCM,AES-ICM,AES-XTS");
else
device_set_desc(dev, "SHA1,SHA256");
return (0);
}
static void
aesni_cleanctx(void)
{
int i;
/* XXX - no way to return driverid */
CPU_FOREACH(i) {
if (ctx_fpu[i] != NULL) {
mtx_destroy(&ctx_mtx[i]);
fpu_kern_free_ctx(ctx_fpu[i]);
}
ctx_fpu[i] = NULL;
}
free(ctx_mtx, M_AESNI);
ctx_mtx = NULL;
free(ctx_fpu, M_AESNI);
ctx_fpu = NULL;
}
static int
aesni_attach(device_t dev)
{
struct aesni_softc *sc;
int i;
sc = device_get_softc(dev);
sc->cid = crypto_get_driverid(dev, sizeof(struct aesni_session),
CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC |
CRYPTOCAP_F_ACCEL_SOFTWARE);
if (sc->cid < 0) {
device_printf(dev, "Could not get crypto driver id.\n");
return (ENOMEM);
}
ctx_mtx = malloc(sizeof *ctx_mtx * (mp_maxid + 1), M_AESNI,
M_WAITOK|M_ZERO);
ctx_fpu = malloc(sizeof *ctx_fpu * (mp_maxid + 1), M_AESNI,
M_WAITOK|M_ZERO);
CPU_FOREACH(i) {
#ifdef __amd64__
ctx_fpu[i] = fpu_kern_alloc_ctx_domain(
pcpu_find(i)->pc_domain, FPU_KERN_NORMAL);
#else
ctx_fpu[i] = fpu_kern_alloc_ctx(FPU_KERN_NORMAL);
#endif
mtx_init(&ctx_mtx[i], "anifpumtx", NULL, MTX_DEF|MTX_NEW);
}
detect_cpu_features(&sc->has_aes, &sc->has_sha);
return (0);
}
static int
aesni_detach(device_t dev)
{
struct aesni_softc *sc;
sc = device_get_softc(dev);
crypto_unregister_all(sc->cid);
aesni_cleanctx();
return (0);
}
static bool
aesni_auth_supported(struct aesni_softc *sc,
const struct crypto_session_params *csp)
{
if (!sc->has_sha)
return (false);
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1:
case CRYPTO_SHA2_224:
case CRYPTO_SHA2_256:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_224_HMAC:
case CRYPTO_SHA2_256_HMAC:
break;
default:
return (false);
}
return (true);
}
static bool
aesni_cipher_supported(struct aesni_softc *sc,
const struct crypto_session_params *csp)
{
if (!sc->has_aes)
return (false);
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_CBC:
case CRYPTO_AES_ICM:
switch (csp->csp_cipher_klen * 8) {
case 128:
case 192:
case 256:
break;
default:
CRYPTDEB("invalid CBC/ICM key length");
return (false);
}
if (csp->csp_ivlen != AES_BLOCK_LEN)
return (false);
break;
case CRYPTO_AES_XTS:
switch (csp->csp_cipher_klen * 8) {
case 256:
case 512:
break;
default:
CRYPTDEB("invalid XTS key length");
return (false);
}
if (csp->csp_ivlen != AES_XTS_IV_LEN)
return (false);
break;
default:
return (false);
}
return (true);
}
#define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
static int
aesni_probesession(device_t dev, const struct crypto_session_params *csp)
{
struct aesni_softc *sc;
sc = device_get_softc(dev);
if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
return (EINVAL);
switch (csp->csp_mode) {
case CSP_MODE_DIGEST:
if (!aesni_auth_supported(sc, csp))
return (EINVAL);
break;
case CSP_MODE_CIPHER:
if (!aesni_cipher_supported(sc, csp))
return (EINVAL);
break;
case CSP_MODE_AEAD:
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_NIST_GCM_16:
switch (csp->csp_cipher_klen * 8) {
case 128:
case 192:
case 256:
break;
default:
CRYPTDEB("invalid GCM key length");
return (EINVAL);
}
if (csp->csp_auth_mlen != 0 &&
csp->csp_auth_mlen != GMAC_DIGEST_LEN)
return (EINVAL);
if (csp->csp_ivlen != AES_GCM_IV_LEN ||
!sc->has_aes)
return (EINVAL);
break;
case CRYPTO_AES_CCM_16:
switch (csp->csp_cipher_klen * 8) {
case 128:
case 192:
case 256:
break;
default:
CRYPTDEB("invalid CCM key length");
return (EINVAL);
}
if (csp->csp_auth_mlen != 0 &&
csp->csp_auth_mlen != AES_CBC_MAC_HASH_LEN)
return (EINVAL);
if (csp->csp_ivlen != AES_CCM_IV_LEN ||
!sc->has_aes)
return (EINVAL);
break;
default:
return (EINVAL);
}
break;
case CSP_MODE_ETA:
if (!aesni_auth_supported(sc, csp) ||
!aesni_cipher_supported(sc, csp))
return (EINVAL);
break;
default:
return (EINVAL);
}
return (CRYPTODEV_PROBE_ACCEL_SOFTWARE);
}
static int
aesni_newsession(device_t dev, crypto_session_t cses,
const struct crypto_session_params *csp)
{
struct aesni_softc *sc;
struct aesni_session *ses;
int error;
sc = device_get_softc(dev);
ses = crypto_get_driver_session(cses);
switch (csp->csp_mode) {
case CSP_MODE_DIGEST:
case CSP_MODE_CIPHER:
case CSP_MODE_AEAD:
case CSP_MODE_ETA:
break;
default:
return (EINVAL);
}
error = aesni_cipher_setup(ses, csp);
if (error != 0) {
CRYPTDEB("setup failed");
return (error);
}
return (0);
}
static int
aesni_process(device_t dev, struct cryptop *crp, int hint __unused)
{
struct aesni_session *ses;
int error;
ses = crypto_get_driver_session(crp->crp_session);
error = aesni_cipher_process(ses, crp);
crp->crp_etype = error;
crypto_done(crp);
return (0);
}
static uint8_t *
aesni_cipher_alloc(struct cryptop *crp, int start, int length, bool *allocated)
{
uint8_t *addr;
addr = crypto_contiguous_subsegment(crp, start, length);
if (addr != NULL) {
*allocated = false;
return (addr);
}
addr = malloc(length, M_AESNI, M_NOWAIT);
if (addr != NULL) {
*allocated = true;
crypto_copydata(crp, start, length, addr);
} else
*allocated = false;
return (addr);
}
static device_method_t aesni_methods[] = {
DEVMETHOD(device_identify, aesni_identify),
DEVMETHOD(device_probe, aesni_probe),
DEVMETHOD(device_attach, aesni_attach),
DEVMETHOD(device_detach, aesni_detach),
DEVMETHOD(cryptodev_probesession, aesni_probesession),
DEVMETHOD(cryptodev_newsession, aesni_newsession),
DEVMETHOD(cryptodev_process, aesni_process),
DEVMETHOD_END
};
static driver_t aesni_driver = {
"aesni",
aesni_methods,
sizeof(struct aesni_softc),
};
static devclass_t aesni_devclass;
DRIVER_MODULE(aesni, nexus, aesni_driver, aesni_devclass, 0, 0);
MODULE_VERSION(aesni, 1);
MODULE_DEPEND(aesni, crypto, 1, 1, 1);
static int
intel_sha1_update(void *vctx, const void *vdata, u_int datalen)
{
struct sha1_ctxt *ctx = vctx;
const char *data = vdata;
size_t gaplen;
size_t gapstart;
size_t off;
size_t copysiz;
u_int blocks;
off = 0;
/* Do any aligned blocks without redundant copying. */
if (datalen >= 64 && ctx->count % 64 == 0) {
blocks = datalen / 64;
ctx->c.b64[0] += blocks * 64 * 8;
intel_sha1_step(ctx->h.b32, data + off, blocks);
off += blocks * 64;
}
while (off < datalen) {
gapstart = ctx->count % 64;
gaplen = 64 - gapstart;
copysiz = (gaplen < datalen - off) ? gaplen : datalen - off;
bcopy(&data[off], &ctx->m.b8[gapstart], copysiz);
ctx->count += copysiz;
ctx->count %= 64;
ctx->c.b64[0] += copysiz * 8;
if (ctx->count % 64 == 0)
intel_sha1_step(ctx->h.b32, (void *)ctx->m.b8, 1);
off += copysiz;
}
return (0);
}
static void
SHA1_Init_fn(void *ctx)
{
sha1_init(ctx);
}
static void
SHA1_Finalize_fn(void *digest, void *ctx)
{
sha1_result(ctx, digest);
}
static int
intel_sha256_update(void *vctx, const void *vdata, u_int len)
{
SHA256_CTX *ctx = vctx;
uint64_t bitlen;
uint32_t r;
u_int blocks;
const unsigned char *src = vdata;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count >> 3) & 0x3f;
/* Convert the length into a number of bits */
bitlen = len << 3;
/* Update number of bits */
ctx->count += bitlen;
/* Handle the case where we don't need to perform any transforms */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return (0);
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, 64 - r);
intel_sha256_step(ctx->state, ctx->buf, 1);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks */
if (len >= 64) {
blocks = len / 64;
intel_sha256_step(ctx->state, src, blocks);
src += blocks * 64;
len -= blocks * 64;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
return (0);
}
static void
SHA224_Init_fn(void *ctx)
{
SHA224_Init(ctx);
}
static void
SHA224_Finalize_fn(void *digest, void *ctx)
{
SHA224_Final(digest, ctx);
}
static void
SHA256_Init_fn(void *ctx)
{
SHA256_Init(ctx);
}
static void
SHA256_Finalize_fn(void *digest, void *ctx)
{
SHA256_Final(digest, ctx);
}
static int
aesni_authprepare(struct aesni_session *ses, int klen)
{
if (klen > SHA1_BLOCK_LEN)
return (EINVAL);
if ((ses->hmac && klen == 0) || (!ses->hmac && klen != 0))
return (EINVAL);
return (0);
}
static int
aesni_cipher_setup(struct aesni_session *ses,
const struct crypto_session_params *csp)
{
struct fpu_kern_ctx *ctx;
uint8_t *schedbase;
int kt, ctxidx, error;
schedbase = (uint8_t *)roundup2((uintptr_t)ses->schedules,
AES_SCHED_ALIGN);
ses->enc_schedule = schedbase;
ses->dec_schedule = schedbase + AES_SCHED_LEN;
ses->xts_schedule = schedbase + AES_SCHED_LEN * 2;
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
ses->hmac = true;
/* FALLTHROUGH */
case CRYPTO_SHA1:
ses->hash_len = SHA1_HASH_LEN;
ses->hash_init = SHA1_Init_fn;
ses->hash_update = intel_sha1_update;
ses->hash_finalize = SHA1_Finalize_fn;
break;
case CRYPTO_SHA2_224_HMAC:
ses->hmac = true;
/* FALLTHROUGH */
case CRYPTO_SHA2_224:
ses->hash_len = SHA2_224_HASH_LEN;
ses->hash_init = SHA224_Init_fn;
ses->hash_update = intel_sha256_update;
ses->hash_finalize = SHA224_Finalize_fn;
break;
case CRYPTO_SHA2_256_HMAC:
ses->hmac = true;
/* FALLTHROUGH */
case CRYPTO_SHA2_256:
ses->hash_len = SHA2_256_HASH_LEN;
ses->hash_init = SHA256_Init_fn;
ses->hash_update = intel_sha256_update;
ses->hash_finalize = SHA256_Finalize_fn;
break;
}
if (ses->hash_len != 0) {
if (csp->csp_auth_mlen == 0)
ses->mlen = ses->hash_len;
else
ses->mlen = csp->csp_auth_mlen;
error = aesni_authprepare(ses, csp->csp_auth_klen);
if (error != 0)
return (error);
}
kt = is_fpu_kern_thread(0) || (csp->csp_cipher_alg == 0);
if (!kt) {
ACQUIRE_CTX(ctxidx, ctx);
fpu_kern_enter(curthread, ctx,
FPU_KERN_NORMAL | FPU_KERN_KTHR);
}
error = 0;
if (csp->csp_cipher_key != NULL)
aesni_cipher_setup_common(ses, csp, csp->csp_cipher_key,
csp->csp_cipher_klen);
if (!kt) {
fpu_kern_leave(curthread, ctx);
RELEASE_CTX(ctxidx, ctx);
}
return (error);
}
static int
aesni_cipher_process(struct aesni_session *ses, struct cryptop *crp)
{
const struct crypto_session_params *csp;
struct fpu_kern_ctx *ctx;
int error, ctxidx;
bool kt;
csp = crypto_get_params(crp->crp_session);
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_ICM:
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_CCM_16:
if ((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0)
return (EINVAL);
break;
case CRYPTO_AES_CBC:
case CRYPTO_AES_XTS:
/* CBC & XTS can only handle full blocks for now */
if ((crp->crp_payload_length % AES_BLOCK_LEN) != 0)
return (EINVAL);
break;
}
ctx = NULL;
ctxidx = 0;
error = 0;
kt = is_fpu_kern_thread(0);
if (!kt) {
ACQUIRE_CTX(ctxidx, ctx);
fpu_kern_enter(curthread, ctx,
FPU_KERN_NORMAL | FPU_KERN_KTHR);
}
/* Do work */
if (csp->csp_mode == CSP_MODE_ETA) {
if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
error = aesni_cipher_crypt(ses, crp, csp);
if (error == 0)
error = aesni_cipher_mac(ses, crp, csp);
} else {
error = aesni_cipher_mac(ses, crp, csp);
if (error == 0)
error = aesni_cipher_crypt(ses, crp, csp);
}
} else if (csp->csp_mode == CSP_MODE_DIGEST)
error = aesni_cipher_mac(ses, crp, csp);
else
error = aesni_cipher_crypt(ses, crp, csp);
if (!kt) {
fpu_kern_leave(curthread, ctx);
RELEASE_CTX(ctxidx, ctx);
}
return (error);
}
static int
aesni_cipher_crypt(struct aesni_session *ses, struct cryptop *crp,
const struct crypto_session_params *csp)
{
uint8_t iv[AES_BLOCK_LEN], tag[GMAC_DIGEST_LEN];
uint8_t *authbuf, *buf, *outbuf;
int error;
bool encflag, allocated, authallocated, outallocated, outcopy;
buf = aesni_cipher_alloc(crp, crp->crp_payload_start,
crp->crp_payload_length, &allocated);
if (buf == NULL)
return (ENOMEM);
outallocated = false;
authallocated = false;
authbuf = NULL;
if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16 ||
csp->csp_cipher_alg == CRYPTO_AES_CCM_16) {
if (crp->crp_aad != NULL)
authbuf = crp->crp_aad;
else
authbuf = aesni_cipher_alloc(crp, crp->crp_aad_start,
crp->crp_aad_length, &authallocated);
if (authbuf == NULL) {
error = ENOMEM;
goto out;
}
}
if (CRYPTO_HAS_OUTPUT_BUFFER(crp)) {
outbuf = crypto_buffer_contiguous_subsegment(&crp->crp_obuf,
crp->crp_payload_output_start, crp->crp_payload_length);
if (outbuf == NULL) {
outcopy = true;
if (allocated)
outbuf = buf;
else {
outbuf = malloc(crp->crp_payload_length,
M_AESNI, M_NOWAIT);
if (outbuf == NULL) {
error = ENOMEM;
goto out;
}
outallocated = true;
}
} else
outcopy = false;
} else {
outbuf = buf;
outcopy = allocated;
}
error = 0;
encflag = CRYPTO_OP_IS_ENCRYPT(crp->crp_op);
if (crp->crp_cipher_key != NULL)
aesni_cipher_setup_common(ses, csp, crp->crp_cipher_key,
csp->csp_cipher_klen);
crypto_read_iv(crp, iv);
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_CBC:
if (encflag)
aesni_encrypt_cbc(ses->rounds, ses->enc_schedule,
crp->crp_payload_length, buf, outbuf, iv);
else {
if (buf != outbuf)
memcpy(outbuf, buf, crp->crp_payload_length);
aesni_decrypt_cbc(ses->rounds, ses->dec_schedule,
crp->crp_payload_length, outbuf, iv);
}
break;
case CRYPTO_AES_ICM:
/* encryption & decryption are the same */
aesni_encrypt_icm(ses->rounds, ses->enc_schedule,
crp->crp_payload_length, buf, outbuf, iv);
break;
case CRYPTO_AES_XTS:
if (encflag)
aesni_encrypt_xts(ses->rounds, ses->enc_schedule,
ses->xts_schedule, crp->crp_payload_length, buf,
outbuf, iv);
else
aesni_decrypt_xts(ses->rounds, ses->dec_schedule,
ses->xts_schedule, crp->crp_payload_length, buf,
outbuf, iv);
break;
case CRYPTO_AES_NIST_GCM_16:
if (encflag) {
memset(tag, 0, sizeof(tag));
AES_GCM_encrypt(buf, outbuf, authbuf, iv, tag,
crp->crp_payload_length, crp->crp_aad_length,
csp->csp_ivlen, ses->enc_schedule, ses->rounds);
crypto_copyback(crp, crp->crp_digest_start, sizeof(tag),
tag);
} else {
crypto_copydata(crp, crp->crp_digest_start, sizeof(tag),
tag);
if (!AES_GCM_decrypt(buf, outbuf, authbuf, iv, tag,
crp->crp_payload_length, crp->crp_aad_length,
csp->csp_ivlen, ses->enc_schedule, ses->rounds))
error = EBADMSG;
}
break;
case CRYPTO_AES_CCM_16:
if (encflag) {
memset(tag, 0, sizeof(tag));
AES_CCM_encrypt(buf, outbuf, authbuf, iv, tag,
crp->crp_payload_length, crp->crp_aad_length,
csp->csp_ivlen, ses->enc_schedule, ses->rounds);
crypto_copyback(crp, crp->crp_digest_start, sizeof(tag),
tag);
} else {
crypto_copydata(crp, crp->crp_digest_start, sizeof(tag),
tag);
if (!AES_CCM_decrypt(buf, outbuf, authbuf, iv, tag,
crp->crp_payload_length, crp->crp_aad_length,
csp->csp_ivlen, ses->enc_schedule, ses->rounds))
error = EBADMSG;
}
break;
}
if (outcopy && error == 0)
crypto_copyback(crp, CRYPTO_HAS_OUTPUT_BUFFER(crp) ?
crp->crp_payload_output_start : crp->crp_payload_start,
crp->crp_payload_length, outbuf);
out:
if (allocated)
zfree(buf, M_AESNI);
if (authallocated)
zfree(authbuf, M_AESNI);
if (outallocated)
zfree(outbuf, M_AESNI);
explicit_bzero(iv, sizeof(iv));
explicit_bzero(tag, sizeof(tag));
return (error);
}
static int
aesni_cipher_mac(struct aesni_session *ses, struct cryptop *crp,
const struct crypto_session_params *csp)
{
union {
struct SHA256Context sha2 __aligned(16);
struct sha1_ctxt sha1 __aligned(16);
} sctx;
uint32_t res[SHA2_256_HASH_LEN / sizeof(uint32_t)];
const uint8_t *key;
int i, keylen;
if (crp->crp_auth_key != NULL)
key = crp->crp_auth_key;
else
key = csp->csp_auth_key;
keylen = csp->csp_auth_klen;
if (ses->hmac) {
uint8_t hmac_key[SHA1_BLOCK_LEN] __aligned(16);
/* Inner hash: (K ^ IPAD) || data */
ses->hash_init(&sctx);
for (i = 0; i < keylen; i++)
hmac_key[i] = key[i] ^ HMAC_IPAD_VAL;
for (i = keylen; i < sizeof(hmac_key); i++)
hmac_key[i] = 0 ^ HMAC_IPAD_VAL;
ses->hash_update(&sctx, hmac_key, sizeof(hmac_key));
if (crp->crp_aad != NULL)
ses->hash_update(&sctx, crp->crp_aad,
crp->crp_aad_length);
else
crypto_apply(crp, crp->crp_aad_start,
crp->crp_aad_length, ses->hash_update, &sctx);
if (CRYPTO_HAS_OUTPUT_BUFFER(crp) &&
CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
crypto_apply_buf(&crp->crp_obuf,
crp->crp_payload_output_start,
crp->crp_payload_length,
ses->hash_update, &sctx);
else
crypto_apply(crp, crp->crp_payload_start,
crp->crp_payload_length, ses->hash_update, &sctx);
if (csp->csp_flags & CSP_F_ESN)
ses->hash_update(&sctx, crp->crp_esn, 4);
ses->hash_finalize(res, &sctx);
/* Outer hash: (K ^ OPAD) || inner hash */
ses->hash_init(&sctx);
for (i = 0; i < keylen; i++)
hmac_key[i] = key[i] ^ HMAC_OPAD_VAL;
for (i = keylen; i < sizeof(hmac_key); i++)
hmac_key[i] = 0 ^ HMAC_OPAD_VAL;
ses->hash_update(&sctx, hmac_key, sizeof(hmac_key));
ses->hash_update(&sctx, res, ses->hash_len);
ses->hash_finalize(res, &sctx);
explicit_bzero(hmac_key, sizeof(hmac_key));
} else {
ses->hash_init(&sctx);
if (crp->crp_aad != NULL)
ses->hash_update(&sctx, crp->crp_aad,
crp->crp_aad_length);
else
crypto_apply(crp, crp->crp_aad_start,
crp->crp_aad_length, ses->hash_update, &sctx);
if (CRYPTO_HAS_OUTPUT_BUFFER(crp) &&
CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
crypto_apply_buf(&crp->crp_obuf,
crp->crp_payload_output_start,
crp->crp_payload_length,
ses->hash_update, &sctx);
else
crypto_apply(crp, crp->crp_payload_start,
crp->crp_payload_length,
ses->hash_update, &sctx);
ses->hash_finalize(res, &sctx);
}
if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
uint32_t res2[SHA2_256_HASH_LEN / sizeof(uint32_t)];
crypto_copydata(crp, crp->crp_digest_start, ses->mlen, res2);
if (timingsafe_bcmp(res, res2, ses->mlen) != 0)
return (EBADMSG);
explicit_bzero(res2, sizeof(res2));
} else
crypto_copyback(crp, crp->crp_digest_start, ses->mlen, res);
explicit_bzero(res, sizeof(res));
return (0);
}