freebsd-nq/sys/dev/netmap/netmap_freebsd.c
Justin Hibbits e330262f34 Mechanically convert netmap(4) to IfAPI
Reviewed by:	vmaffione, zlei
Sponsored by:	Juniper Networks, Inc.
Differential Revision: https://reviews.freebsd.org/D37814
2023-02-14 10:21:19 -05:00

1600 lines
37 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* $FreeBSD$ */
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/module.h>
#include <sys/errno.h>
#include <sys/eventhandler.h>
#include <sys/jail.h>
#include <sys/poll.h> /* POLLIN, POLLOUT */
#include <sys/kernel.h> /* types used in module initialization */
#include <sys/conf.h> /* DEV_MODULE_ORDERED */
#include <sys/endian.h>
#include <sys/syscallsubr.h> /* kern_ioctl() */
#include <sys/rwlock.h>
#include <vm/vm.h> /* vtophys */
#include <vm/pmap.h> /* vtophys */
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
#include <sys/malloc.h>
#include <sys/socket.h> /* sockaddrs */
#include <sys/selinfo.h>
#include <sys/kthread.h> /* kthread_add() */
#include <sys/proc.h> /* PROC_LOCK() */
#include <sys/unistd.h> /* RFNOWAIT */
#include <sys/sched.h> /* sched_bind() */
#include <sys/smp.h> /* mp_maxid */
#include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_types.h> /* IFT_ETHER */
#include <net/ethernet.h> /* ether_ifdetach */
#include <net/if_dl.h> /* LLADDR */
#include <machine/bus.h> /* bus_dmamap_* */
#include <netinet/in.h> /* in6_cksum_pseudo() */
#include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#include <net/netmap_virt.h>
#include <dev/netmap/netmap_mem2.h>
/* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
static void
nm_kqueue_notify(void *opaque, int pending)
{
struct nm_selinfo *si = opaque;
/* We use a non-zero hint to distinguish this notification call
* from the call done in kqueue_scan(), which uses hint=0.
*/
KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100);
}
int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) {
int err;
TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si);
si->ntfytq = taskqueue_create(name, M_NOWAIT,
taskqueue_thread_enqueue, &si->ntfytq);
if (si->ntfytq == NULL)
return -ENOMEM;
err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name);
if (err) {
taskqueue_free(si->ntfytq);
si->ntfytq = NULL;
return err;
}
snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name);
mtx_init(&si->m, si->mtxname, NULL, MTX_DEF);
knlist_init_mtx(&si->si.si_note, &si->m);
si->kqueue_users = 0;
return (0);
}
void
nm_os_selinfo_uninit(NM_SELINFO_T *si)
{
if (si->ntfytq == NULL) {
return; /* si was not initialized */
}
taskqueue_drain(si->ntfytq, &si->ntfytask);
taskqueue_free(si->ntfytq);
si->ntfytq = NULL;
knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
knlist_destroy(&si->si.si_note);
/* now we don't need the mutex anymore */
mtx_destroy(&si->m);
}
void *
nm_os_malloc(size_t size)
{
return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
}
void *
nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
{
return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
}
void
nm_os_free(void *addr)
{
free(addr, M_DEVBUF);
}
void
nm_os_ifnet_lock(void)
{
IFNET_RLOCK();
}
void
nm_os_ifnet_unlock(void)
{
IFNET_RUNLOCK();
}
static int netmap_use_count = 0;
void
nm_os_get_module(void)
{
netmap_use_count++;
}
void
nm_os_put_module(void)
{
netmap_use_count--;
}
static void
netmap_ifnet_arrival_handler(void *arg __unused, if_t ifp)
{
netmap_undo_zombie(ifp);
}
static void
netmap_ifnet_departure_handler(void *arg __unused, if_t ifp)
{
netmap_make_zombie(ifp);
}
static eventhandler_tag nm_ifnet_ah_tag;
static eventhandler_tag nm_ifnet_dh_tag;
int
nm_os_ifnet_init(void)
{
nm_ifnet_ah_tag =
EVENTHANDLER_REGISTER(ifnet_arrival_event,
netmap_ifnet_arrival_handler,
NULL, EVENTHANDLER_PRI_ANY);
nm_ifnet_dh_tag =
EVENTHANDLER_REGISTER(ifnet_departure_event,
netmap_ifnet_departure_handler,
NULL, EVENTHANDLER_PRI_ANY);
return 0;
}
void
nm_os_ifnet_fini(void)
{
EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
nm_ifnet_ah_tag);
EVENTHANDLER_DEREGISTER(ifnet_departure_event,
nm_ifnet_dh_tag);
}
unsigned
nm_os_ifnet_mtu(if_t ifp)
{
return if_getmtu(ifp);
}
rawsum_t
nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
{
/* TODO XXX please use the FreeBSD implementation for this. */
uint16_t *words = (uint16_t *)data;
int nw = len / 2;
int i;
for (i = 0; i < nw; i++)
cur_sum += be16toh(words[i]);
if (len & 1)
cur_sum += (data[len-1] << 8);
return cur_sum;
}
/* Fold a raw checksum: 'cur_sum' is in host byte order, while the
* return value is in network byte order.
*/
uint16_t
nm_os_csum_fold(rawsum_t cur_sum)
{
/* TODO XXX please use the FreeBSD implementation for this. */
while (cur_sum >> 16)
cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
return htobe16((~cur_sum) & 0xFFFF);
}
uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
{
#if 0
return in_cksum_hdr((void *)iph);
#else
return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
#endif
}
void
nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
size_t datalen, uint16_t *check)
{
#ifdef INET
uint16_t pseudolen = datalen + iph->protocol;
/* Compute and insert the pseudo-header checksum. */
*check = in_pseudo(iph->saddr, iph->daddr,
htobe16(pseudolen));
/* Compute the checksum on TCP/UDP header + payload
* (includes the pseudo-header).
*/
*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
#else
static int notsupported = 0;
if (!notsupported) {
notsupported = 1;
nm_prerr("inet4 segmentation not supported");
}
#endif
}
void
nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
size_t datalen, uint16_t *check)
{
#ifdef INET6
*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
#else
static int notsupported = 0;
if (!notsupported) {
notsupported = 1;
nm_prerr("inet6 segmentation not supported");
}
#endif
}
/* on FreeBSD we send up one packet at a time */
void *
nm_os_send_up(if_t ifp, struct mbuf *m, struct mbuf *prev)
{
NA(ifp)->if_input(ifp, m);
return NULL;
}
int
nm_os_mbuf_has_csum_offld(struct mbuf *m)
{
return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
CSUM_SCTP_IPV6);
}
int
nm_os_mbuf_has_seg_offld(struct mbuf *m)
{
return m->m_pkthdr.csum_flags & CSUM_TSO;
}
static void
freebsd_generic_rx_handler(if_t ifp, struct mbuf *m)
{
int stolen;
if (unlikely(!NM_NA_VALID(ifp))) {
nm_prlim(1, "Warning: RX packet intercepted, but no"
" emulated adapter");
return;
}
stolen = generic_rx_handler(ifp, m);
if (!stolen) {
struct netmap_generic_adapter *gna =
(struct netmap_generic_adapter *)NA(ifp);
gna->save_if_input(ifp, m);
}
}
/*
* Intercept the rx routine in the standard device driver.
* Second argument is non-zero to intercept, 0 to restore
*/
int
nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
{
struct netmap_adapter *na = &gna->up.up;
if_t ifp = na->ifp;
int ret = 0;
nm_os_ifnet_lock();
if (intercept) {
if (gna->save_if_input) {
nm_prerr("RX on %s already intercepted", na->name);
ret = EBUSY; /* already set */
goto out;
}
if_setcapenablebit(ifp, IFCAP_NETMAP, 0);
gna->save_if_input = if_getinputfn(ifp);
if_setinputfn(ifp, freebsd_generic_rx_handler);
} else {
if (!gna->save_if_input) {
nm_prerr("Failed to undo RX intercept on %s",
na->name);
ret = EINVAL; /* not saved */
goto out;
}
if_setcapenablebit(ifp, 0, IFCAP_NETMAP);
if_setinputfn(ifp, gna->save_if_input);
gna->save_if_input = NULL;
}
out:
nm_os_ifnet_unlock();
return ret;
}
/*
* Intercept the packet steering routine in the tx path,
* so that we can decide which queue is used for an mbuf.
* Second argument is non-zero to intercept, 0 to restore.
* On freebsd we just intercept if_transmit.
*/
int
nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
{
struct netmap_adapter *na = &gna->up.up;
if_t ifp = netmap_generic_getifp(gna);
nm_os_ifnet_lock();
if (intercept) {
na->if_transmit = if_gettransmitfn(ifp);
if_settransmitfn(ifp, netmap_transmit);
} else {
if_settransmitfn(ifp, na->if_transmit);
}
nm_os_ifnet_unlock();
return 0;
}
/*
* Transmit routine used by generic_netmap_txsync(). Returns 0 on success
* and non-zero on error (which may be packet drops or other errors).
* addr and len identify the netmap buffer, m is the (preallocated)
* mbuf to use for transmissions.
*
* We should add a reference to the mbuf so the m_freem() at the end
* of the transmission does not consume resources.
*
* On FreeBSD, and on multiqueue cards, we can force the queue using
* if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
* i = m->m_pkthdr.flowid % adapter->num_queues;
* else
* i = curcpu % adapter->num_queues;
*
*/
int
nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
{
int ret;
u_int len = a->len;
if_t ifp = a->ifp;
struct mbuf *m = a->m;
/* Link the external storage to
* the netmap buffer, so that no copy is necessary. */
m->m_ext.ext_buf = m->m_data = a->addr;
m->m_ext.ext_size = len;
m->m_flags |= M_PKTHDR;
m->m_len = m->m_pkthdr.len = len;
/* mbuf refcnt is not contended, no need to use atomic
* (a memory barrier is enough). */
SET_MBUF_REFCNT(m, 2);
M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
m->m_pkthdr.flowid = a->ring_nr;
m->m_pkthdr.rcvif = ifp; /* used for tx notification */
CURVNET_SET(if_getvnet(ifp));
ret = NA(ifp)->if_transmit(ifp, m);
CURVNET_RESTORE();
return ret ? -1 : 0;
}
struct netmap_adapter *
netmap_getna(if_t ifp)
{
return (NA(ifp));
}
/*
* The following two functions are empty until we have a generic
* way to extract the info from the ifp
*/
int
nm_os_generic_find_num_desc(if_t ifp, unsigned int *tx, unsigned int *rx)
{
return 0;
}
void
nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq)
{
unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
*txq = num_rings;
*rxq = num_rings;
}
void
nm_os_generic_set_features(struct netmap_generic_adapter *gna)
{
gna->rxsg = 1; /* Supported through m_copydata. */
gna->txqdisc = 0; /* Not supported. */
}
void
nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
{
mit->mit_pending = 0;
mit->mit_ring_idx = idx;
mit->mit_na = na;
}
void
nm_os_mitigation_start(struct nm_generic_mit *mit)
{
}
void
nm_os_mitigation_restart(struct nm_generic_mit *mit)
{
}
int
nm_os_mitigation_active(struct nm_generic_mit *mit)
{
return 0;
}
void
nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
{
}
static int
nm_vi_dummy(if_t ifp, u_long cmd, caddr_t addr)
{
return EINVAL;
}
static void
nm_vi_start(if_t ifp)
{
panic("nm_vi_start() must not be called");
}
/*
* Index manager of persistent virtual interfaces.
* It is used to decide the lowest byte of the MAC address.
* We use the same algorithm with management of bridge port index.
*/
#define NM_VI_MAX 255
static struct {
uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
uint8_t active;
struct mtx lock;
} nm_vi_indices;
void
nm_os_vi_init_index(void)
{
int i;
for (i = 0; i < NM_VI_MAX; i++)
nm_vi_indices.index[i] = i;
nm_vi_indices.active = 0;
mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
}
/* return -1 if no index available */
static int
nm_vi_get_index(void)
{
int ret;
mtx_lock(&nm_vi_indices.lock);
ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
nm_vi_indices.index[nm_vi_indices.active++];
mtx_unlock(&nm_vi_indices.lock);
return ret;
}
static void
nm_vi_free_index(uint8_t val)
{
int i, lim;
mtx_lock(&nm_vi_indices.lock);
lim = nm_vi_indices.active;
for (i = 0; i < lim; i++) {
if (nm_vi_indices.index[i] == val) {
/* swap index[lim-1] and j */
int tmp = nm_vi_indices.index[lim-1];
nm_vi_indices.index[lim-1] = val;
nm_vi_indices.index[i] = tmp;
nm_vi_indices.active--;
break;
}
}
if (lim == nm_vi_indices.active)
nm_prerr("Index %u not found", val);
mtx_unlock(&nm_vi_indices.lock);
}
#undef NM_VI_MAX
/*
* Implementation of a netmap-capable virtual interface that
* registered to the system.
* It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
*
* Note: Linux sets refcount to 0 on allocation of net_device,
* then increments it on registration to the system.
* FreeBSD sets refcount to 1 on if_alloc(), and does not
* increment this refcount on if_attach().
*/
int
nm_os_vi_persist(const char *name, if_t *ret)
{
if_t ifp;
u_short macaddr_hi;
uint32_t macaddr_mid;
u_char eaddr[6];
int unit = nm_vi_get_index(); /* just to decide MAC address */
if (unit < 0)
return EBUSY;
/*
* We use the same MAC address generation method with tap
* except for the highest octet is 00:be instead of 00:bd
*/
macaddr_hi = htons(0x00be); /* XXX tap + 1 */
macaddr_mid = (uint32_t) ticks;
bcopy(&macaddr_hi, eaddr, sizeof(short));
bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
eaddr[5] = (uint8_t)unit;
ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
nm_prerr("if_alloc failed");
return ENOMEM;
}
if_initname(ifp, name, IF_DUNIT_NONE);
if_setflags(ifp, IFF_UP | IFF_SIMPLEX | IFF_MULTICAST);
if_setinitfn(ifp, (void *)nm_vi_dummy);
if_setioctlfn(ifp, nm_vi_dummy);
if_setstartfn(ifp, nm_vi_start);
if_setmtu(ifp, ETHERMTU);
if_setsendqlen(ifp, ifqmaxlen);
if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0);
if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0);
ether_ifattach(ifp, eaddr);
*ret = ifp;
return 0;
}
/* unregister from the system and drop the final refcount */
void
nm_os_vi_detach(if_t ifp)
{
nm_vi_free_index(((char *)if_getlladdr(ifp))[5]);
ether_ifdetach(ifp);
if_free(ifp);
}
#ifdef WITH_EXTMEM
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
struct nm_os_extmem {
vm_object_t obj;
vm_offset_t kva;
vm_offset_t size;
uintptr_t scan;
};
void
nm_os_extmem_delete(struct nm_os_extmem *e)
{
nm_prinf("freeing %zx bytes", (size_t)e->size);
vm_map_remove(kernel_map, e->kva, e->kva + e->size);
nm_os_free(e);
}
char *
nm_os_extmem_nextpage(struct nm_os_extmem *e)
{
char *rv = NULL;
if (e->scan < e->kva + e->size) {
rv = (char *)e->scan;
e->scan += PAGE_SIZE;
}
return rv;
}
int
nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
{
return (e1->obj == e2->obj);
}
int
nm_os_extmem_nr_pages(struct nm_os_extmem *e)
{
return e->size >> PAGE_SHIFT;
}
struct nm_os_extmem *
nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
{
vm_map_t map;
vm_map_entry_t entry;
vm_object_t obj;
vm_prot_t prot;
vm_pindex_t index;
boolean_t wired;
struct nm_os_extmem *e = NULL;
int rv, error = 0;
e = nm_os_malloc(sizeof(*e));
if (e == NULL) {
error = ENOMEM;
goto out;
}
map = &curthread->td_proc->p_vmspace->vm_map;
rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
&obj, &index, &prot, &wired);
if (rv != KERN_SUCCESS) {
nm_prerr("address %lx not found", p);
error = vm_mmap_to_errno(rv);
goto out_free;
}
vm_object_reference(obj);
/* check that we are given the whole vm_object ? */
vm_map_lookup_done(map, entry);
e->obj = obj;
/* Wire the memory and add the vm_object to the kernel map,
* to make sure that it is not freed even if all the processes
* that are mmap()ing should munmap() it.
*/
e->kva = vm_map_min(kernel_map);
e->size = obj->size << PAGE_SHIFT;
rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
VM_PROT_READ | VM_PROT_WRITE, 0);
if (rv != KERN_SUCCESS) {
nm_prerr("vm_map_find(%zx) failed", (size_t)e->size);
error = vm_mmap_to_errno(rv);
goto out_rel;
}
rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
if (rv != KERN_SUCCESS) {
nm_prerr("vm_map_wire failed");
error = vm_mmap_to_errno(rv);
goto out_rem;
}
e->scan = e->kva;
return e;
out_rem:
vm_map_remove(kernel_map, e->kva, e->kva + e->size);
out_rel:
vm_object_deallocate(e->obj);
e->obj = NULL;
out_free:
nm_os_free(e);
out:
if (perror)
*perror = error;
return NULL;
}
#endif /* WITH_EXTMEM */
/* ================== PTNETMAP GUEST SUPPORT ==================== */
#ifdef WITH_PTNETMAP
#include <sys/bus.h>
#include <sys/rman.h>
#include <machine/bus.h> /* bus_dmamap_* */
#include <machine/resource.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
/*
* ptnetmap memory device (memdev) for freebsd guest,
* ssed to expose host netmap memory to the guest through a PCI BAR.
*/
/*
* ptnetmap memdev private data structure
*/
struct ptnetmap_memdev {
device_t dev;
struct resource *pci_io;
struct resource *pci_mem;
struct netmap_mem_d *nm_mem;
};
static int ptn_memdev_probe(device_t);
static int ptn_memdev_attach(device_t);
static int ptn_memdev_detach(device_t);
static int ptn_memdev_shutdown(device_t);
static device_method_t ptn_memdev_methods[] = {
DEVMETHOD(device_probe, ptn_memdev_probe),
DEVMETHOD(device_attach, ptn_memdev_attach),
DEVMETHOD(device_detach, ptn_memdev_detach),
DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
DEVMETHOD_END
};
static driver_t ptn_memdev_driver = {
PTNETMAP_MEMDEV_NAME,
ptn_memdev_methods,
sizeof(struct ptnetmap_memdev),
};
/* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
* below. */
DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL,
SI_ORDER_MIDDLE + 1);
/*
* Map host netmap memory through PCI-BAR in the guest OS,
* returning physical (nm_paddr) and virtual (nm_addr) addresses
* of the netmap memory mapped in the guest.
*/
int
nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
void **nm_addr, uint64_t *mem_size)
{
int rid;
nm_prinf("ptn_memdev_driver iomap");
rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
(*mem_size << 32);
/* map memory allocator */
ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
&rid, 0, ~0, *mem_size, RF_ACTIVE);
if (ptn_dev->pci_mem == NULL) {
*nm_paddr = 0;
*nm_addr = NULL;
return ENOMEM;
}
*nm_paddr = rman_get_start(ptn_dev->pci_mem);
*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===",
PTNETMAP_MEM_PCI_BAR,
(unsigned long)(*nm_paddr),
(unsigned long)rman_get_size(ptn_dev->pci_mem),
(unsigned long)*mem_size);
return (0);
}
uint32_t
nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
{
return bus_read_4(ptn_dev->pci_io, reg);
}
/* Unmap host netmap memory. */
void
nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
{
nm_prinf("ptn_memdev_driver iounmap");
if (ptn_dev->pci_mem) {
bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
ptn_dev->pci_mem = NULL;
}
}
/* Device identification routine, return BUS_PROBE_DEFAULT on success,
* positive on failure */
static int
ptn_memdev_probe(device_t dev)
{
char desc[256];
if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
return (ENXIO);
if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
return (ENXIO);
snprintf(desc, sizeof(desc), "%s PCI adapter",
PTNETMAP_MEMDEV_NAME);
device_set_desc_copy(dev, desc);
return (BUS_PROBE_DEFAULT);
}
/* Device initialization routine. */
static int
ptn_memdev_attach(device_t dev)
{
struct ptnetmap_memdev *ptn_dev;
int rid;
uint16_t mem_id;
ptn_dev = device_get_softc(dev);
ptn_dev->dev = dev;
pci_enable_busmaster(dev);
rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
RF_ACTIVE);
if (ptn_dev->pci_io == NULL) {
device_printf(dev, "cannot map I/O space\n");
return (ENXIO);
}
mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
/* create guest allocator */
ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
if (ptn_dev->nm_mem == NULL) {
ptn_memdev_detach(dev);
return (ENOMEM);
}
netmap_mem_get(ptn_dev->nm_mem);
nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id);
return (0);
}
/* Device removal routine. */
static int
ptn_memdev_detach(device_t dev)
{
struct ptnetmap_memdev *ptn_dev;
ptn_dev = device_get_softc(dev);
if (ptn_dev->nm_mem) {
nm_prinf("ptnetmap memdev detached, host memid %u",
netmap_mem_get_id(ptn_dev->nm_mem));
netmap_mem_put(ptn_dev->nm_mem);
ptn_dev->nm_mem = NULL;
}
if (ptn_dev->pci_mem) {
bus_release_resource(dev, SYS_RES_MEMORY,
PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
ptn_dev->pci_mem = NULL;
}
if (ptn_dev->pci_io) {
bus_release_resource(dev, SYS_RES_IOPORT,
PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
ptn_dev->pci_io = NULL;
}
return (0);
}
static int
ptn_memdev_shutdown(device_t dev)
{
return bus_generic_shutdown(dev);
}
#endif /* WITH_PTNETMAP */
/*
* In order to track whether pages are still mapped, we hook into
* the standard cdev_pager and intercept the constructor and
* destructor.
*/
struct netmap_vm_handle_t {
struct cdev *dev;
struct netmap_priv_d *priv;
};
static int
netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
vm_ooffset_t foff, struct ucred *cred, u_short *color)
{
struct netmap_vm_handle_t *vmh = handle;
if (netmap_verbose)
nm_prinf("handle %p size %jd prot %d foff %jd",
handle, (intmax_t)size, prot, (intmax_t)foff);
if (color)
*color = 0;
dev_ref(vmh->dev);
return 0;
}
static void
netmap_dev_pager_dtor(void *handle)
{
struct netmap_vm_handle_t *vmh = handle;
struct cdev *dev = vmh->dev;
struct netmap_priv_d *priv = vmh->priv;
if (netmap_verbose)
nm_prinf("handle %p", handle);
netmap_dtor(priv);
free(vmh, M_DEVBUF);
dev_rel(dev);
}
static int
netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
int prot, vm_page_t *mres)
{
struct netmap_vm_handle_t *vmh = object->handle;
struct netmap_priv_d *priv = vmh->priv;
struct netmap_adapter *na = priv->np_na;
vm_paddr_t paddr;
vm_page_t page;
vm_memattr_t memattr;
nm_prdis("object %p offset %jd prot %d mres %p",
object, (intmax_t)offset, prot, mres);
memattr = object->memattr;
paddr = netmap_mem_ofstophys(na->nm_mem, offset);
if (paddr == 0)
return VM_PAGER_FAIL;
if (((*mres)->flags & PG_FICTITIOUS) != 0) {
/*
* If the passed in result page is a fake page, update it with
* the new physical address.
*/
page = *mres;
vm_page_updatefake(page, paddr, memattr);
} else {
/*
* Replace the passed in reqpage page with our own fake page and
* free up the all of the original pages.
*/
#ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */
#define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
#define VM_OBJECT_WLOCK VM_OBJECT_LOCK
#endif /* VM_OBJECT_WUNLOCK */
VM_OBJECT_WUNLOCK(object);
page = vm_page_getfake(paddr, memattr);
VM_OBJECT_WLOCK(object);
vm_page_replace(page, object, (*mres)->pindex, *mres);
*mres = page;
}
page->valid = VM_PAGE_BITS_ALL;
return (VM_PAGER_OK);
}
static struct cdev_pager_ops netmap_cdev_pager_ops = {
.cdev_pg_ctor = netmap_dev_pager_ctor,
.cdev_pg_dtor = netmap_dev_pager_dtor,
.cdev_pg_fault = netmap_dev_pager_fault,
};
static int
netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
vm_size_t objsize, vm_object_t *objp, int prot)
{
int error;
struct netmap_vm_handle_t *vmh;
struct netmap_priv_d *priv;
vm_object_t obj;
if (netmap_verbose)
nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev,
(intmax_t )*foff, (intmax_t )objsize, objp, prot);
vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (vmh == NULL)
return ENOMEM;
vmh->dev = cdev;
NMG_LOCK();
error = devfs_get_cdevpriv((void**)&priv);
if (error)
goto err_unlock;
if (priv->np_nifp == NULL) {
error = EINVAL;
goto err_unlock;
}
vmh->priv = priv;
priv->np_refs++;
NMG_UNLOCK();
obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
&netmap_cdev_pager_ops, objsize, prot,
*foff, NULL);
if (obj == NULL) {
nm_prerr("cdev_pager_allocate failed");
error = EINVAL;
goto err_deref;
}
*objp = obj;
return 0;
err_deref:
NMG_LOCK();
priv->np_refs--;
err_unlock:
NMG_UNLOCK();
// err:
free(vmh, M_DEVBUF);
return error;
}
/*
* On FreeBSD the close routine is only called on the last close on
* the device (/dev/netmap) so we cannot do anything useful.
* To track close() on individual file descriptors we pass netmap_dtor() to
* devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
* when the last fd pointing to the device is closed.
*
* Note that FreeBSD does not even munmap() on close() so we also have
* to track mmap() ourselves, and postpone the call to
* netmap_dtor() is called when the process has no open fds and no active
* memory maps on /dev/netmap, as in linux.
*/
static int
netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
if (netmap_verbose)
nm_prinf("dev %p fflag 0x%x devtype %d td %p",
dev, fflag, devtype, td);
return 0;
}
static int
netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct netmap_priv_d *priv;
int error;
(void)dev;
(void)oflags;
(void)devtype;
(void)td;
NMG_LOCK();
priv = netmap_priv_new();
if (priv == NULL) {
error = ENOMEM;
goto out;
}
error = devfs_set_cdevpriv(priv, netmap_dtor);
if (error) {
netmap_priv_delete(priv);
}
out:
NMG_UNLOCK();
return error;
}
/******************** kthread wrapper ****************/
#include <sys/sysproto.h>
u_int
nm_os_ncpus(void)
{
return mp_maxid + 1;
}
struct nm_kctx_ctx {
/* Userspace thread (kthread creator). */
struct thread *user_td;
/* worker function and parameter */
nm_kctx_worker_fn_t worker_fn;
void *worker_private;
struct nm_kctx *nmk;
/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
long type;
};
struct nm_kctx {
struct thread *worker;
struct mtx worker_lock;
struct nm_kctx_ctx worker_ctx;
int run; /* used to stop kthread */
int attach_user; /* kthread attached to user_process */
int affinity;
};
static void
nm_kctx_worker(void *data)
{
struct nm_kctx *nmk = data;
struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
if (nmk->affinity >= 0) {
thread_lock(curthread);
sched_bind(curthread, nmk->affinity);
thread_unlock(curthread);
}
while (nmk->run) {
/*
* check if the parent process dies
* (when kthread is attached to user process)
*/
if (ctx->user_td) {
PROC_LOCK(curproc);
thread_suspend_check(0);
PROC_UNLOCK(curproc);
} else {
kthread_suspend_check();
}
/* Continuously execute worker process. */
ctx->worker_fn(ctx->worker_private); /* worker body */
}
kthread_exit();
}
void
nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
{
nmk->affinity = affinity;
}
struct nm_kctx *
nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
{
struct nm_kctx *nmk = NULL;
nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO);
if (!nmk)
return NULL;
mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
nmk->worker_ctx.worker_fn = cfg->worker_fn;
nmk->worker_ctx.worker_private = cfg->worker_private;
nmk->worker_ctx.type = cfg->type;
nmk->affinity = -1;
/* attach kthread to user process (ptnetmap) */
nmk->attach_user = cfg->attach_user;
return nmk;
}
int
nm_os_kctx_worker_start(struct nm_kctx *nmk)
{
struct proc *p = NULL;
int error = 0;
/* Temporarily disable this function as it is currently broken
* and causes kernel crashes. The failure can be triggered by
* the "vale_polling_enable_disable" test in ctrl-api-test.c. */
return EOPNOTSUPP;
if (nmk->worker)
return EBUSY;
/* check if we want to attach kthread to user process */
if (nmk->attach_user) {
nmk->worker_ctx.user_td = curthread;
p = curthread->td_proc;
}
/* enable kthread main loop */
nmk->run = 1;
/* create kthread */
if((error = kthread_add(nm_kctx_worker, nmk, p,
&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
nmk->worker_ctx.type))) {
goto err;
}
nm_prinf("nm_kthread started td %p", nmk->worker);
return 0;
err:
nm_prerr("nm_kthread start failed err %d", error);
nmk->worker = NULL;
return error;
}
void
nm_os_kctx_worker_stop(struct nm_kctx *nmk)
{
if (!nmk->worker)
return;
/* tell to kthread to exit from main loop */
nmk->run = 0;
/* wake up kthread if it sleeps */
kthread_resume(nmk->worker);
nmk->worker = NULL;
}
void
nm_os_kctx_destroy(struct nm_kctx *nmk)
{
if (!nmk)
return;
if (nmk->worker)
nm_os_kctx_worker_stop(nmk);
free(nmk, M_DEVBUF);
}
/******************** kqueue support ****************/
/*
* In addition to calling selwakeuppri(), nm_os_selwakeup() also
* needs to call knote() to wake up kqueue listeners.
* This operation is deferred to a taskqueue in order to avoid possible
* lock order reversals; these may happen because knote() grabs a
* private lock associated to the 'si' (see struct selinfo,
* struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup()
* can be called while holding the lock associated to a different
* 'si'.
* When calling knote() we use a non-zero 'hint' argument to inform
* the netmap_knrw() function that it is being called from
* 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is
* called by the kevent subsystem (i.e. kevent_scan()) we also need to
* call netmap_poll().
*
* The netmap_kqfilter() function registers one or another f_event
* depending on read or write mode. A pointer to the struct
* 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
* be passed to netmap_poll(). We pass NULL as a third argument to
* netmap_poll(), so that the latter only runs the txsync/rxsync
* (if necessary), and skips the nm_os_selrecord() calls.
*/
void
nm_os_selwakeup(struct nm_selinfo *si)
{
selwakeuppri(&si->si, PI_NET);
if (si->kqueue_users > 0) {
taskqueue_enqueue(si->ntfytq, &si->ntfytask);
}
}
void
nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
{
selrecord(td, &si->si);
}
static void
netmap_knrdetach(struct knote *kn)
{
struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
struct nm_selinfo *si = priv->np_si[NR_RX];
knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
NMG_LOCK();
KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s",
si->mtxname));
si->kqueue_users--;
nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
NMG_UNLOCK();
}
static void
netmap_knwdetach(struct knote *kn)
{
struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
struct nm_selinfo *si = priv->np_si[NR_TX];
knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
NMG_LOCK();
si->kqueue_users--;
nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
NMG_UNLOCK();
}
/*
* Callback triggered by netmap notifications (see netmap_notify()),
* and by the application calling kevent(). In the former case we
* just return 1 (events ready), since we are not able to do better.
* In the latter case we use netmap_poll() to see which events are
* ready.
*/
static int
netmap_knrw(struct knote *kn, long hint, int events)
{
struct netmap_priv_d *priv;
int revents;
if (hint != 0) {
/* Called from netmap_notify(), typically from a
* thread different from the one issuing kevent().
* Assume we are ready. */
return 1;
}
/* Called from kevent(). */
priv = kn->kn_hook;
revents = netmap_poll(priv, events, /*thread=*/NULL);
return (events & revents) ? 1 : 0;
}
static int
netmap_knread(struct knote *kn, long hint)
{
return netmap_knrw(kn, hint, POLLIN);
}
static int
netmap_knwrite(struct knote *kn, long hint)
{
return netmap_knrw(kn, hint, POLLOUT);
}
static struct filterops netmap_rfiltops = {
.f_isfd = 1,
.f_detach = netmap_knrdetach,
.f_event = netmap_knread,
};
static struct filterops netmap_wfiltops = {
.f_isfd = 1,
.f_detach = netmap_knwdetach,
.f_event = netmap_knwrite,
};
/*
* This is called when a thread invokes kevent() to record
* a change in the configuration of the kqueue().
* The 'priv' is the one associated to the open netmap device.
*/
static int
netmap_kqfilter(struct cdev *dev, struct knote *kn)
{
struct netmap_priv_d *priv;
int error;
struct netmap_adapter *na;
struct nm_selinfo *si;
int ev = kn->kn_filter;
if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
nm_prerr("bad filter request %d", ev);
return 1;
}
error = devfs_get_cdevpriv((void**)&priv);
if (error) {
nm_prerr("device not yet setup");
return 1;
}
na = priv->np_na;
if (na == NULL) {
nm_prerr("no netmap adapter for this file descriptor");
return 1;
}
/* the si is indicated in the priv */
si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
kn->kn_fop = (ev == EVFILT_WRITE) ?
&netmap_wfiltops : &netmap_rfiltops;
kn->kn_hook = priv;
NMG_LOCK();
si->kqueue_users++;
nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
NMG_UNLOCK();
knlist_add(&si->si.si_note, kn, /*islocked=*/0);
return 0;
}
static int
freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
{
struct netmap_priv_d *priv;
if (devfs_get_cdevpriv((void **)&priv)) {
return POLLERR;
}
return netmap_poll(priv, events, td);
}
static int
freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
int ffla __unused, struct thread *td)
{
int error;
struct netmap_priv_d *priv;
CURVNET_SET(TD_TO_VNET(td));
error = devfs_get_cdevpriv((void **)&priv);
if (error) {
/* XXX ENOENT should be impossible, since the priv
* is now created in the open */
if (error == ENOENT)
error = ENXIO;
goto out;
}
error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
out:
CURVNET_RESTORE();
return error;
}
void
nm_os_onattach(if_t ifp)
{
if_setcapabilitiesbit(ifp, IFCAP_NETMAP, 0);
}
void
nm_os_onenter(if_t ifp)
{
struct netmap_adapter *na = NA(ifp);
na->if_transmit = if_gettransmitfn(ifp);
if_settransmitfn(ifp, netmap_transmit);
if_setcapenablebit(ifp, IFCAP_NETMAP, 0);
}
void
nm_os_onexit(if_t ifp)
{
struct netmap_adapter *na = NA(ifp);
if_settransmitfn(ifp, na->if_transmit);
if_setcapenablebit(ifp, 0, IFCAP_NETMAP);
}
extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
struct cdevsw netmap_cdevsw = {
.d_version = D_VERSION,
.d_name = "netmap",
.d_open = netmap_open,
.d_mmap_single = netmap_mmap_single,
.d_ioctl = freebsd_netmap_ioctl,
.d_poll = freebsd_netmap_poll,
.d_kqfilter = netmap_kqfilter,
.d_close = netmap_close,
};
/*--- end of kqueue support ----*/
/*
* Kernel entry point.
*
* Initialize/finalize the module and return.
*
* Return 0 on success, errno on failure.
*/
static int
netmap_loader(__unused struct module *module, int event, __unused void *arg)
{
int error = 0;
switch (event) {
case MOD_LOAD:
error = netmap_init();
break;
case MOD_UNLOAD:
/*
* if some one is still using netmap,
* then the module can not be unloaded.
*/
if (netmap_use_count) {
nm_prerr("netmap module can not be unloaded - netmap_use_count: %d",
netmap_use_count);
error = EBUSY;
break;
}
netmap_fini();
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
#ifdef DEV_MODULE_ORDERED
/*
* The netmap module contains three drivers: (i) the netmap character device
* driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
* device driver. The attach() routines of both (ii) and (iii) need the
* lock of the global allocator, and such lock is initialized in netmap_init(),
* which is part of (i).
* Therefore, we make sure that (i) is loaded before (ii) and (iii), using
* the 'order' parameter of driver declaration macros. For (i), we specify
* SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
* macros for (ii) and (iii).
*/
DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
#else /* !DEV_MODULE_ORDERED */
DEV_MODULE(netmap, netmap_loader, NULL);
#endif /* DEV_MODULE_ORDERED */
MODULE_DEPEND(netmap, pci, 1, 1, 1);
MODULE_VERSION(netmap, 1);
/* reduce conditional code */
// linux API, use for the knlist in FreeBSD
/* use a private mutex for the knlist */